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ABSTRACT9

Refugia, sites preserving conditions reminiscent of suitable climates, are projected to be crucial for species in a changing10

climate, particularly at high latitudes. However, the knowledge of current locations of high-latitude refugia and11

particularly their ability to retain suitable conditions under future climatic changes is limited. Occurrences of refugia have12

previously been mainly assessed and modelled based solely on climatic features, with insufficient attention being paid to13

potentially important landscape-scale factors. Here, climate-only models and ‘full’ models incorporating topo-edaphic14

landscape-scale variables (radiation, soil moisture and calcareousness) were developed and compared for 111 arctic-15

alpine plant species in Northern Fennoscandia. This was done for both current and future climates to determine cells with16

resilient climatic suitability harbouring refugia. Our results show that topographic and edaphic landscape-scale predictors17

both significantly improve models of arctic-alpine species distributions and alter projections of refugia occurrence.18

Predictions of species-climate models ignore landscape-scale ecological processes and may thus provide inaccurate19

estimates of extinction risk and forecasts of refugia where species can persist under a changing climate.20
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Introduction22

Previous research has shown the importance of refugia for species survival during past environmental changes (Taberlet,23

1998; Birks & Willis, 2008; Svenning et al., 2008). Refugia are sites that provide environmental conditions deviant from24

the regional average, thereby supporting species persistence in a changing climate (Médail & Diadema, 2009; Keppel et25

al., 2012). Due to the rate and magnitude of global change, refugia are also likely to be among the major mechanisms26

assisting species persistence in the future (Reside et al., 2013) and should thus be acknowledged in climate change –based27

conservation planning. A challenge still remains in the credible identification of present-day refugia across landscapes,28

and particularly in assessing their capability to retain suitable conditions under future climatic changes. Spatial29
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information regarding future refugia is particularly important at high latitudes, as they are among the most susceptible30

environments to a changing climate (Root et al., 2003; Ashcroft, 2010). However, little is known about which high-31

latitude landscapes and species are most vulnerable to projected future climatic trends. This knowledge gap calls for32

increased attention on robust forecasts of how the suitable areas for the species might change, which environmental factors33

are most critical for developing the most reliable models of this change, and how well potential future refugia are34

discernible from a given landscape.35

Species distribution models (SDMs) are a commonly used tool to forecast the spatial changes in realized36

or potential species distributions (Guisan & Thuiller, 2005; Araújo & Peterson, 2012). SDMs have also been shown to37

complement and be spatially correlated with traditionally used phylogeographic estimates of past refugia distribution38

while providing less subjective and spatially more explicit predictions (Waltari et al., 2007). However, it is increasingly39

recognized that SDMs often require both climatic variables and non-climatic variables describing landscape-scale or local40

environmental conditions to maximize predictive ability (Franklin, 1995; Austin & Van Niel, 2011a; Beauregard & de41

Blois, 2014). Such integrative modelling studies have not, however, been carried out for arctic-alpine species or their42

refugia in high-latitude regions. This is a shortcoming as the inclusion of landscape-scale factors into SDMs developed43

for high-latitude refugia may be of particular significance and help identify locations able to preserve environmental44

conditions reminiscent of the current climate within the surrounding changing matrix, thus leading to more robust45

predictions of future refugia (Austin & Van Niel, 2011a; Hodd et al., 2014).46

A frequently applied paradigm in the study of global change impacts on biota involves models of the47

distributional changes of species – or the areas environmentally suitable for them - as spatially explicit functions of48

projected change (Guisan & Thuiller, 2005; Botkin et al., 2007). Similarly, previous studies using spatial models of49

predicted species distributions have mainly approached refugia from the viewpoint of a single species (Hugall et al., 2002;50

Austin & Van Niel, 2011a), past distributions (Fløjgaard et al., 2009) or coarser spatial scales (Hodd et al., 2014). Here,51

we investigate whether the addition of landscape-scale variables to climate-only SDMs (1) leads to different52

interpretations of how projected changes in climate may affect the distributions of 111 arctic-alpine plant species, and (2)53

modifies predictions of in situ refugia for these species in N-Fennoscandia. We base these analyses on high-quality species54

and environmental data, and predict species distributions under contemporary climate as well as two projected future55

climates i.e. Representative Concentration Pathway (RCP) scenarios:  the moderate RCP 4.5 (Smith & Wigley, 2006;56

Clarke et al., 2007; Wise et al., 2009) and extreme RCP 8.5 scenarios (Riahi et al., 2007).57



Materials and methods58

Study area59

Located in Northern Fennoscandia between 67°N and 70°N, the sub-arctic climate of our study region is driven by its60

position at the edge of the Eurasian continent, the Polar Front, the warm North Atlantic current, and proximity to the61

Scandes Mountains (Fig. 1) (Tikkanen, 2005; Aalto et al., 2014b). The area is characterized by varying climatic,62

topographic and geologic gradients (Oksanen & Virtanen, 1995). Average July temperatures range from 6.1 °C to 15.2 °C63

and mean annual precipitation from 449 mm to 600 mm (1981 – 2010 means) (Pirinen et al., 2012). Elevation ranges64

from 72 to 1365 m.a.s.l. The vegetation gradient varies from spruce (Picea abies) and Scots pine (Pinus sylvestris) forests65

in the south to mountain birch (Betula pubescens subsp. czerepanovii) in the north, with shrub-dominated tundra-like66

vegetation above the tree-line (Sormunen et al., 2011).67

Preliminary data analysis indicated that parts of our study area are predicted to have a future climate with68

no current equivalent within the study region. To reduce errors from predicting species responses to climatic conditions69

without current equivalents, and as arctic-alpine species are generally expected to move northwards as the climate warms,70

we used data from the whole area for training the models, but excluded the non-analogue southern- and easternmost71

regions of our study area from model projections (dashed line in Fig. 1) (Sætersdal et al., 1998; Heikkinen et al., 2006).72

Species data73

Species occurrence data for 1341 1 km² cells were collected by botanists and volunteers, and refined using scientific74

literature and herbaria. The sampling cells cover all important vegetation zones and ecosystems present in the study area,75

ranging from taiga to treeless tundra (Kurtto & Lampinen, 1999). Only arctic-alpine species (defined according to76

biogeographic distribution by professional botanists; see le Roux et al. (2012)) with an occurrence in a minimum of eight77

cells within our study area were included in the subsequent analysis (n=111).78

Selection of predictors79

We used an extensive grid of environmental data matching the resolution of the species data (1 km²) to investigate key80

refugia predictors. We chose to demonstrate our methodology using a set of climate and landscape-scale terrain and81

geological variables (Table 1) known to be important for plant species (Skov & Svenning, 2004; Austin & Van Niel,82

2011a; Dobrowski, 2011; Scherrer & Körner, 2011). The chosen direct and resource variable predictors (Austin & Smith,83

1990) represent growing conditions, surface temperature, light, moisture and soil conditions considered critical for high-84

latitude vegetation.85



The climate data, comprising of observations from 61 stations in Northern Fennoscandia, were acquired86

from the national observation networks of Finland (Finnish Meteorological Institute), Sweden (Swedish Meteorological87

and Hydrological Institute) and Norway (Norwegian Meteorological Institute), and modelled to a 1 km² resolution grid88

(see Aalto et al., 2014). Three climatic predictors with a temporal coverage of 1981–2010 were initially included in the89

analyses: growing degree days (GDD3; annual accumulated daily temperature sum above 3°C, i.e. growing conditions),90

temperature of the coldest quarter (TCQ; overwintering conditions) and water balance (WAB; moisture conditions).91

However, due to ecologically erroneous projections resulting from the counter effects of different climatic variables92

caused by variable multicollinearity, (namely strong correlations of GDD3 with TCQ and WAB [Spearman's rank93

correlation coefficients, rs = -0.88 and rs = -0.87, respectively]), only GDD3, which correlates the most with arctic-alpine94

species diversity in the study area (rs = -0.75), was ultimately included in the final models.95

Landscape features exert a strong influence through numerous geomorphological, hydrological,96

geological and biological processes (Moore et al., 1991), thus controlling the growing conditions experienced by plants97

(Guisan et al., 1998; Ackerly et al., 2010; Scherrer & Körner, 2011). Here, three topo-edaphic landscape-scale predictors98

were used: (1) incoming potential solar radiation representing surface temperature conditions (McCune & Keon, 2002);99

(2) digital elevation model-derived topographic wetness index (TWI) representing the availability of soil moisture from100

upslope areas (Beven & Kirkby, 1979); and (3) calcareousness representing the proportion of calcareous, nutrient-rich101

bedrock in a given 1 km² grid cell (Dubuis et al., 2013). In contrast to GDD3, the relative effects of radiation, fluvial102

processes (e.g. TWI) and soil properties (e.g. calcareousness) should remain more constant in the future (Reside et al.,103

2013). Radiation and TWI were based on an Aster -derived digital elevation model (NASA Land Processes Distributed104

Active Archive Center (2013); spatial resolution 30 m²). Radiation was calculated using the ArcView 3.2 Solar analyst105

extension which uses digital elevation models to generate radiation data by accounting for latitude, elevation, slope angle,106

slope aspect, shadows cast by surrounding topography, daily and seasonal shifts in solar angle, and atmospheric107

attenuation (Fu & Rich, 1999). Due to the landscape scale of this study, only one latitude value (here, 69°) for the whole108

digital elevation model was used. TWI, the most often used surrogate for soil moisture, was calculated using a Python109

script written by Prasad Pathak that accounts for slope and local upslope contributing area (Beven & Kirkby, 1979; Esri,110

2013). Calcareousness was reclassified from a digital database (Geological Survey of Finland 2010; spatial resolution 20111

m²). The landscape predictors were resampled by spatial averaging to a 1 km² resolution to match the species and climate112

data.113



Climate change scenarios114

Forecasts for the locations of refugia may vary between climate scenarios, thus making it imperative to consider115

predictions based on multiple scenarios (Reside et al., 2013). Four sets of scenarios containing different emission,116

concentration and land-use trajectories, have been developed (Van Vuuren et al., 2011). These scenario sets are referred117

to as Representative Concentration Pathways (RCPs) and they correspond to different greenhouse gas (GHG)118

concentration trajectories (Moss et al., 2010). Here we explore the implications of two possible future pathways, RCP 4.5119

and RCP 8.5 (where the number refers to radiative forcing in watts/m² by the year 2100). RCP 4.5 is an intermediate120

mitigation scenario where GHG emissions are stabilized at low to medium levels (Van Vuuren et al., 2011). RCP 8.5, the121

unabated ‘business-as-usual’ scenario, represents the highest GHG emission profile (Riahi et al., 2011; Van Vuuren et122

al., 2011).123

Statistical analyses124

Observed species distributions were related to the set of predictors using five statistical modelling techniques. These125

included two regression methods: generalized linear modeling (GLM) (McCullagh & Nelder, 1989) and generalized126

additive modeling (GAM) (Hastie & Tibshirani, 1990) and three machine-learning methods: generalized boosting127

methods (GBM, also known as boosted regression trees (BRT)) (Elith et al., 2008), random forest (RF) (Breiman, 2001)128

and maximum entropy (MAXENT) (Phillips et al., 2004). All the models were implemented in the Biomod2 platform129

(Thuiller et al., 2013) using R-program (R Development Core Team 2013). The models were fitted using two sets of130

predictors:131

Occurrence of species = GDD3132

[base model]133

Occurrence of species = GDD3 + CALC + RAD + TWI134

[full model]135

 Model transferability was assessed using four-fold cross-validation. We applied a commonly used approach136

(Zimmermann et al., 2009; le Roux et al., 2013b; Aalto & Luoto, 2014) to compare the predictive power of base (climate-137

only) and full (climate-plus-landscape) models by calculating the area under the curve of a receiver operating138

characteristic (AUC) plot (Fielding & Bell, 1997), true skill statistics (TSS) and Cohen’s Kappa coefficient (Allouche et139

al., 2006) based on the four evaluation runs (where the models calibrated with  75% of the data were evaluated with the140

withheld 25 % of the data, and repeated for each of the four quarters of the data). A non-parametric Wilcoxon’s test was141

employed to examine whether explanatory power and predictive accuracy differed significantly between models.142



All data were used for projecting species occurrences to current and future climatic conditions.143

Occurrence probabilities were transformed to binary presence/absence predictions using a TSS cutoff, maximizing model144

accuracy, defined by BioMod2. In order to account for intermodal variability and to create the final maps of predicted145

species distributions, we used the consensus approach (Araújo & New, 2007) to construct an ensemble of forecasts that146

combine the binary predictions from all models. Here we chose a majority’s vote of a minimum of three out of five147

modelling techniques to denote a presence value for a given species inside a given 1 km² grid cell (Figure S1).148

For each species, variable influence was assessed in Biomod2 by randomizing each variable individually149

and then projecting the model with the randomized variable while keeping the other variables unchanged. The model150

predictions containing the randomized variable were then correlated with those of the original models. Finally, the151

importance of the variable was calculated as one minus the correlation, with higher values indicating higher predictor152

importance (Thuiller et al., 2009). This was repeated ten times for each modelling method and the resulting variable153

influence values were averaged.154

Definition of refugia155

Areas where the contemporary and future distributions of species overlap may act as refugia (Temunović et al., 2013).156

By modelling contemporary and projected climates, we can identify these spatiotemporal species distribution overlaps157

(henceforth referred to as ‘resilient cells’). Here, we regard these resilient cells as potential sites for in situ refugia where158

local species may be maintained, i.e. persist even under the assumption of no dispersal (Thomas et al., 2004; Pearson,159

2006). In situ refugia are more likely to function as effective refugia as reaching them requires only local or no range-160

shifts (Reside et al., 2014) and, by remaining within the present range of a given species, they provide a robust estimate161

of species persistence (Shoo et al., 2013).162

To locate in situ refugia from SDM predictions we utilized a step-by-step approach as follows (Figure163

S1): firstly, as refugia are essentially species-specific (Provan & Bennett, 2008; Stewart et al., 2010), we model the species164

separately to gain insights into their preferred environments. Next, the single-species predictions are projected separately165

into current climatic conditions and two future climate scenarios to locate cells where species occurrence is maintained166

both spatially and temporally (Shoo et al., 2013; Temunović et al., 2013). Finally, as favourable environmental conditions167

supporting refugia may overlap for several species (Hampe & Petit, 2005; Keppel et al., 2012) and to increase prediction168

robustness, we stack projections of these resilient cells to locate sites where suitable conditions persist for several species.169

Areas with higher arctic-alpine species diversity are strong refugia candidates as they maximize available information170

and the probability of this diversity persisting under climate change. Consequently, sites harbouring several refugial171



species simultaneously are potentially very valuable for future conservation planning. Thus, we set a threshold of a172

minimum of five persisting species as a prerequisite for a resilient 1 km² grid cell to be classified as a refugia.173

Results174

The use of topo-edaphic landscape-scale predictors significantly (p<0,001) improves the accuracy of SDMs developed175

for the studied arctic-alpine species. Based on the cross-validation runs, the mean AUC values improved from 0.77 (base176

i.e. climate-only model) to 0.86 (full i.e. climate-plus-landscape model). The corresponding TSS values improved from177

0.51 to 0.62, and Kappa values from 0.39 to 0.46 (Table 2). Lower standard deviations of the evaluation metrics in the178

full models also indicate greater model accuracy (Table 2).179

The inclusion of landscape-scale predictors changes contemporary predictions of refugia as well as180

projections of species distributions and predictions of the availability of suitable environments for arctic-alpine species181

in a warming climate. Differences arise in both predictions of how many species are predicted to persist in a given refugia,182

as well as the total count i.e. spatial extent of refugial cells. The full model predicts fewer species range reductions and183

higher species persistence (Fig 2: b, d; Table S1): out of the 111 species, the full model locates refugia for 77 species in184

RCP 4.5 (climate-only model: 40 species) and 47 species in RCP 8.5. Considerably less refugia were predicted by the full185

model into the more extreme RCP 8.5 (207 refugia; compared to 959 in RCP 4.5; Table S1). The base model does not186

project any refugia into RCP 8.5 (Fig 2: c). The spatial extent of refugial cells predicted by both models into RCP 4.5187

shows a 79% overlap (Fig 2: a, b). However, over 95% of the refugial cells predicted by the full model for RCP 4.5188

demonstrate a higher species persistence rate than predictions from the base model (Fig 2: b, d; Table S1).189

Out of the 111 species included in the analysis, GDD3 was the most influential variable for most of the190

species (n=69); calcareousness for 26 species; TWI for 13 species; and radiation was the most important variable for three191

species. An example of projected refugia for Alpine Mouse-ear (Cerastium alpinum) are shown in Figure S3. This small192

perennial herb shows a clear preference for high substrate calcareousness and cooler growing conditions offered by the193

regions refugia. There is a clear spatial prominence of refugial cells around the cooler, more calcareous mountainous194

regions of the study area (Figs 1 & 2; Table S2; Figure S4: b-d). By including topo-edaphic landscape-scale variables,195

suitable environments for arctic-alpine species can, however, be projected into cells with a higher GDD3 than by196

accounting for climate alone. Aside from climatic differences, the refugia derived from full model predictions also exhibit197

slightly differing landscape conditions, here higher radiation, a higher cover of calcareous substrates and lower TWI198

(Table S2).199



Discussion200

Our results demonstrate more detailed and accurate predictions of refugia following the inclusion of landscape-scale201

variables reflecting the topo-edaphic conditions to climate-only models. This is due to the limiting effect of using only202

climatic predictors that overlooks certain fine-resolution spatial and temporal (e.g. extent and persistence of suitable203

habitat, respectively) aspects of species distributions. In other words, consideration of landscape properties is required to204

capture the important topo-edaphic conditions shaping refugia distribution patterns in space and time (Austin & Van Niel,205

2011b), and our study shows that this is true also for high-latitude environments.206

Refugia defined using both climate and topo-edaphic parameters, compared to refugia defined by climate207

alone, are more likely to continue to provide suitable conditions for a greater portion of arctic-alpine species growing in208

a given grid cell (Dobrowski, 2011; Keppel et al., 2012). The inclusion of topo-edaphic variables modifies climate-only209

models in a way that enables predictions of suitable future conditions into a number of cells with warmer average growing210

conditions. This significance of accounting for the topo-edaphic setting results partly from how it can modify the climatic211

conditions experienced by species (Austin & Van Niel, 2011a; Lenoir et al., 2013). As seen for the example species,212

Alpine Mouse-ear, the climate-only model predicts species persistence in northern refugia, where temperatures are cooler213

(Figs S2 & S4). The refugia show a more spatially dispersed pattern of persistence in a changed climate, but the forecasts214

of species persistence are made more optimistic through additions of topographic and edaphic predictors. Moreover,215

improvements to the models and derived predictions resulting from the incorporation of landscape-scale variables also216

emphasize an increase in species’ tolerance in confronting climatic changes via edaphic conditions (Table S2; Fig S3).217

The importance of calcareous substrate also shows that adjusting climate models with topographical variables only, e.g.218

constructing topoclimatic models, may lead to misrepresentative conclusions regarding SDMs and climate change219

predictions.220

Possibly owing to the importance of climate as a predictor, the spatial distribution of refugia appears221

similar between the base and full model predictions for RCP 4.5. This is particularly evident in the northern regions of222

the study area where GDD3 levels remain favourably low for arctic-alpine species persistence. Areas with the least223

environmental change are more likely refugia candidates for most species within a grid cell (Reside et al., 2013) and,224

indeed, considerably less refugia were predicted by the full model into the more extreme RCP 8.5 (207 refugia; compared225

to 959 in RCP 4.5). The spatial distribution of these 207 refugial cells is more dispersed, suggesting that refugial species226

in a warmer future would need to rely on more isolated habitats to provide locally favourable landscapes. Though227

decreased by climatic changes, forecasts of species persistence in refugia are improved by even fairly simple topo-edaphic228

landscape properties at the mesoscale. Examining such grid cells where species can persist is a robust way of mapping229



distributional changes and refugia, though dispersal abilities and possible time lags of species responses to changing230

landscape configurations are also likely to contribute to the effectiveness of refugia. However, accounting for231

circumstances of little or no spatial overlap between current and future suitable environments would require information232

on species dispersal capacities (Reside et al., 2013; Reside et al., 2014) to ex situ refugia (Shoo et al., 2013) to enable233

more realistic estimates of species range-shift abilities to future refugia.234

The distributions of a majority of the 111 arctic-alpine species studied here are projected to shrink235

following increases in temperature with most of the study region appearing as a matrix of unsuitable growing conditions236

for arctic-alpine species. Heterogeneous mountainous regions, such as the northern areas of our study landscape, are237

expected to be exceedingly important for refugia and the conservation of species (Loarie et al., 2008; Luoto & Heikkinen,238

2008; Scherrer & Körner, 2011), especially for endemic mountain plants at risk from range reduction by upward239

displacement (Rull & Vegas-Vilarrúbia, 2006). Indeed, our finding that the located refugia are offering conditions of240

lower soil moisture (as indicated by the variable TWI) is related to the assumption that steeper slopes, such as those found241

in the Scandes, are less likely to retain water (Beven & Kirkby, 1979). The significance of these mountain refugia,242

however, is likely to be affected by species’ properties such as growth form and dispersal capacity (Engler et al., 2009),243

and mountain refugia have been disputed to be of little avail to small, scattered populations of species (Birks, 2008). The244

reduction in available land area at higher elevations may also result in species’ local extinctions (Patsiou et al., 2014).245

Nevertheless, the in situ refugial expanse in the mountainous area of the study region is projected to be an important246

location for providing many arctic-alpine species with suitable conditions for persistence, and its potential to do so247

deserves further investigation.248

More generally, it needs to be acknowledged that evaluating the capability of refugia in promoting species249

persistence and ecosystem resilience is difficult due to the many uncertainties involved in predicting and modelling250

climate, changes therein, and species responses to these changes (Wiens et al., 2009; Reside et al., 2013; Shoo et al.,251

2013). For example, assuming uniform warming across a given landscape, or basing forecasts of changes in local climate252

on simple temperature-elevation correlations may over-emphasize the importance of relatively cool sites or higher253

elevations (Ashcroft, 2010). Essential aspects of future refugia research include investigating the dynamics of climatic254

decoupling between the atmosphere and terrain within arctic-alpine landscapes (Dobrowski, 2011; Scherrer & Körner,255

2011; Hylander et al., 2015), as we cannot surmise the effects of topography on climatic stability with the approach used256

here. A similar modelling framework could also be used to pinpoint individual at-risk species, specific areas or habitat257

types facing substantial changes in a warmer future (Thuiller et al., 2005; Williams et al., 2005; Loarie et al., 2008).258

Furthermore, though the landscape-scale predictors used here provide a solid basis for a comprehensive set of ecologically259



meaningful predictors, enumerating the significance of other variables, such as geomorphological disturbances (Randin260

et al., 2009; le Roux et al., 2013a; Slaton & Linder, 2015), CO2 effects (Rickebusch et al., 2008) and biotic interactions261

(Godsoe et al., 2015; Mod et al., 2015), may also be necessary for more realistic predictions of refugia persistence (sensu262

Austin and Van Niel 2011b), though their relevance is likely to be further pronounced at finer spatial scales. ur results,263

highlighting the importance of topo-edaphic landscape-scale factors for modelling refugia as well as demonstrating264

changes in the extent and connectivity of suitable habitat, show there is a strong case for applying a similar approach at265

finer or even multiple scales to facilitate a more mechanistic approach to future refugia study.266

Conclusions267

Climate change projections suggest that returning to historical climatic conditions is highly improbable. Here we show268

that, despite forecasted future regional warming, several resilient sites found in our study landscape are predicted to269

maintain suitable local environments due to topo-edaphic conditions. Refugia can be found in places where locally270

optimal environments remain constant across timescales and in which the effects of landscape preserve environmental271

conditions more reminiscent of suitable contemporary climates. Predictions of species responses to climate change based272

on climate alone may be inaccurate in estimating extinction risk as they neglect to consider topographic and edaphic273

processes affecting species distributions, and may fail to identify refugia where species can persist. Thus, models of274

species distributions and changes therein need to account for topo-edaphic landscape-scale variables to provide275

information on relevant spatial and temporal responses to environmental change and should thus be explicitly accounted276

for in future climate change impact assessment studies.277
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Table 1 Descriptions of the four focal environmental variables with their minimum (Min.), median (Med.), mean and507

maximum (Max.) values508

Variable Description Min. Med. Mean Max.

GDD3 (contemporary) Growing degree days (annual accumulated
daily temperature sum above 3°C; unit °C)

163 810 784 1050

         (under RCP 4.5) 374 1247 1204 1489
         (under RCP 8.5) 633 1620 1587 1964

Radiation Potential annual direct radiation (MJ/cm²/a) 0.28 0.43 0.43 0.62
TWI Topographic wetness index 5.58 6.93 6.95 8.70
Calcareousness Cover of calcareous substrates (%) 0 6.7 13.0 90.3

509



Table 2 The model evaluation statistics for the base (climate-only) and full (climate-plus-landscape) models showing the510

mean and standard deviation (SD) of the evaluation metrics over four cross-validation runs. Wilcoxon signed rank test p-511

values show change in predictive ability (*** = highly significant). AUC improved for 104; TSS for 10; and Kappa for512

99 out of 111 species513

AUC TSS Kappa
Base Full Base Full Base Full

Mean  ± SD 0.77 ± 0.09 0.86 ± 0.06 0.51 ± 0.14 0.62 ± 0.13 0.39 ± 0.21 0.46 ± 0.16
p-value < 0.001*** < 0.001*** < 0.001***

514



Fig 1. The location and elevation of the study area in northern Fennoscandia. We used data from whole area for training515

the models, but excluded non-analogue regions from the projections (white dashed line)516

517

Fig 2. Refugia in two Representative Concentration Pathway (RCP) scenarios (RCP 4.5 a-b; RCP 8.5 c-d) of future518

climate according to base models (climate-only; a, c) and full models (climate-plus-landscape; b, d). The full models519

predict a higher relative species persistence from contemporary to future climates. No refugia were predicted for scenario520

RCP 8.5 by the base model. The legend applies throughout521



Supporting Information522
523

Figure S1: An outline of the modelling framework used. We combined model predictions for 111 arctic-alpine plant524
species to estimate current and projected species distribution and identify refugia at a 1 km² resolution. To enable the525
comparison of species’ distributional changes, we ran the predictions for contemporary climate as well as two526
Representative Concentration Pathways (RCPs 4.5 and RCP 8.5). Two sets of predictors were used: climate-only527
(growing degree days (GDD3)); and climate-plus-landscape, which included additional landscape-scale predictors:528
potential solar radiation (RAD); calcareousness (CALC); and topographic wetness index (TWI). Observed species529
distributions were related to the set of predictors using five statistical modelling techniques: generalized linear modeling530
(GLM), generalized additive modeling (GAM), generalized boosting methods (GBM), random forest (RF) and maximum531
entropy (MAXENT). All the models were implemented in the Biomod2 platform under R-program532

533
Table S1: Summary statistics for arctic-alpine species persistence within refugia; the number (n) and proportion (%) of534
species persisting in refugia according to the two model structures used and two scenarios of future climate. No refugia535
were predicted for scenario RCP 8.5 by the base model. The total count of cells used in the analysis was 15 622536

537
Figure S2: Predicted contemporary and future distributions of Alpine Mouse-ear (Cerastium alpinum) in the study area.538
The predicted distributions were modelled into two scenarios of future climates (RCP 4.5 and RCP 8.5) according to two539
sets of predictors: climate-only (base model) and climate-plus-landscape (full model)540

541
Figure S3: Box-and-whisker plot showing the mean variable importance values based on the full model across all species542
and across the five modelling techniques utilized (boxplot represents median, first and third quartiles; the whiskers show543
the interquartile range). The variables included in the full model are growing degree days (GDD3), calcareousness544
(CALC), potential solar radiation (RAD) and topographic wetness index (TWI). See table 1 for a full description of each545
variable. Outliers are excluded for clarity546

547
Table S2: Summary statistics for refugia located by the base (climate-only) and full (climate-plus-landscape) models548
under Representative Concentration Pathway (RCP) 4.5 and the full model for RCP 8.5 (the base-model for RCP 8.5549
found no refugia). The full set of variables are growing degree days (GDD3), calcareousness, potential solar radiation550
(RAD) and topographic wetness index (TWI). See table 1 for a full description of each variable and for comparison with551
contemporary climatic conditions552

553
Figure S4. Spatial characteristics of the predictor variables: growing degree days (GDD3; °C) for the contemporary554
climate 1981–2010 (a), and GDD3 for the two Representative Concentration Pathway (RCP) scenarios used: RCP 4.5 (b)555
and RCP 8.5 (c); calcareousness (d; %); potential solar radiation (e; MJ/cm²/a); and topographic wetness index (TWI) (f).556
See table 1 for a further description of the predictors557
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