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Dear Editor,

I am honoured to submit our revised manuscript entitled “Total mercury concentrations in liver and 
muscle of European whitefish (Coregonus lavaretus (L.)) in a subarctic lake - assessing the factors 
driving year-round variation”

We are grateful for the reviewer’s invaluable input in commenting our manuscript. We have followed 
almost all suggestions and issues mentioned in reviewer’s comments. We have outlined every change 
made point by point, please find them in Response letter. If the comments were not followed, we have 
justified our decision. We believe our manuscript has improved greatly after this major revision and 
sincerely hope our revised manuscript would be considered to be published in Environmental Pollution. 

Sincerely, 
Ossi Keva 



Response to reviewers’ comments

Comments from the editors and reviewers:
-Reviewer 1

This manuscript contributes to the ongoing studies of the Kahilainen team which is investigating 
mercury concentrations in European whitefish populations.  I had previously been sent this paper for 
review by another journal.  That editor made his/her decision before my review was submitted. I also 
see that little has changed from the earlier submission.

The research conducted by the Kahilainen team is exciting, particularly their findings of different 
ectomorphs in different lakes with different feeding types and morphology.  This paper builds on 
those studies by examining seasonal changes in feeding and mercury concentration in whitefish in 
one lake.  It is generally informative and am recommending for publication following major 
revisions.  My main issue with the paper is the investigation of mercury concentrations in scales 
which is detracting from the paper and should be removed or mentioned in a supporting section.  In 
addition, there are gaps in the food web collections and confusions which result in a weaker linking 
between seasonal variations in mercury in the diet and mercury in various body compartments. 
Comments are below.

The introduction begins as a generic introduction of mercury in the environment rather than building 
on the studies of the Kahilainen team and the specific objectives of this study.  That is, the fact that 
whitefish fish may feed in different environments through the year, with implications to mercury 
concentrations in various tissues.  I found the mention of mercury in scales trivial and not worthy of 
study in terms of metabolism or seasonal study.  Presumably once laid down, mercury would not be 
metabolised or transformed and so the value of whole scale measurements of fish several years old is 
questionable. Given that mercury concentrations in profundal benthos is about the same concentration 
as in whitefish muscle, it would seem that whitefish are consuming mainly pelagic zooplankton and 
littoral benthos but with some profundal benthos.

Reply: We thank the editor and reviewer for the critical and supporting comments. We have now 
followed the comments almost exclusively, except removal of inter-annual comparisons (2010, 2012 
& 2014) that we consider important in comparison to intra-annual results (2011-2012). As part of our 
major revision, we have totally removed the part of the manuscript detailing our analyses of scales in 
reflecting the reviewer’s comments. 

We have added supplementary materials providing invertebrate taxa THg, stable isotopes and C:N 
ratios as well as detailed dietary table and multiple regression model AIC value table. The 
introduction is largely rewritten including significant part of our previous studies on whitefish 
ecology and putative implication on THg. 

Regarding the reviewer’s comments about profundal benthos – they are of very low abundance in 
L.Kilpis. Our SIA results indicate that whitefish in the lake largely consume littoral benthos and 
pelagic zooplankton, limiting support for the idea that most of the whitefish Hg would be derived 
from profundal benthos. Mercury has tendency to magnify in food chain, and we think the high 
difference between littoral and pelagic prey items with whitefish muscle is caused by 
biomagnification. However, our coverage of algae and the wider fish community is limited, to allow 
for a robust calculation of biomagnification slopes from the food web in the current paper. That could 
be a very interesting line to follow in subarctic lakes with suitable data.

Since I am familiar with the research conducted by this team, I am curious as to which European 
whitefish morph type they are investigating and why this lake was picked.



Reply: We apologise for the lack of clarity here. The only whitefish morph in L.Kilpis is the large 
sparsely rakered whitefish morph (LSR), a generalist morph that consumes both pelagic and benthic 
prey. We have now clearly indicated the whitefish type in this lake using term monomorphic. In this 
and previous studies, we have counted number of gill rakers from each whitefish individual in 
L.Kilpis and there is no sign of multiple morphs in this lake. 

Lines 125-130.  This would be a good place to bring in the findings on ectomorphs and different 
feeding types.  Any thoughts as to why whitefish switch from consuming benthos to zooplankton in 
summer. 

Reply: This part is now completely rewritten with introduction of whitefish populations in this 
subarctic region and their resource use. As the monomorphic whitefish populations are the most 
common type in this region, we consider the current study relevant to assess both intra- and inter-
annual patterns of THg concentrations and bioaccumulation. Based on previous studies and prey 
availability, the generalist whitefish will utilize the most available prey type in each season. The 
further importance of dietary shift to zooplankton is likely related to high quality of this prey as a 
source of fatty acids (especially DHA and EPA) that are of crucial importance in many fish somatic 
and gonadosomatic tissues.  

Line 142 mentions that gill rakers are being counted but without explanation as to why.  I assume that 
the same ectomorph is being investigated throughout the year; if not then the seasonal changes may 
be related to different ectomorphs captured through the year with the methods used.  

Reply: We have now revised the introduction including explanation of gill raker counts in whitefish 
studies. Briefly, number of gill rakers is a heritable trait in whitefish (and other fishes too) that 
correlates with many phenotypic traits and niche use in general. It is important to count number of 
gill rakers in monomorphic populations too, as there is still individual variation (often circa range of 
10 rakers) that could be correlated to resource use. In current case of L. Kilpis, number of gill rakers 
did not enter to multiple linear regression models, but it was important to include this trait initially. 
L. Kilpis has only one morph (LSR whitefish) present.

Lines 143-144.  I do not understand why scales were examined.  Since a growth layer is laid down 
each year, and presumably does not change chemically (i.e. mercury not metabolized and lost), the 
value of this in a seasonal study is questionable. To my mind, this detracts from the paper. Hypothesis 
2 has little merit. Hypothesis 3 is not that novel.

Reply: The scale data has now been completely removed and all hypothesis has been revised. We 
thank reviewer for excellent suggestions for alternative hypothesis 2 that now concerns seasonal 
bioaccumulation and tissue correlations. We found these results highly interesting and likely 
important for future THg studies. Hypothesis 3 might be studied partly before, especially in snap-shot 
studies of single month, but we are unaware of any studies with annual data. Thus we consider H3 as 
crucially important to discuss the seasonally changing THg concentrations in monomorphic 
whitefish. Here, we have followed reviewer comments of using AIC as selection criteria and we also 
tested the interaction terms that are explained in more detail below. 

Lines 166-168.  What is the conductivity and pH?

Reply: We have added these values to method lines 174 and 175. The annual average of pH is 7.2 
and it is stable throughout the year. Conductivity is ca. 3mS m-1 through out the whole water column 
(surface: 3.05 mS m-1; bottom 2.99 mS m-1) year round. 

Lines 184:186.  The authors should indicate that most of their collections were made in one year, i.e., 
December 2011 to September 2012 and followed whitefish from winter into the following fall. I am 
not sure why September 2010 and 2014 sample data are included as they do not illustrate seasonal 



patterns and creates some confusion.  Climate varies from year to year and mercury in lake food webs 
may be quite different in a cold year than warm. Table 1 gives 2014 month as August.

Reply: We thank reviewer for these comments. We included (in addition to the intra-annual data from 
2011-2012), the single month dataset of September 2010 and August 2014 to assess inter-annual 
concentration. We consider these highly relevant in order to assess intra-annual results with longer 
term data. We agree that there are climatic variation in this region, and these will affect Hg in food 
webs. However, Lake Kilpis is a relatively deep lake with large water volume having a buffer effect 
on extreme air temperatures. The mercury in Arctic and subarctic lake food webs mainly originates 
from air deposition (AMAP 2011), the annual air Hg concentrations has remained relatively stable 
(circa 1.4 ng m-3) in the closest measuring station (circa 200 km south of the study area) during the 
measurement period (1996-2016). The air deposition of Hg is hypothesized to decrease with 
increasing temperature due to the kinetic properties of bromine and mercury (AMAP 2011). However, 
differences in precipitation and temperature are most likely crucial to methylation processes in the 
catchment and therefore may affect THg in food webs. In addition to the bottom up effects, THg of 
fish may differ as well intra-annually due to the differences in feeding environment and/or the 
cumulative annual temperature. Taken collectively, we would like to keep September 2010 and 
August 2014 data in the manuscript since the data show clearly the inter-annual accumulation of THg. 

Lines 193-193. Was the plankton mesh size 50 µm which seems very fine. On the other hand, benthos 
was washed through a 500 µm mesh net which would have lost a lot of epibenthic zooplankton.  I do 
not understand why littoral and profundal benthic samples were not reported separately in table 1 as 
in table 2. Also, it is unfortunate that zooplankton tows not made in littoral zone as plankton 
assemblages can be different. I assume the littoral zone was rocky and devoid of macrophytes given 
that an Ekman dredge was used to collected benthos. These collections are unclear because table 1 
separates zooplankton into cladocerans and copepods; benthic zooplankton; benthic 
macroinvertebrates and includes terrestrial insects and fish whereas table 2 reports mercury in pelagic 
zooplankton, littoral benthic macroinvertebrates, and profundal benthic macroinvertebrates. For the 
core seasonal year (December 2011-September 2012), one month is missing for zooplankton with 
two months with only one replicate sample; one month for littoral benthic invertebrates with only 1-
2 replicates which is very small and standard deviations not shown; and there are only two months 
for profundal benthic invertebrates with a small number of replicates and no standard deviations. 
Carbon and nitrogen isotopes also were not measured (or reported) in prey which makes for a poor 
food web study. Overall, the study design for the food web portion is poor with major gaps and 
shortcomings in the number of collections, replicates, and identification of the taxa analyzed.

Reply: We agree that our invertebrate data could have been more conclusive for THg. However, we 
considered even a patchy data important than no data at all, when explaining the relatively levels of 
THg in prey animals as well as stable isotope values. These data are now added as supplement table 
1. We used 50 µm mesh size zooplankton net to collect pelagic cladocerans and copepods that are 
commonly consumed by whitefish in this region, whereas larger mesh of 500 µm was used for benthic 
macroinvertebrates. In the region, a smaller mesh in benthic sampling cause problems with clogging 
sediment material. The efficient sampling of large biomass of benthic zooplankton would have 
required completely different sampling methods e.g. littoral hand netting during peak abundance of 
benthic cladocerans or potentially a benthic sledge for very fine sediment areas for copepods. 
Unfortunately, these were not conducted. Table 1 shows invertebrates found from the stomachs of 
whitefish. Therefore, it is not possible to separate littoral and profundal BMI in this table. Oligochaeta 
and Chironomids were the only macroinvertebrates found in profundal zone (but they were also found 
in littoral zone). In contrast to this, table 2 shows our sampled invertebrates from different habitats. 
Different pelagic ZPL taxa (cladocerans, copepods) were not possible to separate for Hg analysis 
from the mixture samples. We have now added annual detailed fish diet data as Table S1 and THg, 
SIA and C:N data of sampled invertebrates from lake (Table 2S) to supplementary data. For some 



animal taxa occurring through whole benthic slope e.g. Chironomid larvae, we cannot separate them 
in fish diet for littoral or profundal prey (Table 1S). 

Lines 200-206. Why were nets set in deep water set only above bottom and not also nearer the surface; 
whitefish inferred to have consumed zooplankton which presumably would have been mainly in 
upper layers during thermal stratification. How long were the nets set and was digestion of stomach 
contents and issue in gut content identification? 

Reply: We thank reviewer for these considerations. The lack of pelagic data is a clear disadvantage 
of our study. The lack of pelagic data is related to extreme difficulty to sample pelagic habitat in 
winter, when floating line of the net or separate floats will freeze to overlaying ice-cover. As we 
started the annual study from winter onwards using benthic gear only, we considered to keep sampling 
design similar during the whole period. In these cold lakes, whitefish are active and all habitat types 
are very connected e.g. indicated by a large amount of pelagic zooplankton prey in benthic captured 
fish in the summer. We agree that full habitat specific annual study would be optimal to test various 
questions regarding to THg concentration and bioaccumulation, but unfortunately we cannot proceed 
there with current data. The nets was set for overnight in summer for 10-12h and in winter 24-48h. 
The decomposition of stomach contents were not an issue in identification as water temperature is 
low throughout the year. 

Line 209-214. Why were both otoliths and scales used to age fish? Explain why gill rakers were 
counted. Explain why GSI calculated. The liver LSI also would have been a nice addition and why 
was this not calculated as presumably determined when drying tissues. If available, please include. 
The authors could also look at percent water content of tissues if they have and seasonal variation. 
When do whitefish reproduce and how does this affect GSI? How does this index differ between 
males and females? Why are authors considering year class and not age? Since most data are for 2012 
collections, fish were 9 years old.

Reply: Both otoliths and scales were used for age determination to improve the reliability of the 
determinations. Use of multiple aging structures for whitefish has been documented to increase the 
accuracy of age determination (revision lines 224-225). Calculation of gill raker number is a standard 
method in whitefish research as it captures much of the phenotypic variation and is related to resource 
use. This part is explained in introduction (lines 116-122) and methods (line 229-231). 
Gonadosomatic index (GSI) is a continuous measure and documents the stage of gonads during the 
year lowest values in spring (May) and highest during the spawning (December, see table 1). It is 
important measure related to relative share on energy division to somatic and gonad growth as well 
as related to overall condition and starvation. While, females will invest more energy to eggs than 
males to milt, we decided to not present values for both sexes. Here, such separation would have been 
then applied for all values in table. If sex would have very important determinant of THg, when we 
would have seen it multiple regression analyses. Sexual dimorphism in whitefish is not pronounced 
as growth and maturation broadly follows the same patterns.

Unfortunately, we lack the LSI and water content data, but we will keep those in our minds for future 
studies. Year class approach was presented as the year class 2003 was so dominant during the study 
years. Please note, that the bioaccumulation along whitefish age is now presented as a figure 3.

Line 238. I really do not see the point of looking at mercury in scales for a seasonal study. Feel 
detracts from paper without more justification. Findings intuitive. Should be removed. 

Reply: The scale data has now been fully removed.

Line 269. I am not a statistician but prefer ACI analyses over stepwise regressions which I believe 
are an older technique and less commonly used. Part of this does not seem central to the new aspects 
of the paper and analyses of this type have been done for the European whitefish populations in other 



lakes in the area. Also, the authors do not discuss interaction terms and their exploration. Under 
results, length, weight and condition factor are shown by month. The authors also could consider 
showing the predicted weight at a specific length, e.g., 220 mm to better show seasonal variation in 
weight and condition factor.

Reply: Thank you for suggesting a better statistical method for model selection. We have now 
conducted new multiple linear regression models, where the best model is selected using AIC 
procedure (Table 4). Please see supplementary table S3 for best model selection. In addition, we run 
the stepwise with the interaction terms (See below Table 1R and 2R), however we are not convinced 
about the superiority of these interaction models since they include so many variables with relatively 
little improvement to the coefficient of determination. Therefore, we would prefer to use the ^1 
models used now in revised manuscript. However, we are willing to reconsider this if it is a major 
issue. In L. Kilpis, year class 2003 dominates the samples and we have calculated the somatic mass 
and condition for this specific year class in Table 1. We think that would be highly standardized way 
to show increase in somatic mass and change in condition for standardized group.



Table 1R. Forward stepwise model selection for linear multiple regression analysis based on minimum AIC 
values. The variables in models are: Sexual maturity (SexM), tissue specific stable isotopes values of carbon 
and nitrogen (d13C & d15N), gonadosomatic index (GSI), condition factor (CF), sampling month (Month), 
total length (TL). The interaction terms are marked with colon. The selected models are in bold.  

Model AIC

Liver

{} -66.9

SexM -121.0

SexM+d13C -145.1

SexM+d13C+d15N -159.9

SexM+d13C+d15N+GSI -162.9

SexM+d13C+d15N+GSI+SexM:GSI -169.2

SexM+d13C+d15N+GSI+SexM:GSI+CF -172.2

SexM+d13C+d15N+GSI+SexM:GSI+CF+CF+SexM -177.4

SexM+d13C+d15N+GSI+SexM:GSI+CF+CF:SexM+Month -180.2

SexM+d13C+d15N+GSI+SexM:GSI+CF+CF:SexM+Month+Month:GSI -185.1

SexM+d13C+d15N+GSI+SexM:GSI+CF+CF:SexM+Month+Month:GSI+Month:CF -189.5

SexM+d13C+d15N+GSI+SexM:GSI+CF+CF:SexM+Month+Month:GSI+Month:CF+Month:d13C -191.3

SexM+d13C+d15N+GSI+SexM:GSI+CF+CF:SexM+Month+Month:GSI+Month:CF+Month:d13C+TL -192.7

Muscle

{} -991.7

d13C -1047.6

d13C+SexM -1089.6

d13C+SexM+CF -1099.7

d13C+SexM+CF+CF:d13C -1121.3

d13C+SexM+CF+CF:d13C+d15N -1132.6

d13C+SexM+CF+CF:d13C+d15N+TL -1133.5

d13C+SexM+CF+CF:d13C+d15N+TL+Month -1136.1

d13C+SexM+CF+CF:d13C+d15N+TL+Month+GSI -1138.2

d13C+SexM+CF+CF:d13C+d15N+TL+Month+GSI+SexM:GSI -1139.5

d13C+SexM+CF+CF:d13C+d15N+TL+Month+GSI+SexM:GSI+TL:d13C -1140.9

d13C+SexM+CF+CF:d13C+d15N+TL+Month+GSI+SexM:GSI+TL:d13C+SexM:d13C -1145.4

d13C+SexM+CF+CF:d13C+d15N+TL+Month+GSI+SexM:GSI+TL:d13C+SexM:d13C+d13C:d15N -1145.7

d13C+SexM+CF+CF:d13C+d15N+TL+Month+GSI+SexM:GSI+TL:d13C+SexM:d13C+d13C:d15N+Month:d13C -1146.4



Table 2R. Multiple linear regression models explaining THg variation in liver and muscle with interaction 
terms. Coefficient of determination (adjusted R2), residual standard error (RSE), F and p-statistics and AIC 
values are presented for each model. Slope (B), the standard error of the estimate (SE), and the significance 
indicators (t and p) are presented for each factor selected to the models. The variables in models are: Sexual 
maturity (SexM), tissue specific stable isotopes values of carbon and nitrogen (d13C & d15N), gonadosomatic 
index (GSI), condition factor (CF), sampling month (Month), total length (TL). The interaction terms are 
marked with colon.

Model Factor B± SE t p

Liver d13C -0.1728± 0.0510 -3.3887 0.0009

adj.R2=0.591, RSE=0.520 TL 0.0284± 0.0084 3.3646 0.0010

F13,150=19.08, p<0.001 CF:TL -0.0368± 0.0118 -3.1060 0.0023

AIC=-192.7 CF:Month 0.7293± 0.2423 3.0101 0.0031

GSI:Month 0.0416± 0.0155 2.6816 0.0081

d15N 0.1795± 0.0760 2.3606 0.0195

Constant -4.7929± 2.1128 -2.2686 0.0247

SexM:CF 0.9957± 0.5137 1.9380 0.0545

d13C:Month 0.0131± 0.0071 1.8414 0.0675

GSI -0.5691± 0.3408 -1.6699 0.0970

SexM -0.4289± 0.3648 -1.1758 0.2415

Month -0.1702± 0.2546 -0.6684 0.5049

CF -1.2791± 2.4729 -0.5173 0.6057

SexM:GSI -0.0015± 0.0489 -0.0303 0.9759

Muscle TL 0.0024± 0.0008 3.1767 0.0018

adj.R2=0.633, RSE=0.031 d13C:TLmm 0.0001± 0.0000 2.9971 0.0032

F13,153=22.97, p<0.001 d13C:SexM -0.0028± 0.0013 -2.1962 0.0296

AIC=-1164.4 GSI 0.0198± 0.0097 2.0403 0.0430

SexM -0.0596± 0.0318 -1.8782 0.0623

SexM:GSI -0.0042± 0.0024 -1.7845 0.0763

d13C:d15N -0.0059± 0.0035 -1.6720 0.0966

d13C:Month 0.0009± 0.0005 1.5876 0.1144

Month 0.0191± 0.0136 1.4012 0.1632

d15N -0.1176± 0.0844 -1.3933 0.1655

d13C:CF 0.0327± 0.0263 1.2444 0.2152

CF 0.5866± 0.6450 0.9094 0.3645

d13C -0.0099± 0.0350 -0.2828 0.7777

Constant -0.1502± 0.8453 -0.1777 0.8592



Line 274. The rationale for examining gill raker number is not given but presumably relates to 
ectomorph. Please explain better.

Reply: Please see introduction (lines 116-122) and methods (lines 229-231). 

Line 283. Fish are referred to by year class when age would be more appropriate unless the authors 
wish to infer something unique about 2003 that contributed to this age group being dominant. With 
30 fish caught each time and fish ranging from 1-11 years old, few fish were in each age class for 
each collection date. Figure 3 could also be shown as mercury age regressions for each sample month 
with 6 regressions on the figure. It is already know that mercury concentrations increase with fish age 
and the authors are trying to show that these relationships vary seasonally. 

Reply: Many thanks for these comments. Indeed, monthly bioaccumulation regressions with age are 
now shown as we replaced the year class boxplots. We think this was a major improvement and we 
have revised hypothesis 2 accordingly.

Line 290. Do the authors mean profundal or littoral benthic macroinvertebrates?

Reply: We mean littoral benthic macroinvertebrates, it is now corrected to line 315.

Line 295. Carbon isotopes did not vary much seasonally with the June 2012 values being very high 
with a large standard deviation, especially the liver. The variation within months is less than variation 
between months. Again, I would have liked to see the littoral and profundal macrobenthic values 
reported separately in Table 1. Ideally dominant taxa would have been shown. Were there variations 
in diet with fish size and location in the lake?

Reply: The dietary shift of whitefish was clearest in stomach contents, but due to slow turn-over rate 
of muscle tissue, it is not very clear in SIA. Liver show some trend in lowest carbon value in July 
when whitefish consumed zooplankton heavily, however variation is too large for statistical 
significance. Unfortunately, our data was too small to examine reliably the stomach contents for 
different locations and size classes. 

Line 297. Stable isotopes should have been measured in the prey items. Was this done and if not, 
why?

Reply: We have now added SIA, THg and C:N data of invertebrates to supplementary Table S2.

Line 307. Again the scale measurements add nothing to the paper for me.

Reply: Scale part is now removed.

Lines 310-311. Should the authors retain the extra years (2010 and 2014) can they explore reasons 
why mercury concentrations were higher in fish in some years than others? Temperature is a common 
variable that researchers in this field are considering. Some believe warm temperatures cause more 
mercury to be methylated while others feel cooler springs/summers result in lower growth and hence 
higher mercury concentrations. Temperature also could have been introduced as a variable affecting 
lipid concentrations, etc. This section is not clear to me or particularly informative. It is well known 
mercury concentrations increase in fish with age and that concentrations vary from year to year due 
to various conditions.

Reply: The reasons for the inter-annual bioaccumulation is discussed in lines 413-424. It is most 
likely caused by the aging of the whitefish population as the year class 2003 was dominant during the 
whole study 2010-2014. L. Kilpis is dominated by one large year class which keeps the younger year 
classes in check for 10-15 years. Regarding the temperature data, we can see some variation in air 
temperature, but the large water volume of L. Kilpis has stabilizing effect to air temperature 
variations. Presumably the temperature variation affects to methylation, bioaccumulation and 



magnification, but we strongly believe that major factor to bioaccumulation from 2010 to 2014 is 
caused by the aging of whitefish population.

Lines 327-341. An ACI analyses would show fewer significant influencing variables. Also it would 
more clearly show if month were a significant variable independent of changes in weight and 
condition factor and feeding. For example, more mercury may be methylated in some months than 
other. 

Reply: We have now used AIC for ranking the different models. For details, please see our reply 
above.

Discussion: strength lies is the demonstration of seasonal variations in mercury concentrations which 
can be related to growth and condition factor and season. It is not so clearly shown what influence 
the changing diets have on this with a small number of replicates, standard deviations often not shown, 
no stable isotope data reported, and confusions on benthic zooplankton, pelagic zooplankton, littoral 
and profundal benthic macroinvertebrates. The discussion is very long for the data presented. 
Integrating this paper more with other research, including papers in review and likely to be published, 
would be an asset.

In summary, this is a potentially interesting paper but would benefit from a major revision to build 
on its strengths. The scale data does nothing for me and adds nothing to the paper. Consider adding 
liver somatic data if have and also a different type of statistical analyses which more clearly shows 
the predominant influencing variables and consider interactions. The food web portion (zooplankton 
and benthos) is not well-presented and suffers from data gaps, missing data (stable isotopes, taxa 
analyzed) and confusions in what is being discussed

Reply: We thank reviewer for critical comments that helped us significantly in major revision. We 
believe that exclusion of scale sections and addition of monthly bioaccumulation regressions and 
tissue comparison plots have strengthen the manuscript. We have also added three supplementary 
tables and one figure composing of prey isotopes, whitefish diet, AIC based model selection and 
inter-annual autumnal bioaccumulation. We recon these to be likely helpful for the most interested 
readers. The introduction and discussion parts are significantly revised and we hope our manuscript 
could be now considered for publication in journal.
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15 Highlights:

16 -Year-round variation of THg in fish tissues is poorly understood in subarctic lakes.

17 -THg concentrations of liver and muscle were highest in winter and lowest in summer.

18 -Variation in scale THg was high, and seasonal patterns were less obvious.

19 -Starvation and planktivory increased THg, while growth dilution decreased THg.

20 -Intra-annual variation of THg in tissues was higher than inter-annual accumulation.

21 -Bioaccumulation of THg was highest in winter and lowest in summer for both tissues.
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24 Graphical abstract: 

25

26 Abstract:

27 Subarctic lakes are characterised by extreme seasonal variation in light and temperature which 

28 influences growth, maturation, condition and resource use of fishes. However, our understanding of 

29 how seasonal changes affect mercury concentrations of fishes is limited. We conducted a year-round 

30 study (3 ice-covered months, 3 open-water months) with open-water inter-annual aspect (3 years: 

31 samples from August/September), focusing on total -mercury (THg) concentrations and ecological 

32 characteristics of a common freshwater fish, the European whitefish (Coregonus lavaretus (L.)) from 

33 a subarctic lake. We measured THg concentrations from tissues with fast (liver, n=164) and167), 

34 moderate (muscle, n=225) and slow (scale, n=75) turnover rates, providing information on THg 

35 dynamics over different temporal scales. In bothliver and muscle tissues, lipid-corrected THg 

36 concentrations were highest in winter (liver: 1.70±0.88 μg/g, muscle: 0.24±0.05 μg/g) and lowest in 

37 summer (liver: 0.87±0.72 μg/g, muscle: 0.19±0.04 μg/g). THg concentrations increased in winter 

38 following the summer-autumn dietary shift to pelagic zooplankton and starvation after spawning. in 

39 mid-winter. Whitefish THg concentrations decreased towards summer, and were associated with 

40 consumption of benthic macroinvertebrates and subsequent growth dilution. THg concentrations 

41 recorded from scales were low and displayed high variance, showing the lowest value in May 

42 (0.012±0.001 μg/g) and the highest in July (0.016±0.005 μg/g). Mercury bioaccumulated in bothall 

43 tissues with age, both showing the strongest regression slopes in winter and lowest in summer.. THg 

44 concentrations in liver and muscle tissue were correlated throughout the year, however the correlation 
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45 was lowest in summer, indicating high metabolismwhereas scale and muscle/liver only showed 

46 significant relations during somatic growing season in summer and growth dilution. Multiple linear 

47 regression models revealed that seasonal varying variables i.e. sexual maturity, δ13C, condition factor 

48 explained 50% and 55%most of the THg variation in liver (50%) and muscle both models dominated 

49 by seasonally-variable factors i.e. sexual maturity, δ13C, and condition factor. Seasonally varying 

50 bioaccumulation slopes and (55%). A model examining variation in scale THg concentrations only 

51 explained 6% of the variation. The higher level of intra-annualseasonal variation (21-33%) in 

52 whitefish THg concentration in muscle and scale, than their inter-annual accumulation (8%) 

53 highlight-7%), highlights the importance of includingto include seasonal factors in future THg studies 

54 of fish.

55

56

57

58 Capsule:

59 Strong seasonalSeasonal variation was observed in THg concentrations and bioaccumulation 

60 slopeswas higher compared to THg accumulation in muscle and liverall tissues, suggestingthis 

61 indicates that the temporal component of sampling shouldseasonal variation needs to be considered 

62 in future THg studies as well as in monitoring and risk assessment programmes.

63 Keywords:

64 Bioaccumulation; dietary shift; growth dilution; seasonal variation; starvation; trophic ecology

65

66 1. Introduction

67 Atmospheric mercury (Hg) originates from both natural and anthropogenic sources, and 

68 concentrations in ecosystems across the globe have increased since the industrial revolution (Pacyna 

69 et al.,. 2010). Atmospheric deposition typically dominates the supply of Hg to Arctic and subarctic 

70 lakes lacking direct Hg pollution sources in their catchment (e.g. Downs et al., 1998, Ariya et al., 
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71 2015).. The Arctic has shown clear, and marked increasing trends in Hg concentrations, e.g. in lake 

72 sediments since the 18th century industrial era (Chételat et al.,. 2015). In nature, Hg largely exists in 

73 one of three oxidation states (Hg0, Hg1+, Hg2+) and in a number of different compounds (such as Cl-, 

74 S04
2- and CH3

-) (Ullrich et al. 2001). In the atmosphere, Hg is mainly (98%) present in its highly 

75 volatile elemental form (Hg0), but in surface waters and catchment area the oxidized form (Hg2+) is 

76 more abundant (70-90%) (Morel et al. 1998). Hg spreads via ocean currents and global winds and 

77 can enter terrestrial or freshwater ecosystems via atmospheric deposition, allowing it to reach 

78 typically pristine Arctic or subarctic regions (e.g. Downs et al. 1998, Ariya et al. 2015). Hg speciation 

79 (e.g. methylation) in aquatic enviornments occurs through both biotic and abiotic pathways, in 

80 catchment and lakes, via numerous different mechanisms (e.g. Jensen & Jernelöv, 1969;, Pak & 

81 Bartha, 1998;, Celo et al.,. 2006). However, biotic methylation of Hg2+ has been recognized as 

82 important factor in forming of methylmercury (MeHg, CH3Hg), which is harmful to organisms due 

83 to its neurotoxic and apoptotic properties (e.g. Morel et al. 1998, National Research Council 2000).

84 In lake ecosystems, sulphur-oxidizing bacteria play key roles in the methylation process, resulting in 

85 the production of organic MeHg (e.g. Morel et al.,. 1998). Both benthic and pelagic primary 

86 producers, i.e. periphyton and phytoplankton, uptake inorganic Hg2+ and organic MeHg through 

87 passive and active transport processes (Mason et al.,. 1995, 1996; Douglas et al.,. 2012). Benthic 

88 macroinvertebrates and zooplankton consume these primary producers and transfer the Hg to 

89 invertebrate feedingbenthivorous and planktivorous fish, which are in turn eaten by higher trophic 

90 level consumers such as piscivorous fish. In subarctic lakes, Hg often accumulates faster in the pelagic 

91 food web compartment than the littoral (e.g. KahilainenLavoie et al., 2016a;. 2010, Chételat et al. 

92 2011, Thomas et al.,. 2016; Kahilainen et al., 2017), likely reflecting increased trophic transfer 

93 efficiency and thus increased Hg transfer in the pelagic food web. MeHg is especially highly bio-

94 reactive, bioaccumulating in organisms and biomagnifying through the food chain (e.g. Watras & 

95 Bloom, 1992;, Watras et al.,. 1998). For example, MeHg is estimated to represent a total proportion 
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96 of mercury (THg) concentration that ranges from 10% in the water column, to 15% in phytoplankton, 

97 30% in zooplankton and up to 95% in fish muscle (Watras & Bloom, 1992;, Watras et al.,. 1998). 

98 Hg in fishes is almost exclusively derived from their diet, where consumed prey is digested and Hg 

99 is translocated via blood to the liver and subsequently stored in muscle tissues (e.g. Oliveira Ribeiro 

100 et al., 1999; Wang & Wang, 2015). Hg concentrations are generally highest in liver and lower in 

101 muscle, and vary among species (e.g. Jernelöv & Lann, 1971; Kahilainen et al., 2016a). In addition, 

102 MeHg/THg ratios vary between tissues: e.g. ratios in liver and muscle is typically 40-80 % and >90 

103 % respectively (e.g. Bloom et al., 1992; Blank et al., 2013; Madenjian et al., 2016). MeHg has high 

104 tendency to form compounds with sulphur groups and bind to sulphur rich amino acids such as 

105 methionine and cysteine (Huges, 1957;, Kerper et al.,. 1992). As proteins contain more sulphur than 

106 lipids, most Hg (>99%) is located in proteins (e.g. Amlund et al.,. 2007). In many fish studies, 

107 different Hg species are combined and only muscle THg concentrations in muscle are measured, since 

108 the proportion of MeHg in fish muscle tissue is often >90% of THg (Downs et al.,. 1998; Watras et 

109 al.,. 1998; Madenjian et al.,. 2016).

110 Hg in fishes is derived from their diet – Hg in the items that they consume and digest is translocated 

111 via blood to the liver and is subsequently stored in muscle tissues (e.g. Oliveira Ribeiro et al. 1999, 

112 Wang & Wang 2015). Hg concentrations are generally highest in liver and lower in muscle, with 

113 scale tissues showing the lowest concentrations, but this can vary between species (e.g. Jernelöv & 

114 Lann 1971, Červenka et al. 2011, Kahilainen et al. 2016). In addition, MeHg/THg ratios vary between 

115 tissues: e.g. ratios in liver and muscle is typically 40-80 % and >90 % respectively (e.g. Bloom et al. 

116 1992, Blank et al. 2013, Madenjian et al. 2016). Scales are composed of mineralized compounds and 

117 organic matter such as collagen, to which Hg is likely bound. In northern latitudes, fish scales grow 

118 almost exclusively during the summer growing season, and it is likely that Hg is routed to scales at 

119 this time. However, Hg metabolism in fish scales is understudied and MeHg/THg ratios have not been 

120 documented. 
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121 In fish, Hg generally bioaccumulates with increasinged size and age (e.g. Downs et al.,. 1998;, 

122 Amundsen et al.,. 2011;, Swanson et al.,. 2011). In species with ontogenetic dietary shifts, Hg 

123 concentration can also increase as consumers shift to a higherincrease their trophic level or switch to 

124 utilization of Hg-enriched pelagic prey (e.g. Power et al.,. 2002;, Thomas et al.,. 2016; Kahilainen et 

125 al., 2017). Fast growing individuals accumulate muscle tissue faster than Hg, a phenomenon termed 

126 growth dilution (e.g. Simoneau et al.,. 2005;, Ward et al.,. 2010). Furthermore, growth dilution is 

127 inversely related to increasing condition factor and individual lipid reserves (e.g. Amlund et al.,. 

128 2007;, Braaten et al.,. 2014;, Kahilainen et al., 2016a). In. 2016). However, in Arctic and subarctic 

129 lakes, many fish species have a lower growth rate, higher longevity and later sexual maturation 

130 relative to their equivalents in temperate lakes (Heibo et al.,. 2005;, Blanck & Lamouroux, 2007), 

131 increasing the period of Hg bioaccumulation. Furthermore, in seasonally ice-covered systems, 

132 condition and lipid reserves of fish are generally the lowest in winter (e.g. Hayden et al., 2014a, 2015). 

133 Decreasing lipid content,  (and potentially also protein loss during starvation, may) can condense Hg, 

134 especially in remaining tissueslipid reserves, thus increasing the Hg concentrations (e.g. Kahilainen 

135 et al., 2016a). In the Hg contamination literature, this phenomenon is termed as starvation (e.g. 

136 Cizdziel et al.,. 2002, 2003;, Moreno et al.,. 2015) and, along with growth dilution, it may play a key 

137 role in the seasonal variation in Hg concentrations in cold-water fishes. Such variation may be 

138 important factor when considering Hg monitoring programs and human health considerations, as 

139 many cold-water fishes play important roles in the year-round diet of people resident in the region, 

140 both indigenous and non-indigenous people in the region (AMAP 2011). 

141 The European whitefish (Coregonus lavaretus (L.)) is a highly diverse and often the most abundant 

142 fish species in subarctic lakes of northern Fennoscandia (Siwertsson et al., 2010; Praebel et al., 2013; 

143 Malinen et al., 2014). Most of the lakes are inhabited by a generalist monomorphic whitefish 

144 populations using all habitat types, while polymorphic populations are diverged into separate pelagic 

145 and benthic morphs (Kahilainen et al., 2007; Harrod et al., 2010; Siwertsson et al., 2010). In the most 

146 complex cases, whitefish is ecomorphologically diverged into one of the three main lake habitats, 
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147 littoral, pelagic or profundal (Kahilainen & Østbye, 2006; Harrod et al., 2010; Kahilainen et al., 2014). 

148 The whitefish morphs show many morphological and physiological adaptions to their specific habitat 

149 types, where a heritable trait, number of gill rakers, encapsulates most of the variation as a single 

150 measurement (Kahilainen et al., 2011b, 2014,The European whitefish (Coregonus lavaretus (L.)) is 

151 the most abundant fish species in many subarctic lakes in Fennoscandia. It plays a significant role in 

152 energy and Hg flow within these lakes as it is a central node in lake food webs and the key species in 

153 local subsistence fisheries (e.g. Kahilainen et al. 2007, Hayden et al. 2015, Thomas et al. 2016). 

154 Whitefish undergo a dietary shift from 2016). Profundal morphs have the very low amount of short 

155 and widely spaced gill rakers suitable for foraging on fine sediments in dark condition charactistic of 

156 profundal habitat, whereas littoral and generalist morphs have intermediate number of relatively short 

157 gill rakers followed by pelagic morphs with very high number of fine, long and densely spaced gill 

158 rakers as adaption to foraging on small zooplankton prey (Kahilainen et al., 2007, 2011a, 2017). In 

159 both monomorphic and polymorphic lake types, whitefish as the most abundant species is key 

160 invertebrate feeding predator and main prey for many piscivores, thus acting as a central node in lake 

161 food webs (e.g. Kahilainen & Lehtonen, 2003; Kahilainen et al., 2009, 2011a). The key role of both 

162 monomorphic and polymorphic whitefish in the food webs of subarctic lakes has influence on pelagic 

163 and benthic energy and Hg flows (Thomas et al., 2016; Kahilainen et al., 2017), but we currently lack 

164 of knowledge regarding potential temporal variation in patterns of contaminant bioaccumulation that 

165 is likely influenced by seasonality of prey availability, growth, reproduction and condition.

166 To fill this knowledge gap, we undertook a year-round study of THg concentrations in a 

167 monomorphic whitefish population, and their putative prey sources in a relatively well-studied 

168 subarctic lake, Lake Kilpisjärvi, located in northern Fennoscandia. Here, monomorphic whitefish are 

169 known to undergo a dietary shift from littoral benthic macroinvertebrates during winter and spring to 

170 pelagic zooplankton in mid to late summer, coinciding with an annual zooplankton bloom (Tolonen, 

171 1999;, Hayden et al., 2014a).. 2014, Kahilainen et al. 2016). Pelagic prey is generally considered a 

172 more important source of Hg, due to often higher MeHg concentrations in zooplankton than littoral 
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173 benthic prey (Watras et al.,. 1998;, Suchanek et al.,. 2008). Previous work on whitefish morphs 

174 indicated that pelagic zooplanktivorous morphs had much higher THg concentrations and steeper 

175 bioaccumulation slopes than benthivorous morphs (Kahilainen et al., 2017). Open-water season 

176 dietary shifts from benthic macroinvertebrates to pelagic zooplankton in Arctic fishes such as Arctic 

177 charr (Salvelinus alpinus (L.)) have been shown to affect THg concentrations in fish liver and muscle 

178 tissue (Kahilainen et al., 2016a). Open-water season THg studies of fish muscle has been conducted 

179 with many species (e.g. Zhang et al.,. 2012;, Braaten et al.,. 2014;, Moreno et al., 2015;, Olk et al.,. 

180 2016), but we are unaware of any year-round (including ice-covered winter) muscle and livermulti-

181 tissue studies on THg concentrations of fish. Dietary shifts are clearly important in Hg exposure, but 

182 we know very little about the seasonal patterns of THg concentrations in whitefish and the main 

183 factors affecting any putative changes. To address these questionsknowledge gaps, we collected data 

184 year-round on whitefish growth, sexual maturation, condition and resource use with THg measured 

185 from muscle and liverdifferent tissues in a subarctic lake in northern Finnish Lapland. To assess intra- 

186 and inter-annual bioaccumulation patterns, we examined a suite of factors (sampling month, age, total 

187 length, condition factor, sex, sexual maturity, GSI, gillraker number, δ13C, δ15N) driving variation in 

188 THg concentration from different tissues (liver, muscle, scale) over the study period. Our study was 

189 designed to test three hypotheses:

190 Hypothesis 1 (H1) We hypothesized that the late summer dietary shift in whitefish from the low THg 

191 littoral benthic macroinvertebrates to the high THg pelagic zooplankton (Kahilainen et al., 2016a; 

192 2017) likely results in an increase in THg concentrations, and this shift will be evident in 

193 metabolically active liver prior to muscle. We also predicted that the THg concentration of liver and 

194 muscle will increase during winter due to starvation and subsequently decrease in spring and early 

195 summer due to growth dilution. The metabolic dynamics of scales act at a slower rate than liver or 

196 muscle tissues, and therefore we hypothesized the THg concentrations of scales would not show as 

197 pronounced seasonal variation as other tissues. 
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198 Hypothesis 2 (H2) If there are seasonal changes in THg of muscle and liver tissues, we expected to 

199 find changes in bioaccumulation slopes and Due to the THg regression slopes between these two 

200 tissues. First, we hypothesized that bioaccumulation occurred in both tissues in all months, but that 

201 we would report shallower slopes during the summer somatic growing season due to growth dilution. 

202 Secondlycomparatively similar metabolic dynamics of Hg in whitefish liver and muscle, we 

203 hypothesized that the intra-annual and combined annual relationships of THg concentration between 

204 liver and muscle would be significant year around, but would show a weaker relation in summer, 

205 when metabolic activity is higher in both tissues.stronger than between liver and scale or muscle and 

206 scale. 

207 Hypothesis 3 (H3) If season is an important determinant of THg concentrations, weWe expected to 

208 see seasonal-find season related factors e.g. maturity and stable isotope ratios selected in multiple 

209 linear regression models examining the drivers for muscle and liver THg concentrations, in addition 

210 to traits related to individual fish size.  in addition to fish size related traits. The Hg metabolism of 

211 scales is unknown, and we predicted, following the other tissue bioaccumulation patters, that fish size 

212 related traits should be positively related to scale THg concentrations.

213

214 2. Materials and methods 

215 2.1 Study area

216 This study was conducted in a subarctic Llake, Kilpisjärvi (hereafter L. Kilpis), located in northern 

217 Fennoscandia (69°03'N, 20°49'E; 473 m above sea level; Fig. 1).; e.g. Hayden et al 2014). L. Kilpis 

218 is a relatively large (surface area 37.3 km2, shoreline 71.5 km), oligotrophic (Tot-P < 5 µg l-1, Tot-N 

219 < 150 µg l-1, chlorophyll-a < 2 µg l-1), neutral (pH 7.2, conductivity 3.0 mS m-1 ), clear water (Secchi 

220 and compensation depth 10 and 14 m, DOC 2.8 µg l-1) and deep (maximum and average depths 57 m 

221 and 19.4 m) headwater lake (Kahilainen et al.,. 2007;, Hayden et al., 2014a; Kahilainen et al., 2017. 
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222 2014). The average annual air temperature of the region is -2.3 °C and precipitation is 450 mm y-1, of 

223 which ca. 60% falls as a snow. The year-round average water column temperature lake water varies 

224 from 0.4-10°C (Hayden et al., 2014a; 2014b).snow. Ice cover is present on the lake from mid-

225 November until mid-June and may reach a thickness of 1 m in late winter (Lei et al.,. 2012). The L. 

226 Kilpis catchment (293 km2) consists of subarctic mountain birch (Betula sp.) surrounding the lake, 

227 whereas areas with elevations above 600 m a.s.l. are Arctic tundra. The proportion of peatland in the 

228 catchment is low. There are no direct sources of Hg (e.g. volcanos, mines, factories) in the vicinity, 

229 suggesting that the principal source of Hg to the lake and catchment over historical and contemporary 

230 timelines has been atmospheric deposition. 

231 L. Kilpis has a relatively simple fish community, of which monomorphic whitefish is the dominant 

232 species,  contributing ca. 90% to the total fish community by abundance, with an estimated density 

233 of ca. 80 individuals ha-1 (Harrod et al., 2010; Malinen et al., 2014). The generalist whitefish morph 

234 in L. Kilpis is large sparsely rakered whitefish (LSR) inhabiting all lake habitats using both pelagic 

235 and benthic prey resources (Kahilainen et al., 2007).. 2010, Malinen et al. 2014). Other fish species 

236 in L. Kilpis are alpine bullhead (Cottus poecilopus (Heckel)), Arctic charr, burbot (Lota lota (L.)), 

237 grayling (Thymallus thymallus (L.)), minnow (Phoxinus phoxinus (L.)), pike (Esox lucius (L.)) and 

238 brown trout (Salmo trutta (L.)) (Kahilainen et al.,. 2007).

239 2.2 Sample period and sampling methods

240 Samples were collected over a total of eight sampling periods to assess both inter- and intra-annual 

241 THg concentrations and bioaccumulation: September 2010, December 2011, February 2012, May 

242 2012, June 2012, July 2012, September 2012 and September 2014. Samples collected in December, 

243 February and May were fromduring the period when the lake was ice-covered (ice thickness range:of 

244 ice 12-85 cm) and): samples from all other months represent the open-water season. Hayden et al. 

245 (2014a) used stomach content in addition to carbon and nitrogen and stable isotope ratiosdata from 

246 this period to show that whitefish predominantly feed on littoral benthic macroinvertebrates (BMI) 
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247 and pelagic zooplankton (ZPL) is used as a significant prey only during the late summer. and benthic 

248 macroinvertebrates (BMI) during the rest of the year. Here, we re-examined samplesexamine data 

249 from the same invertebrates and fish to assess how such dietary shifts, as well as other putative 

250 seasonal and life-history factors affect Hg concentrations in whitefish.

251 ZPL samples were collected with a plankton net (mesh size: 50 µm, diameter: 25 cm) by vertical 

252 hauls through 0-20 m to gain sufficient material for stable isotope analysis (SIA) and THg analysis. 

253 Composite zooplankton samples included both cladocerans and copepods and were stored in plastic 

254 vials and frozen (-20 °C). BMI samples were collected with an Ekman grab (272 cm2272cm2) from 

255 littoral (1 m) and profundal (20 m) habitats, sieved through 500 µm mesh net and identified to the 

256 lowest feasible taxon, stored to plastic vials and frozen (-20 °C). After initial freezing to -20 °C, both 

257 ZPL and BMI samples were freeze-dried (-75°C, 48 hours) for SIA and THg analyseis.

258 Fish were collected using gillnets fished in series including seven 1.8 m high and 30 m long nets 

259 (knot-to-knot mesh sizes: 12, 15, 20, 25, 30, 35, 45 mm), supplemented with one 1.5 m high and 27 

260 m long Nordic multimesh gillnet (5.25-55 mm). Gillnet series were set in benthic habitat at depths 2-

261 15 m overnight (summer: 10-12h, winter: 24-48h). Fish were immediately euthanized by cerebral 

262 concussion at the sampling site. After immediate transport to the laboratory, total length and 

263 massweight of whitefish were measured to the nearest mm and 0.1 g. Fulton’s condition factor (  ) 𝐾

264 was calculated for each individual following Nash et al. (2006):

265  ,𝐾 =
𝑀

𝑇𝐿3 × 100

266 where  is mass and  (cm) is total length of fish.𝑀 (𝑔) 𝑇𝐿

267 Both sagittal otoliths and circa 50-100 ventral scales between the pelvic and anal fins were taken from 

268 each fish for age determination., and scales were also assessed for THg concentrations. Individual 

269 whitefish age was determined from the combinedjoint use of cleared, burned and cracked otoliths 

270 under a binocular microscope as well as unregenerated scales pressed on polycarbonate slides and 
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271 viewed using a microfiche reader (Kahilainen et al.,. 2003). The join useYear class of otoliths and 

272 scales was used to improve the accuracy of aging (Kahilainen et al., 2017). Whitefish populations in 

273 L. Kilpis are typically dominatedfishes were determined by singlesubtraction of capture year class 

274 for 10-15 years (Tolonen, 1999), and in current study the dominant year-class during all sampling 

275 years comprised of fish that hatched in 2003.age. The number of gillrakers (range 19-29),, including 

276 small rudimentary rakers located at both ends of the first brachial gill arch, were counted under a 

277 preparation microscope. The number of gill rakers is a heritable trait in whitefish used to define 

278 different morphs and related to overall phenotype of whitefish individual as well as the main resource 

279 use patterns (Kahilainen et al., 2011a, 2011b). In L. Kilpis whitefish population is monomorphic, but 

280 the number of gill rakers could potentially be related to individual dietary specialization and thus THg 

281 concentration. Sex was determined (1 = female, 2 = male, 3 = juvenile) visually from gonads. If 

282 gonads were underdeveloped (sex = 3), sexual maturity was coded as 0, otherwise sexual maturity 

283 was defined with scale from 1 to 7, where 0-3 represents juveniles and 4-7 mature individuals at 

284 different stages of maturity (Bagenal 1978). In the most intensive sampling period of 2011-2012, both 

285 gonads were weighed (± 0.01 g) and the gonadosomatic index was calculated (Bagenal, 1978) to gain 

286 continuous proxy for gonad investment and level of sexual maturity: 1978):

287  ,𝐺𝑆𝐼 =
𝐺𝑀
𝑆𝑀 × 100

288 where  is gonadosomatic index,  is the mass of gonads (g),  is somatic mass (g). 𝐺𝑆𝐼 𝐺𝑀 𝑆𝑀

289 Whitefish stomachs were dissected from the oesophagus to the pyloric caeca and prey items were 

290 placed into a Petri dish. Stomach fullness was estimated visually using a modified points method 

291 (Swynnerton & Worthington 1940). Here, stomach fullness was assessed using a scale from 0 (empty) 

292 to 10 (fully distended). Prey items were identified to the lowest feasible taxonomic level and their 

293 relative share of total fullness was estimated. A sample of liver and white dorsal muscle were taken 

294 from each fish, separately stored in 2 ml plastic vials, frozen at -20°C and subsequently freeze-dried 

295 (-75°C for 48h) prior to preparation for SIA and THg analysis. 
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296 Freeze-dried samples of liver and muscle were ground to a fine powder, and weighed (ca. 0.5 mg) 

297 into tin cups. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N), in addition to the elemental 

298 ratio of carbon and nitrogen (C:N), were analysed through an elemental analyser connected to 

299 continuous flow isotope ratio mass spectrometer. Analytical error for both δ13C and δ15N was 0.1 ‰. 

300 Fish δ13C values were arithmetically lipid-corrected using sample-specific C:N ratios of either muscle 

301 (Kiljunen et al.,. 2006) or liver (Logan et al.,. 2008) samples.

302 2.4 Total mercury analysis

303 THg concentrations (µg g-1 d.w.) were analysed from the freeze-dried ZPL (n=17), BMI (n=20), liver 

304 (n=167) and muscle (n=225) samples, as well as air-dried non-regenerated scales (n=75) by atom 

305 absorption spectrometry using a direct Hg analyser (Milestone DMA 80). We had a target fish sample 

306 size for each month of ca. 30 individuals representing the total length and age distribution of the 

307 population (Table 1) and all invertebrate samples containing enough tissue were analysed. From each 

308 sample, two duplicates (20-30 mg) were analysed when material was not limited due to low sample 

309 mass - as was the case with some liver samples and almost all invertebrate samples. AverageThe 

310 relative difference (RSD) between duplicates of liver (n=113 pairs), muscle (n=223 pairs), scale 

311 (n=71 pairs) and invertebrates (n=2 pairs) was 1.1, 1.3, 7.1 and 11.2%, respectively. At the start and 

312 end of each run, samples of certified reference material (DORM-4; 0.410 ± 0.055 μg g-1; National 

313 Research Council Canada) were combusted. The average and recovery-% of the certified reference 

314 material (n= = 66) was 0.408 ± 0.011 (SD) and 99.6% respectively. Blank control samples (grand 

315 mean ± SD: 0.001 ± 0.001, n= = 113) were added both at the end of each run, as well as between 

316 different tissues and taxa. Run specific blank THg values was subtracted from analysed sample THg 

317 values to avoid instrumental error.. The mean of the blank adjusted duplicate THg values was later 

318 lipid-corrected. 

319 Hg binds mainly to proteins (e.g. Amlund et al.,. 2007) and therefore seasonal changes in lipid 

320 reserves in muscle and liver tissues can affect Hg concentrations (Kahilainen et al., 2016a). C:N ratio 
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321 is a useful proxy for lipid content in tissues (Fagan et al.,. 2011;, Hoffman et al.,. 2015). A C:N ratio 

322 of ca. three represents pure protein, with values above three indicate increasing concentrations of 

323 lipids. Whitefish usually have lower lipid concentrations, and display less seasonal variation, in 

324 muscle rather than liver tissues (Hayden et al., 2014a;, 2015). However, THg concentrations were 

325 arithmetically lipid-corrected using C:N ratios (Kahilainen et al., 2016a) to minimize the effects of 

326 seasonally varying lipid concentrations on the measured THg concentrations clarifying the effects of 

327 other seasonally varying factors:. 2016):

328 ,𝑇𝑜𝑡𝐻𝑔𝐿𝑖𝑝𝑖𝑑 ‒ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝐶:𝑁𝑠𝑎𝑚𝑝𝑙𝑒 

3.2   ×  𝑇𝑜𝑡𝐻𝑔𝑟𝑎𝑤 

329 where  is the C:N corrected THg value (µg g-1 d.w.),  is the C:N ratio 𝑇𝑜𝑡𝐻𝑔𝐿𝑖𝑝𝑖𝑑 ‒ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐶:𝑁𝑠𝑎𝑚𝑝𝑙𝑒

330 of sample individual, 3.2 is the minimum seasonal average of the measured C:N ratios and  𝑇𝑜𝑡𝐻𝑔𝑟𝑎𝑤

331 is measured total mercury value (µg g-1 d.w.).  (hereafter THg) values was used 𝑇𝑜𝑡𝐻𝑔𝐿𝑖𝑝𝑖𝑑 ‒ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

332 in all subsequent statistical analysis.

333 2.5 Statistical methods

334 Examination of seasonal changes of Hg concentrations in whitefish tissues (H1) and all supporting 

335 analyses of variance were conducted with non-parametric tests (Kruskal-Wallis H-test with post hoc: 

336 Mann-Whitney U-test, or if the assumption of homogeneity of variances was violated, we used 

337 repeated Welch’s t-tests with the Games-Howell post-hoc test). The seasonal bioaccumulation 

338 andThe relationships between Hg concentrations in liver and muscleof different tissues (H2) were 

339 tested with linear regression analysis. From data collected during the intensive 2011-2012 sampling 

340 period, we examined the factors explaining variation in THg concentrations from the different tissues 

341 (H3) using multiple linear regression analyses, where we tested forward,employing a backward and 

342 both direction stepwise selection procedure, selecting the best model based on minimum AIC values. 

343 Here, we first checked for auto-correlation and selected variables with R2 < 0.7 (sampling month, 

344 total length, condition factor, sex, sexual maturity, GSI, gillraker number, δ13C, δ15N) for inclusion 
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345 in the model. SignificanceA 95% confidence level (p < 0.05) was used as entry limit in the multiple 

346 linear regression analysis, as well as an indicator of statistical significance in all other analysis. 

347 Statistical analyses were conducted using SPSS 23 (IBM Corp., Armonk, NY, USA) and R (RStudio 

348 0.99.892; R Core Team, 2016) using MOSS package (Venables & Ripley, 2002).). 

349

350 3. Results

351 3.1 Year-round patterns in whitefish ecological characteristics

352 Somatic mass (Kruskal-Wallis: H5, 161 = 23.30, p < 0.001), condition factor (Welch’s ANOVA: F7, 221 

353 = 7.80, p < 0.001) and GSI (Welch’s ANOVA: F5, 161 = 6.76, p<0.001) showed seasonal variations, 

354 all of them increasing towards autumn (Table 1). The dominant year class (2003) showed similar 

355 seasonal pattern in somatic mass (Kruskal-Wallis: H5, 55 = 22.81, p < 0.001) and condition factor 

356 (Kruskal-Wallis: H7, 84 = 20.79, p<0.001) tothan the whole population (Table 1). The number of empty 

357 stomachs (Table 1) and stomach fullness (Welch’s ANOVA: F7, 217 = 18.86, p < 0.001) varied between 

358 seasons. The number of empty stomachs waswere the highest (n=24) and stomach fullness (0.4) the 

359 lowest in ice-covered December just prior to spawning, whereas no empty stomachs were found in 

360 July-September when the average stomach fullness (5.4-4.6) was the highest (Table 1). Stomach 

361 content analysis showed that for much of the year, whitefish largely consumed BMI, but that the 

362 prevalence of zooplankton in the diet increased in late summer (Table 1, Table S1). The year-round 

363 similarityconsumption of trophic levelBMI was also evident in relative stable muscle δ15N and values 

364 (Welch’s ANOVA: F7, 217 = 2.49, p = 0.017), with pairwise comparisons showing the highest values 

365 in winter (Table 1). The strong annual reliance on littoral BMIdietary shift was also evident from 

366 relatively similar muscle δ13C values (Welch’s ANOVA: F7, 217 = 5.54, p<0.001), with values showing 

367 a slight being relatively 13C depletioned in winter and 13C enrichment at earlyenriched in summer 

368 (Table 1).
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369 3.2 H1 - Annual mercury concentrations in invertebrates and whitefish tissues

370 THg concentrations varied (Welch’s ANOVA: F2, 34 = 13.09, p < 0.001) between the different putative 

371 whitefish prey groups (Table 2). ZPL displayed higher THg concentrations than littoral BMI (0.070 

372 ± 0.013 and 0.042 ± 0.014 μg g-1 respectively; Table 2). The mean THg of profundal BMI (0.366 ± 

373 0.356 μg g-1) were circa five times higher than the concentrations in ZPL, but the difference was not 

374 statistically significant, reflecting high variation in the former group. Due to the low sample number, 

375 the taxa specific seasonal THg, stable isotope and C:N values did not allow statistical testing (Table 

376 S2)

377 THg concentrations varied seasonally both in liver (Welch’s ANOVA: F5, 158 = 5.29, p < 0.001) and 

378 muscle tissue (Kruskal-Wallis: H7, 217 = 41.87, p < 0.001). The seasonal changes showed a similar 

379 pattern in both liver and muscle tissues (Table 2, Fig. 2). The highest THg concentrations (liver: 1.70 

380 ± 0.88 μg g-1, muscle: 0.24 ± 0.05 μg g-1) were found in mid-winter under thick ice (February 2012) 

381 and the lowest (liver: 0.87 ± 0.72 μg g-1, muscle: 0.19 ± 0.04 μg g-1) in open-water summer (June-

382 July 2012). However, seasonal variation in scales was less obvious (Welch’s ANOVA: F7, 67 = 2.17, 

383 p = 0.048), with post-hoc tests (Table 2) only highlighting significant differences between May 2012 

384 (0.012 ± 0.001 μg g -1) and August 2014 (0.016 ± 0.002 μg g -1). 

385 We estimated the annual accumulation of THg (0.01-0.02 µg g-1) in muscle tissue by comparing 

386 samples from September 2010 and August 2014 (Table 2): post-hoc tests indicated that THg 

387 concentrations were higher in 2014 (0.23 ± 0.05 μg g-1) than in 2010 (0.17 ± 0.04 μg g-1). THg 

388 accumulation with age (Fig. 3) was also evident among year classes (2002-2011) in both muscle 

389 (Kruskal-Wallis: H8, 154 = 63.64, p < 0.001) and liver tissues (Welch’s ANOVA: F8, 152 = 10.12, p < 

390 0.001). For example, muscle THg concentrations of fish from the 2003 year class were statistically 

391 higher than for those from the 2009 and 2010 year classes (post hoc: Mann-Whitney U-test: p<0.001 

392 in both cases), while liver THg concentrations of the 2003 year class were higher than that recorded 

393 from the 2008-2011 year classes (post hoc: Games-Howell: p<0.001 in all cases).
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394

395 3.3 H2 - Seasonally varying bioaccumulation and relationshipsThe relationship of mercury 

396 concentration between different tissues

397 THg concentrations in liver and muscle tissue were circa 4-7 times higher than those from muscle, 

398 and 50-100 times higher than in scales in all sampling months. This was evident both from tissue 

399 mean THg concentrations and the slopes of linear regression equations based on THg 

400 concentrations in different tissues (Tables 2 and 3). Regressions of THg concentrations between 

401 liver and muscle or muscle and scale (Table 3, Fig. 4) were both statistically significant when data 

402 were pooled at an annual level, but differed in their predictive power (liver-muscle: adj. r2 = 0.53, p 

403 < 0.001, muscle-scale: adj. r2 = 0.10, p = 0.015). Liver-muscle regressions were statistically 

404 significant throughout the year (however r2 values of the slopes were highest in June and lowest in 

405 July), whereas the liver-scale and muscle-scale regression were significant only in July-September 

406 (Table 3). 

407 Bioaccumulation of THg by age varied seasonally in both tissues showing the highest slopes and the 

408 strongest significances in winter and the lowest or non-significant slopes in summer (Fig. 3). In liver 

409 the non-significant bioaccumulation was found just after the ice-break in June and, in July it was 

410 evident in muscle as well (Fig. 3). The regressions of THg concentrations between liver and muscle 

411 were statistically significant throughout the whole year, showing the steepest slopes in mid-winter, 

412 decreasing towards summer and recovering again towards autumn (Fig. 4). These regression plots 

413 show signs of THg enrichment via starvation in winter, with overall high values in February and May, 

414 followed by low concentrations in June and July suggesting growth dilution during summer growing 

415 season (Fig. 4).

416
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417 3.4 H3 - Results of multiple linear regression analysis

418 The bestBackwards stepwise multiple regression modelsexamining explained 50%, 55% and 556% 

419 of the variation in THg concentration in liver, muscle and scale respectively (Table 3, Table S3). Both 

420 models included the exact same ecological4). The models indicated that seven, six and one variables 

421 explaining the explained variation in liver, muscle and scale THg concentrations., respectively. 

422 Models for liver and muscle were generally similar, with the exception that sampling month was 

423 conversely correlated in these models and that the liver-model also included GSI. Sexual maturity, 

424 δ15N and total length werewas positively correlated to THg concentrations in both liver and muscle 

425 models, whereas δ13C and condition factor was inversely correlated to the concentrations. In both 

426 models, sexual maturity, δ13C and condition factor were most significant explanatory factors of the 

427 THg concentrations. The main difference between the models was that sampling month and GSI was 

428 conversely related in these models.factors explaining the THg concentrations. The model examining 

429 scale THg concentrations performed poorly, and only included condition factor, which was inversely 

430 correlated with scale THg concentrations. The poor quality of the scale-model was probably caused 

431 by the lack of variability in size and age data, as only fish from the 2003 year class were analyzed. 

432

433 4. Discussion

434 4.1 Main results

435 We found evidence for year-round variation in THg concentrations in whitefish liver and, muscle and 

436 scale tissues. As we hypothesized (H1), annual THg concentration of liver and muscle were the 

437 highest in winter and the lowest in open-water summer months. In addition, strength and significance 

438 of bioaccumulation and thethere was a clear positive relationship of THg concentration between 

439 muscle and liver peakedtissues in winter and were shallow or non-significant in summerindividual 

440 fish, whereas similar relationship between scale and muscle was much weaker (H2). The seasonally 

441 related variables, such as sexual maturity, δ13C, and condition factor, included in the multiple linear 
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442 regression models supported hypothesis H3, i.e. that starvation and zooplanktivory increased THg 

443 concentration and growth dilution lowered it.

444 4.2 Seasonal variation in mercury concentrations (H1)

445 We found strong seasonality of THg concentrations, where liver and muscle showed in all tissues, 

446 showing maximum differences of 49% %, 21% and 33% in liver, muscle and 21% in monthly 

447 comparisonsscale, respectively. Here, bothliver and muscle tissues showed similar patterns, following 

448 a sine-curve peaking in winter and reaching the minimumfalling in summer., whereas scales showed 

449 reverse patterns, and included much more noise. These changes were related to consistent year-round 

450 changes in severalvarious measures of whitefish ecology (e.g. resource use, maturation and 

451 condition).) of whitefish ecology. Whitefish showed a seasonal shift in diet in the summer, changing 

452 from a BMI-dominated diet to a pelagic ZPL-dominated diet, evident from both stomach contents 

453 and liver δ13C values, which became increasingly 13C depleted. In L. Kilpis, we showed that THg 

454 concentrations in pelagic ZPL were higher than littoral BMI and: other studies have also shown that 

455 pelagic ZPL maycan also have a higher MeHg/THg ratio than that shown by littoral BMI (e.g. Watras 

456 et al.,. 1998;, Suchanek et al.,. 2008). In light of this, we suggest that the reported whitefish dietary 

457 shift to pelagic ZPL contributes to an increasing trend of THg levels of liver and muscle from late 

458 summer onwards. This is further supported by results of recent study showing higher THg 

459 concentrations on zooplanktivorous than benthivorous whitefish morphs in a series of subarctic lakes 

460 (Kahilainen et al., 2017). Hg turnover is faster in liver than in muscle (Oliveira Ribeiro et al.,. 1999) 

461 and this may explain our observation that Hg concentrations increased slightly faster in liver than in 

462 muscle following the diet shift to pelagic ZPL. The open water season dietary shift of Arctic charr in 

463 nearby subarctic Lake Galggojavri from BMI to pelagic ZPL has been found to increase fish THg 

464 concentrations in liver towards autumn (Kahilainen et al.,. 2016). Similarity of diet and THg patterns 

465 in whitefish and Arctic charr during open-water season suggest generality of our findings, at least 

466 locally.
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467 Starvation has been suggested to increase fish Hg concentrations in winter when water temperature, 

468 fish activity and the condition all decrease (e.g. Cizdziel et al.,. 2002, 2003;, Moreno et al.,. 2015). 

469 However, seasonal changes in lipid concentrations may also have an impact (Kahilainen et al., 

470 2016a). In the present study, THg concentrations were lipid corrected to minimize the effect of 

471 seasonal lipid changes in tissues that were evident in C:N values of liver tissue, but not in muscle 

472 tissue.. When comparing the individuals of the 2003 year class, consisting entirely of mature fish 

473 2003, we found that condition factor and somatic mass were lowest in winter (excluding June, a 

474 month with limited sample size), reflecting spawning and subsequent starvation in February. The 

475 gonads of lake whitefish (Coregonus clupeaformis), a North American sister species to C. lavaretus 

476 studied here, contain very little Hg and it is likely that mature fish instead store Hg in muscle tissue 

477 prior toproceeding spawning (Madenjian et al.,. 2016). Assuming the same pattern in itsthe closely-

478 related, and ecological equivalent sister species, the European whitefish, the high THg concentration 

479 we reported from February can be partly related to the post-proceeding spawning period and increased 

480 muscle storage of Hg. Although our Hg data were lipid corrected, we were still able to define 

481 starvation affecting seasonal changes of THg concentrations, therefore loss of protein might also have 

482 aimportant role to this.

483 Growth dilution has been suggested to result in reduced Hg concentrations during periods when fish 

484 rapidly gain somatic mass (e.g. Doyon et al.,. 1998;, Simoneau et al.,. 2005;, Braaten et al.,. 2014). 

485 The 2003 year class increased in somatic mass from winter (December 2011) to autumn (September 

486 2012), a period during which THg concentrations fell. This suggests that growth dilution, even with 

487 slow growth rates, can explain decreasing THg concentrations in both liver and muscle tissues of 

488 sampled whitefish. In addition, increased excretion during summer could also explain the decrease of 

489 THg concentrations from winter to summer in liver and muscle, butwhich we were unable to test 

490 thisdetect with our study design.
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491 The rate of increase in THg values in both liver and muscle slowed after sexual maturation. In L. 

492 Kilpis whitefish, THg concentrations increased with age in both liver and muscle tissues. This pattern 

493 has been recorded also in many other studies using muscle tissues of subarctic salmonids (e.g. 

494 Amundsen et al. 2011, Swanson et al. 2011), but is less commonly reported from liver tissues. The 

495 pairwise comparison of scale THg concentrations over sampling months revealed high variation with 

496 the lowest value in May under ice and the highest value in July during intensive growing period of 

497 scales and other tissues (Tolonen 1998). Despite only single significant comparison, there was a weak 

498 indication of slow THg accumulation from 2010 to 2014. 

499 The rate of increase in THg values in both liver and muscle slowed after sexual maturation. The 

500 ontogenetic dietary shift from ZPL to BMI at an early age in whitefish (Tolonen, 1998) and decreased 

501 somatic growth after maturation might explain the slowing THg accumulation. We found As 

502 supporting the age-correlated THg accumulation, we found that population-level mean THg 

503 concentrations in whitefish muscle and scale increased bywith rate of circa 8 and 7 % per year, 

504 between September 2010 and August 2014. This value is, respectively. These values are indeed circa 

505 2.5up to three times lower that observed intra-annual variation during than found for muscle and scale 

506 in monthly comparisons in 2011-2012. Both observations strongly reflect the dominance of the single 

507 mature 2003 During all sampling periods, the strong year-class, with limited annual somatic growth 

508 explaining low inter-annual bioaccumulation and strong investment on gonads causing intra-annual 

509 variation of muscle THg. In  2003 was the most abundant, therefore the annual slight increase of THg 

510 concentrations could be explained with general aging of the whitefish population. Also in previous 

511 studies of L. Kilpis whitefish, , the dominance of a single year-class has been documented in diffent 

512 decadesL. Kilpis (Tolonen, 1998;, Harrod et al.,. 2010) and such patterns of year-class dominance 

513 and generally high age of fish is typical in Arctic and subarctic lakes (Rolls et al., 2017). Taken 

514 collectively, our results of intra- and inter-annual patterns of THg should be thus the most valid for 

515 fish populations consisting of mature fish investigating their energy mostly to gonad growth instead 

516 of somatic growth, a pattern typical for a range of fish species. .
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517 4.3 Seasonal bioaccumulation and mercuryMercury metabolism between liver and, muscle and 

518 scale (H2)

519 In L. Kilpis whitefish, THg concentrations increased with age in both liver and muscle tissue. This 

520 pattern has been recorded also in many other studies using muscle tissues of subarctic salmonids (e.g. 

521 Amundsen et al. 2011, Swanson et al. 2011), but is less commonly reported from liver tissue. A 

522 previous study by Kahilainen et al. (2017), showed that THg concentrations in muscle generally 

523 increased with age in different European whitefish morphs, but the regression slopes were the most 

524 steep for pelagic morphs (range 0.038-0.103) and shallow for benthic whitefish morphs (0.017-

525 0.020). This study also assessed bioaccumulation in three monomorphic whitefish population, which 

526 displayed relatively shallow slopes (0.020-0.025). These results corroborates our findings here, as we 

527 found shallow, or even non-significant bioaccumulation slopes during the summer growing season 

528 for both liver and muscle with some time-lag related to faster metabolic rate of former than later (e.g. 

529 Oliveira-Ribeiro et al., 1999; Hayden et al., 2014a; Kahilainen et al., 2016a). Interestingly, the 

530 bioaccumulation slopes of both tissues were clearly steeper during the ice-covered winter, most likely 

531 driven by the older mature individuals which had higher relative difference between winter and 

532 summer THg concentrations compared to the younger immature individuals. This could be explained 

533 by the stronger response of older fish to spawning, which is likely due to the fact that only six years 

534 or older individuals were sexually mature, and this was the group driving the changes in 

535 bioaccumulation seasonally.

536 The relationship between the THg values of liver and muscle tissues was evident during the whole 

537 season highlighting the strong metabolic link between these two tissues (Oliveira Ribeiro et al., 1999; 

538 Sinnatamby et al., 2008). However, the strength of the link between the THg values of these tissues 

539 altered during season highlighting the difference in turn over times between these tissues (Hayden et 

540 al., 2014a; Kahilainen et al., 2016a). The data examination revealed that the THg concentrations in 

541 liver decreased relatively more compared to muscle towards summer. This could be explained by the 

542 slightly faster turnover time of liver tissue THg to muscle, which is consistent with the previous 
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543 laboratory studies (e.g. Oliveira Ribeiro et al., 1999). Generally, the liver-muscle relationship seems 

544 to follow water temperature related metabolic activity and support other evidence growth dilution 

545 during the summer and starvation in winter.

546 The relationship between the THg values of liver and muscle tissues were stronger than that seen 

547 between muscle and scale, probably due to inherent metabolic links between these tissues (Oliveira 

548 Ribeiro et al. 1999, Sinnatamby et al. 2008). There was little evidence of any relationship between 

549 THg values of liver and scale, partly reflecting the large amount of between-individual variation seen 

550 in liver THg values, but also the fact that there is little direct metabolic link between these tissues 

551 (Sinnatamby et al. 2008). Growth of whitefish scales in L. Kilpis starts in July (Tolonen 1998), 

552 possibly explaining the connection between THg values of scale and muscle as well as scale and liver 

553 in July. In other months, the scale-muscle regressions explained far less variation or were non-

554 significant, suggesting that transport of Hg to scales primarily occurs during the main growth period. 

555

556 4.4 Factors explaining variation in mercury concentration in whitefish (H3)

557 We found that a high proportion of the variation (50% and 55%) in THg concentration in liver and 

558 muscle and liver was explained through multiple linear regression analyses., however, the models 

559 were less successful at explaining THg concentration in scales. Previous studies employing regression 

560 analyses to explain THg concentrations in whitefish have frequently documented that fish size and 

561 age are important factors affecting Hg concentration (e.g. MorenoAmundsen et al., 2015; Thomas. 

562 2011, Swanson et al., 2016; Kahilainen et al., 2017).. 2011). Surprisingly total length, which was 

563 auto-correlated with age and massweight, was a relatively poor predictor of liver and muscle THg 

564 concentrations in L. Kilpis. This most likely reflect the low investment to somatic growth of single 

565 year-class 2003 dominated whitefish population, where most fish are close to their maximum length.. 

566 However, the inclusion of THg in liver and musclemultiple tissues and factors related to temporal 

567 variation such as sampling month, stable isotopes and sexual maturity have been examined to a far 
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568 lesser degree. In this study, all of these factors describing year-round variation were highly important 

569 factors included in liver and muscle models and are discussed below. 

570 In L. Kilpis, both muscle and liver THg values were inversely related with tissue specific δ13C values, 

571 which likely reflects increased autumnal consumption of 13C depleted pelagic ZPL containing more 

572 THg than littoral BMI (Kahilainen et al., 2016a; Thomas. 2016, Karimi et al.,. 2016; Kahilainen et 

573 al., 2017). Liver and muscle THg values were negatively related with condition factor, which can be 

574 used as supporting evidence for starvation and growth dilution (Cizdziel et al.,. 2002, 2003;, Evans 

575 et al. 2015). Condition factor does reflect spawning when gonads, which removes eggs with low THg 

576 concentration are removed from the fish body, potentially further condensing Hg in whitefish muscle 

577 (Madenjian et al.,. 2016). Increased δ15N values have been linked to metabolic-stress associated with 

578 starvation (Moreno et al.,. 2015) in some taxa. Here, we found slight seasonal changes in muscle and 

579 liver δ15N values showing the highest values in winter and lowest in autumn. Therefore, the positive 

580 correlation of δ15N and THg values in muscle and liver model possibly reflects winter starvation, 

581 when fish use protein reserves from both liver and muscle. Positive correlation betweencorrelations 

582 of sexual maturity and THg concentrations in both liver and muscle models indicate aare obviously 

583 related to the high significance of gonadegg development and spawning to the THg concentrations. 

584 Spawning may be related to starvation in whitefish, due to the high cost of gonad investment and low 

585 prey abundance during winter spawning period (Hayden et al., 2014a). In the liver model, the negative 

586 relationship between GSI and THg supports this idea; whitefish GSI was lowest and THg was highest 

587 immediately after spawning in February-May, when we also reported the highest THg concentrations. 

588 In the muscle model, the opposite correlation between GSI and THg (positive) could be explained by 

589 random effect in the model since we found no correlation between GSI and muscle THg through 

590 simple linear regression analysis: in addition GSI had low significance in the multiple linear 

591 regression model explaining the variation in muscle THg. Sampling month significantly affected THg 

592 concentration, but the effect was positive in the liver model and negative in the muscle model, likely 

593 indicating that Hg is translocated faster in liver than in muscle. This could be explained by the 
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594 different turnover times of these tissues, meaning that the late summer derived Hg is can be measured 

595 faster in liver (early winter) than in muscle (mid-winter). Therefore, the positive correlation between 

596 sampling month and liver THg could be explained by the high THg values in early winter (December). 

597 Most likely, the negative correlation between muscle THg concentrations and sampling month was 

598 driven by the high THg concentrations in mid-winter (February) and low concentrations in summer 

599 (June-July).

600 In contrast to our expectations, we found a weak negative relation between condition factor and scale 

601 THg (H3). The paucity of data detailing tissue turnover rate for whitefish scales makes interpreting 

602 the ecological meaning of this correlation difficult. Despite having a large number of ecological 

603 variables in our dataset, we were unable to predict scale THg concentrations with sufficient reliability 

604 due to limited age and size range. Despite the fact that scale and muscle THg concentrations are 

605 correlated and both accumulate inter-annually, there is evident further need to include more year-

606 classes in scale THg analyses to test bioaccumulation with size and age. 

607 4.5 Monitoring and human health

608 An interesting aspect of our results was that intra-annual variability in THg concentrations of 

609 whitefish exceeded inter-annual variation, evident also in multiple linear regression analyses, where 

610 seasonal factors indicating diet (δ13C) and condition were generally more important than fish total 

611 length. As the year-round maximum variation of muscle tissue (in different tissues 21%) is 

612 surprisingly high-49%, compared to 7-8% in inter-annual (8%) accumulation in muscle, and that 

613 bioaccumulation slopes varied from non-significant or shallow in summer to highly steep and highly 

614 significant in winter, we suggest that such seasonal variation needs to be considered in future studies 

615 and especially in any long-term THg monitoring program. This is particilarly important as the aims 

616 of Hg monitoring programs are typically related to human health (AMAP 2011). Primarily, the 

617 sampling month should be standardized but since the annual anomalities, the seasonal succession 

618 (e.g. temperature build up) should be quantified as well since they might affect on THg of fish. 
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619 Whitefish is the most important target fish of local people fisheries year-round and represent a stable 

620 proportion of their subsistence diet of native and non-native people (Thomas et al. 2016; Kahilainen 

621 et al., 2017). Although THg levels in all our fish samples were below national health limits (i.e. 0.5 

622 µg g-1 wet massweight; approx. 2.0-2.5 µg g-1 dry massweight), the year-round patterns observed for 

623 whitefish may be relevant in other systems e.g. in other autumn or winter spawning fish such as many 

624 salmonids (Arctic charr, brown trout, lake trout, vendace) with putative winter starvation after 

625 reproduction. In spring spawning species, patterns could be different as the summer growing season 

626 starts immediately or soon after their reproduction, but additional year-round studies are needed to 

627 test this. For example, an annual variation of 21% would create a potential for THg values to exceed 

628 health limit guidelines and regional fish consumption regulations. Furthermore, seasonal changes of 

629 THg concentrations and bioaccumulation slopes in fish may lead to increased risk to human health in 

630 regions, where monitoring is restricted to low THg months i.e. mid summer. Depending on the aims 

631 of human health monitoring, both summer and winter sampling may be advisable as subsistence 

632 fishing is very common across Arctic and subarctic lakes in both seasons. 

633 4.6 Conclusions

634 We revealed clear seasonal changes in the concentration and bioaccumulation slopesconcentrations 

635 of THg in whitefish muscle and liver tissues. The results indicated that both starvation and growth 

636 dilution drive seasonal changes in THg concentrations in both tissues. Our data also provides new 

637 evidence for the role of pelagic diet shifts on increasing THg concentrations in both muscle and liver. 

638 We found that the THg concentrations of scales could be affected by this diet shift occurring during 

639 the main growth period of scales. The seasonal changes in diet and condition were generally more 

640 important factors than fish length explaining THg concentrations of whitefish muscle and 

641 liverdifferent tissues of fish. The intra-annual variation in THg concentrations was higher than inter-

642 annual bioaccumulation, in addition we found that bioaccumulation varied seasonally being highest 

643 in winter and low or  non-significant in summer. Therefore, over years, therefore it is essential to 

644 consider seasonal factors in future studies and Hg monitoring programs.
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856 Table 1. Ecological characteristics (sample size;, age;, body size;, somatic mass;, condition;, sexual 
857 maturity;, gonadosomatic index, GSI; gillraker count;, C:N ratios;, stable isotopes and diet) of 
858 whitefish. For each continuous variable, mean ± SD values are presented, for different prey groups 
859 mean percentage contribution is presented. Variables marked with * indicatepresent year class 2003 
860 whitefish data. Superscript with small lettersa-h presented before mean values indicate statistical 
861 difference between corresponding mean value (a=Sep-10, b=Dec-11, c=Feb-12, d=May-12, e=Jun-
862 12, g=Sep-12, h=Aug-14). Pelagic zooplankton are divided into cladocera (Bosmina sp. and 
863 Holopedium gibberum) and copepoda (Calanoida and Cycloida), benthic ZPL indicates benthic 
864 zooplankton groups (Eurycercus sp., Megacyclops sp.). Benthic macroinvertebrates (BMI) includes 
865 Chironomidae, Ephemeroptera, Lymnaea sp., Pisidium sp., Plecoptera, Simulidae, Trichoptera and 
866 Valvata sp. Fish include whitefish eggs and alpine bullhead, whereas the other group includes 
867 macrophyte parts, Corixidae, Hydracarina, Tabanidae and Polyphemus pediculus. 

aSep-10 bDec-11 cFeb-12 dMay-12 eJun-12 fJul-12 gSep-12 hAug-14
Whitefish (n) 30 30 30 30 18 30 29 27
Age g6.2 ± 2.1 6.4 ± 2.5 7.3 ± 2.4 6.2 ± 3.2 5.8 ± 4.6 5.6 ± 3.9 a8.1 ± 2.4 7.4 ± 4.2
Total length (mm) 247 ± 50 245 ± 52 248 ± 49 221 ± 71 227 ± 100 210 ± 94 269 ± 50 234 ± 83
Total massweight (g) 133.0 ± 89.1 117.1 ± 55.7 117.8 ± 50.6 97.5 ± 76.7 141.8 ± 194.3 106.8 ± 95.2 165.0 ± 55.1 126.1 ± 93.7
Somatic mass g111.2 ±50.1 g117.2 ± 50.3 g97.2 ± 76.3 140.3 ± 191.4 g105.5 ± 93.4 bcdf162.0±54.2
Somatic mass* (g) g138.3 ± 26.5 145.7 ± 30.7 157.6 ± 24.1 g123.0 ± 26.8 182.61 ± 51.2 be185.5 ± 25.8
Condition factor def0.75 ± 0.10 g0.69 ± 0.07 g0.70 ± 0.07 ag0.67 ± 0.07 ag0.65 ± 0.10 ag0.67 ± 0.11 bcdefh0.78±0.05 f0.71 ± 0.08
Condition factor* 0.75 ± 0.04 g0.72 ± 0.05 g0.71 ± 0.09 0.72 ± 0.04 0.63 ± 0.08 0.75 ± 0.07 bc0.79 ± 0.05 0.74 ± 0.06 
Sexual maturity cg2.53 ± 0.94 3.03 ± 1.54 adef4.43 ± 2.56 c2.40 ± 1.57 c2.39 ± 1.79 c2.30 ± 2.09 a3.41 ± 1.18 2.91 ± 1.51
GSIGonadosomatic 
index

d2.9 ± 4.7 g0.4 ± 0.3 bg0.2 ± 0.2 g0.5 ± 0.6 g0.6 ± 1.2 cdef1.7 ± 1.6

Gillraker count 25.2 ± 1.2 25.0 ± 2.1 24.3 ± 2.0 24.2 ± 1.6 23.9 ± 1.5 24.0 ± 1.7 24.4 ± 1.6 24.1 ± 2.0

C:N Liver 
df4.545 ± 

0.646
f4.355 ± 0.727 b4.141 ± 0.232 4.152 ± 0.323

bc4.04 ± 0.35 
± 0.4 4.222 ± 0.192

C:N Muscle 3.202 ± 0.040 3.212 ± 0.040 3.202 ± 0.061 3.202 ± 0.051 3.222 ± 0.051 h3.222 ± 0.051 h3.222 ± 0.051
fg3.182 ± 

0.051
δ 13C Liver (lipid free) -23.5 ± 1.7 -23.7 ± 2.1 -23.7 ± 1.8 -23.3 ± 8.6 -24.9 ± 1.9 -23.8 ± 1.4
δ13C muscle (lipid free) -24.6 ± 2.9 e-25.0 ± 1.7 e-25.2 ± 1.4 -24.6 ± 1.5 bch-22.1 ± 3.0 -24.3 ± 1.2 -24.6 ± 1.2 e-25.1 ± 1.5
δ15N Liver 8.0 ± 0.6 g8.2 ± 0.6 g8.3 ± 0.7 g8.3 ± 0.8 g8.1 ± 0.5 cdef7.5 ± 0.5
δ15N Muscle b8.4 ± 0.5 a8.7 ± 0.3 8.6 ± 0.3 8.6 ± 0.4 8.5 ± 0.4 8.5 ± 0.4 8.6 ± 0.3 8.6 ± 0.4
Stomach fullness bf3.8 ± 1.6 acdefgh0.4±0.9 bfg2.3 ± 2.6 bf3.3 ± 2.5 b4.0 ± 1.6 abcdh5.4 ± 1.9 bc4.6 ± 1.7 bf3.7 ± 1.7
Empty stomachs (n) 1 24 12 8 1 0 0 1
Cladocera 5.4 8.3 49.6 2.6 34.0
Copepoda 35.8 32.4 26.0 0.7 0 4.0 3.0
Benthic ZPL 26.1 7.7 20.0 24.9 60.3 21.4
BMI 22.2 92.3 64.4 50.1 91.0 19.8 16.9 30.1
Terrestrial insects 8.6 5.3 16.2 11.5
Fish 3.2 3.9
Other 1.9 0.4
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869 Table 2. THg concentrations (µg g-1 d.w.) ± SD (n) of liver an muscledifferent tissues of whitefish 
870 and invertebrates by sampling months and years. Superscript with capital lettersA-H presented before 
871 THg means of different tissues indicates statistical difference between corresponding mean value 
872 (A=Sep-10, B=Dec-11, C=Feb-12, D=May-12, E=Jun-12, G=Sep-12, H=Aug-14). Superscript small 
873 lettersa-c in grand mean row indicates statistical differences between corresponding a-cinvertebrate 
874 group.

Liver Muscle Scale aZPLpelagic bBMIlittoral cBMIprofundal 

ASep-10
BCEH0.17±0.04  

(30)
0.012±0.002   

(10)

BDec-11
F1.56±0.82  

(29)
A0.22±0.04  

(30)
0.014±0.003   

(11)
0.040 (1) 0.050 (2) 0.573 (2)

CFeb-12
EF1.70±0.88  

(30)
AEF0.24±0.05  

(30)
0.013±0.003   

(11)
0.061 (1) 0.057 (2)

DMay-12 1.39±0.99  
(30)

 0.22±0.06  (30)
H0.012±0.001     

(4)
0.065±0.006 

(3)
0.055 (2)

EJune-12
C0.87±0.72  

(17)
AB0.20±0.06  

(18)
0.015±0.005     

(3)
0.057 (1)

FJuly-12
BACG0.88±0.42  

(30)
B0.19±0.04   

(30)
0.016±0.005   

(11)
0.060±0.002 

(3)
0.036 (2)

GSep-12
F1.29±0.57  

(28) 0.20±0.04   (29) 0.013±0.002   
(11)

0.067±0.002 
(3)

0.319 (2)

HAug-14
A0.23±0.05   

(28)
D0.016±0.002   

(14)
0.084±0.005 

(6)
0.027±0.010 (5) 0.205 (2)

Grand 
mean

1.31±0.81 
(164)

0.21±0.05  
(225)

0.014±0.003   
(75)

b0.070±0.013 
(17)

a0.042±0.014 
(14)

0.366±0.356 
(6)

875
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876 Table 3. MultipleLinear regression equations of the relationships between THg concentrations of 
877 different tissues by month, full year regression equations is presented as a grand mean in each row. 
878 Statistically significant (p<0.05) equations are shown in bold. 

879

880

881

882

883

884

885

886

Livery-Musclex Livery-Scalex Muscley- Scalex

Dec-11 y=11.77x-1.00   adj. r2=0.37
F1,27=17.11          p<0.001

y=28.62x+1.47   adj. r2= -0.10
F1,9=0.06            p=0.81

y=3.10x+0.20   adj. r2=-0.02
F1,9=0.80            p=0.40

Feb-12 y=13.32x-1.55   adj. r2=0.60
F1,28=43.53          p<0.001

y=32.00x+1.60   adj. r2=-0.10
F1,9=0.10           p=0.76

y=8.87x+0.15   adj. r2=0,22
F1,9=3.82          p=0.08

May-12 y=12.13x-1.30   adj r2=0.54
F1,28=34.68           p<0.001

Jun-12 y=10.51x-1.19   adj. r2=0.76
F1,15=50.86           p<0.001

Jul-12 y=5.52x-0.17   adj. r2=0.18
F1,28=7.43           p=0.01

y=74.86x+0.02   adj. r2=0.60
F1,9=15.90          p=0.003

y=6.41x+0.09   adj. r2=0.78
F1,9 =37.17          p<0.001

Sep-12 y=8.560x-0.486   adj. r2=0.24
F1,26=9.41          p=0.005

y=84.95x+0.13   adj. r2=-0.02 
F1,9=0.84           p=0.38

y=14.51x+0.01   adj. r2=0.32
F1,9 =5.75          p=0.04

Grand 
mean

y=11.70x-1.19   adj. r2=0.53
F1,162=182.79          p<0.001

y=93.89x+1.08   adj. r2=0.01
F1,49=1.29          p=0.26

y=5.23x+0.16   adj. r2=0.10
F1,49=6.39           p=0.015
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887 Table 4. The results of stepwise (backward selection) multiple linear regression models explaining 
888 THg variation in liver and muscle.analysis. Coefficient of determination (adjusted R2) and residual 
889 standard error (RSEof the estimate (SE) are presented for each model. Slope (B), the standard error 
890 of the estimate (SE), and the statistical significance indicators (t and p) and AIC values are presented 
891 for each factor selected to the models. The results of AIC stepvise procedure are presented in Table 
892 S3.

893

894

895

Tissue Factor B ± SE t p

Liver  R2=0.50, SE=0.577 Sexual maturity 0.241 ± 0,042 5.753 <0.001
adj.R2=F7, 156 = 24.0.50, 
RSE=, p<0.577001

δ13C liver -0.120 ± 0.024 -4.928 <0.001

F7, 156 =24.0, p<0.001 Condition factor -2.582 ± 1.092 -2.997 0.003
AIC=-172.67 Constant -2.985 ± 1.092 -2.733 0.007

GSI -0.060 ± 0.022 -2.677 0.008
δ15N liver 0.197 ± 0.083 -2.677 0.019
Total length 0.003 ± 0.001 2.367 0.020
Sampling month 0.034 ± 0.016 2.100 0.037

Muscle  R2= 0.55, SE=0.034 δ13C muscle -0.013 ± 0.002 -
8.225137

<0.001

adj.R2=0.55, 
RSE=0.034F6,160=34.261, 
p<0.001

Condition factor -0.211197 ± 
0.046

-
4.570303

<0.001

F7,159=30.18, p<0.001 Total length 0.0003 ± 0.0001 3.945846 0.0032
AIC=-1118.82 Sexual 

maturitySampling 
month

-0.0038 ± 0.0012 -
2.974523

0.004013

Sampling 
monthSexual 
maturity

-0.0062 ± 0.0030 -
2.274490

0.0214

Constant -0.172190 ± 
0.080

-
2.147360

0.033019

δ15N muscle 0.0168 ± 0.008 2.088168 0.0382
Scale  R2=0.06, SE=0.003 GSIConstant 0.0026 ± 0.0014 1.7466.0

93
<0.08200

1
F1, 49= 8.0, p<0.001 Condition factor -0.016 ± 0.006 -2.828 0.007
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896 Figure legends

897 Figure 1. Map of L. Kilpis located in northern Fennoscandia. Depth contour areas are presented with 

898 different shades of grey and arrows shows afferent and efferent rivers. All samples were collected 

899 from area A marked with ellipse. 

900 Figure 2. Box-Whisker plots showing seasonal variation in whitefish mercury concentration in liver 

901 (A), muscle (B) and scale (C). Bold horizontal lines indicate the median value, the boxes represent 

902 first and third quartile and whiskers represents minimum and maximum values. Outliers (black 

903 circles) are presented if there are data points smaller or larger than the difference between first and 

904 third quartile. 

905 Figure 3. Linear regression models showing THg bioaccumulation in whitefish liver (A-F) and 

906 muscle (G-L) tissues. Dashed lines represent 95% confidence intervals. Variation in whitefish 

907 mercury concentration of liver (A) and muscle (B) shown for 2002-2011 year classes (separated with 

908 dashed vertical lines). The sampling months (December2011-September2012) are marked with the 

909 capital letters (D, F, M, J, J and S) for each year class. Bold horizontal lines indicate the median 

910 values, the boxes represent first and third quartile and whiskers represents minimum and maximum 

911 values. Outliers (black circles) are presented if there are data points smaller or larger than the 

912 difference between first and third quartile.

913 Figure 4. Linear regression modelsregressions with 95% confidence intervals (dashed lines) 

914 illustrating seasonally changing THg relationship between liver and muscle tissuedifferent tissues of 

915 whitefish in December 2011 (A), February 2012 (B), May 2012 (C), June 2012 (D), July 2012 (E) 

916 and September 2012 (F).. For linear regression equations see Table 3.

917
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918

919

920 Fig. 1.
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924 Fig. 2.



41

925

926



42

927
928 Fig. 3.



43

929

930



44

931

932

933 Fig. 4.
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22 Graphical abstract: 

23

24 Abstract:

25 Subarctic lakes are characterised by extreme seasonal variation in light and temperature which 

26 influences growth, maturation, condition and resource use of fishes. However, our understanding of 

27 how seasonal changes affect mercury concentrations of fishes is limited. We conducted a year-round 

28 study (3 ice-covered months, 3 open-water months) with open-water inter-annual aspect (3 years: 

29 samples from August/September), focusing on total mercury (THg) concentrations and ecological 

30 characteristics of a common freshwater fish, European whitefish (Coregonus lavaretus (L.)) from a 

31 subarctic lake. We measured THg concentrations from tissues with fast (liver, n=164) and moderate 

32 (muscle, n=225) turnover rates, providing information on THg dynamics over different temporal 

33 scales. In both tissues, lipid-corrected THg concentrations were highest in winter (liver: 1.70±0.88 

34 μg/g, muscle: 0.24±0.05 μg/g) and lowest in summer (liver: 0.87±0.72 μg/g, muscle: 0.19±0.04 μg/g). 

35 THg concentrations increased in winter following the summer-autumn dietary shift to pelagic 

36 zooplankton and starvation after spawning. Whitefish THg concentrations decreased towards 

37 summer, and were associated with consumption of benthic macroinvertebrates and subsequent growth 

38 dilution. Mercury bioaccumulated in both tissues with age, both showing the strongest regression 

39 slopes in winter and lowest in summer. THg concentrations in liver and muscle tissue were correlated 

40 throughout the year, however the correlation was lowest in summer, indicating high metabolism 

41 during somatic growing season in summer and growth dilution. Multiple linear regression models 

42 explained 50% and 55% of the THg variation in liver and muscle both models dominated by 
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43 seasonally-variable factors i.e. sexual maturity, δ13C, and condition factor. Seasonally varying 

44 bioaccumulation slopes and the higher level of intra-annual variation (21%) in whitefish THg 

45 concentration in muscle than the inter-annual accumulation (8%) highlight the importance of 

46 including seasonal factors in future THg studies.

47

48

49

50 Capsule:

51 Strong seasonal variation was observed in THg concentrations and bioaccumulation slopes in 

52 muscle and liver tissues, suggesting that the temporal component of sampling should be considered 

53 in future THg monitoring and risk assessment programmes.

54 Keywords:

55 Bioaccumulation; dietary shift; growth dilution; seasonal variation; starvation

56

57 1. Introduction

58 Atmospheric mercury (Hg) originates from both natural and anthropogenic sources, and 

59 concentrations in ecosystems across the globe have increased since the industrial revolution (Pacyna 

60 et al., 2010). Atmospheric deposition typically dominates the supply of Hg to Arctic and subarctic 

61 lakes lacking direct Hg pollution sources in their catchment (e.g. Downs et al., 1998, Ariya et al., 

62 2015). The Arctic has shown clear, and marked increasing trends in Hg concentrations, e.g. in lake 

63 sediments since the 18th century industrial era (Chételat et al., 2015). Hg speciation (e.g. methylation) 

64 in aquatic enviornments occurs through both biotic and abiotic pathways, and via numerous different 

65 mechanisms (e.g. Jensen & Jernelöv, 1969; Pak & Bartha, 1998; Celo et al., 2006). In lake 

66 ecosystems, sulphur-oxidizing bacteria play key roles in the methylation process, resulting in the 

67 production of organic MeHg (e.g. Morel et al., 1998). Both benthic and pelagic primary producers, 
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68 i.e. periphyton and phytoplankton, uptake inorganic and organic Hg through passive and active 

69 transport processes (Mason et al., 1995, 1996; Douglas et al., 2012). Benthic macroinvertebrates and 

70 zooplankton consume these primary producers and transfer the Hg to invertebrate feeding fish, which 

71 are in turn eaten by higher trophic level consumers such as piscivorous fish. In subarctic lakes, Hg 

72 often accumulates faster in the pelagic food web compartment than the littoral (e.g. Kahilainen et al., 

73 2016a; Thomas et al., 2016; Kahilainen et al., 2017), likely reflecting increased trophic transfer 

74 efficiency in the pelagic food web. MeHg is especially highly reactive, bioaccumulating in organisms 

75 and biomagnifying through the food chain (e.g. Watras & Bloom, 1992; Watras et al., 1998). For 

76 example, MeHg is estimated to represent a total proportion of mercury (THg) concentration that 

77 ranges from 10% in the water column, to 15% in phytoplankton, 30% in zooplankton and up to 95% 

78 in fish muscle (Watras & Bloom, 1992; Watras et al., 1998). 

79 Hg in fishes is almost exclusively derived from their diet, where consumed prey is digested and Hg 

80 is translocated via blood to the liver and subsequently stored in muscle tissues (e.g. Oliveira Ribeiro 

81 et al., 1999; Wang & Wang, 2015). Hg concentrations are generally highest in liver and lower in 

82 muscle, and vary among species (e.g. Jernelöv & Lann, 1971; Kahilainen et al., 2016a). In addition, 

83 MeHg/THg ratios vary between tissues: e.g. ratios in liver and muscle is typically 40-80 % and >90 

84 % respectively (e.g. Bloom et al., 1992; Blank et al., 2013; Madenjian et al., 2016). MeHg has high 

85 tendency to form compounds with sulphur groups and bind to sulphur rich amino acids such as 

86 methionine and cysteine (Huges, 1957; Kerper et al., 1992). As proteins contain more sulphur than 

87 lipids, most Hg (>99%) is located in proteins (e.g. Amlund et al., 2007). In many fish studies, different 

88 Hg species are combined and only muscle THg concentrations are measured, since the proportion of 

89 MeHg in fish muscle tissue is often >90% of THg (Downs et al., 1998; Watras et al., 1998; Madenjian 

90 et al., 2016).

91 In fish, Hg generally bioaccumulates with increasing size and age (e.g. Downs et al., 1998; Amundsen 

92 et al., 2011; Swanson et al., 2011). In species with ontogenetic dietary shifts, Hg concentration can 
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93 increase as consumers shift to a higher trophic level or switch to Hg-enriched pelagic prey (e.g. Power 

94 et al., 2002; Thomas et al., 2016; Kahilainen et al., 2017). Fast growing individuals accumulate 

95 muscle tissue faster than Hg, a phenomenon termed growth dilution (e.g. Simoneau et al., 2005; Ward 

96 et al., 2010). Furthermore, growth dilution is inversely related to increasing condition factor and 

97 individual lipid reserves (e.g. Amlund et al., 2007; Braaten et al., 2014; Kahilainen et al., 2016a). In 

98 Arctic and subarctic lakes, many fish species have a lower growth rate, higher longevity and later 

99 sexual maturation relative to their equivalents in temperate lakes (Heibo et al., 2005; Blanck & 

100 Lamouroux, 2007), increasing the period of Hg bioaccumulation. Furthermore, in seasonally ice-

101 covered systems, condition and lipid reserves of fish are generally the lowest in winter (e.g. Hayden 

102 et al., 2014a, 2015). Decreasing lipid content, and potentially also protein loss during starvation, may 

103 condense Hg in remaining tissues (e.g. Kahilainen et al., 2016a). In the Hg contamination literature, 

104 this phenomenon is termed as starvation (e.g. Cizdziel et al., 2002, 2003; Moreno et al., 2015) and, 

105 along with growth dilution, it may play a key role in the seasonal variation in Hg concentrations in 

106 cold-water fishes. Such variation may be important factor when considering Hg monitoring programs 

107 and human health considerations, as many cold-water fishes play important roles in the year-round 

108 diet of indigenous and non-indigenous people in the region (AMAP 2011). 

109 The European whitefish (Coregonus lavaretus (L.)) is a highly diverse and often the most abundant 

110 fish species in subarctic lakes of northern Fennoscandia (Siwertsson et al., 2010; Praebel et al., 2013; 

111 Malinen et al., 2014). Most of the lakes are inhabited by a generalist monomorphic whitefish 

112 populations using all habitat types, while polymorphic populations are diverged into separate pelagic 

113 and benthic morphs (Kahilainen et al., 2007; Harrod et al., 2010; Siwertsson et al., 2010). In the most 

114 complex cases, whitefish is ecomorphologically diverged into one of the three main lake habitats, 

115 littoral, pelagic or profundal (Kahilainen & Østbye, 2006; Harrod et al., 2010; Kahilainen et al., 2014). 

116 The whitefish morphs show many morphological and physiological adaptions to their specific habitat 

117 types, where a heritable trait, number of gill rakers, encapsulates most of the variation as a single 

118 measurement (Kahilainen et al., 2011b, 2014, 2016). Profundal morphs have the very low amount of 
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119 short and widely spaced gill rakers suitable for foraging on fine sediments in dark condition 

120 charactistic of profundal habitat, whereas littoral and generalist morphs have intermediate number of 

121 relatively short gill rakers followed by pelagic morphs with very high number of fine, long and 

122 densely spaced gill rakers as adaption to foraging on small zooplankton prey (Kahilainen et al., 2007, 

123 2011a, 2017). In both monomorphic and polymorphic lake types, whitefish as the most abundant 

124 species is key invertebrate feeding predator and main prey for many piscivores, thus acting as a central 

125 node in lake food webs (e.g. Kahilainen & Lehtonen, 2003; Kahilainen et al., 2009, 2011a). The key 

126 role of both monomorphic and polymorphic whitefish in the food webs of subarctic lakes has 

127 influence on pelagic and benthic energy and Hg flows (Thomas et al., 2016; Kahilainen et al., 2017), 

128 but we currently lack of knowledge regarding potential temporal variation in patterns of contaminant 

129 bioaccumulation that is likely influenced by seasonality of prey availability, growth, reproduction 

130 and condition.

131 To fill this knowledge gap, we undertook a year-round study of THg concentrations in a 

132 monomorphic whitefish population, and their putative prey sources in a relatively well-studied 

133 subarctic lake, Lake Kilpisjärvi, located in northern Fennoscandia. Here, monomorphic whitefish are 

134 known to undergo a dietary shift from littoral benthic macroinvertebrates during winter and spring to 

135 pelagic zooplankton in mid to late summer, coinciding with an annual zooplankton bloom (Tolonen, 

136 1999; Hayden et al., 2014a). Pelagic prey is generally considered a more important source of Hg, due 

137 to often higher MeHg concentrations in zooplankton than littoral benthic prey (Watras et al., 1998; 

138 Suchanek et al., 2008). Previous work on whitefish morphs indicated that pelagic zooplanktivorous 

139 morphs had much higher THg concentrations and steeper bioaccumulation slopes than benthivorous 

140 morphs (Kahilainen et al., 2017). Open-water season dietary shifts from benthic macroinvertebrates 

141 to pelagic zooplankton in Arctic fishes such as Arctic charr (Salvelinus alpinus (L.)) have been shown 

142 to affect THg concentrations in fish liver and muscle tissue (Kahilainen et al., 2016a). Open-water 

143 season THg studies of fish muscle has been conducted with many species (e.g. Zhang et al., 2012; 

144 Braaten et al., 2014; Moreno et al., 2015; Olk et al., 2016), but we are unaware of any year-round 



7

145 (including ice-covered winter) muscle and liver studies on THg concentrations of fish. Dietary shifts 

146 are clearly important in Hg exposure, but we know very little about the seasonal patterns of THg 

147 concentrations in whitefish and the main factors affecting any putative changes. To address these 

148 questions, we collected data year-round on whitefish growth, sexual maturation, condition and 

149 resource use with THg measured from muscle and liver tissues in a subarctic lake in northern Finnish 

150 Lapland. Our study was designed to test three hypotheses:

151 Hypothesis 1 (H1) We hypothesized that the late summer dietary shift in whitefish from the low THg 

152 littoral benthic macroinvertebrates to the high THg pelagic zooplankton (Kahilainen et al., 2016a; 

153 2017) likely results in an increase in THg concentrations, and this shift will be evident in 

154 metabolically active liver prior to muscle. We also predicted that the THg concentration of liver and 

155 muscle will increase during winter due to starvation and subsequently decrease in spring and early 

156 summer due to growth dilution.

157 Hypothesis 2 (H2) If there are seasonal changes in THg of muscle and liver tissues, we expected to 

158 find changes in bioaccumulation slopes and the THg regression slopes between these two tissues. 

159 First, we hypothesized that bioaccumulation occurred in both tissues in all months, but that we would 

160 report shallower slopes during the summer somatic growing season due to growth dilution. Secondly, 

161 we hypothesized that the intra-annual relationships of THg concentration between liver and muscle 

162 would be significant year around, but would show a weaker relation in summer, when metabolic 

163 activity is higher in both tissues. 

164 Hypothesis 3 (H3) If season is an important determinant of THg concentrations, we expected to see 

165 seasonal-related factors e.g. maturity and stable isotope ratios selected in multiple linear regression 

166 models examining the drivers for muscle and liver THg concentrations, in addition to traits related to 

167 individual fish size. 

168
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169 2. Materials and methods 

170 2.1 Study area

171 This study was conducted in a subarctic Lake Kilpisjärvi (hereafter L. Kilpis), located in northern 

172 Fennoscandia (69°03'N, 20°49'E; 473 m above sea level; Fig. 1). L. Kilpis is a relatively large (surface 

173 area 37.3 km2, shoreline 71.5 km), oligotrophic (Tot-P < 5 µg l-1, Tot-N < 150 µg l-1, chlorophyll-a < 

174 2 µg l-1), neutral (pH 7.2, conductivity 3.0 mS m-1 ), clear water (Secchi and compensation depth 10 

175 and 14 m, DOC 2.8 µg l-1) and deep (maximum and average depths 57 m and 19.4 m) headwater lake 

176 (Kahilainen et al., 2007; Hayden et al., 2014a; Kahilainen et al., 2017). The average annual air 

177 temperature of the region is -2.3 °C and precipitation is 450 mm y-1, of which ca. 60% falls as a snow. 

178 The year-round average water column temperature lake water varies from 0.4-10°C (Hayden et al., 

179 2014a; 2014b). Ice cover is present on the lake from mid-November until mid-June and may reach a 

180 thickness of 1 m in late winter (Lei et al., 2012). The L. Kilpis catchment (293 km2) consists of 

181 subarctic mountain birch (Betula sp.) surrounding the lake, whereas areas with elevations above 600 

182 m a.s.l. are Arctic tundra. The proportion of peatland in the catchment is low. There are no direct 

183 sources of Hg (e.g. volcanos, mines, factories) in the vicinity, suggesting that the principal source of 

184 Hg to the lake and catchment over historical and contemporary timelines has been atmospheric 

185 deposition. 

186 L. Kilpis has a relatively simple fish community, of which monomorphic whitefish is the dominant 

187 species, contributing ca. 90% to the total fish community by abundance, with an estimated density of 

188 ca. 80 individuals ha-1 (Harrod et al., 2010; Malinen et al., 2014). The generalist whitefish morph in 

189 L. Kilpis is large sparsely rakered whitefish (LSR) inhabiting all lake habitats using both pelagic and 

190 benthic prey resources (Kahilainen et al., 2007). Other fish species in L. Kilpis are alpine bullhead 

191 (Cottus poecilopus (Heckel)), Arctic charr, burbot (Lota lota (L.)), grayling (Thymallus thymallus 

192 (L.)), minnow (Phoxinus phoxinus (L.)), pike (Esox lucius (L.)) and brown trout (Salmo trutta (L.)) 

193 (Kahilainen et al., 2007).
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194 2.2 Sample period and sampling methods

195 Samples were collected over a total of eight sampling periods to assess both inter- and intra-annual 

196 THg concentrations and bioaccumulation: September 2010, December 2011, February 2012, May 

197 2012, June 2012, July 2012, September 2012 and September 2014. Samples collected in December, 

198 February and May were from the period when the lake was ice-covered (ice thickness range: 12-85 

199 cm) and other months represent the open-water season. Hayden et al. (2014a) used stomach content 

200 in addition to carbon and nitrogen stable isotope ratios from this period to show that whitefish 

201 predominantly feed on littoral benthic macroinvertebrates (BMI) and pelagic zooplankton (ZPL) is 

202 used as a significant prey only during the late summer. Here, we re-examined samples from the same 

203 invertebrates and fish to assess how such dietary shifts, as well as other putative seasonal and life-

204 history factors affect Hg concentrations in whitefish.

205 ZPL samples were collected with a plankton net (mesh size: 50 µm, diameter: 25 cm) by vertical 

206 hauls through 0-20 m to gain sufficient material for stable isotope analysis (SIA) and THg analysis. 

207 Composite zooplankton samples included both cladocerans and copepods and were stored in plastic 

208 vials and frozen (-20 °C). BMI samples were collected with an Ekman grab (272 cm2) from littoral 

209 (1 m) and profundal (20 m) habitats, sieved through 500 µm mesh net and identified to the lowest 

210 feasible taxon, stored to plastic vials and frozen (-20 °C). After initial freezing to -20 °C, both ZPL 

211 and BMI samples were freeze-dried (-75°C, 48 hours) for SIA and THg analyses.

212 Fish were collected using gillnets fished in series including seven 1.8 m high and 30 m long nets 

213 (knot-to-knot mesh sizes: 12, 15, 20, 25, 30, 35, 45 mm), supplemented with one 1.5 m high and 27 

214 m long Nordic multimesh gillnet (5.25-55 mm). Gillnet series were set in benthic habitat at depths 2-

215 15 m overnight (summer: 10-12h, winter: 24-48h). Fish were immediately euthanized by cerebral 

216 concussion at the sampling site. After immediate transport to the laboratory, total length and mass of 

217 whitefish were measured to the nearest mm and 0.1 g. Fulton’s condition factor ( ) was calculated 𝐾

218 for each individual following Nash et al. (2006):
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219  ,𝐾 =
𝑀

𝑇𝐿3 × 100

220 where  is mass and  (cm) is total length of fish.𝑀 (𝑔) 𝑇𝐿

221 Both sagittal otoliths and circa 50-100 ventral scales between the pelvic and anal fins were taken from 

222 each fish for age determination. Individual whitefish age was determined from the combined use of 

223 clear, burned and cracked otoliths under a binocular microscope as well as unregenerated scales 

224 pressed on polycarbonate slides and viewed using a microfiche reader (Kahilainen et al., 2003). The 

225 join use of otoliths and scales was used to improve the accuracy of aging (Kahilainen et al., 2017). 

226 Whitefish populations in L. Kilpis are typically dominated by single year class for 10-15 years 

227 (Tolonen, 1999), and in current study the dominant year-class during all sampling years comprised 

228 of fish that hatched in 2003. The number of gillrakers (range 19-29), including small rudimentary 

229 rakers located at both ends of the first brachial gill arch, were counted under a preparation microscope. 

230 The number of gill rakers is a heritable trait in whitefish used to define different morphs and related 

231 to overall phenotype of whitefish individual as well as the main resource use patterns (Kahilainen et 

232 al., 2011a, 2011b). In L. Kilpis whitefish population is monomorphic, but the number of gill rakers 

233 could potentially be related to individual dietary specialization and thus THg concentration. Sex was 

234 determined (1 = female, 2 = male, 3 = juvenile) visually from gonads. If gonads were underdeveloped 

235 (sex = 3), sexual maturity was coded as 0, otherwise sexual maturity was defined with scale from 1 

236 to 7, where 0-3 represents juveniles and 4-7 mature individuals at different stages of maturity 

237 (Bagenal 1978). In the most intensive sampling period of 2011-2012, both gonads were weighed (± 

238 0.01 g) and the gonadosomatic index was calculated (Bagenal, 1978) to gain continuous proxy for 

239 gonad investment and level of sexual maturity:

240  ,𝐺𝑆𝐼 =
𝐺𝑀
𝑆𝑀 × 100

241 where  is gonadosomatic index,  is the mass of gonads (g),  is somatic mass (g). 𝐺𝑆𝐼 𝐺𝑀 𝑆𝑀



11

242 Whitefish stomachs were dissected from the oesophagus to the pyloric caeca and prey items were 

243 placed into a Petri dish. Stomach fullness was estimated visually using a modified points method 

244 (Swynnerton & Worthington 1940). Here, stomach fullness was assessed using a scale from 0 (empty) 

245 to 10 (fully distended). Prey items were identified to the lowest feasible taxonomic level and their 

246 relative share of total fullness was estimated. A sample of liver and white dorsal muscle were taken 

247 from each fish, separately stored in 2 ml plastic vials, frozen at -20°C and subsequently freeze-dried 

248 (-75°C for 48h) prior to preparation for SIA and THg analysis. 

249 Freeze-dried samples of liver and muscle were ground to a fine powder, and weighed (ca. 0.5 mg) 

250 into tin cups. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N), in addition to the elemental 

251 ratio of carbon and nitrogen (C:N), were analysed through an elemental analyser connected to 

252 continuous flow isotope ratio mass spectrometer. Analytical error for both δ13C and δ15N was 0.1 ‰. 

253 Fish δ13C values were arithmetically lipid-corrected using sample-specific C:N ratios of either muscle 

254 (Kiljunen et al., 2006) or liver (Logan et al., 2008) samples.

255 2.4 Total mercury analysis

256 THg concentrations (µg g-1 d.w.) were analysed from the freeze-dried ZPL (n=17), BMI (n=20), liver 

257 (n=167) and muscle (n=225) samples by atom absorption spectrometry using a direct Hg analyser 

258 (Milestone DMA 80). We had a target fish sample size for each month of 30 individuals representing 

259 the total length and age distribution of the population (Table 1) and all invertebrate samples 

260 containing enough tissue were analysed. From each sample, two duplicates (20-30 mg) were analysed 

261 when material was not limited due to low sample mass - as was the case with some liver samples and 

262 almost all invertebrate samples. Average relative difference (RSD) between duplicates of liver (n=113 

263 pairs), muscle (n=223 pairs) and invertebrates (n=2 pairs) was 1.1, 1.3 and 11.2%, respectively. At 

264 the start and end of each run, samples of certified reference material (DORM-4; 0.410 ± 0.055 μg g-

265 1; National Research Council Canada) were combusted. The average and recovery-% of the certified 

266 reference material (n=66) was 0.408 ± 0.011 (SD) and 99.6% respectively. Blank control samples 



12

267 (grand mean ± SD: 0.001 ± 0.001, n=113) were added both at the end of each run, as well as between 

268 different tissues and taxa. Run specific blank THg values was subtracted from analysed sample THg 

269 values to avoid instrumental error. The mean of the blank adjusted duplicate THg values was later 

270 lipid-corrected. 

271 Hg binds mainly to proteins (e.g. Amlund et al., 2007) and therefore seasonal changes in lipid reserves 

272 in muscle and liver tissues can affect Hg concentrations (Kahilainen et al., 2016a). C:N ratio is a 

273 useful proxy for lipid content in tissues (Fagan et al., 2011; Hoffman et al., 2015). A C:N ratio of ca. 

274 three represents pure protein, with values above three indicate increasing concentrations of lipids. 

275 Whitefish usually have lower lipid concentrations, and display less seasonal variation, in muscle 

276 rather than liver tissues (Hayden et al., 2014a; 2015). However, THg concentrations were 

277 arithmetically lipid-corrected using C:N ratios (Kahilainen et al., 2016a) to minimize the effects of 

278 seasonally varying lipid concentrations on the measured THg concentrations clarifying the effects of 

279 other seasonally varying factors:

280 ,𝑇𝑜𝑡𝐻𝑔𝐿𝑖𝑝𝑖𝑑 ‒ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝐶:𝑁𝑠𝑎𝑚𝑝𝑙𝑒 

3.2   ×  𝑇𝑜𝑡𝐻𝑔𝑟𝑎𝑤 

281 where  is the C:N corrected THg value (µg g-1 d.w.),  is the C:N ratio 𝑇𝑜𝑡𝐻𝑔𝐿𝑖𝑝𝑖𝑑 ‒ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐶:𝑁𝑠𝑎𝑚𝑝𝑙𝑒

282 of sample individual, 3.2 is the minimum seasonal average of the measured C:N ratios and  𝑇𝑜𝑡𝐻𝑔𝑟𝑎𝑤

283 is measured total mercury value (µg g-1 d.w.).  (hereafter THg) values was used 𝑇𝑜𝑡𝐻𝑔𝐿𝑖𝑝𝑖𝑑 ‒ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

284 in all subsequent statistical analysis.

285 2.5 Statistical methods

286 Examination of seasonal changes of Hg concentrations in whitefish tissues (H1) and all supporting 

287 analyses of variance were conducted with non-parametric tests (Kruskal-Wallis H-test with post hoc: 

288 Mann-Whitney U-test, or if the assumption of homogeneity of variances was violated, we used 

289 repeated Welch’s t-tests with the Games-Howell post-hoc test). The seasonal bioaccumulation and 
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290 relationships between Hg concentrations in liver and muscle (H2) were tested with linear regression 

291 analysis. From data collected during the intensive 2011-2012 sampling period, we examined the 

292 factors explaining variation in THg concentrations from the different tissues (H3) using multiple 

293 linear regression analyses, where we tested forward, backward and both direction stepwise selection 

294 procedure, selecting the best model based on minimum AIC values. Here, we first checked for auto-

295 correlation and selected variables with R2 < 0.7 (sampling month, total length, condition factor, sex, 

296 sexual maturity, GSI, gillraker number, δ13C, δ15N) for inclusion in the model. Significance level (p 

297 < 0.05) was used in all other analysis. Statistical analyses were conducted using SPSS 23 (IBM Corp., 

298 Armonk, NY, USA) and R (RStudio 0.99.892; R Core Team, 2016) using MOSS package (Venables 

299 & Ripley, 2002).

300

301 3. Results

302 3.1 Year-round patterns in whitefish ecological characteristics

303 Somatic mass (Kruskal-Wallis: H5, 161 = 23.30, p < 0.001), condition factor (Welch’s ANOVA: F7, 221 

304 = 7.80, p < 0.001) and GSI (Welch’s ANOVA: F5, 161 = 6.76, p<0.001) showed seasonal variation, all 

305 increasing towards autumn (Table 1). The dominant year class (2003) showed similar seasonal pattern 

306 in somatic mass (Kruskal-Wallis: H5, 55 = 22.81, p < 0.001) and condition factor (Kruskal-Wallis: H7, 

307 84 = 20.79, p<0.001) to the whole population (Table 1). The number of empty stomachs (Table 1) and 

308 stomach fullness (Welch’s ANOVA: F7, 217 = 18.86, p < 0.001) varied between seasons. The number 

309 of empty stomachs was highest (n=24) and stomach fullness (0.4) lowest in ice-covered December 

310 just prior to spawning, whereas no empty stomachs were found in July-September when the average 

311 stomach fullness (5.4-4.6) was highest (Table 1). Stomach content analysis showed that for much of 

312 the year, whitefish largely consumed BMI, but that the prevalence of zooplankton in the diet increased 

313 in late summer (Table 1, Table S1). The year-round similarity of trophic level was also evident in 

314 muscle δ15N and values (Welch’s ANOVA: F7, 217 = 2.49, p = 0.017), with pairwise comparisons 
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315 showing the highest values in winter (Table 1). The strong annual reliance on littoral BMI was also 

316 evident from relatively similar muscle δ13C values (Welch’s ANOVA: F7, 217 = 5.54, p<0.001), with 

317 values showing a slight 13C depletion in winter and 13C enrichment at early summer (Table 1).

318 3.2 H1 - Annual mercury concentrations in invertebrates and whitefish tissues

319 THg concentrations varied (Welch’s ANOVA: F2, 34 = 13.09, p < 0.001) between the different putative 

320 whitefish prey groups (Table 2). ZPL displayed higher THg concentrations than littoral BMI (0.070 

321 ± 0.013 and 0.042 ± 0.014 μg g-1 respectively; Table 2). The mean THg of profundal BMI (0.366 ± 

322 0.356 μg g-1) were circa five times higher than the concentrations in ZPL, but the difference was not 

323 statistically significant, reflecting high variation in the former group. Due to the low sample number, 

324 the taxa specific seasonal THg, stable isotope and C:N values did not allow statistical testing (Table 

325 S2)

326 THg concentrations varied seasonally both in liver (Welch’s ANOVA: F5, 158 = 5.29, p < 0.001) and 

327 muscle tissue (Kruskal-Wallis: H7, 217 = 41.87, p < 0.001). The seasonal changes showed a similar 

328 pattern in both liver and muscle tissues (Table 2, Fig. 2). The highest THg concentrations (liver: 1.70 

329 ± 0.88 μg g-1, muscle: 0.24 ± 0.05 μg g-1) were found in mid-winter under thick ice (February 2012) 

330 and the lowest (liver: 0.87 ± 0.72 μg g-1, muscle: 0.19 ± 0.04 μg g-1) in open-water summer (June-

331 July 2012). We estimated the annual accumulation of THg (0.01-0.02 µg g-1) in muscle tissue by 

332 comparing samples from September 2010 and August 2014 (Table 2): post-hoc tests indicated that 

333 THg concentrations were higher in 2014 (0.23 ± 0.05 μg g-1) than in 2010 (0.17 ± 0.04 μg g-1). 

334

335 3.3 H2 - Seasonally varying bioaccumulation and relationships of THg in liver and muscle tissue

336 Bioaccumulation of THg by age varied seasonally in both tissues showing the highest slopes and the 

337 strongest significances in winter and the lowest or non-significant slopes in summer (Fig. 3). In liver 

338 the non-significant bioaccumulation was found just after the ice-break in June and, in July it was 
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339 evident in muscle as well (Fig. 3). The regressions of THg concentrations between liver and muscle 

340 were statistically significant throughout the whole year, showing the steepest slopes in mid-winter, 

341 decreasing towards summer and recovering again towards autumn (Fig. 4). These regression plots 

342 show signs of THg enrichment via starvation in winter, with overall high values in February and May, 

343 followed by low concentrations in June and July suggesting growth dilution during summer growing 

344 season (Fig. 4).

345

346 3.4 H3 - Results of multiple linear regression analysis

347 The best stepwise multiple regression models explained 50% and 55% of the variation in THg 

348 concentration in liver, muscle respectively (Table 3, Table S3). Both models included the exact same 

349 ecological variables explaining the variation in THg concentrations. Sexual maturity, δ15N and total 

350 length were positively related to THg concentrations in both liver and muscle models, whereas δ13C 

351 and condition factor was inversely related to the concentrations. In both models, sexual maturity, δ13C 

352 and condition factor were most significant explanatory factors of the THg concentrations. The main 

353 difference between the models was that sampling month and GSI was conversely related in these 

354 models. 

355

356 4. Discussion

357 4.1 Main results

358 We found evidence for year-round variation in THg concentrations in whitefish liver and muscle 

359 tissues. As we hypothesized (H1), annual THg concentration of liver and muscle were highest in 

360 winter and lowest in open-water summer months. In addition, strength and significance of 

361 bioaccumulation and the positive relationship of THg concentration between muscle and liver peaked 
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362 in winter and were shallow or non-significant in summer (H2). The seasonally related variables, such 

363 as sexual maturity, δ13C, and condition factor, included in the multiple linear regression models 

364 supported hypothesis H3, i.e. that starvation and zooplanktivory increased THg concentration and 

365 growth dilution lowered it.

366 4.2 Seasonal variation in mercury concentrations (H1)

367 We found strong seasonality of THg concentrations, where liver and muscle showed maximum 

368 differences of 49% and 21% in monthly comparisons, respectively. Here, both tissues showed similar 

369 patterns, following a sine-curve peaking in winter and reaching the minimum in summer. These 

370 changes were related to consistent year-round changes in several measures of whitefish ecology (e.g. 

371 resource use, maturation and condition). Whitefish showed a seasonal shift in diet in the summer, 

372 changing from a BMI diet to a pelagic ZPL-dominated diet, evident from both stomach contents and 

373 liver δ13C values, which became increasingly 13C depleted. In L. Kilpis, we showed that THg 

374 concentrations in pelagic ZPL were higher than littoral BMI and other studies have shown that pelagic 

375 ZPL may have a higher MeHg/THg ratio than littoral BMI (e.g. Watras et al., 1998; Suchanek et al., 

376 2008). In light of this, we suggest that the reported whitefish dietary shift to pelagic ZPL contributes 

377 to an increasing trend of THg levels of liver and muscle from late summer onwards. This is further 

378 supported by results of recent study showing higher THg concentrations on zooplanktivorous than 

379 benthivorous whitefish morphs in a series of subarctic lakes (Kahilainen et al., 2017). Hg turnover is 

380 faster in liver than in muscle (Oliveira Ribeiro et al., 1999) and this may explain our observation that 

381 Hg concentrations increased slightly faster in liver than in muscle following the diet shift to pelagic 

382 ZPL. The open water season dietary shift of Arctic charr in nearby subarctic Lake Galggojavri from 

383 BMI to pelagic ZPL has been found to increase fish THg concentrations in liver towards autumn 

384 (Kahilainen et al., 2016). Similarity of diet and THg patterns in whitefish and Arctic charr during 

385 open-water season suggest generality of our findings, at least locally.
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386 Starvation has been suggested to increase fish Hg concentrations in winter when water temperature, 

387 fish activity and condition all decrease (e.g. Cizdziel et al., 2002, 2003; Moreno et al., 2015). 

388 However, seasonal changes in lipid concentrations may also have an impact (Kahilainen et al., 

389 2016a). In the present study, THg concentrations were lipid corrected to minimize the effect of 

390 seasonal lipid changes in tissues that were evident in C:N values of liver tissue, but not in muscle 

391 tissue. When comparing the individuals of the 2003 year class, consisting entirely of mature fish, we 

392 found that condition factor and somatic mass were lowest in winter (excluding June, a month with 

393 limited sample size), reflecting spawning and subsequent starvation in February. The gonads of lake 

394 whitefish (Coregonus clupeaformis), a North American sister species to C. lavaretus, contain very 

395 little Hg and it is likely that mature fish instead store Hg in muscle tissue prior to spawning 

396 (Madenjian et al., 2016). Assuming the same pattern in its closely-related, and ecological equivalent 

397 sister species, the high THg concentration we reported from February can be partly related to the 

398 post-spawning period and increased muscle storage of Hg. Although our Hg data were lipid corrected, 

399 we were still able to define starvation affecting seasonal changes of THg concentrations, therefore 

400 loss of protein might also have a role.

401 Growth dilution has been suggested to result in reduced Hg concentrations during periods when fish 

402 rapidly gain somatic mass (e.g. Doyon et al., 1998; Simoneau et al., 2005; Braaten et al., 2014). The 

403 2003 year class increased in somatic mass from winter (December 2011) to autumn (September 

404 2012), a period during which THg concentrations fell. This suggests that growth dilution, even with 

405 slow growth rates, can explain decreasing THg concentrations in both liver and muscle tissues of 

406 sampled whitefish. In addition, increased excretion during summer could also explain the decrease of 

407 THg concentrations from winter to summer in liver and muscle, but we were unable to test this with 

408 our study design.

409 The rate of increase in THg values in both liver and muscle slowed after sexual maturation. The 

410 ontogenetic dietary shift from ZPL to BMI at an early age in whitefish (Tolonen, 1998) and decreased 
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411 somatic growth after maturation might explain the slowing THg accumulation. We found that 

412 population-level mean THg concentrations in whitefish muscle increased by 8 % per year, between 

413 September 2010 and August 2014. This value is indeed circa 2.5 times lower that observed intra-

414 annual variation during 2011-2012. Both observations strongly reflect the dominance of the single 

415 mature 2003 year-class, with limited annual somatic growth explaining low inter-annual 

416 bioaccumulation and strong investment on gonads causing intra-annual variation of muscle THg. In 

417 previous studies of L. Kilpis whitefish, the dominance of a single year-class has been documented in 

418 diffent decades (Tolonen, 1998; Harrod et al., 2010) and such patterns of year-class dominance and 

419 generally high age of fish is typical in Arctic and subarctic lakes (Rolls et al., 2017). Taken 

420 collectively, our results of intra- and inter-annual patterns of THg should be thus the most valid for 

421 fish populations consisting of mature fish investigating their energy mostly to gonad growth instead 

422 of somatic growth, a pattern typical for a range of fish species. 

423 4.3 Seasonal bioaccumulation and mercury metabolism between liver and muscle (H2)

424 In L. Kilpis whitefish, THg concentrations increased with age in both liver and muscle tissue. This 

425 pattern has been recorded also in many other studies using muscle tissues of subarctic salmonids (e.g. 

426 Amundsen et al. 2011, Swanson et al. 2011), but is less commonly reported from liver tissue. A 

427 previous study by Kahilainen et al. (2017), showed that THg concentrations in muscle generally 

428 increased with age in different European whitefish morphs, but the regression slopes were the most 

429 steep for pelagic morphs (range 0.038-0.103) and shallow for benthic whitefish morphs (0.017-

430 0.020). This study also assessed bioaccumulation in three monomorphic whitefish population, which 

431 displayed relatively shallow slopes (0.020-0.025). These results corroborates our findings here, as we 

432 found shallow, or even non-significant bioaccumulation slopes during the summer growing season 

433 for both liver and muscle with some time-lag related to faster metabolic rate of former than later (e.g. 

434 Oliveira-Ribeiro et al., 1999; Hayden et al., 2014a; Kahilainen et al., 2016a). Interestingly, the 

435 bioaccumulation slopes of both tissues were clearly steeper during the ice-covered winter, most likely 
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436 driven by the older mature individuals which had higher relative difference between winter and 

437 summer THg concentrations compared to the younger immature individuals. This could be explained 

438 by the stronger response of older fish to spawning, which is likely due to the fact that only six years 

439 or older individuals were sexually mature, and this was the group driving the changes in 

440 bioaccumulation seasonally.

441 The relationship between the THg values of liver and muscle tissues was evident during the whole 

442 season highlighting the strong metabolic link between these two tissues (Oliveira Ribeiro et al., 1999; 

443 Sinnatamby et al., 2008). However, the strength of the link between the THg values of these tissues 

444 altered during season highlighting the difference in turn over times between these tissues (Hayden et 

445 al., 2014a; Kahilainen et al., 2016a). The data examination revealed that the THg concentrations in 

446 liver decreased relatively more compared to muscle towards summer. This could be explained by the 

447 slightly faster turnover time of liver tissue THg to muscle, which is consistent with the previous 

448 laboratory studies (e.g. Oliveira Ribeiro et al., 1999). Generally, the liver-muscle relationship seems 

449 to follow water temperature related metabolic activity and support other evidence growth dilution 

450 during the summer and starvation in winter.

451

452 4.4 Factors explaining variation in mercury concentration in whitefish (H3)

453 We found that a high proportion of the variation (50% and 55%) in THg concentration in liver and 

454 muscle was explained through multiple linear regression analyses. Previous studies employing 

455 regression analyses to explain THg concentrations in whitefish have frequently documented that fish 

456 size and age are important factors affecting Hg concentration (e.g. Moreno et al., 2015; Thomas et 

457 al., 2016; Kahilainen et al., 2017). Surprisingly total length, which was correlated with age and mass, 

458 was a relatively poor predictor of liver and muscle THg concentrations in L. Kilpis. This most likely 

459 reflect the low investment to somatic growth of single year-class 2003 dominated whitefish 

460 population, where most fish are close to their maximum length. However, the inclusion of THg in 
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461 liver and muscle and factors related to temporal variation such as sampling month, stable isotopes 

462 and sexual maturity have been examined to a far lesser degree. In this study, all of these factors 

463 describing year-round variation were highly important factors included in liver and muscle models 

464 and are discussed below. 

465 In L. Kilpis, both muscle and liver THg values were inversely related with tissue specific δ13C values, 

466 which likely reflects increased autumnal consumption of 13C depleted pelagic ZPL containing more 

467 THg than littoral BMI (Kahilainen et al., 2016a; Thomas et al., 2016; Kahilainen et al., 2017). Liver 

468 and muscle THg values were negatively related with condition factor, which can be used as supporting 

469 evidence for starvation and growth dilution (Cizdziel et al., 2002, 2003; Evans et al. 2015). Condition 

470 factor does reflect spawning when gonads with low THg concentration are removed from the fish 

471 body, potentially further condensing Hg in whitefish muscle (Madenjian et al., 2016). Increased δ15N 

472 values have been linked to metabolic-stress associated with starvation (Moreno et al., 2015) in some 

473 taxa. Here, we found slight seasonal changes in muscle and liver δ15N values showing the highest 

474 values in winter and lowest in autumn. Therefore, the positive correlation of δ15N and THg values in 

475 muscle and liver model possibly reflects winter starvation, when fish use protein reserves from both 

476 liver and muscle. Positive correlation between sexual maturity and THg concentrations in both liver 

477 and muscle models indicate a high significance of gonad development and spawning to the THg 

478 concentrations. Spawning may be related to starvation in whitefish, due to the high cost of gonad 

479 investment and low prey abundance during winter spawning period (Hayden et al., 2014a). In the 

480 liver model, the negative relationship between GSI and THg supports this idea; whitefish GSI was 

481 lowest and THg was highest after spawning in February-May, when we also reported the highest THg 

482 concentrations. In the muscle model, the opposite correlation between GSI and THg (positive) could 

483 be explained by random effect in the model since we found no correlation between GSI and muscle 

484 THg through simple linear regression analysis: in addition GSI had low significance in the multiple 

485 linear regression model explaining the variation in muscle THg. Sampling month significantly 

486 affected THg concentration, but the effect was positive in the liver model and negative in the muscle 
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487 model, likely indicating that Hg is translocated faster in liver than in muscle. This could be explained 

488 by the different turnover times of these tissues, meaning that late summer derived Hg can be measured 

489 faster in liver (early winter) than in muscle (mid-winter). Therefore, the positive correlation between 

490 sampling month and liver THg could be explained by the high THg values in early winter (December). 

491 Most likely, the negative correlation between muscle THg concentrations and sampling month was 

492 driven by the high THg concentrations in mid-winter (February) and low concentrations in summer 

493 (June-July).

494 4.5 Monitoring and human health

495 An interesting aspect of our results was that intra-annual variability in THg concentrations of 

496 whitefish exceeded inter-annual variation, evident also in multiple linear regression analyses, where 

497 seasonal factors indicating diet (δ13C) and condition were generally more important than fish total 

498 length. As the year-round maximum variation of muscle tissue (21%) is surprisingly high compared 

499 to inter-annual (8%) accumulation in muscle, and that bioaccumulation slopes varied from non-

500 significant or shallow in summer to highly steep and highly significant in winter, we suggest that such 

501 seasonal variation needs to be considered in future studies and especially in any long-term THg 

502 monitoring program. This is particilarly important as the aims of Hg monitoring programs are 

503 typically related to human health (AMAP 2011). Primarily, the sampling month should be 

504 standardized but since the annual anomalities, the seasonal succession (e.g. temperature build up) 

505 should be quantified as well since they might affect on THg of fish. Whitefish is the most important 

506 target fish of local fisheries year-round and represent a stable proportion of subsistence diet of native 

507 and non-native people (Thomas et al. 2016; Kahilainen et al., 2017). Although THg levels in all our 

508 fish samples were below national health limits (i.e. 0.5 µg g-1 wet mass; approx. 2.0-2.5 µg g-1 dry 

509 mass), the year-round patterns observed for whitefish may be relevant in other systems e.g. in other 

510 autumn or winter spawning fish such as many salmonids (Arctic charr, brown trout, lake trout, 

511 vendace) with putative winter starvation after reproduction. In spring spawning species, patterns 
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512 could be different as the summer growing season starts immediately or soon after their reproduction, 

513 but additional year-round studies are needed to test this. For example, an annual variation of 21% 

514 would create a potential for THg values to exceed health limit guidelines and regional fish 

515 consumption regulations. Furthermore, seasonal changes of THg concentrations and bioaccumulation 

516 slopes in fish may lead to increased risk to human health in regions, where monitoring is restricted to 

517 low THg months i.e. mid summer. Depending on the aims of human health monitoring, both summer 

518 and winter sampling may be advisable as subsistence fishing is very common across Arctic and 

519 subarctic lakes in both seasons.

520 4.6 Conclusions

521 We revealed clear seasonal changes in the concentration and bioaccumulation slopes of THg in 

522 whitefish muscle and liver tissues. The results indicated that both starvation and growth dilution drive 

523 seasonal changes in THg concentrations in both tissues. Our data also provides new evidence for the 

524 role of pelagic diet shifts on increasing THg concentrations in both muscle and liver. The seasonal 

525 changes in diet and condition were generally more important factors than fish length explaining THg 

526 concentrations of whitefish muscle and liver tissues. The intra-annual variation in THg concentrations 

527 was higher than inter-annual bioaccumulation, in addition we found that bioaccumulation varied 

528 seasonally being highest in winter and low or  non-significant in summer. Therefore, it is essential to 

529 consider seasonal factors in future studies and Hg monitoring programs.

530
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744 Table 1. Ecological characteristics (sample size; age; body size; somatic mass; condition; sexual 
745 maturity; gonadosomatic index, GSI; gillraker count; C:N ratios; stable isotopes and diet) of 
746 whitefish. For each continuous variable, mean ± SD values are presented, for different prey groups 
747 mean percentage contribution is presented. Variables marked with * indicate year class 2003 
748 whitefish data. Superscript with small lettersa-h presented before mean values indicate statistical 
749 difference between corresponding mean value (a=Sep-10, b=Dec-11, c=Feb-12, d=May-12, e=Jun-
750 12, g=Sep-12, h=Aug-14). Pelagic zooplankton are divided into cladocera (Bosmina sp. and 
751 Holopedium gibberum) and copepoda (Calanoida and Cycloida), benthic ZPL indicates benthic 
752 zooplankton groups (Eurycercus sp., Megacyclops sp.). Benthic macroinvertebrates (BMI) includes 
753 Chironomidae, Ephemeroptera, Lymnaea sp., Pisidium sp., Plecoptera, Simulidae, Trichoptera and 
754 Valvata sp. Fish include whitefish eggs and alpine bullhead, whereas the other group includes 
755 macrophyte parts, Corixidae, Hydracarina, Tabanidae and Polyphemus pediculus. 

aSep-10 bDec-11 cFeb-12 dMay-12 eJun-12 fJul-12 gSep-12 hAug-14

Whitefish (n) 30 30 30 30 18 30 29 27

Age g6.2 ± 2.1 6.4 ± 2.5 7.3 ± 2.4 6.2 ± 3.2 5.8 ± 4.6 5.6 ± 3.9 a8.1 ± 2.4 7.4 ± 4.2

Total length (mm) 247 ± 50 245 ± 52 248 ± 49 221 ± 71 227 ± 100 210 ± 94 269 ± 50 234 ± 83

Total mass (g) 133.0 ± 89.1 117.1 ± 55.7 117.8 ± 50.6 97.5 ± 76.7 141.8 ± 194.3 106.8 ± 95.2 165.0 ± 55.1 126.1 ± 93.7

Somatic mass g111.2 ±50.1 g117.2 ± 50.3 g97.2 ± 76.3 140.3 ± 191.4 g105.5 ± 93.4 bcdf162.0±54.2

Somatic mass* (g) g138.3 ± 26.5 145.7 ± 30.7 157.6 ± 24.1 g123.0 ± 26.8 182.61 ± 51.2 be185.5 ± 25.8

Condition factor def0.75 ± 0.10 g0.69 ± 0.07 g0.70 ± 0.07 ag0.67 ± 0.07 ag0.65 ± 0.10 ag0.67 ± 0.11 bcdefh0.78±0.05 f0.71 ± 0.08

Condition factor* 0.75 ± 0.04 g0.72 ± 0.05 g0.71 ± 0.09 0.72 ± 0.04 0.63 ± 0.08 0.75 ± 0.07 bc0.79 ± 0.05 0.74 ± 0.06 

Sexual maturity cg2.53 ± 0.94 3.03 ± 1.54 adef4.43 ± 2.56 c2.40 ± 1.57 c2.39 ± 1.79 c2.30 ± 2.09 a3.41 ± 1.18 2.91 ± 1.51

GSI d2.9 ± 4.7 g0.4 ± 0.3 bg0.2 ± 0.2 g0.5 ± 0.6 g0.6 ± 1.2 cdef1.7 ± 1.6

Gillraker count 25.2 ± 1.2 25.0 ± 2.1 24.3 ± 2.0 24.2 ± 1.6 23.9 ± 1.5 24.0 ± 1.7 24.4 ± 1.6 24.1 ± 2.0

C:N Liver df4.54 ± 0.64 f4.35 ± 0.72 b4.14 ± 0.23 4.15 ± 0.32 bc4.04 ± 0.35 4.22 ± 0.19

C:N Muscle 3.20 ± 0.04 3.21 ± 0.04 3.20 ± 0.06 3.20 ± 0.05 3.22 ± 0.05 h3.22 ± 0.05 h3.22 ± 0.05 fg3.18 ± 0.05

δ 13C Liver (lipid free) -23.5 ± 1.7 -23.7 ± 2.1 -23.7 ± 1.8 -23.3 ± 8.6 -24.9 ± 1.9 -23.8 ± 1.4

δ13C muscle (lipid free) -24.6 ± 2.9 e-25.0 ± 1.7 e-25.2 ± 1.4 -24.6 ± 1.5 bch-22.1 ± 3.0 -24.3 ± 1.2 -24.6 ± 1.2 e-25.1 ± 1.5

δ15N Liver 8.0 ± 0.6 g8.2 ± 0.6 g8.3 ± 0.7 g8.3 ± 0.8 g8.1 ± 0.5 cdef7.5 ± 0.5

δ15N Muscle b8.4 ± 0.5 a8.7 ± 0.3 8.6 ± 0.3 8.6 ± 0.4 8.5 ± 0.4 8.5 ± 0.4 8.6 ± 0.3 8.6 ± 0.4

Stomach fullness bf3.8 ± 1.6 acdefgh0.4±0.9 bfg2.3 ± 2.6 bf3.3 ± 2.5 b4.0 ± 1.6 abcdh5.4 ± 1.9 bc4.6 ± 1.7 bf3.7 ± 1.7

Empty stomachs (n) 1 24 12 8 1 0 0 1

Cladocera 5.4 8.3 49.6 2.6 34.0

Copepoda 35.8 32.4 26.0 0.7 0 4.0 3.0

Benthic ZPL 26.1 7.7 20.0 24.9 60.3 21.4

BMI 22.2 92.3 64.4 50.1 91.0 19.8 16.9 30.1

Terrestrial insects 8.6 5.3 16.2 11.5

Fish 3.2 3.9

Other 1.9 0.4
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757 Table 2. THg concentrations (µg g-1 d.w.) ± SD (n) of liver an muscle tissues of whitefish and 
758 invertebrates by sampling months and years. Superscript with capital lettersA-H presented before THg 
759 means of different tissues indicates statistical difference between corresponding mean value (A=Sep-
760 10, B=Dec-11, C=Feb-12, D=May-12, E=Jun-12, G=Sep-12, H=Aug-14). Superscript small lettersa-

761 c in grand mean row indicates statistical differences between corresponding a-cinvertebrate group.

Liver Muscle aZPLpelagic bBMIlittoral cBMIprofundal 

ASep-10 BCEH0.17±0.04 (30)

BDec-11 F1.56±0.82 (29) A0.22±0.04 (30) 0.040 (1) 0.050 (2) 0.573 (2)

CFeb-12 EF1.70±0.88 (30) AEF0.24±0.05 (30) 0.061 (1) 0.057 (2)

DMay-12 1.39±0.99 (30)  0.22±0.06 (30) 0.065±0.006 (3) 0.055 (2)

EJune-12 C0.87±0.72 (17) AB0.20±0.06 (18) 0.057 (1)

FJuly-12 BCG0.88±0.42 (30) B0.19±0.04 (30) 0.060±0.002 (3) 0.036 (2)

GSep-12 F1.29±0.57 (28) 0.20±0.04 (29) 0.067±0.002 (3) 0.319 (2)

HAug-14 A0.23±0.05 (28) 0.084±0.005 (6) 0.027±0.010 (5) 0.205 (2)

Grand mean 1.31±0.81 (164) 0.21±0.05 (225) b0.070±0.013 (17) a0.042±0.014 (14) 0.366±0.356 (6)

762
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763 Table 3. Multiple linear regression models explaining THg variation in liver and muscle. Coefficient 
764 of determination (adjusted R2) and residual standard error (RSE) are presented for each model. Slope 
765 (B), the standard error of the estimate (SE), the significance indicators (t and p) and AIC values are 
766 presented for each factor selected to the models. The results of AIC stepvise procedure are presented 
767 in Table S3.

768

769 Tissue Factor B ± SE t p

Liver  Sexual maturity 0.241 ± 0,042 5.753 <0.001

adj.R2=0.50, RSE=0.577 δ13C liver -0.120 ± 0.024 -4.928 <0.001

F7, 156 =24.0, p<0.001 Condition factor -2.582 ± 1.092 -2.997 0.003

AIC=-172.67 Constant -2.985 ± 1.092 -2.733 0.007

GSI -0.060 ± 0.022 -2.677 0.008

δ15N liver 0.197 ± 0.083 -2.677 0.019

Total length 0.003 ± 0.001 2.367 0.020

Sampling month 0.034 ± 0.016 2.100 0.037

Muscle δ13C muscle -0.013 ± 0.002 -8.225 <0.001

adj.R2=0.55, RSE=0.034 Condition factor -0.211 ± 0.046 -4.570 <0.001

F7,159=30.18, p<0.001 Total length 0.0003 ± 0.0001 3.945 0.003

AIC=-1118.82 Sampling month -0.003 ± 0.001 -2.974 0.004

Sexual maturity 0.006 ± 0.003 2.274 0.024

Constant -0.172 ± 0.080 -2.147 0.033

δ15N muscle 0.016 ± 0.008 2.088 0.038

GSI 0.002 ± 0.001 1.746 0.082
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770 Figure legends

771 Figure 1. Map of L. Kilpis located in northern Fennoscandia. Depth contour areas are presented with 

772 different shades of grey and arrows shows afferent and efferent rivers. All samples were collected 

773 from area A marked with ellipse. 

774 Figure 2. Box-Whisker plots showing seasonal variation in whitefish mercury concentration in liver 

775 (A), muscle (B). Bold horizontal lines indicate the median value, the boxes represent first and third 

776 quartile and whiskers represents minimum and maximum values. Outliers (black circles) are 

777 presented if there are data points smaller or larger than the difference between first and third quartile. 

778 Figure 3. Linear regression models showing THg bioaccumulation in whitefish liver (A-F) and 

779 muscle (G-L) tissues. Dashed lines represent 95% confidence intervals. 

780 Figure 4. Linear regression models with 95% confidence intervals (dashed lines) illustrating 

781 seasonally changing THg relationship between liver and muscle tissue of whitefish in December 2011 

782 (A), February 2012 (B), May 2012 (C), June 2012 (D), July 2012 (E) and September 2012 (F).

783
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786 Fig. 1.
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791 Fig. 3.
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Table 1S. Detailed stomach content table. Identified prey items are separated to pelagic zooplankton (pelagic ZPL), benthic 
zooplankton (benthic ZPL), benthic macroinvertebrates, terrestrial insects, fish and others. Mean percentage contribution is 
presented for each prey item and group. The bolded groups and values are summarized percentages for each group. 

Sep-10 Dec-11 Feb-12 May-12 Jun-12 Jul-12 Sep-12 Aug-14

N= 30 30 30 30 18 30 29 28
Empty stomachs 1 24 12 8 1 0 0 1
Stomach fullness 3.8 0.4 2.3 3.3 4.0 5.4 4.6 3.7

pelagic ZPL 41.2 - 32.4 26.0 9.0 49.6 6.6 36.9
      Bosmina sp. 5.0 - - - 8.3 49.6 2.6 18.3
      Holopedium gibberum - - - - - - - 15.7
      Cladocera unident. 0.5 - - - - - - -
      Calanoida - - - 11.2 - - 3.6 -
      Other Copepoda 35.7 - 32.4 14.8 0.7 - 0.4 3.0

Benthic ZPL 26.1 7.7 - 20.0 - 24.9 60.3 21.4
      Eurycercus lamellatus 21.2 - - - - 24.9 60.3 21.4
      Megacyclops 5.0 7.7 - 20.0 - - - -

Benthic macroinvertebrates 22.2 92.3 64.4 50.1 91.0 19.8 16.9 30.2
      Chironnomid larvae 10.9 60.0 57.3 34.5 16.4 3.0 4.3 6.6
      Chironomid pupae - - - 1.0 63.2 12.4 - 18.3
      Ephemeroptera - 7.7 - - - - - -
      Lymnaea sp. 2.1 7.7 - 0.7 9.6 1.2 2.3 1.0
      Pisidium sp. 5.9 16.9 7.1 2.7 0.4 2.3 10.2 3.9
      Plecoptera nymph - - - 2.0 1.4 - - -
      Plecoptera pupae - - - 6.1 - - - -
      Simulidae - - - - - 0.3 - -
      Tricoptera larvae 0.1 - - - - 0.6 - -
      Valvata sp. 3.2 - - 3.1 - - 0.1 0.4

Terrestrial insects 8.6 - - - - 5.3 16.2 11.5
      Geometrid moth - - - - - - 9.4 -
      Other terrestrial insects 8.6 - - - - 5.3 6.8 11.5

Fish - - 3.2 3.9 - - - -
      Whitefish eggs - - 3.2 3.9 - - - -

Other 1.9 - - - - 0.4 - -
      Macrophyte 1.6 - - - - - - -

      Corixidae - - - - - 0.3 - -
      Hydracarina - - - - - 0.1 - -
      Polyphemus pediculus 0.3 - - - - - - -
SUM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00



Table 2S. Total mercury (THg), stable isotopes (δ13C, δ15N) and C:N values ±SD of littoral, pelagic and profundal invertebrates 
among months. Sample sizes are presented in parenthesis. The last column summarizes the grand mean for each row.

 

THg Dec-11 Feb-12 May-12 Jun-12 Jul-12 Sep-12 Aug-14 SUM

Pelagic ZPL 0.040 (1) 0.061 (1) 0.065 ± 0.006 (3) 0.060 ± 0.002 (3) 0.067 ± 0.002 (3) 0.084 ± 0.005 (6) 0.070 ± 0.013 (17)

Littoral Oligochaeta 0.044±0.004 (3) 0.061 (1) 0.058 (1) 0.040 ± 0.005 (3) 0.037 ± 0.007 (2) 0.045 ± 0.009 (10)

Littoral Chironomidae 0.056 (1) 0.053 (1) 0.053 (1) 0.057 (1) 0.032 (1) 0.050 ± 0.010 (5)

Littoral Plecoptera 0.015 (1) 0.015 (1)

Littoral Trichoptera 0.020 (1) 0.020 (1)

Littoral Tipulidae 0.026 (1) 0.026 (1)

Profundal Oligochaeta 0.998 (1) 0.527 (1) 0.339 (1) 0.621 ± 0.340 (3)

Profundal Chironomidae 0.150 (1) 0.110 (1) 0.072 (1) 0.111 ± 0.039 (3)

δ13C Dec-11 Feb-12 May-12 Jun-12 Jul-12 Sep-12 Aug-14 SUM

Pelagic ZPL -32.2 (1) -30.5 (1) -30.1 ± 0.3 (3) -33.3 ± 0.2 (3) -31.6 ± 0.5 (3) -31.6 ± 0.1 (6) -31.6 ± 1.1 (17)

Littoral Oligochaeta -16.6 (1) -15.7 (1) -15.3 (1) -16.8 (1) -21.3 (1) -17.1 ± 2.4 (5)

Littoral Chironomidae -17.4 (1) -16.3 (1) -16.4 (1) -20.3 (1) -16.5 (1) -20.7 (1) -17.9 ± 2.0 (6)

Littoral Plecoptera -19.9 (1) -19.9 (1)

Littoral Trichoptera -20.5 (1) -20.5 (1)

Littoral Tipulidae -21.6 (1) -21.6 (1)

Profundal Oligochaeta -28.8 (1) -26.7 (1) -26.6 (1) -27.4 ± 1.3 (3)

Profundal Chironomidae -26.8 (1) -29.6 (1) -29.9 (1) -28.8 ± 1.7 (3)

δ15N Dec-11 Feb-12 May-12 Jun-12 Jul-12 Sep-12 Aug-14 SUM

Pelagic ZPL 6.3 (1) 3.9 (1) 2.9 ± 0.2 (3) 4.5 ± 0.3 (3) 4.0 ± 0.5 (3) 4.5 ± 0.2 (6) 4.2 ± 0.8 (17)

Littoral Oligochaeta 2.9 (1) 3.3 (1) 3.5 (1) 3.1 (1) 2.6 (1) 3.1 ± 0.3 (5)

Littoral Chironomidae 3.6 (1) 4.7 (1) 4.7 (1) 2.6 (1) 1.7 (1) 2.0 (1) 3.2 ± 1.3 (6)

Littoral Plecoptera 2.8 (1) 2.8 (1)

Littoral Trichoptera 2.2 (1) 2.2 (1)

Littoral Tipulidae 1.6 (1) 1.6 (1)

Profundal Oligochaeta 8.0 (1) 7.6 (1) 6.5 (1) 7.4 ± 0.8 (3)

Profundal Chironomidae 7.5 (1) 6.9 (1) 6.8 (1) 7.1 ± 0.4 (3)

C:N Dec-11 Feb-12 May-12 Jun-12 Jul-12 Sep-12 Aug-14 SUM

Pelagic ZPL 11.1 (1) 8.7 (1) 5.4 ± 0.0 (3) 6.0 (1) 5.9 ± 0.1 (3) 4.7 ± 0.1 (6) 5.9 ± 1.7 (15)

Littoral Oligochaeta 5.2 (1) 4.8 (1) 4.8 (1) 4.9 (1) 4.9 (1) 4.9 ± 0.2 (5)

Littoral Chironomidae 5.2 (1) 5.4 (1) 5.4 (1) 5.4 (1) 5.6 (1) 5.5 (1) 5.4 ± 0.2 (6)

Littoral Plecoptera 4.4 (1) 4.4 (1)

Littoral Trichoptera 5.4 (1) 5.4 (1)

Littoral Tipulidae 5.1 (1) 5.1 (1)

Profundal Oligochaeta 5.3 (1) 4.2 (1) 4.2 (1) 4.6 ± 0.6 (3)

Profundal Chironomidae 5.4 (1) 6.1 (1) 5.9 (1) 5.8 ± 0.4 (3)



Table 3S. Stepwise model selection for linear multiple regression analysis based on minimum AIC values. The variables in models 
are: Sexual maturity (SexM), tissue specific stable isotopes values of carbon and nitrogen (d13C & d15N), gonadosomatic index 
(GSI), condition factor (CF), sampling month (Month), total length (TL). The selected models are in bold.

Model AIC

Liver

{} -66.90

SexM -121.03

SexM+d13C -145.12

SexM+d13C+d15N -159.94

SexM+d13C+d15N+GSI -162.85

SexM+d13C+d15N+GSI+Month -166.28

SexM+d13C+d15N+GSI+Month+CF -168.97

SexM+d13C+d15N+GSI+Month+CF+TL -172.67

SexM+d13C+d15N+GSI+Month+CF+TL+sex -171.09

SexM+d13C+d15N+GSI+Month+CF+TL+sex+grcount -169.33

Muscle

{} -991.66

d13C -1047.62

d13C+sexM -1089.56

d13C+sexM+CF -1099.73

d13C+sexM+CF+TL -1111.40

d13C+sexM+CF+TL+Month -1114.82

d13C+sexM+CF+TL+Month+d15N -1117.65

d13C+sexM+CF+TL+Month+d15N+GSI -1118.82

d13C+sexM+CF+TL+Month+d15N+GSI+grcount -1117.94

d13C+sexM+CF+TL+Month+d15N+GSI+grcount+sex -1116.43


