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Abstract: Disentangling the effects of dispersal mode on the environmental and spatial processes structuring biolog-
ical assemblages is essential to understanding the mechanisms of species coexistence and maintenance. Here, we
use field investigations to link dispersal mode with environmental and spatial processes that control stream
macroinvertebrate assemblage structure across the Yarlung Zangbo Grand Canyon of Tibet (Tibetan Plateau).
We sampled macroinvertebrates in streams that occur in 4 distinct regions. Each of these regions has a steep
elevational gradient but different altitude ranges, climate types, and water replenishment sources. We classified
macroinvertebrate taxa into passive and active dispersal mode groups to test whether macroinvertebrates with dif-
ferent dispersal modes responded differently to environmental and spatial processes. Our results showed that the
assemblage structure of active dispersal groups was more strongly determined by environmental variables (habitat
filtering/species sorting) than spatial factors both within and across regions. In contrast, the structure of passive dis-
persers was more strongly associated with spatial factors than environmental filtering in the entire study area and
within lower canyon regions. However, spatial effects were not important for either type of dispersal group in the
upper canyon regions, especially in the region with glacier-fed streams, indicating the predominance of species sort-
ing processes in these harsh environments. Furthermore, the spatial structuring of assemblages became stronger as
habitat filtering declined, which indicates a reduction in species sorting processes in less harsh environments. Our
findings demonstrate diverse responses of macroinvertebrate assemblages to environmental and spatial processes
across this poorly-known highland river system, and imply that dispersal mode influences the underlying mecha-
nisms of community variation.
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Understanding the processes and mechanisms of species
coexistence and maintenance in local communities at dif-
ferent spatial scales has long been a critical task of ecologists
(Wright 2002). Over the past few decades, many ecological
theories and hypotheses concerning community assembly
and species coexistence have been proposed (Leibold and
Chase 2017). Of these, niche theory emphasizes the signifi-
cance of environmental filtering by local abiotic factors and

biotic interactions (Leibold et al. 2004, Urban 2004, Zhao
et al. 2017), such as ecosystem physiochemistry, distur-
bance regime, productivity, and interspecific competition
(Hirzel and Le Lay 2008, Heino et al. 2015b). In contrast,
neutral theory explicitly ignores the differences in how taxa
in a community respond to local ecological conditions, and
instead highlights the importance of random processes (e.g.,
dispersal and ecological drift) in structuring local commu-
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nities (Hubbell 2001, Thompson and Townsend 2006). In
recent decades, it has been increasingly recognized that
local community structure is determined by both determin-
istic (e.g., environmental filtering) and stochastic (e.g., dis-
persal, drift) processes. However, the relative importance of
deterministic and stochastic processes can vary among organ-
ism groups and spatio-temporal scales (Qian and Ricklefs
2007, Qian et al. 2009, Logue et al. 2011, Heino et al. 2012,
Jiang et al. 2017).

A set of local communities linked by the dispersal of mul-
tiple species that may interact is defined as a metacommunity
(Leibold et al. 2004, Cottenie 2005). Dispersal is critical to the
local persistence of many species (Patrick et al. 2014). Fur-
ther, environmental filtering processes can only act once in-
dividuals disperse to a new location. Barriers to dispersal,
therefore, act as spatial filters before environmental filters
can act (Gray and Arnott 2011, Heino 2013a, Tonkin et al.
2018). Consequently, theory predicts that the relative impor-
tance of spatial process (e.g., dispersal limitation) and envi-
ronmental filtering depends on the dispersal traits of the focal
organisms (Martiny et al. 2006, Patrick et al. 2014). Recently,
many studies have compared taxa with different dispersal
traits to determine how dispersal mode and ability influence
the relative importance of spatial and environmental filtering
processes in shaping metacommunity patterns (Heino et al.
2012, Landeiro et al. 2012, Heino 2013a, Zhao et al. 2017).

Stream macroinvertebrates have multiple dispersal strat-
egies, including both active and passive dispersal via water
or air, which make them an ideal group to address how
dispersal mode affects metacommunity structure. Stream
macroinvertebrates can use aquatic dispersal by either pas-
sively drifting and relying on external water or wind flow, at-
taching to animal vectors, or actively moving along the
stream network. Alternatively, some stream invertebrates
can use aerial dispersal, primarily by active flight or passive
wind drift (Li et al. 2016, Tonkin et al. 2018). Active dispers-
ers should show active habitat selection because they should
be able to track environmental variation better than passive
dispersers. Thus, active dispersers should be more strongly
influenced by variation in environmental conditions than by
spatial structuring (i.e., dispersal limitation). In contrast,
passive dispersers should display stronger spatial structur-
ing and weaker local environmental control, because they
cannot effectively track environmental variation and may
thus be absent from suitable sites (Cauvy-Fraunié et al.
2015, Hill et al. 2017).

The application of metacommunity theory has received
considerable attention from stream ecologists in recent
years (Tonkin et al. 2018), but the primary focus has been
on community assembly mechanisms in a single region
(e.g., reach, river or catchment; Heino et al. 2012). However,
ecological patterns and their mechanistic basis may also dif-
fer among regions (Tonkin et al. 2016a), because different
regions often have different species composition, taxonomic
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variability, and functional composition as a result of his-
torical effects and climatic constraints (Heino et al. 2005).
Focusing on relatively few, small-scale, or environmentally
similar localities will therefore limit the generalizations
stream researchers can make about metacommunity theory
in stream systems. Moreover, stream communities are af-
fected by processes operating from local to within-region
and even across-region scales, so studies should also com-
pare the effects of environmental, spatial, and regional fac-
tors on metacommunity structuring over large areas (Heino
et al. 2017b). Thus, it is necessary to carry out broad investi-
gations involving different geographic regions, elevation
ranges, climate types, and habitat characteristics (Qian and
Ricklefs 2007, Landeiro et al. 2012, Myers et al. 2013,
Grimaldo et al. 2016). These investigations should facilitate
our understanding of the mechanisms and processes that
underlie species coexistence and persistence in biological
communities.

The Tibetan Plateau is the largest and highest plateau in
the world, and supports a uniquely diverse flora and fauna
that make it one of the world’s most important alpine bio-
diversity hotspots (Jiang et al. 2013, Tonkin et al. 2016b).
This region has a large elevation range and mountain barri-
ers that result in many geographically isolated regions that
harbor diverse climate types, complex environmental char-
acteristics, and endemic organisms (Yao et al. 2007). These
unique conditions make this region ideal for exploring the
patterns and processes of community assembly at within-
and across-region scales. Macroinvertebrate research in Ti-
betan freshwater ecosystems has mainly focused on describ-
ing the characteristics of species composition and diversity
patterns (Laursen et al. 2015) and assessing assemblage-
environment relationships (Jiang et al. 2013). No previous
studies have examined the relative importance of both envi-
ronmental and spatial effects in structuring metacommuni-
ties of stream macroinvertebrates, although similar investi-
gations have been done in some regions of the Himalayas
(Tonkin et al. 2016b).

Here, we examined how macroinvertebrate groups with
different dispersal modes respond to environmental and spa-
tial processes in 4 regions with different altitude ranges, cli-
mate types, and water replenishment sources across the
Yarlung Zangbo Grand Canyon area of the Tibetan Plateau.
Our primary aim was to test the following hypotheses: 1) en-
vironmental variables are more important than spatial factors
in structuring the communities of active dispersers, whereas
spatial factors are more influential in determining the com-
munities of passive dispersers; 2) the relative importance of
environmental and spatial factors in structuring assemblages
varies across regions. We also compared the relative explan-
atory power of 2 spatial models based on straight-line and
watercourse distance, and examined the possible mecha-
nisms underlying differences in the relative importance of
spatial and environmental processes in the 4 regions.
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METHODS
Study area
We conducted this study in the Yarlung Zangbo Grand
Canyon Region (lat 26°52'-30°40" N, long 92°09'-98°47' E),
in southeastern Tibet. The Grand Canyon is the deepest can-
yon in the world, and consists primarily of alpine canyon, val-
ley plain, intermountain basin, and lake basin habitats (Deng
et al. 2011). The region covers 117,000 km? in total, and has
complex landforms with a unique ecosystem of animals and
plants species that have barely been studied, explored, or in-
fluenced by human activities (Li et al. 2014). This region is
also densely covered with rivers, lakes, and other forms of wa-
ter resources such as glaciers. Climate conditions in this re-
gion range from tropical to temperate and subarctic zones,
and the maximum elevation gradient is about 7000 m.
We sampled stream macroinvertebrate assemblages from
4 drainage basins (regions) along the Yarlung Tsangpo River,
which flows through the Grand Canyon. These basins are
distinguished by their elevation ranges, climate types, and
water replenishment sources (e.g., glacier- or precipitation-
fed). Two of the regions are located in the upper regions of
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the Grand Canyon, in Linzhi City (14 sites, hereafter LZ) and
Bomi County (11 sites, BM), including the Parlung Zangbo
River and other tributaries of the midstream Yalutsangpo.
These regions each range in altitude from ~2600 to 3600 m
and are characterized by a humid continental climate. The
streams in LZ are replenished primarily by snowmelt, with
some input from precipitation and groundwater (Dawaciren
and Baima 2008). In contrast, the streams in BM are replen-
ished mainly by glacier-melt, which accounts for more than
half of their annual runoff (Zhang et al. 2011, Xiang et al.
2013). The other 2 regions are located in the lower reaches
of the Grand Canyon in Chayu County (13 sites, CY) and
Motuo County (14 sites, MT). CY and MT both have a hu-
mid subtropical climate, are replenished primarily by rain-
fall, and have altitude ranges of ~1400 to 2100 m and ~600
to 900 m, respectively.

Macroinvertebrate sampling and taxa grouping

In October 2015, we sampled benthic macroinverte-
brates from 52 stream sites in southeastern Tibet (Fig. 1).
At each site, we took 3 quantitative samples from the repre-
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Figure 1. Location of the 52 sampling sites in southeastern Tibet, China. Abbreviations: LZ = Linzhi city; BM = Bomi county;

CY = Chayu county; MT = Motuo county.



sentative habitats (i.e., riffles or pools) of a 100 m reach of
stream. We took the samples with a Surber sampler (30- x
30-cm, 500-pum mesh) and used a 500-pm mesh to sieve
them in the field. We kept the samples in an ice chest until
we brought them to the laboratory on the same day. We
processed the 3 Surber samples from each site separately
by manually sorting the macroinvertebrates from the sedi-
ment on a white porcelain plate. We then preserved the
specimens with 70% ethanol. We used a stereomicroscope
(Stemi 508; Carl Zeiss Microscopy, Thornwood, New York)
to identify most macroinvertebrates, but identified Chiron-
omidae and Oligochaeta by viewing their head capsules
with a compound microscope (Imager A2; Carl Zeiss Mi-
croscopy). We identified specimens to the lowest operational
taxonomic unit (95% of specimens were identified to ge-
nus) based on available references (Brinkhurst 1986, Morse
et al. 1994, Wiggins 1996, Dudgeon 1999, Epler 2001). Fi-
nally, we combined these 3 replicates prior to analyses to
collectively represent the macroinvertebrate assemblage
at the site.

We separated the macroinvertebrates into passive and ac-
tive groups based on their dispersal mode in their adult life
stage (Bilton et al. 2001, Van de Meutter et al. 2007, Heino
2013a, b, Heino et al. 2013, Li et al. 2016) (Table S1). This
manner of grouping organisms by dispersal mode is common
in assemblage-level studies (e.g., Heino 2013b). The passive
group included aquatic adults with passive overland dispersal
(i.e., Turbellaria, Nematodes, Oligochaeta, Hydrachnidia, and
Crustacea) and terrestrial winged adults with passive wind
dispersal (i.e., Diptera with small body size such as Ceratopo-
gonidae, Chironomidae, Muscidae, Ephydridae, Simuliidae,
and Tanyderidae). In contrast, the active group included ter-
restrial winged adults with mostly active dispersal (i.e., Odo-
nata, Heteroptera, Hemiptera, Ephemeroptera, Plecoptera,
Trichoptera, Megaloptera, and Diptera: Tipulidae).

Environmental and spatial variables

We measured several environmental variables at each site
after we sampled macroinvertebrates. We took these mea-
surements at a consistent time of day at each site. We mea-
sured latitude, longitude, and elevation (m asl) with portable
GPS units (MG721W; UniStrong, Beijing, China). To mea-
sure water depth and channel width (GLM80; Bosch, Mt
Prospect, Illinois), we averaged values from at least 5 cross-
channel transects. We measured current velocity (m/s) at 5
to 10 random locations along a cross-channel transect with
a LJD-10 flowmeter. We used a YSI6680 Multi-probe (Yel-
low Springs Instruments, Yellow Springs, Ohio) to measure
water temperature, pH, and electrical conductivity. We esti-
mated the percentages of substrate particles in 5 size frac-
tions (sand < 2 mm, gravel 2-32 mm, pebble 32-64 mm,
cobble 64—256 mm, and boulder > 256 mm) in ten 50- x
50-cm quadrats placed randomly in each sampling site (fol-
lowing Kondolf 1997). Finally, we qualitatively described
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channel stability at each site based on the Pfankuch Stability
Index (Pfankuch 1975).

We developed 2 spatial models that differed in their as-
sumption of the process by which species disperse among
sites. The first model created spatial variables based on linear
overland (Euclidean) distance between all pairs of sites,
which is a simple proxy for overland dispersal. The 2" model
used the watercourse distances among sites when creating
spatial variables. This model assumed that movement of spe-
cies occurred via stream channels. We measured water-
course distances between sites within each region, but not
across regions because there is poor hydrologic connectivity
across regions.

To create spatial variables for both models based on lin-
ear overland distances and watercourse distances, respec-
tively, we conducted spatial modeling according to Borcard
and Legendre (2002), using principal coordinates of neigh-
bor matrices (PCNM). We retained the PCNM (based on
either the straight-line overland or watercourse distance
matrix) coordinates with positive eigenvalues as spatial var-
iables in the subsequent analyses (Gilbert and Bennett
2010). We used the pcnm function in the vegan package
(Oksanen et al. 2013) in R (R Development Core Team.
2016. R: a language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Aus-
tria) to conduct the PCNM analysis. We also constructed
a dummy variable ‘river basin identity’ to indicate large-
scale spatial differences among river basins (see also Heino
et al. 2017b).

Data analysis

We used 1-way analysis of variance (ANOVA) to test for
differences in environmental and biological data (i.e., rich-
ness, abundance, and relative abundance of higher taxa
within dispersal mode groups) among the 4 regions. We
used post hoc tests to make further comparisons. In general,
we used Tukey’s honestly significant difference (HSD) tests
(e = 0.05) for these comparisons, but in cases of persistent
heteroscedasticity (i.e. when Levene’s test was significant)
we used Games—Howell tests because they do not assume
equal variances between groups. Then, we employed a Venn
diagram to visually demonstrate species composition in
each region. All ANOVAs were done with the SPSS statis-
tical program (version 22.0, IBM Corp, Chicago, Illinois).

We used canonical analysis of principal coordinates
(CAP, Anderson and Robinson 2003) to identify the average
differences in community structure and environmental
conditions among the 4 regions. CAP is a variant of princi-
pal coordinates analysis (PCOA) that finds the axes that best
discriminate among a priori groups in a multivariate cloud
of points (Anderson et al. 2008). CAP analysis can be based
on any type of resemblance matrix. We used Bray—Curtis
similarity matrices for log(x + 1)-transformed macroin-
vertebrate abundance data and Euclidean distance for ap-
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propriately transformed and standardized local habitat data
to measure variation among regions. We also tested our
CAP results to ensure that the number of PCOA axes we
identified best discriminated among regions, and tested
whether region centroids differ based on 999 permutations.
CAP analyses were run with PERMANOVA+ for PRIMER
6.0 (Anderson et al. 2008).

Finally, we conducted separate distance-based redun-
dancy analyses (AbRDA) based on Bray—Curtis dissimilarity
for both passive and active dispersers. We analyzed each
dispersal mode from the study area as a whole and in each
region. This procedure assessed how the focal ecological
processes potentially drive variation in assemblage struc-
ture (Legendre and Anderson 1999). We used forward se-
lection and Monte Carlo permutations to select the mini-
mum set of environmental and spatial variables that were
significantly associated with benthic macroinvertebrate dis-
tributions. Prior to the analyses, we checked environmental
variables for normality and transformed those violating
normality assumptions. We then used variation partitioning
(Borcard et al. 1992, Legendre and Legendre 1998) to quan-
tify the relative importance of environmental variables, spa-
tial factors, and river basin identity in explaining assemblage
structure variation in the whole study area. We used the
same variation partitioning approach to quantify the rela-
tive importance of environmental and spatial factors in each
of the 4 individual regions.

To determine which spatial model (Euclidean or water-
course distance) was most strongly associated with assem-
blage structure, we used variation partitioning to analyze
both sets of spatial variables. We analyzed each model with

both the passive and active dispersal groups and environ-
mental data sets in the 4 individual regions (Gray and
Arnott 2011). We used the function varpart in the R pack-
age vegan (Oksanen et al. 2013) to partition the variation for
these analyses. We report adjusted fractions of variation
from the constrained ordinations because they are unbiased
and recommended by previous studies (Peres-Neto et al.
2006). We also used the anova function in the vegan pack-
age to test whether the pure fractions of each set of predic-
tor variables were significant based on 999 permutations at
a significance level of o = 0.05.

RESULTS
Environmental characteristics

Our measurements revealed broad ranges of elevation
(591-3567 m), conductivity (13.1-302.6 uS cm ™~ *), dissolved
oxygen (6.15-11.51 mg L"), and pH (7.14-8.85) across the
52 sites in the 4 regions. We detected significant variation
among the 4 regions in elevation, water temperature, depth,
dissolved oxygen, and pH (1-way ANOVA, all p < 0.001;
Table S2). The streams in upper canyon regions, especially
the glacier-fed ones, had relatively lower water temperature
and dissolved oxygen than those in the lower canyon regions,
indicating that there were the harsher environment condi-
tions in the high-altitude streams. Moreover, based on the
Pfankuch Stability Index, glacier-fed streams in BM had the
lowest channel stability, followed by snow-fed streams in
LZ and rain-fed streams in CY and BM (Table S3).

The CAP analysis indicated that environmental charac-
teristics differed distinctly among the 4 regions (Fig. 2A).
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Figure 2. Canonical Analysis of Principal Coordinates (CAP) ordination plots of habitat data (Euclidean distance) (A), and

macroinvertebrate abundance data (Bray—Curtis coefficient) (B).



Further, the percentage of sites classified within their parent
group was high (94.2%, Table 1), confirming the site classi-
fication was broadly reliable.

Macroinvertebrate assemblages

We recorded a total of 195 taxa (90 from LZ, 85 from
BM, 94 from CY, 95 from MT) that belonged to 4 phyla,
6 classes, and 69 families. The number of common species
(i.e., species shared by at least 2 regions) ranged from 3 to
21, whereas the number of species unique to each basin
was almost the same (23-26; Fig. S1).

Of the 195 taxa we found, we classified 85 taxa as passive
dispersers, and the remaining 110 taxa as active dispersers
(Table S1). The richness of active dispersers was significantly
higher in the upper canyon sites compared with the lower
canyon sites (F = 4.798, p = 0.005), whereas the richness of
passive dispersers was not different among these areas (F =
1.037, p = 0.384). Moreover, the relative abundance of some
major taxa in each dispersal mode group were significantly
different among regions (e.g., passive dispersers: Chirono-
minae (F = 3.484, p = 0.022), Orthocladiinae (F = 3.623,
p = 0.019); active dispersers: Baetidae (F = 7.619, p < 0.001),
Hydropsychidae (F = 15.24, p < 0.001), and Brachycentridae
(F = 2.896, p = 0.044); Table 2). The CAP analysis showed
that assemblage structure differed among the regions (Fig. 2B),
with the percentage correct classifications reaching 80.8%
(Table 1).

Environmentally and spatially structured variation
in assemblage structure: whole study scale

For passive dispersers in the whole study area, forward
selection based on the dbRDA results identified 5 significant
PCNM spatial factors, 3 significant environmental variables
(elevation, water depth, and pH), and a dummy basin vari-
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able that were associated with variation in assemblage struc-
ture (Fig. 3A). Together, these variables explained 9.7% of
the variation in assemblage structure based on the adjusted
R*-values. Spatial factors alone explained more of the vari-
ance in assemblage structure (2.5%) than either the environ-
mental variables (1.7%) or the dummy basin variable (1.0%).

For active dispersers in the whole study area we found
that 5 PCNM spatial factors, 6 environmental variables (el-
evation, % sand, channel width, dissolved oxygen, pH, and %
cobble), and a dummy basin variable were significantly as-
sociated with assemblage structure (Fig. 3B). Together,
these variables explained 18.6% of the variation in commu-
nity assemblage based on the adjusted R*-values. For active
dispersers, environmental variables explained 4.6% of the
variation, whereas spatial factors explained 2.8% and dummy
basin variable only explained 0.8% of the variation.

For both passive and active dispersers, the pure (single)
effect of either spatial or environmental variables always
explained a significant amount of variation in assemblage
structure variation (p < 0.05). In contrast, the basin effect
alone was never significant (Fig. 3A, B).

Environmentally and spatially structured variation
in assemblage structure: single region scale

The key environmental and spatial factors associated with
the assemblage structure of passive and active dispersers var-
ied across the 4 study regions, but for both groups, substrate
particle size and large-scale spatial variables emerged as sig-
nificant correlates in most models (Table 3). For both spatial
models (overland or watercourse), pure environmental ef-
fects were most strongly associated with passive dispersers
in the upper canyon areas (Fig. 4A) and active dispersers in
all regions (Table 3, Fig. 4B, D). In contrast, pure spatial ef-
fects were most strongly associated with passive dispersers
in the lower canyon regions (CY and MT; Fig. 4A, C).More-

Table 1. Summary of the results of Canonical Analysis of Principal Coordinates (CAP) analysis for average differences in habitat
variables and macroinvertebrate assemblages among streams. Habitat analysis was based on Euclidean distance on standardized
environmental variables and the community analysis on Bray—Curtis dissimilarity on abundance data. Trace = sum of the
canonical eigenvalues, delta = the 1°* eigenvalue. p-values (in parentheses) were based on 999 permutations. LZ = Linzhi city;

BM = Bomi county; CY = Chayu county; MT = Motuo county.

LZ BM CY MT Total % Correct % Total correct Trace (p) Delta (p)
Habitat
LZ 13 1 0 0 14 93
BM 0 11 0 0 11 100
94.2 1.82 (0.0001) 0.95 (0.0001)
CY 1 1 11 0 13 85
MT 0 0 0 14 14 100
Assemblages
LZ 14 0 0 0 14 100
BM 0 7 0 4 11 64
80.8 2.30 (0.0001)  0.87 (0.0001)
CY 0 1 11 1 13 85
MT 0 1 3 10 14 72




176 | Effect of dispersal mode on assemblage structure Li et al.

Table 2. Mean richness, abundances, and relative abundance of the most common orders, families, or subfamilies of the 2 dispersal
groups in the 4 investigated drainage basins. LZ = Linzhi city; BM = Bomi county; CY = Chayu county; MT = Motuo county;

ind = individual.

LZ (n = 14) BM (n = 11) CY (n = 13) MT (n = 14) F-ratio P

Richness

Passive 5.0+24 55+23 4.1+ 1.8 4.0+ 3.5 1.037 0.384

Active 11.2 +3.3* 11.1 + 4.3 16.5 + 4.2" 14.5 + 5.8" 4.798 0.005
Abundance (ind/m?)

Passive 373.5 + 334.9 295.9 £ 242.3 191.5 + 283.6 108.9 + 48.9 2.72 0.054

Active 797.1 + 763.9 850.6 + 591.6 837.5 + 443.9 1182.1 + 884.1 0.911 0.442
Relative abundance (%)

Passive 36.0 + 26.6° 28.2 +21.4% 16.1 +10.4° 9.6 + 13.5” 5.455 0.002
Chironomidae 24.9 + 24.1% 27.5 + 26.1% 134 +10.2° 7.6+ 13.8 3.086 0.035
Chironominae 13.9 + 19.6 35+6.2° 1.9 +4.3° 2.7 +64° 3.484 0.022
Orthocladiinae 7.9 £9.0° 168 +17.7° 7.8 + 8.8 3.1+38° 3.623 0.019
Diamesinae 29+6.1 49+104 11+28 14 +47 0.881 0.457
Tubificidae 3.7 £10.1 1.7 + 2.4 15+3.1 02+06 0.927 0.435

Active 64.0 + 26.6% 71.8 +21.4%° 83.9 + 10.4° 90.4 + 13.5" 5.455 0.002
Ephemeroptera 29.2 +25.2° 34.5 +22.8° 43.0 +25.3" 63.1 £ 19.6" 6.723 0.01
Baetidae 17.1 + 18.8* 18.9 + 16.3* 30.7 + 13.9° 47.0 +23.9° 7.619 <0.001
Ephemerellidae 4.8+9.9 3.6 £10.5 5.2 +10.0 2.6 £4.1 0.236 0.871
Heptageniidae 6.7 £ 13.4 10.6 £ 15.1 8.2 +82 12.3+£10.8 0.623 0.603
Trichoptera 20.5 + 18.4 94 +86 13.7 £ 10.6 10.5 £ 10.3 2.141 0.106
Rhyacophilidae 47+55 59 +57 26+19 1.7+1.9 2.775 0.051
Brachycentridae 6.3 +11.9° 1.8 +4.1% o° o° 2.896 0.044
Hydropsychidae 0.3 £0.7° 0* 3.3 +35° 6.6 £ 7.5" 7.386 <0.001
Tipulidae 69+73 6.9 =83 4.6 +3.7 24 £25 1.871 0.146

over, regardless of the dispersal models we chose, environ-
mental filtering had the most important effect on assemblage
structure for both dispersal groups in the glacier-fed region
(BM).

DISCUSSION
Assemblage structure determinants by dispersal mode:
whole study scale

We found that both deterministic (e.g., environmental
filtering) and stochastic (e.g., dispersal) processes were sig-
nificantly associated with macroinvertebrate assemblage
structure across the Yarlung Zangbo Grand Canyon area.
However, the relative importance of environmental and
spatial processes on assemblage structure depended on dis-
persal mode. Generally, spatial processes were more impor-
tant in regulating variation of the assemblage structure of
passive dispersers compared to environmental filtering that
showed a greater importance for active dispersers (Fig. 3).
Such findings are in accordance with several previous stud-
ies on the interaction between dispersal mode and the pro-
cesses that structure aquatic communities (Heino 2013a,
Padial et al. 2014, Cauvy-Fraunié et al. 2015, Gothe et al.

2017, Hill et al. 2017). However, we found no effect of river
basin identity for either passive or active dispersers, which
was in contrast to findings in boreal lowland macroinver-
tebrate assemblages (Heino et al. 2017a). As the shared ef-
fects of basin identity and environmental and/or spatial fac-
tors in our models are relatively high (from 0.3—4.4%), this
result should arise because basin identity influences macro-
invertebrate distributions indirectly by interacting with
other sets of variables. Alternatively, this difference could
be a result of our use of genus-level taxonomic resolution,
when species-level resolution may be necessary to detect
significant basin effects among study regions.

The adults of active dispersers (e.g., mayflies, caddisflies,
stoneflies, and dragonflies) in stream macroinvertebrate as-
semblages have robust wings and possess generally strong
overland dispersal capacity. These species can therefore se-
lect suitable habitats actively and efficiently, and usually
show stronger environmental control and weaker effects
of spatial structuring (Heino 2013a, Padial et al. 2014, Hill
et al. 2017). In addition, the main active dispersers in our
study, such as mayfly, stonefly and caddisfly taxa, are sensi-
tive to environmental variation in highland streams, and
their distribution may largely depend on environmental fea-
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Water depth PCNM14
pH PCNM19

PCNM3
PCNM25

Residuals = 90.3%

B Active dispersal group

Altitude

%Sand PCNM2
Channel- PCNM3
Eoe
Dissolved-

oxygen PCNM13
pH

%Cobble

Residuals = 81.4%

Figure 3. Venn diagrams showing the association between
environmental variables (Env), spatial factors (Spa), and dummy
basin variables (Bas) and assemblage structures of passive
(A) and active (B) dispersal groups in the whole study area. Values
represent adjusted R*-values. ** = p < 0.01, * = p < 0.05.

tures (Jacobsen 2008, Madsen et al. 2015). In contrast, pas-
sive dispersers consist primarily of aquatic worms and
midges that are primarily dispersed by passive water flows
and wind, respectively (Li et al. 2016). These species do
not actively disperse overland and probably have difficulty
colonizing more distant sites, which can result in their ab-
sence from those sites even if they are environmentally suit-
able (Thompson et al. 1999, Lester et al. 2007). Additionally,
some passive dispersers (e.g., aquatic worms and midges)
that are ecologically tolerant, can survive and reproduce
in some harsh conditions, showing insensitivity to environ-
mental variation in alpine streams (Milner et al. 2001,
Chaves et al. 2008, Madsen et al. 2015).

Assemblage structure determinants by dispersal mode:
single region scale

Our study spanned drainage basins with large variation in
elevation and highly heterogeneous environmental condi-
tions. The variation partitioning analysis showed that the
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relative influence of environmental and spatial processes on
assemblage structures of passive and active dispersers in in-
dividual regions were similar to the results for the study re-
gion as a whole (Table 3, Fig. 4A-D). This result was consis-
tent regardless of the spatial model (overland or watercourse)
used, supporting previous perspective that spatial eigenvec-
tors based on either overland or watercourse distances be-
tween sites provide similar information about spatial effects
on community structures (Gronroos et al. 2013, Cauvy-
Fraunié et al. 2015).

Our study also implies that the environmental filtering
effects were more important than spatial effects in regions
with harsh habitats, i.e., the upper canyon regions. In high
altitudes, factors associated with elevation were probably
the key factors that determined invertebrate assemblage
structure, because the high climatic and environmental var-
iation that occurs along steep elevational gradients can in-
duce strong environmental filtering effects on biota (Willis
et al. 2010, Sundgqyvist et al. 2013). Additionally, other envi-
ronmental factors that significantly change along elevation
gradients can also limit the survival, growth, fecundity, and
other vital activities of organisms in alpine streams. For ex-
ample, the low water temperature and dissolved oxygen lev-
els in highland streams often govern the physiology and dis-
tribution patterns of macroinvertebrates (Jacobsen 2008,
Madsen et al. 2015). Thus, the harsh habitat conditions in
high-elevation streams probably serve as a strong filter for
species distributions, and lead to the dominance of environ-
mental filtering in the upper canyon.

Furthermore, dispersal limitation has a strong influence
in species-rich communities that harbor large numbers of
rare species (Hubbell 2001, Qian and Ricklefs 2007, Myers
et al. 2013). The distribution of rare species may depend
more on dispersal from nearby habitats compared with
common species, because rare species may experience local
extinction more frequently than common species (Tsang
and Bonebrake 2017). Based on the same number of sam-
ples, the lower canyons (CY and MT) that have subtropical
climates had more rare species (~54 and 71% singleton spe-
cies in CY and MT, respectively), whereas the upper canyon
areas that have temperate climates had fewer rare species
(~33 and 44% singleton species in LZ and BM, respectively).
Thus, the effects of spatial processes relative to environ-
mental filtering may have increased from the upper to lower
canyon because of the change in numbers of rare species.

Surprisingly, we did not detect any effect of spatial struc-
turing in glacier-fed stream macroinvertebrate assemblages
(BM region), even for the passive dispersers. This lack of as-
sociation is probably a result of the exceptionally harsh hy-
drological features in glacier-fed streams as well as the high-
elevation environmental conditions filtering a large number
of the species that reach these sites. Glacial cover in catch-
ments has a negative effect on both species richness and
abundance of macroinvertebrates (Maiolini and Lencioni
2001, Milner et al. 2001, Laursen et al. 2015). These harsh



Table 3. Results of distanced-based redundancy analyses (d(bRDA) and variance partitioning, showing the relative influence of
significant environmental and spatial variables on the assemblage structure of the 2 dispersal mode groups within each of

the 4 individual regions. Values for each explained fraction are adjusted R?. Fractions are [E] pure environmental, [E x S]
shared, and [S] pure spatial. LZ = Linzhi city; BM = Bomi county; CY = Chayu county; MT = Motuo county.

Fractions
Data Distance Spatial variables Environmental variables [E] [E x S] [S]
LZ Passive  Overland PCNM1 . 0.198 0.007 0.041
Altitude, pH, % sand
Watercourse PCNM1 0.202 0.003 0.028
Active Overland - . 0.136 - -
% Sand, altitude, water temperature
Watercourse - 0.136 - -
BM Passive ~ Overland - 0.204 - -
Channel width, Dissolved oxygen
Watercourse - 0.204 - -
Active Overland - . 0.236 - -
Dissolved oxygen, Water depth
Watercourse - 0.236 - -
CY Passive ~ Overland PCNM1,2 0.001™ 0.066 0.089
% Boulder
Watercourse PCNM1,2,3,9 0.025 0.042 0.227
Active Overland PCNM2 . 0.166 0.048 0.004"*
Channel width, pH
Watercourse - 0.214 - -
MT Passive Overland PCNM3 0.013 0.021 0.028
Watercourse PCNM3 % Gravel 0.020 0.014 0.042
Active Overland PCNM2 0.062 0.052 0.010
Water temperature, % Gravel
Watercourse - 0.113 - -
" Non-significant fraction (p > 0.05); all other testable fractions were significant at p < 0.05.
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Figure 4. Percentage of variation in the assemblage structure in each region associated with (explained by) environmental variables
(Env), spatial factors (Spa), and interaction effects (Shared). Percent of variance that is also included. Separate analyses were conducted
for both passive and active dispersers, for overland-based spatial factors (A, B), and watercourse-based spatial factors (C, D).



conditions are caused by the cold water and unstable chan-
nel conditions (Brittain and Milner 2001, Maiolini and
Lencioni 2001), ultraoligotrophic conditions (Brittain and
Milner 2001, Laursen et al. 2015), and high loads of sus-
pended fine inorganic sediment (Holte and Gulliksen 1998).
These conditions may lead to specialist assemblages of toler-
ant, pioneer taxa in glacial streams. Therefore, the relation-
ship between invertebrate communities and spatial processes
may be obscured by the strong environmental filtering pro-
cess, leading to an absolute predominance of environmen-
tal effects in the BM region.

Caveats

The robustness of our conclusions depends on whether a
meaningful distinction exists between the taxa that we des-
ignated as active or passive dispersers. Ideally, we would
have used species- or genus-level information on dispersal
traits or modes instead of the coarse dispersal groupings
we used. Unfortunately, this information is unavailable for
macroinvertebrates in most regions, and the type of coarse
grouping we used is common in community-level research
(e.g., Van de Meutter et al. 2007, Heino 2013a, b).

Another limitation in our study is that we used a limited
number of local habitat variables (e.g., dissolved oxygen,
temperature, pH, and conductivity). We did not collect
some potentially important variables, such as riparian veg-
etation cover (Death and Collier 2010), catchment land-use
types (Monaghan et al. 2000), and wind dynamics (Bertin
et al. 2015), and other parameters. Lack of these variables
could account for the relatively low variation (~10-20%)
of assemblage structure explained by our overall dbRDA
models. However, many similar studies across the world
have reported low levels of explained variation as observed
here (Heino et al. 2015a).

An additional problem could be that a snapshot sample of
stream macroinvertebrate assemblages might not accurately
quantify the strongest relationships between assemblage
structure and ecological factors, because these relationships
are likely to change over time (Padial et al. 2014, Jiang et al.
2017). In other words, the importance of variables structur-
ing assemblage composition may change at monthly and
yearly temporal scales. Seasonal and inter-annual surveys
of macroinvertebrate assemblages in many geographic re-
gions may be necessary to assess the generality of our find-
ings.

Conclusions

Our results support the hypothesis that dispersal mode
affects the relative importance of deterministic (i.e., envi-
ronmental filtering) and stochastic (i.e., dispersal) processes
in structuring stream macroinvertebrate assemblages. We
concluded that assemblages of passive dispersers are af-
fected more by spatial processes than environmental condi-
tions, whereas assemblages of active dispersers are deter-
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mined mainly by environmental filtering. Moreover, we
found that environmental filters were most important in de-
termining macroinvertebrate assemblage structure at high
altitudes, especially in glacier-fed streams. This finding high-
lighted the importance of species sorting processes in harsh
environmental conditions. In general, our study provides
information about the coexistence of stream organisms in
the Yarlung Zangbo Grand Canyon area across different al-
titude ranges and highlights the significance of linking dis-
persal traits and multiple ecological factors underlying meta-
community organization.
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