
ar
X

iv
:1

71
1.

02
91

0v
3

 [
cs

.D
S]

 2
6

Fe
b

20
18

Run Compressed Rank/Select for Large Alphabets∗

José Fuentes-Sepúlveda1, Juha Kärkkäinen2, Dmitry Kosolobov2, and Simon J. Puglisi2

1 Department of Computer Science, University of Chile, Santiago, Chile
2 Helsinki Institute for Information Technology,

Department of Computer Science, University of Helsinki, Helsinki, Finland

Abstract

Given a string of length n that is composed of r runs of letters from the
alphabet {0, 1, . . . , σ−1} such that 2 ≤ σ ≤ r, we describe a data structure
that, provided r ≤ n/ logω(1) n, stores the string in r log nσ

r + o(r log nσ
r) bits

and supports select and access queries in O(log log(n/r)
log logn) time and rank queries

in O(log log(nσ/r)
log logn) time. We show that r log n(σ−1)

r −O(log n
r) bits are necessary

for any such data structure and, thus, our solution is succinct. We also describe
a data structure that uses (1+ǫ)r log nσ

r +O(r) bits, where ǫ > 0 is an arbitrary

constant, with the same query times but without the restriction r ≤ n/ logω(1) n.
By simple reductions to the colored predecessor problem, we show that the
query times are optimal in the important case r ≥ 2log

δ n, for an arbitrary
constant δ > 0. We implement our solution and compare it with the state of
the art, showing that the closest competitors consume 31–46% more space.

1 Introduction

Data structures supporting rank and select queries on sequences are fundamental to a
wide variety of topics in the theoretical and practical computer science, especially as
a component of more complex succinct and compressed data structures (we provide
a formal definition of rank and select queries below). Rank and select structures for
non-binary strings have been of interest since the advent of the FM-index [8] and the
compressed suffix array [12], and subsequent works on other indexes based on the
Burrows–Wheeler transform [5] (BWT) (e.g., see [15]).

The simple run-length encoding of the BWT of a string allows to achieve, on
highly repetitive strings, compression ratios that are comparable to the compression
ratios achieved by the best reference-based schemes such as LZ77 [19]. The crucial
component required for the implementation of compressed indexes based on BWT is
the support of the rank (and, sometimes, select) queries on the run-length encoded
BWT. Many works have been published on this and related topics (e.g., see [2, 11,
15, 16] and references therein), but none of them could achieve optimal (succinct)
run-length compressed space and optimal time simultaneously (recall that a data

∗This work is supported by the Academy of Finland via grant 1294143 and by the EU grant
H2020-MSCA-RISE-2015 BIRDS690 No. 690941. The first author received funding from Fondecyt
grant 3170534 and Basal Funds FB0001, Conicyt, Chile. Part of this work was developed during
the Shonan Meeting 126 “Computation over Compressed Structured Data”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/245129935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1711.02910v3

structure is called succinct if it occupies Z + o(Z) space, where Z is the information
theoretic lower bound for its size). This line of research became especially interesting
after a recent paper by Gagie et al. [9], in which these authors proposed a method that
allows to avoid the O(n

polylog(n)
) bits of redundancy that were required in all previous

BWT-based indexes supporting the full range of common search operations.
In this paper we describe a data structure that, given a string of length n with r

runs of letters from the alphabet {0, 1, . . . , σ−1} such that 2 ≤ σ ≤ r ≤ n/ logω(1) n,
stores the string in r log nσ

r
+ o(r log nσ

r
) bits of space (for brevity, log denotes the

logarithm with base 2), and supports select and access queries in O(log log(n/r)
log logn

) time

and rank queries in O(log log(nσ/r)
log logn

) time. Further, we prove that r log n(σ−1)
r

−O(log n
r
)

bits are necessary for any such encoding in the worst case and this implies that our
data structure is succinct. We also describe a version of this data structure that uses
(1 + ǫ)r log nσ

r
+ O(r) bits, for arbitrary constant ǫ > 0, with the same query times

but without the restriction r ≤ n/ logω(1) n. We then show, via reductions to the so-

called colored predecessor problem, that provided r ≥ 2log
δ n for an arbitrary constant

δ > 0, our rank, select, and access times are optimal, even if σ = 2. We also describe
a generic version of our solution with a parameter controlling time-space trade-offs.

We have implemented our data structure and experiments show that our closest
competitors consume 31%–46% more space; this small space usage, however, comes
at the price of a noticeable slowdown in query time on some inputs.

This paper is organized as follows. In the next section we first discuss some
auxiliary tools and then describe the main data structure. The subsequent section
is devoted to time and space optimality considerations. The last section presents a
practical implementation of these ideas and experiments.

Preliminaries. Let s be a string of length n. The letters of s are denoted s[0], s[1],
. . ., s[n−1] and s[i..j] denotes s[i]s[i+1] · · · s[j]. Our notation for arrays is similar:
e.g., a[0..n−1] is an array of length n. A run in s is a substring s[i..j] in which all
letters are equal. For any i, j, the set {k ∈ Z : i ≤ k ≤ j} is denoted [i..j].

For a string or an array B, the query access(i, B) merely returns B[i], the query
rankc(i, B) returns the number of letters c in B[0..i], the query selectc(i, B) returns
the position of the ith letter c in B or returns −1 if either i < 1 or B contains less
than i letters c (in particular, selectc(0, B) = −1). We omit the second parameter B
and write simply rankc(i), selectc(i), access(i) when B is clear from the context.

2 Data Structure

We briefly describe the so-called Elias–Fano scheme [6, 7], which is of fundamental
importance for succinct data structures and which we use in our construction below.

Elias–Fano scheme. Consider a bit array of length n that contains exactly k ones.
In the Elias–Fano scheme we split the array into k buckets of lengths ⌈n

k
⌉ (the last

bucket can be smaller), concatenate the unary encodings of the numbers of ones in the
buckets, thus obtaining a bit array B of length 2k (e.g., the bit array 001101 encodes
three buckets containing, respectively, 2, 0, and 1 ones), and finally, store consecu-

2

tively the relative positions of the ones inside the buckets in an array A[0..k−1]. A
occupies k⌈log n

k
⌉ bits, and the whole encoding takes k log n

k
+ O(k) bits in total. In

addition, B is equipped with the following data structure, adding o(k) bits.

Lemma 1 (see [13]). Any bit array of length n has an encoding that occupies n+o(n)
bits and supports the queries rank0, rank1, select0, select1 in O(1) time.

Using the data structure of Lemma 1, one can compute the bucket containing the
ith one as select0(i, B)− i+1. The relative position of this one in the bucket is stored
explicitly in A[i]. Therefore, any select1(i) query on the bit array can be answered in
O(1) time. We further enhance this basic scheme as follows.

Lemma 2 (see [2, Th. 14]). Given a set S ⊂ [0..u] of size k, there is a data struc-
ture that occupies O(k log u

k
) bits and supports, for any given x, predecessor queries

max{y ∈ S : y < x} in O(log logw
u
k
) time, where w is the size of machine word.

Lemma 3. Let τ ≥ 1 be a “sampling” parameter. Any bit array of length n containing
exactly k ones has an encoding that occupies (1 + 1

τ
)k log n

k
+O(k) bits and supports

select1 queries in O(1) time and rank0/rank1 queries in O(log τ + log log(n/k)
log logn

) time.

Proof. Since select1 was discussed above and rank0(i) = i− rank1(i) + 1, it suffices to
consider rank1. Let b = ⌊i/⌈n/k⌉⌋+1. Obviously, i lies in the bth bucket and, hence,
d = select1(b − 1, B)− b + 2 ones from other buckets precede i. Thus, it remains to
count the number of ones before position i that also lie in the bth bucket.

It is easy to see that there are ℓ = select1(b, B)−select1(b−1, B)−1 ones in the bth
bucket and their relative positions are stored in the subarray A[d..d+ ℓ− 1]. Denote
ρ = cτ , where c is a positive constant determined below. If ℓ ≤ ρ, we use binary
search to count in O(log ρ) = O(log τ) time the number of subarray elements that
precede the relative position of i inside the bth bucket, i.e., precede i mod ⌈n/k⌉. For
the case ℓ > ρ, we sample every ⌈ρ⌉th element of the subarray and put them in the
data structure from Lemma 2 occupying O(kb

ρ
⌈log n

k
⌉) bits, where kb is the number of

ones in the bth bucket, which allows us to count the number of sampled predecessors
of i mod ⌈n/k⌉ in O(log log(n/k)

log logn
) time; the ⌈ρ⌉−1 non-sampled elements following the

found sampled predecessor are processed again by binary search. We store these data
structures consecutively and locate the required one using an additional bit array of
length k that marks the sampled elements of A; the details are omitted as they are
straightforward. The overall space can be estimated as k log n

k
+O(k+ k

ρ
log n

k
), which

is (1 + 1
τ
)k log n

k
+O(k) for an appropriately chosen constant c in ρ = cτ .

For example, when τ = logn, Lemma 3 gives us a data structure that occupies
k log n

k
+O(k) bits and answers rank queries in O(log log n) time.

The main data structure. Let us consider a string s of length n that can be
represented as a concatenation of r runs of letters from the alphabet [0..σ−1] such that
2 ≤ σ ≤ r. Denote by n0, n1, . . . , nσ−1 the number of runs of the letters 0, 1, . . . , σ−1,
respectively; note that n0 + n1 + · · · + nσ−1 = r. For c ∈ [0..σ−1] and i ∈ [1..nc],
let ℓc,i denote the length of the ith run of the letter c. We encode s in the following
components (see a clarifying example in Fig. 1):

3

• a bit array R[0..n−1] such that R[i] = 1 iff s[i] 6= s[i+1] or i = n− 1;

• a string H [0..r−1] such that H [i] = s[select1(i+ 1, R)];

• a bit array C[0..r+σ−1] that is the concatenation of the unary encodings for
the number of runs of each letter;

• an integer array S[0..r−1] that stores the following numbers (in this order):
ℓ0,1, ℓ0,2, . . . , ℓ0,n0

, ℓ1,1, ℓ1,2, . . . , ℓ1,n1
, . . . , ℓσ−1,1, ℓσ−1,2, . . . , ℓσ−1,nσ−1

.

s = aaaabbbadddddaaaaaddbaaaa,
R = 0001001100001000010110001,
H = abadadba,
C = 000010011001,
S = 4, 1, 5, 4, 3, 1, 5, 2.

Figure 1: Here σ = 4 and, for the read-
ability, a, b, c, d denote the letters 0, 1, 2, 3.

Thus, R marks the last letter of every run
in s, H stores these letters in the correspond-
ing order, C encodes the number of runs
of each letter, and S stores the run lengths
grouped by letters.

Let us choose a positive “sampling” pa-
rameter ρ ≥ 1 that will regulate time-space
trade-offs for the data structure. Our goal is
to support the queries selectc and access in O(ρ+log log(n/r)

log logn
) time and the query rankc

in O(ρ+ log log(nσ/r)
log logn

) time (see optimality considerations below).

We encode R in (1 + 1
2ρ
)r log n

r
+ O(r) bits as in Lemma 3 with τ = 2ρ. The

array C is encoded in O(r) bits as in Lemma 1. The string H [0..r−1] is stored in the
following data structure of Belazzougui and Navarro [2] (slightly reformulated).

Lemma 4 (see [2, Th. 6]). Let ρ ≥ 1 be a “sampling” parameter. Any string of
length r over the alphabet [0..σ−1] such that 2 ≤ σ ≤ r has an encoding that occupies
(1+ 1

ρ
)r log σ+o(r log σ)+O(r) bits and supports access in O(ρ) time, selectc in O(1)

time, and rankc in O(log log σ
log logn

) time.

Proof. The result follows from the proof of [2, Theorem 6] if we put f(n, σ) = ρ.

The structures R and H are already sufficient to implement access queries in
O(ρ + log log(n/r)

log logn
) time since s[i] = H [rank1(i−1, R)]. For rankc and selectc, we need

C and S. It turns out that we do not have to store S explicitly since, as it is shown
below, S[i] can be computed in O(1) time, for any i ∈ [0..r−1], using R, H , and
C. However, besides access, our data structure requires to answer on S the queries
pred(x, S) that return the maximal i ∈ [0..r−1] such that S[0] +S[1] + · · ·+S[i] < x.

Table 1: Component sizes.

size in bits

R (1 + 1
2ρ
)r log n

r
+O(r)

H (1+1
ρ
)r log σ + o(r log σ) +O(r)

C O(r)
S O(r

ρ
log nρ

r
)

In order to perform pred in small space
and O(ρ + log log(n/r)

log logn
) time, we sample the

numbers S[0] + S[1] + · · ·+ S[j⌈ρ⌉], for j ∈
[0.. r−1

⌈ρ⌉
], and store them in the data structure

from Lemma 2, thus consuming O(r
ρ
log nρ

r
)

bits. To perform pred(x, S), we first find

in O(log log(nρ/r)
log logn

) ≤ O(ρ + log log(n/r)
log logn

) time

the maximal j such that S[0] + S[1] + · · ·+

4

S[j⌈ρ⌉] < x and, then, compute S[j⌈ρ⌉+1], S[j⌈ρ⌉+2], . . . , S[(j+1)⌈ρ⌉] in O(ρ) time,
hence finding the answer in an obvious way.

The sizes of the described data structures are summarized in Table 1. Before
discussing the implementation of rankc and selectc, let us explain how one can compute
S[i] in O(1) time using R, H , and C.

It follows from the definition of C that S[i] stores the length of a run of the letter
c = rank1(select0(i + 1, C), C). Further, it is straightforward that there are exactly
j = select1(c, C)− c+ 1 runs of letters 0, 1, . . . , c−1 and therefore, by definition, S[j]
stores the length of the leftmost run of c. Hence, S[i] stores the length of the kth run of
c, where k = i−j+1; we compute k in O(1) time. Then, we find k′ = selectc(k,H)+1
in O(1) time (see Lemma 4). Clearly, the kth run of c is the k′th run (of all runs) and
its length, which is equal to S[i], can be calculated as select1(k

′, R)− select1(k
′−1, R)

in O(1) time.
Consider the selectc(i, s) query. Put j = select1(c, C) − c + 1. As above, S[j] is

the length of the leftmost run of the letter c (if any). Let us find the maximal k such
that S[j] + S[j+1] + · · ·+ S[j+k−1] < i; obviously, the ith occurrence of c (if any)
must lie in the (k+1)st run of c. As k = pred(S[0] + · · · + S[j−1] + i, S) − j + 1,
it suffices to show how to compute t = S[0] + · · · + S[j−1]. We calculate t by
summing S[j′⌈ρ⌉+1] + S[j′⌈ρ⌉+2] + · · · + S[j−1], where j′ = ⌊(j − 1)/⌈ρ⌉⌋, with
the (j′+1)st number sampled from S, which, by definition, is equal to S[0] + S[1] +

· · · + S[j′⌈ρ⌉], all in O(ρ + log log(n/r)
log logn

) time. Further, the (k+1)st run of c exists iff

c = rank1(select0(j + k + 1, C), C); we check this condition and return −1 if the run
does not exist. Otherwise, we calculate the sum t′ = S[0] + S[1] + · · ·+ S[j+k−1] in

O(ρ + log log(n/r)
log logn

) time in the same way as we computed t; then, the ith occurrence

of c in the string s must be the pth letter, where p = i− (t′ − t), of the (k+1)st run
of c; thus, we obtain selectc(i, s) = select1(selectc(k + 1, H), R) + p.

Consider the rankc(i, s) query. Put j = select1(c, C) − c + 1. Again, S[j] is the

length of the leftmost run of the letter c (if any). In O(ρ + log log(n/r)
log logn

) time we

compute m = rank1(i − 1, R), which is the number of runs preceding the position i
(excluding the run containing i). Then, k = rankc(m− 1, H) of them are runs of c; k
is computed in O(log log σ

log logn
) time by Lemma 4. Thus, the total length of the runs of

c preceding the position i can be calculated as x = S[j] + S[j+1] + · · ·+ S[j+k−1]

in O(ρ + log log(n/r)
log logn

) time (as in selectc above). It remains to check whether the

position i itself is inside a run of c: it is so iff H [m] = c. Accordingly, we return
x + (i − select1(m,R)) if H [m] = c (here i − select1(m,R) is the position of i in the
run), and x otherwise.

Lemma 5. Let τ ≥ 1 be a “sampling” parameter. Any string of length n with r
runs over the alphabet [0..σ−1] such that 2 ≤ σ ≤ r has an encoding that occupies
(1 + 1

τ
)r log nσ

r
+ o(r log σ) +O(r) bits and supports the queries selectc and access in

O(τ + log log(n/r)
log logn

) time and rankc in O(τ + log log(nσ/r)
log logn

) time.

Proof. The space required for S is O(r
ρ
log nρ

r
) = O(r

ρ
log n

r
+ r log ρ

ρ
) ≤ O(r

ρ
log n

r
) +

O(r). Summing up the space bounds from Table 1, we obtain (1 + O(1
ρ
))r log nσ

r
+

5

o(r log σ) +O(r) bits. Further, selectc and access run in O(ρ+ log log(n/r)
log logn

) time; rankc

takes O(ρ+log log(n/r)
log logn

+log log σ
log logn

) time, which can be simplified as O(ρ+log log(nσ/r)
log logn

).
Putting ρ = cτ for an appropriate constant c, we obtain the result.

Theorem 1. Any string of length n with r runs over the alphabet [0..σ−1] such that
2 ≤ σ ≤ r ≤ n/ logω(1) n has an encoding that occupies r log nσ

r
+ o(r log nσ

r
) bits and

supports selectc and access in O(log log(n/r)
log logn

) time and rankc in O(log log(nσ/r)
log logn

) time.

Proof. The result follows from Lemma 5 with τ = log log(n/r)
log logn

since, for r ≤ n/ logω(1) n,

we have τ = ω(1) and r = o(r log n
r
).

Theorem 2. Any string of length n with r runs over the alphabet [0..σ−1] such that
2 ≤ σ ≤ r has an encoding that occupies (1 + ǫ)r log nσ

r
+ O(r) bits, where ǫ is an

arbitrary positive constant, and supports selectc and access queries in O(log log(n/r)
log logn

)

time and rankc queries in O(log log(nσ/r)
log logn

) time.

Proof. Since o(r log σ) ≤ 1
2ǫ
r log nσ

r
for large enough n, the result follows from Lemma 5

with τ = 1
2ǫ
; the big-O notation hides the additive constant 1

ǫ
in the time bounds.

Lemma 5 implies many other trade-offs that we do not discuss separately.

3 Optimality

Clearly there is a one-to-one correspondence between the set T of all strings of length
n with r runs over the alphabet [0..σ−1] and the pairs (R,H) such that R[0..n−2]
is a bit array with r − 1 ones and H [0..r−1] is a string such that H [i] 6= H [i+1], for
i ∈ [0..r−2]. Hence, the size of T is

(

n−1
r−1

)

σ(σ−1)r−1. Since log(x− 1
r
) ≥ log x− 2

r
for

any x ≥ 1 and r ≥ 2, we obtain log
(

n−1
r−1

)

≥ (r−1) log n−1
r−1

≥ (r−1) log(n
r
− 1

r
) ≥ (r−

1)(log n
r
− 2

r
) = r log n

r
−O(log n

r
) and thus log |T | ≥ r log n

r
−O(log n

r
)+log((σ−1)r) =

r log n(σ−1)
r

− O(log n
r
), which implies the following lower bound and that therefore

the data structure of Theorem 1 is succinct.

Theorem 3. Any encoding of a string of length n with r runs over an alphabet of
size σ requires at least r log n(σ−1)

r
− O(log n

r
) bits in the worst case.

Let us investigate the optimality of the query times provided in Theorems 1 and 2.
For this, we use reductions to the well-known colored predecessor data structure, in
which one is given a set of r integers from the universe [0..n] each of which is colored
either in red or blue, and the query asks to find, for a given integer x, the color of the
maximal y from this set such that y ≤ x. Our reductions resemble those from [18,
section 7] but we, nevertheless, present them for completeness.

Lemma 6. Suppose that, for any binary string of length n with r runs, there is an en-
coding that occupies O(r logO(1) n) bits and supports rankc, selectc, and access queries
in, respectively, tr, ts, and ta time. Then, there is a colored predecessor data structure
that stores r integers (colored in red or blue) from the universe [0..n] in O(r logO(1) n)
bits of space and supports the colored predecessor queries in O(min{tr, ts, ta}) time.

6

Proof. Let x1, x2, . . . , xr be the integers stored in our colored predecessor data struc-
ture. Suppose ta ≤ min{tr, ts}. We create a bit string s[0..n] such that s[i] = 1 iff
the predecessor of i is colored in red. Then, the colored predecessor queries can be
answered in O(ta) time using our O(r logO(1) n)-bit encoding and access queries.

Suppose tr ≤ min{ts, ta}. Then, we store the colors of x1, x2, . . . , xr in an array
c[0..r−1] and create a bit string s[0..n] such that s[i] = 1 iff i = xj for some j ∈ [1..r].
Thus, the colored predecessor query can be answered as c[rank1(x, s)−1] in O(tr) time.

Finally, suppose ts ≤ min{tr, ta}. We create again the array c and create a bit
string s[0..n+r] such that s[i] = 1 iff i = xj + j − 1 for some j ∈ [1..r]. Then, the
colored predecessor query can be answered as c[select0(x, s)− x] in O(ts) time.

Assuming r ≥ 2log
δ n for a constant δ > 0 and putting n′ := r, S := r logO(1) n,

w := Θ(logn), ℓ := log n in the formula of Pătraşcu and Thorup [17] (we denote their

n by n′ to distinguish it from our n), we obtain the lower bound Ω(min{ log r
log logn

, log log(n/r)
log logn

,

log logn, log logn}) = Ω(log log(n/r)
log logn

), which holds, by Lemma 6, for rankc, selectc, and

access in any data structure occupying O(r logO(1) n) bits. Combining this with the
lower bound Ω(log log σ

log logn
) from [2] for rank, we deduce the following theorem.

Theorem 4. Any data structure that stores a string of length n with r runs in
O(r logO(1) n) bits requires Ω(log log(nσ/r)

log logn
) time for rankc and Ω(log log(n/r)

log logn
) time for

selectc and access in the worst case, provided r ≥ 2log
δ n for a constant δ ∈ (0, 1).

Theorem 4 implies that the data structures of Theorems 1 and 2 are time optimal
whenever r ≥ 2log

δ n, for an arbitrary positive constant δ ∈ (0, 1).

4 Experimental Evaluation

We implemented our data structure and measured its practical performance relative to
other rank and select data structures available in the Succinct Data Structures Library
(SDSL) [10], including the data structures of: Golynski et al. (gmr) [11], Barbay et
al. (ap) [1], and Mäkinen and Navarro (rlmn) [14]. The implementation of gmr uses
n log σ + o(n log σ) bits and supports access, rank, and select in, resp., O(log log σ),
O(log log σ), and O(1) time. The implementation of ap uses nH0 + o(n)(H0 + 1) bits
and supports access, rank, and select in O(log log σ) worst-case time or O(logH0)
average time. The implementation of rlmn uses 2r(2 + log(n/r)) + σ log n + u bits,
where u is the space of an underlying rank/select structure over a sequence of length r,
and supports access, rank, and select in, resp., O(log(n/r)+ua), O(log(n/r)+ua+ur),
and O(log(n/r) + us) time, where ua, ur, and us correspond to the access, rank,
and select times of the underlying structure; we use ap as the underlying structure
as it showed the best time-space trade-offs. Also, we tested the data structure of
Belazzougui et al. (rle) [4], which uses (1 + γ)r log nσ

r
+ O(r) bits and supports

access, rank, and select in O(1
γ
log n

r
) time, for any γ ∈ (0, 1); rle is similar to our

solution1 but it was implemented only for small alphabets (hence we could not apply

1We thank the reviewers for informing us about this data structure.

7

it for all datasets). Additionally, we implement a simple construction of [3] (bcgpr): it
uses O(r logn) bits and supports rank and select in O(log log n) time (access was not
considered originally). The construction contains a pair of predecessor data structures
for each letter c ∈ [0..σ−1]: the first predecessor structure stores the starting indexes
of runs of c and the second one stores the number of letters c before the starting index
of each run of c. Our implementation of bcgpr uses binary searches instead of the
predecessor structures and additionally we store the bit array R and the string H of
our solution, but without rank/select support for H , in order to support access; thus,

access takes O(log log(n/r)
log logn

) time and rank/select queries take O(log r) time.

Implementation. Our solution implements R using Elias–Fano sparse bit array
from the SDSL; for H , we used the SDSL implementations of gmr and ap for large
alphabets, and huff for small alphabets; C was encoded as a plain bit array support-
ing rank and select in O(1) time; finally, S was stored as an integer array with samples
to support pred queries via binary search over S. The queries access, rank, and select
were implemented verbatim. In the experiments, we call our solution fkkp2.

Experimental setup. The experiments were carried out on an Intel R© Core R© i7-
7700 machine with 4 physical cores, clocking at 3.6GHz each, with one 32KB L1
instruction cache per core, one 32KB L1 data cache per core, one 256KB L2 cache
per core, and one 8MB shared L3 cache. The code of all the structures was compiled
with g++ and optimization level -O3. The data structures were compared in terms
of query times using the high-resolution C++ function high resolution clock in
the <chrono> library. The space consumption was measured by the serialization of
data structures to their binary format. Experiments constructed each data structure
on several datasets with varying n and σ. We tested several power of two sampling
steps for our structure and rle, but we report only 4, 16, and 32 since they exhibited
the best time-space trade-offs. To differentiate each configuration, we use the name
fkkp x y and rle x to denote a sampling step of x and underlying structure y.

Table 2: Datasets used in experiments.

dataset n σ runs

wl 1B 46,968,182 90 573,487
wl 2B 46,968,182 2,528 875,406
wiki 140,990,835 174,796 2,586,752
kr 1B 257,961,617 161 2,791,368
kr 2B 257,961,617 7,124 4,194,799

The datasets are shown in Table 2.3 All
our datasets are the BWT of highly repeti-
tive sequences. The datasets wl 1B and wl 2B

were generated by taking the previous and the
two previous symbols during the BWT compu-
tation of the sequence world-leaders from the
Pizza&Chili repetitive corpus4. Similarly, the
datasets kr 1B and kr 2B were generated from
the repetitive sequence kernel from Pizza&Chili. The dataset wiki was generated
from the edit history of some Wikipedia pages in which words were used as letters5.

2The implementation is available at https://github.com/jfuentess/sdsl-lite
3Available online at https://users.dcc.uchile.cl/~jfuentess/datasets/sequences.php
4http://pizzachili.dcc.uchile.cl/repcorpus. Last access: Nov. 2, 2017.
5https://dumps.wikimedia.org/enwiki/20171001/enwiki-20171001-pages-meta-history10.

xml-p3037476p3046511.7z. Last access: Nov. 2, 2017.

8

Table 3: Space usage of the data structures in megabytes. Best results are underlined.

fkkp gmr fkkp ap fkkp huff
gmr ap rlmn bcgpr

rle

4 16 32 4 16 32 4 16 32 4 16 32

wl 1B 2.21 1.80 1.73 1.82 1.41 1.34 1.79 1.38 1.31 78.71 26.99 1.93 9.96 1.40 1.26 1.22
wl 2B 4.15 3.53 3.42 3.24 2.61 2.51 125.57 42.60 3.67 15.97
wiki 13.15 11.52 11.27 11.59 9.96 9.71 402.42 274.61 12.75 53.56
kr 1B 10.55 8.55 8.22 8.47 6.47 6.14 8.53 6.54 6.20 440.30 230.83 8.84 48.29 7.18 6.53 6.40
kr 2B 19.79 16.79 16.29 15.43 12.44 11.94 698.00 410.50 16.21 76.43

Table 4: Running times for the access, rank, and select queries in µs. Best times are underlined.

access rank select

wl 1B wl 2B wiki kr 1B kr 2B wl 1B wl 2B wiki kr 1B kr 2B wl 1B wl 2B wiki kr 1B kr 2B

fkkp gmr 4 .18 .49 .66 .26 1.03 .86 2.04 2.02 .99 2.64 .92 1.32 1.30 .99 1.45
fkkp gmr 16 .18 .49 .65 .26 1.03 2.16 4.62 3.71 2.12 4.85 2.18 3.57 3.02 2.08 3.48
fkkp gmr 32 .18 .49 .64 .26 1.03 3.42 6.61 5.81 3.50 7.58 3.89 6.49 5.20 3.52 6.16
fkkp ap 4 .26 .42 .64 .32 .62 1.15 1.54 2.82 1.39 2.73 1.23 1.66 3.03 1.57 2.78
fkkp ap 16 .26 .42 .64 .32 .62 3.62 3.93 6.88 3.82 6.69 3.06 4.22 6.84 3.76 6.31
fkkp ap 32 .26 .42 .63 .32 .62 5.64 6.61 11.49 6.79 11.38 5.51 7.50 11.45 6.63 10.98
fkkp huff 4 .11 .17 .68 .84 .88 1.11
fkkp huff 16 .11 .17 2.14 2.42 2.17 2.54
fkkp huff 32 .11 .17 3.48 4.37 3.93 4.47

gmr .16 1.81 2.52 .29 2.45 .27 .74 .60 .36 .45 .30 .48 .66 .91 .50
ap .34 .62 1.22 .57 1.07 .16 .23 .48 .31 .39 .68 1.23 1.50 2.75 3.38
rlmn .26 .42 .63 .32 .62 .49 .73 1.17 .59 1.10 .54 .79 .75 1.52 1.58
bcgpr .02 .03 .03 .03 .03 .19 .17 .31 .32 .30 .12 .11 .19 .19 .16
rle 4 .41 .56 .46 .62 .52 .69
rle 16 .93 1.23 .97 1.29 1.08 1.39
rle 32 1.58 2.07 1.61 2.10 1.74 2.28

Results. Table 3 shows the size of each data structure for all the datasets. In our
experiments, the structure fkkp ap 32 provides the best space consumption, except
for the dataset wl 1B, where rle 32 has the best consumption. For the underlying
structures gmr, ap, and huff, our structure reduces its size by increasing the size of the
sampling step. For small alphabets, we are comparable with rle. For large alphabets,
the closest competitor, rlmn, uses from 31% to 46% more space than fkkp ap 32.

Table 4 shows the query time of individual access, rank, and select queries. For
each type of query, we executed 1,000,000 random queries, reporting the median time
of an individual query achieved over ten non-consecutive executions. For access query,
the best times were reached by bcgpr, being 10 times faster. The explanation is that
while bcgpr performs an access to a plain sequence during the access query, the other
structures need to perform an access over a succinct representation of a sequence.
Notice that our structure has similar query time than the other structures. For rank
query, the best times were reached by bcgpr for large alphabets and by ap for small
alphabets. For small alphabets our structure is at most 5 times slower than the best
competitor, using samplings steps of 4. For large alphabets, the difference increases to
at most 9 times. For the case of select queries, the best times were reached by bcgpr.
In the worst result, dataset wl 2B, our structure is 12 times slower. In the best result,
dataset wiki, our structure is 3.4 times slower. In general, for larger sampling steps,
the query time of our structure increases. However, for larger sampling steps the size
of our structure decreases. Thus, for large enough sequences with runs, our structure

9

could maintain the sequences in main memory, meanwhile the other structure should
access the disk, increasing their query time.

According to our experimental study, the best trade-offs of our structure are
reached with the underlying structure ap and samplings steps of 16 or 32, if our
focus is space, or with gmr and samplings of 4 or 16, if our focus is query time.

References

[1] J. Barbay, F. Claude, T. Gagie, G. Navarro, and Y. Nekrich. Efficient fully-compressed
sequence representations. Algorithmica, 69(1):232–268, 2014.

[2] D. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing
sequences. ACM Transactions on Algorithms, 11(4):1–21, 2015.

[3] D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, and M. Raffinot. Composite repetition-
aware data structures. In Proc. CPM, pages 26–39. Springer, 2015.

[4] D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, and M. Raffinot. Flexible indexing of
repetitive collections. In Proc. CiE, pages 162–174. Springer, 2017.

[5] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

[6] P. Elias. Efficient storage and retrieval by content and address of static files. Journal
of the ACM, 21(2):246–260, 1974.

[7] R. M. Fano. On the number of bits required to implement an associative memory.
Technical Report 61, Computer Structures Group, MIT, Cambridge, MA, 1971.

[8] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc.

FOCS, pages 390–398. IEEE, 2000.
[9] T. Gagie, G. Navarro, and N. Prezza. Optimal-time text indexing in BWT-runs

bounded space. In Proc. SODA, pages 1459–1477. SIAM, 2018.
[10] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play

with succinct data structures. In Proc. SEA, pages 326–337. Springer, 2014.
[11] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: a

tool for text indexing. In Proc. SODA, pages 368–373. SIAM, 2006.
[12] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In

Proc. SODA, pages 841–850. ACM/SIAM, 2003.
[13] G. Jacobson. Space-efficient static trees and graphs. In Proc. FOCS, pages 549–554.

IEEE, 1989.
[14] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.

Nordic Journal of Computing, 12(1):40–66, 2005.
[15] V. Mäkinen and G. Navarro. Compressed full-text indexes. ACM Computing Surveys,

39(1):2–62, 2007.
[16] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly

repetitive sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.
[17] M. Pătraşcu and M. Thorup. Time-space trade-offs for predecessor search. In Proc.

STOC, pages 232–240. ACM, 2006.
[18] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications

to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms,
3(4):43:1–43:25, 2007.

[19] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–343, 1977.

10

