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ABSTRACT
Edge clouds handle data and computations closer to its source

and users. Applications like industrial automation, bring new

challenges and require solutions tailored for computation-

centric edge cloud networks. In this paper we build on exist-

ing edge and fog computing models and develop a solution

to predict and store data in edge resource caches for upcom-

ing computations. Our solution is based on grouping caches

according to the workloads they serve. We further develop

methods for populating the caches and ensuring the coher-

ence of the cached data. We evaluate the performance of

our grouping mechanisms and show that they bring signifi-

cant performance gains, both in terms of network traffic and

access latency.

CCS CONCEPTS
• Theory of computation → Caching and paging algo-
rithms; • Computer systems organization → Cloud com-
puting;
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1 INTRODUCTION
Edge clouds are a new and attractive way of handling large-

scale data analysis closer to the clients at the network edge.

Edge clouds offer several benefits including decreased latency

for clients, reduced network traffic, and better handling of

information that is of local interest. Different models for edge

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

MECOMM ’17, August 21, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5052-5/17/08. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3098208.3098212

computing have been proposed [3, 11] and we follow our

proposed Edge-Fog cloud model for this work [3]. Edge-Fog
cloud follows a three-tier hierarchy which consists of lower-
powered edge devices closest to the users, fog devices with more
computational power, and a central data store for permanent
archival of data.

While the data store provides permanence, solely relying

on it for storing computational data adds considerable delay

for fetching data to edge resources. Hence, caching data at

the edge seems to be the obvious answer as it yields several

benefits [4, 6] as well. However, we need to address addi-

tional challenges on how to manage, discover, and use the

data cached at the edge. Existing solutions [4] propose CDN-

like models which is not appropriate for a computation-first

network as necessary for edge cloud application scenarios.

When compared to CDNs, data in Edge-Fog cloud has shorter

temporal relevance and receives more frequent updates.

In this paper, we propose an efficient edge caching mecha-

nism leveraging the edge and fog resource caches to predict

and store data required for upcoming computations. Our

target applications are in industrial environment, particu-

larly in factory automation and collaborative robotics. This

paper makes the following contributions. First, we define a

model and methods for cache grouping in an Edge-Fog cloud.

Second, we develop mechanisms for ensuring coherency

of cached data. Third, we evaluate the performance of our

grouping solutions in a simulated Edge-Fog environment

and show that grouping based on workload type brings sig-

nificant performance gains such as reduced network traffic

and access latency. We also discuss the optimal size of such

resource groups and importance of workloads in the system.

The paper is structured as follows. Section 2 presents the

application scenarios and Section 3 reviews related work.

We present our solution in Section 4 and discuss communica-

tion matters in Section 5. Section 6 presents our evaluation.

Finally, conclusion of the work has been drawn in section 7.

2 APPLICATION SCENARIOS
Recent studies predict close to 50.1 billion IoT devices will

be connected over the Internet by 2020 [1]. Data generated

by these devices will require time-critical processing and

management to support fault resistant applications such as

augmented reality, autonomous driving, video analytics etc.

Automation also extends to factories and acts as a driv-

ing force behind next generation manufacturing industries.

The production system needs to be made faster, flexible, and
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cost-efficient to cope with increasing demands. Factories

can achieve low latency computations by allocating tasks on

edge clouds. Edge nodes can process data from automated

tools and sensors to be reconfigured based on the task re-

quirements.

However, factory tasks rely heavily on the availability of

required data at compute time. Specification of end prod-

ucts can significantly vary, requiring on-the-fly calibration

of the tools for each workpiece. Such recalibration informa-

tion must be cached at edge nodes to ease subsequent task

processing. For example, a machine meant for drilling holes

must be able to change its settings for the next workpiece or

switch to a different task altogether such as driving screws.

Further, industries have started collaborative robots such as

Bosch APAS [2] that work in tandem with human operators.

Such robots need time-critical processing to create a safety

zone for its operator while executing future demands. Rele-

vant warning and sensor information must be cached at edge

nodes to achieve sufficiently low processing requirements.

Autonomous transportation systems within a factory also

impose similar requirements by requiring optimal and up-

dated routes in extremely low time bounds. Required map

data must be pre-cached and updated to all vehicles with crit-

ical information such as accidents or path congestion within

a reasonable time. Augmented Reality glasses can assist op-

erators in a continuously varying production environment

by performing markerless object recognition and accurate

tracking in a factory. This requires comparing real-world

objects with pre-created 3D models stored in a remote data

store. The fluidity and QoE of these devices significantly

rely on bounding data retrieval delay within human reaction

time.

Apart from the applications mentioned above, many other

Cyber-Physical-Production-Systems (CPS) data in edge clouds

needs inter-operation and communication which can only be

achieved by efficient caching and data sharing within cloud

resources.

3 RELATEDWORK
Several edge cloud models such as Cloudlets [7], nano data

centers [8, 12], community clouds [9], CISCO Fog [11] have

been proposed to perform computation tasks at the edge

of the network. However, these models assume that the re-

quired data for computation at a node is available in local

caches of edge resources. That does not always hold as edge

cache hit ratio is heavily dependent on the deployed work-

load type [13]. Further, they do not consider the impact of

fetching the data from a data center into the edge cache and

the subsequently added delay on workload computation.

Content Delivery Network (CDN) models aim to distribute

content to end users via distributed servers and edge cache

hierarchies [14, 15]. Edge caching is also a major motivation

Task Deployment

Populate Caches
 Grouping 

Classifiers

Figure 1: Edge-Fog cloud caching algorithm

behind the design of 5G technology [16]. Exploitation of

in-network caching to enable more efficient content distri-

bution serves as a motivation behind information-centric

networking (ICN) research. However, both CDN and ICN

assume a single publisher/owner of the data which holds the

rights for updating that content in future [6]. These networks

follow a push-based approach wherein the owner pushes its

data update to the central repository which broadcasts that

update to every edge cache hosting that data. However, such

an approach is inefficient for computational edge caches

as the local copy of shared data can frequently be updated

simultaneously by several edge resources. Notifying the cen-

tral database of every update can lead to a severe network

congestion and does not scale.

Cooperative caches groups at the edge of the network

have been proposed to avoid recurrent updates to the central

database. Ramaswamy et al. [17] clustered edge caches into

cooperative groups based on their proximity to other caches

and the origin server. Our proposed cache grouping tech-

nique significantly differs from their approach. The authors

cluster resources based on their network distances to other

resources whereas we consider locally cached content as

clustering classifier. Using network distance for clustering

in Edge-Fog cloud would significantly lower the efficiency

of task deployments which also considers the processing

power of Edge/Fog resources. Furthermore, Ramaswamy et

al. they do not consider parallel updates within cache groups

and therefore do not propose a coherence model to mitigate

invalid simultaneous updates.

4 RESOURCE CACHE GROUPING
Resources in Edge-Fog cloud request data from data store

into their local cache according to end application require-

ments. Task deployment algorithms for Edge-Fog cloud, such

as LPCF, designates a set of resources (Edge and Fog alike) for

available tasks on to achieve least processing and network

cost involved [3]. However, in a system with varying work-

loads, such a deployment reduces cache re-usability as same

set of resources might be allocated to workloads with dif-

ferent data requirements in subsequent computations. This

further leads to higher cache misses and higher network

latency for fetching required data from data store into local

cache thereby delaying the overall computation.

We consider Edge-Fog compute resources as collection of

edge caches represented by RC = RC0,RC1, ...,RCn−1. Every
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edge cache stores data Di as per its application task require-

ment. Deployed tasks in cloud can be classified into work-

loadsW of k types. A resource computing workloadWk will

require data classified according to that workload Dk
i in their

cache. We propose a cache grouping algorithmwhich aims to

cluster caches into cache groups CG = CG0,CG1, ..,CGK−1
based on their local cached content classification. Cache

groups are not disjoint as resource RCx can be part of more

than one {CG} if it has cached data for different workloads.

The size of the group, |CG | denotes the number of members

of that group. The caches within a group can maximize their

cache hit ratios and lower network delays by sharing data

with other group members in future deployments.

4.1 Grouping Algorithm
We propose a three-step iterative cache grouping algorithm

which builds up on the available task deployment algorithms.

The algorithm is shown in Figure 1.

At time t = 0, none of the resources in Edge-Fog cloud

have any tasks assigned to them and thus have no data in

their local cache. At computation arrival time tc , task de-

ployment algorithm deploys an application task on a set of

{RC}i resources which then retrieve the required data from

data store into their local caches (phase “Populate”). As all

resources involved in the computation belong to same task,

they cache same or related content in their local cache. The

computation is classified as part of workloadW and all re-

sources {RC}i are grouped in a single abstract cluster {CG}i .
As several parallel computations are deployed on the cloud,

at time t = n computations deployed are classified inWk
workloads which form CGk resource cache groups.

In the next iteration, the task deployment algorithm pri-

oritizes deploying next application task on a cache group

which handled that workload in the previous cycle. This

enhances the cache re-usability in resources belonging to

that group. In case the resources in a group are non-ideal for

a task deployment, other resources (independent or other

group members) are considered for computation. Size of a

cache group increases as more resources compute tasks and

cache content for that particular workload. As a result, a

cache can be member of more than one group based on its

cached content classification. Figure 2 shows a snapshot of

Edge-Fog cloud resources which have been grouped in two

cache groups.

Within each cache group a resource is assigned as a leader
(depicted with crown in the figure) which acts as a represen-

tative and communication backbone of the group. The leader

is responsible for maintaining a coherent copy of data within

a group and to enable content sharing among group mem-

bers. The leader is required to have a consistent connection

with all of its group members, exploiting the Fog resources in

the model if needed. A distributed election algorithm can be

Group 1 Group 2 Leader Deployment

Figure 2: Edge-Fog cloud grouped resources

used to elect a group member as a leader. The group leader

can also replicate its local data structures on a secondary

node which acts as a backup leader to ensure consistency

despite failures.

4.2 Grouping Classifier
Our cache grouping algorithm relies on data classification

in the Edge-Fog cloud. As mentioned in Section 2, different

applications require different sets of data at different times

for their compute tasks. Data can be clustered according to

their similarities which can be exploited to form dedicated

cache groups for a data type. Several classification metrics

can be used to achieve such groups.

1) Location: Data can be classified according to its location

of generation or usage. For example, Augmented Real-

ity headsets require 3D model and augmentation based

computations only on objects within their field of vision.

2) Relevance: Data sharing attributes for re-configuration
is a good classifier. Collaborative robots submitting pro-

duction tasks of mobile and laptop cases can be grouped

under casing attribute.
3) Pending tasks: Factory environments are flexible and

dynamic wherein tasks are not bound to robots; instead

the robots choose from a pool of pending tasks.

4) Time: Data generated by sensors are relevant to the end

resources only for a particular period which can range

from a few hours to a couple of days.

5) Personalized settings: Collaborative robots work with

human operators who can configure them according to

their specific needs.

6) Routes/maps: Autonomous robots are often mobile and

require constant computation of optimal paths devoid of

hinderances. Continually updated maps must be made

available at frequent time intervals.

7) Warning signals: Data relevant to the safety have higher
importance over other information and need to be made

available to all the devices until categorized as invalid.
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Figure 3: Communication Model

8) Sensor information: Actuators respond and regulate

themselves based only on particular sensor data.

Above are examples of possible classifiers relevant for a

factory automation scenario. However, for optimal operation,

one or more groups need to be considered at the same time

and groups must be weighted differently for each category

of end devices, as not all the information is equally relevant.

5 GROUP COMMUNICATION
Resources clustered in a cache group need to communicate

with their group members to share updated data efficiently.

However, an effective communication technique needs to

fulfill the following objectives for efficient operation.

1) Reduce unnecessary network traffic by exchanging data

between resources only when needed.

2) Ensure consistent copies of data by avoiding computation

on stale copies.

Considering above objectives, we propose a communica-

tion model which introduces a set of tabular data structures

attached to resource’s cache. We further present a low over-

head message flow model to update and retrieve shared data

within a group. Ourmodel ensures causal coherence on shared
data and is highly inspired by directory cache coherence algo-
rithm [10] for networked processing systems.

5.1 Cache Data Structures
We now define data structures deployed with resource caches

to assist data sharing within the group. The data structures

provide content information to data stored in resource lo-

cal cache. We deploy tables at three entities in the system:

member resource, group leader and the Data Store.

Group Member Table: Every resource in Edge-Fog cloud

associates itself with a content group and maintains a table

to help content sharing with other group members. Members

maintain a local cache table with the following entries:

a) Data Name: URI of a content cached in local cache

b) Leader Address Address of the group leader responsible

for synchronization of that content

c) Tag State of data within its local cache. If data is currently

used for computation, tag entry is locked otherwise free
The group member table maps locally cached data to

groups based on their respective leader address. Tag is re-

quired for providing coherence within the group and is ex-

plained in further sections of this paper.

Group Leader Table: The group leader acts as a communi-

cation gateway between members of the group. To maintain

the current state of data flowing within the group, the leader

maintains a group leader table with following information:

a) Data Name: URI of the content cached within the group

resource caches

b) Tag: Maps to content tag in member resource cache

c) Resource Address: Address of resource which updated

the data. The resource also acts as host of that content

within a group

d) Timestamp: Time at which resource notified the leader

after updating the content

The group leader table helps ensure that the leader has

addresses of host resources and the content state is synchro-

nized between a resource and group leader.

Data Store Table: Data Store is the central repository and

backup of cached content in Edge-Fog cloud. Resources up-

date their content in the Data Store after every computation.

The Data Store table has the following entries:

a) Data Name: URI of data stored in Data Store

b) Classifier Type: Classification property used for map-

ping content to a cache group

c) Leader Address: Address of group leader handling syn-

chronization of that content

5.2 Communication Flow
We use the information stored in data structures described

in previous section for ensuring that content gets updated

properly. We use a pull-based model within a group which
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limits the number of messages in the network while ensuring

data consistency. We assume that the data store acts as a

central roll-back in case of failures in the system. To ensure

this, the resources upload their updated data to the Data Store

after each successful computation. As data upload happens

in-parallel to task computation and data retrieval, it does

not impact the computation time in the cloud. We further

assume that messages in the system are not lost or corrupted

in transmission.

Retrieving Content: A naive way to update cached con-

tent is to retrieve it from the data store. However, the main

objective of forming cache groups in Edge-Fog is to assist

content sharing amongst the computing resources. Retriev-

ing content within a cache group must also preserve the

coherence among multiple content copies in other edges of

the network.

The communication model for retrieving content within a

group is shown in Figure 3a. The model ensures causal coher-
ence by sharing only last known updated content within the

group. The group leader acts as information dissemination

entity for the group. Every resource requests updated copy

of content before initiating computation on its locally cached

copy. The request is sent to the group leader which checks its

table and returns the address of the node which last updated

the content. The requesting node directly queries for the

content from last-updater node. In case the node is alive and

has the data in its local cache, it sends the content back to

the requester. Otherwise, request is sent to the data store to

retrieve backup copy.

Updating content within a group: Content in an Edge-

Fog cloud resource group is continuously updated after each

successful computation. However, to mitigate invalid results,

resources must always compute on the most relevant copy

of required data. A naive approach is to push the updated

data to all members of the group which house copy of that

data in their local cache. However, this leads to unnecessary

flooding in the network which impacts network latency.

Instead, we employ a pull-based, step-wise checkpoint

approach for handling updates. The message flow is shown

in Figure 3b. Before computing on a locally cached copy of

content, a member resource inquires its group leader for

any updates on that copy of data. In case data has been

updated by another member, the requesting node retrieves

the latest copy by following the model described above. After

successful retrieval, the updating node marks its "update-in-
progress" by tagging its locally cached content as locked and

asks the group leader to do the same. After a successful

update, the resource un-tags its cached content as free and
notifies the leader of the completed update. The leader, in

turn, marks the particular content as valid along with the

timestamp of the operation. This operation prevents any

0.02 0.04 0.06 0.08 0.1

Cache Size

0

0.2

0.4

0.6

0.8

1

C
a

c
h

e
 H

it
 R

a
te

4-group

4-no_group
32-group

32-no_group

(a) Effect on cache hit rate

0.02 0.04 0.06 0.08 0.1

Cache Size

20

40

60

80

L
a

te
n

c
y
 (

m
s
)

4-group

4-no_group
32-group

32-no_group

(b) Effect on latency

Figure 4: Variable grouped resource cache size
analysis

other resource to retrieve data under update. Finally, the

resource updates the Data Store with the computed data.

6 EVALUATION
We implemented our system in Icarus [5] on a topology of

320 Edge and Fog resources and a central data store which

stores all content in network. We clustered resource caches

into evenly divided groups of various sizes. A Fog resource

in each group is assigned the task of group leader. Network

delays were modeled according to [3, 18].

A workload is defined as a request distribution following a

power law distribution. We generate requests for 96∗104 con-

tent items divided in upto 32 different workloads. A resource

can store maximum of 10% of overall contents in the network

in their local cache. Caches utilize Least Recently Used (LRU)

cache replacement policy for swapping their cached con-

tents. Cache retrieval and updates follow the communication

models described in section 5.2 coupled with ideal Nearest

Replica Routing (iNRR) algorithm [19].

6.1 Grouped vs. Non-Grouped
We first compare the effect of grouping on system perfor-

mance. Figure 4 shows the cache hit rate and network latency

after grouping resource caches. For optimal comparison, we

cluster caches into same number of groups as the number of

workloads deployed to ensure 1:1 mapping (see below).

Figure 4a shows cache hit rate after grouping. For both 4

and 32 workloads, grouping almost doubles the overall cache
hit rate. Similarly, figure 4b shows that the latency of fetching

the content decreases by up to 45% after grouping. The re-

sults clearly indicate that our grouping strategy significantly

improves content management in edge clouds.

Effect of Cache Size: The results also show that cache

grouping is most effective when cache sizes are small. As we

increase the cache size of computing resources, the cache

hit and latency gains slightly diminish. The reason behind

this decrease is the overall fraction of the content that can be

cached in the system. When resource cache has limited size,

the amount of content that it can cache is low and grouping

several resources in cache groups increases the probability
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of serving locally cached content. On the other hand, as

cache size increases, it can cache more content in the net-

work which increases cache hits even in disparately placed

resources, closing the gap between non-grouped caching and

grouped strategies.

Effect of workload sizes: Figure 4 also shows a correlation
between performance gain and workload size. Both cache hit

ratio and latency performs much better for lower workload

sizes. A workload is modeled as uniform distribution of similar
content requests. Lower workload sizes depict that overall

content requests are very similar and thus can be satisfied

by local caches of resources. As the content requests start

being more unique, resources undergo more cache misses

thereby inducing latency while satisfying a request.

6.2 Variable Group Size Analysis
We analyze the effect of group size |CG | and number of

groups {CG}k on system performance. Figure 5a shows the

impact of variable group sizes on cache hits in the system.

We compare the performance for several workload sizes and

analyze how they affect the cache performance.

For all workload sizes, cache hit rate is is observed to be

low as due to lack of cache grouping, content requests are

handled by all resources in the cloud. As resources grouping

in the system increases, the request types start converging on

a single cache group. Maximum hit rates are achieved when

number of cache groups equal the number of workloads. This
1:1 mapping ensures that each workload is being handled by

a dedicated cache group, eliminating any overlap. Increasing

the number of cache groups more than available workloads

leads to overlap and duplication of content which reduces

the cache hit performance of the network.

A similar trend is also seen for latency in figure 5b. The

content retrieval latency is inversely proportional to cache

hit rate of the system. As the cache hit rate increase, the

latency to retrieve content decreases and reaches a global

minimum at 1:1 deployment of workload and groups.

7 CONCLUSION
We have presented a grouping strategy for managing content

in edge cloud caches. Our grouping is based on classifying

content based on their workloads and caching related content

on same caches. Our communication model provides causal

data coherence while enabling parallel updates. We have

evaluated our approach via simulations and have shown that

grouping based on workload type significantly improves

system performance in edge clouds through reduced network

traffic and access latency. Our results show that the optimal

number of groups is the number of workloads on the system.
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