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Abstract 17 

Given the increased interest in non-pollen palynomorphs (microscopic objects other than pollen 18 

identified from the pollen slides) in palaeoecological studies, it is necessary to seek a deeper 19 

understanding how reliable the obtained results are. By combining quantitative information of algal 20 

pigments and phylotaxonomical resolution from sedimentary ancient DNA (sedaDNA), we validate 21 

the richness and abundance of aquatic non-pollen palynomorphs – fossil algae, in the sediment of a 22 

small temperate lake. For the first time, fossil and sedaDNA algae data were combined in a 23 

composite data-set and algal turnover rates in time were reconstructed for the last 14,500 years. 24 

This comparison will serve as an indication to what extent fossil algae can be used to answer 25 
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different research questions and to reveal if it is reliable to base palaeoecological interpretation 26 

solely on fossil algae identified from the pollen slides. 27 

 28 
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 30 

1. Introduction 31 

In addition to pollen identification, palynologists have recently started to consider the value of other 32 

microscopic objects (e.g. fungi, algae, plant and animal remains) from pollen slides, referred to as 33 

sensu stricto non-pollen palynomorphs (NPP). NPP are found in various environments such as in 34 

sediments  underlining their potential in palaeoecological studies (Shumilovskikh et al., 2016; 35 

Lenarczyk et al., 2015; Aptroot and van Geel, 2006; Medeanic, 2006; Turner et al., 2014; Demske 36 

et al., 2013). Whilst there are studies utilizing NPP in addressing significant research questions, 37 

such as evaluating ecological impacts of the late Quaternary megaherbivore palaeodiet and 38 

extinctions (Gill, 2014; van Geel et al., 2011), revealing fungi influence on forest dynamics 39 

(Latałowa et al., 2013), and estimating biotic turnover rates during the Pleistocene-Holocene 40 

transition (Stivrins et al., 2016), only a handful of studies deals with the comparison of NPP with 41 

other proxies and the validation of NPP as a palaeobiological metric (Etienne and Jouffroy-Bapicot, 42 

2014; Gill et al., 2013; Wood and Wilmshurst, 2013). Given the increased interest in NPP, it is 43 

necessary to seek a deeper understanding how reliable metric it is in quantifying temporal changes 44 

in ecosystems.  45 

 46 

Based on Miola’s (2012) review, there are more than 1300 NPP descriptions available up today and 47 

the list of NPPs is still growing. Palaeoecologists are aware that there may be certain limitations in 48 

NPP – for example, part of NPP do not preserve as fossils. Selective preservation and thus, 49 

distribution, is an issue for most palaeoecological analyses. Therefore, the results must be 50 



interpreted very carefully. Nevertheless, as all biological organisms prefer certain environmental 51 

conditions, even scattered information about NPP in time and space can aid greatly the 52 

palaeoecological reconstructions.  53 

 54 

NPPs are formed both in terrestrial and aquatic environments and the bulk of them are characteristic 55 

of the local environment, they thus do not travel long distances from their source of origin (van 56 

Geel, 2001). Although, NPP identified alongside pollen analysis has been proven useful in 57 

understanding of the changes in lakes in the past (van Geel, 2001; van Geel et al., 1994; Jankovská 58 

and Komárek, 2000), majority of the studies have focused on paludified or terrestrial environments 59 

(Dietre et al., 2017; Shumilovskikh et al., 2015; Chmura et al., 2006) leaving less attention to 60 

aquatic environment. No matter whether NPP is discovered from terrestrial or aquatic sediments, 61 

question remains – how reliable the results are? 62 

 63 

Fortunately, regarding aquatic NPP (fossil algae) identified from gyttja, there are useful recent 64 

methods to evaluate NPP performance, namely algal pigments and sedimentary ancient DNA 65 

(sedaDNA). Algae contain pigments (lipid soluble chlorophylls and carotenoids), which are in most 66 

cases well preserved in lake sediments (Leavitt and Hodgson, 2001). Hence, pigments can be used 67 

to reconstruct the past quantitative phytoplankton community dynamics (Reuss et al., 2010; Leavitt 68 

and Hodgson, 2001; Fietz et al., 2007; Tonno et al., 2013; Deshpande et al., 2014). Although algal 69 

pigments provide quantitative estimations about the major phytoplankton groups, they are limited in 70 

indicating the abundance of lower taxonomic groups such as genera or species (Leavitt and 71 

Hodgson, 2001).  72 

 73 

Sequencing of environmental DNA, specifically sedaDNA, from lake sediments have recently 74 

become more available that offers identification of specific palaeo communities and groups of 75 



organisms (Willerslev et al., 2003; Graham et al., 2016; Coolen et al., 2013). There are two 76 

significant differences between sedaDNA and NPP. sedaDNA can reconstruct species belonging to 77 

all domains of Life: Eukaryota, Bacteria and Archaea, thus comprising in magnitudes higher 78 

phylogenetic diversity than NPP, which due to taphonomical issues represents only selective 79 

diversity of species. On the other hand, NPP usually covers representatives from two domains e.g. 80 

Bacteria: cyanobacteria and Eukaryota: green algae, whilst sedaDNA requires a complex targeted-81 

methodology/sequencing to represent more than one domain. In the current study, we compared 82 

sedaDNA and NPP algae from Eukaryota, which are one of the most abundant microscopic remains 83 

from lacustrine palynological samples (Jankovská and Komárek, 2000; Stivrins et al., 2015; 84 

Wacnik, 2009; Sarmaja-Korjonen et al., 2006). Since the domain of Bacteria was not targeted by 85 

sedaDNA, the comparison between NPP cyanobacteria and sedaDNA bacteria should be done and 86 

discussed elsewhere. Furthermore, by combining the semi-quantitative information from algal 87 

pigments and higher taxonomical resolution from sedaDNA, it is now possible to validate the 88 

abundance of NPP in lacustrine environments. 89 

 90 

Here, we explore whether the amount of fossil algae (aquatic NPP) identified alongside pollen 91 

analysis correlate with semi-quantitative and qualitative values of algal pigments and sedaDNA. 92 

This evaluation will serve as an indication to what extent fossil algae can be used to answer 93 

different palaeoecological research questions and is it sound to rely the interpretation solely on 94 

fossil algae discovered from the pollen slides. In the current study, the term ‘fossil algae’ is used to 95 

indicate NPP phytoplankton identified from the pollen slides. 96 

 97 

2. Material and methods 98 

2.1. Study area, sampling and chronology 99 



Studied lake Lielais Svētiņu (mean water depth 2.9 m; maximum depth 4.9 m; area 18.8 ha) is 100 

located in Latvia, eastern Baltic. The lake is a mesotrophic-dystrophic type drainage lake with a 101 

relatively moderate and late human impact (Stivrins 2014; 2015). The present-day topography was 102 

formed during the Weichselian glaciation and deglaciation (Zelčs and Markots, 2004). The bedrock 103 

consists of Devonian dolomite covered by Quaternary deposits. The catchment area of 12 km2 is 104 

predominantly forested and partly covered by agricultural fields. The climate in the area is a 105 

combination of continental and maritime influences, with mean annual temperature of +5.2 °C, 106 

mean July temperature of +16.9 °C, and mean December temperature –4.1 °C (Stivrins et al., 2014).  107 

 108 

Fig.1. Location of the studied Lake Lielais Svētiņu. 109 

 110 

Lake Lielais Svētiņu was sampled in March 2009, and 2013 using a multiple parallel overlapping 111 

sediment cores from ice using a Russian type corer with a diameter of 10 cm. The sediment 112 

thickness reached to 1535 cm that comprise continual sediment record covering the last 14,500 113 

years. The chronology of the core retrieved in 2009 is based on 20 radiocarbon dates (Stivrins et al., 114 

2015). Age-depth model was built using the OxCal 4.2.4 deposition model (Bronk Ramsey, 2009) 115 

and the IntCal13 calibration set (Reimer et al., 2013). The sediment core used for algae pigments 116 

and sedaDNA analyses was correlated with the year 2009 core according to the changes in lithology 117 

and loss-on-ignition, enabling to adjust Stivrins et al. (2015) age-depth model using about 30 118 



correlation levels (Kisand et al., under review). All calibrated ages in the text refer to years before 119 

the present (cal. BP=AD 1950). 120 

 121 

2.2. Fossil algae, algal pigments and sedaDNA 122 

Fossil algae were recovered from the core obtained 2009 and have been published in Stivrins et al. 123 

(2015). Shortly, subsamples for microfossil analysis were prepared and analyzed along with pollen 124 

analysis. Altogether 101 samples of known volume were treated using standard pollen preparation 125 

method (10% HCl, 10% KOH and acetolyzed for 3 min). Lycopodium spores were added to 126 

estimate phytoplankton accumulation rates. Commonly, the relative abundance of NPP is expressed 127 

in percentages that are estimated against the sum of counted pollen. In the current study, relative 128 

proportion (percentages) of phytoplankton is based on 1) the sums of phytoplankton and 2) the 129 

sums of phytoplankton enabling comparison between these two approaches.  130 

Palaeopigment subsamples were obtained from 2013 core with the resolution of one sample after 131 

every 5 cm. Analysis of collected 93 palaeopigment subsamples followed the recommendations of 132 

Leavitt and Hodgson (2001). Briefly, sediment samples were first freeze-dried and marked by 133 

internal standard, thereafter sedimentary pigments were extracted with the mixture of acetone and 134 

methanol (80:20 v:v) at -20 °C in the dark for 24 h. Finally, extracts were clarified before 135 

chromatographic analysis by filtration through a 0.45 µm filter (Millex LCR, Millipore) to remove 136 

any particles. 137 

Reversed–phase high–performance liquid chromatography (RP-HPLC) was applied to separate the 138 

pigments. Shimadzu Prominence (Japan) series binary gradient system with a photodiode array 139 

(PDA) and fluorescence detectors was used (see Tamm et al. 2015 for more details). Peak 140 

identification and quantification was made by commercially available external standards from DHI 141 

(Denmark). 142 

 143 



In the present study, it was assumed that markerpigments Fucoxanthin, Diadinoxanthin and 144 

Diatoxanthin represent diatoms (Desphande et al 2014; McTigue et al 2015), while pigments 145 

Zeaxanthin, Canthaxanthin and Echinenone were selected to represent cyanobacteria (Roy et al. 146 

2011). Lutein and Chlorophyll b  tracked green algae dynamics, although these pigments are also 147 

present in higher plants (Waters et al. 2013). Alloxanthin and a–Carotene was analysed to identify 148 

the dynamics of Cryptophytes, while Peridinin  indicated the abundance of Dinophytes (Leavitt and 149 

Hodgson 2001).   150 

 151 

sedaDNA was extracted using PowerSoil® DNA Isolation Kit (MoBio) from sediment samples (0.3 152 

g wet sample) in three biological replicates. DNA extraction was performed under positive-flow 153 

hood (Kojair K-safety KR-125) exposed to UV light prior to extractions, surfaces were cleaned with 154 

Thermo ScientificTM DNA AWAYTM Surface Decontaminant. Raw SE reads were quality trimmed 155 

deleting all nucleotides below Q30 (Trimmomatic V0.32), paired and clustered (similarity threshold 156 

of 97%) using CD-HIT-OUT to obtain molecular operational taxonomic units (mOTUs). Universal 157 

18S rRNA primer pair covering V4 region (Tedersoo et al., 2015) was used to match the length of 158 

fragment suitable for Illumina PE250 sequencing (<450-460 bp). Cluster sequences were aligned 159 

and phylotaxonomy was determined using SINA aligner (Pruesse et al., 2012) and SILVA ssuRNA 160 

database version 115 for 18S rDNA sequences (Quast et al., 2013; Pfeiffer et al., 2014). Clusters 161 

with different domain affiliation (mostly Bacteria) and clusters with low number of reads (<4 reads) 162 

were removed from further downstream analysis. More details on sedaDNA methodology see 163 

Kisand et al. (in press). More details on sedaDNA methodology see Kisand et al. (in press).  164 

 165 

2.3. Data analysis  166 

As a whole, algal remains can be considered both as binary and quantitative data, but similarly to 167 

terrestrial plant macrofossils and pollen, fossil algae records from the sediment samples do not 168 



reflect the entire taxonomic diversity (Stivrins et al., 2016). Nevertheless, algae from small to 169 

medium sized lakes, such as from Lielais Svētiņu, indicate at least partly the spatiotemporal 170 

variation in local in-lake productivity and population abundances. Algal data from sedaDNA is 171 

currently available as binary data that provide information on taxon presence in the lake. Note that 172 

taxon absence from sedaDNA can be related to various other aspects, which are mostly caused by 173 

low resolution of 18S rDNA sequences at genus and species level and is not necessarily reflecting 174 

the true absence of species.  175 

 176 

Considering their local source, we treated both fossil and sedaDNA algae as binary data and pooled 177 

them into one composite algae dataset to obtain a more complete and reliable record of the algal 178 

species richness. By doing so, for the first time, we demonstrate how fossil algae (Bacteria: 179 

cyanobacteria and Eukaryota: green algae) counted from the pollen slides can be integrated with 180 

sedaDNA (Eukaryota: green algae), thus introducing a new opportunity to solve future 181 

palaeoecological questions, such as changes in biodiversity due to climate change. As an example, 182 

we run Sørensen dissimilarity index that provides algal temporal turnover estimates (beta diversity 183 

of species assemblages in time) for the last 14,500 years. Along with the Jaccard index, Sørensen 184 

index is one of the most widely used dissimilarity indices and is regarded as one of the most 185 

effective presence/absence measures (Magurran, 2004). Sørensen dissimilarity index is calculated 186 

by βSOR = 1–(2a/(2a+b+c)), where ‘a’ indicates the total number of species present in both samples, 187 

‘b’ refers to the number of species present only in sample one and ‘c’ to the number of species 188 

present only in sample two. The index ranges from zero to one, where zero indicates that the 189 

communities have identical species composition while one indicates that two communities have no 190 

shared species and thus full turnover. 191 

 192 

3. Results 193 



Relative proportions (percentages) of fossil algae vary significantly if they are estimated based on 194 

sum of algae or pollen (Fig. 2 a,b). Pollen based proportions correlate with fossil algae 195 

accumulation rates (Fig. 2 c) and can be an artefact due to used equation. However, proportions of 196 

fossil algae based on algae sum, solely indicates changes within the algal population.  197 

 198 



Fig. 2. Comparison of (a) fossil algae based on algal sum, %, (b) fossil algae based on pollen sum, 199 

%, (c) fossil algae accumulation rate, cm-2yr-1, and (d) accumulation rates of algae pigments, cm-2yr-200 

1. 201 

 202 

Phytoplankton accumulation rates (Fig. 2 c) were the lowest during the Lateglacial (14,500–11,700 203 

cal. BP). Chlorophyta dominated in early Holocene (11,700–9000 cal. BP), after which their values 204 

were low throughout the Holocene. Since 7500 cal. BP cyanobacteria accumulation rates increased 205 

with a maximum from 4500 to 2500 cal. BP, whereas earlier their accumulation rates were 206 

insignificant (no accumulation during the Late glacial). 207 

 208 

Although five major algal pigment groups were retrieved, only four of them (diatoms, 209 

cyanobacteria, chlorophytes, cryptophytes) can be considered as dominant (dinophytes were 210 

excluded due to minor values). Period from 14,500 to 11,700 cal. BP was characterized by low 211 

pigment accumulation, and the highest accumulation occurred from 8200 to 5000 cal. BP (Fig. 2 d). 212 

 213 

For the first time, the fossil phytoplankton (including also Bacteria: cyanobacteria) and sedaDNA 214 

algae data were combined into one composite diagram (Fig. 3) that comprises as many as 87 taxa. 215 

The highest numbers of phyla, order and species were observed for sedaDNA (Fig. 4). Only minor 216 

share of these were overlapping with the fossil algae. 217 

 218 

Sørensen dissimilarity index indicated overall lower values for the Pleistocene, i.e. Lateglacial 219 

(14,500–11,700 cal. BP) and early/middle Holocene (8400–7900 and 6300–4700 cal. BP) (Fig. 5) 220 

indicating lower biotic turnover in time. The highest sample dissimilarities and thus highest 221 

turnover rates were observed for early (11,700–8500 cal. BP), middle (7800–6300 cal. BP) and late 222 

Holocene (4700 cal. BP–present). 223 



 224 

Fig. 3. Composite diagram based on fossil algae (NPP) and algal sedaDNA data, comprising 87 225 

taxa from 14,500 cal. BP to present. Fossil algae – *, sedaDNA – **, overlapping – ***. 226 



 227 

 228 

Fig. 4. Comparison of the taxonomical level (a) phyla, (b) order and (c) species identified by NPP 229 

(fossil algal remains) and sedaDNA, and their overlap. NPP cyanobacteria were excluded from this 230 

comparison. 231 

 232 

4. Discussion 233 

4.1.Fossil algae accumulation rates are not direct reflection of biomass 234 

For fossil algae representation, researchers typically use percentages instead of concentration, and 235 

even more seldomly, accumulation rates. Percentages are commonly estimated against pollen sum 236 

that by default is a biased way to proceed, if NPP are not pollen. There are methods how to estimate 237 

microscopic object concentration per sample (volume) and even per year (Stockmarr, 1971). 238 

Recently, Wood and Wilmshurst (2013) showed that the interpretation based on percentages might 239 

lead to incorrect interpretations of expansion or extinction events in sedimentary records. Therefore, 240 

the accumulation rates of NPP can be a reasonable way to overcome this issue. However, as we 241 

demonstrate here (see Fig. 2), estimated accumulation rates of fossil algae show a different pattern 242 

compared with algal pigments. The reason is most likely linked to at least two factorsand study 243 

design: 1) natural processes such as decomposition and preservation of algae and 2) pollen sample 244 



chemical treatment. Next, we will discuss these factors in detail and the groups “seen” in pigments 245 

versus NPPs (fossils need to have recognizable morphology as is discussed below). 246 

 247 

Haselwander and Oboh-Ikuenobe (2017) study on algal preservation in shallow freshwater lakes in 248 

Missouri, USA, demonstrated that Staurastrum sp., Botryococcus sp., Pediastrum simplex var. 249 

pseudoglabrum, P. integrum and P. boryanum var. pseudoglabrum preserve well in lake sediments. 250 

In contrast, species such as Sphaeorocystis and Ceratium hirundinella do not preserve well. These 251 

findings are in line with other studies indicating that Scenedesmus sp., Tetraëdron sp., Pediastrum 252 

sp., Coelastrum sp., Staurastrum sp. and cyanobacteria (e.g. Anabaena sp., Aphanizomenon sp. and 253 

Gloeotrichia sp.) are the most common fossil algae remains in the samples because their cell wall 254 

material contains compounds, which confer resistance to bacterial decay (Bellinger and Sigee, 255 

2010; Fey et al., 2010; Jankovská and Komárek, 2000; Weckström et al., 2010). Therefore, 256 

reconstructed algal population and accumulation dynamics are biased per se, leading to 257 

overrepresentation of some taxa and underrepresenting the other.  258 

 259 

Pigments stored in sediment have different chemical stability and preservation (Leavitt and 260 

Hodgson 2001). However, in upper sediment layers, which are not consolidated, the degradation of 261 

pigments is highest to compare with historical sediment layers (Tõnno et al. 2013). Microbial 262 

activity and thus degradation processes of settled material in upper sediment layers are much more 263 

intensive that in deeper (historical) sediments (Wetzel 2001).  264 

 265 

Another important aspect is palynological preparation that includes several steps of chemical usage 266 

– hence all NPP usually undergo the same treatment (Chambers et al., 2011). Riddick et al. (2017) 267 

demonstrated that the application of acetolysis, an oxidizing technique common in palynological 268 

preparation, significantly destructs dinoflagellate cysts. Even more significantly, it decreases the 269 



abundance of desmids (green algae) with a reported mean 87% decrease. While observations of 270 

destructive effect of acetolysis has been explored also for other wide group of NPP – coprophilous 271 

fungi spores (van Asperen et al., 2016), the application of acetolysis shown to be useful in 272 

phytoliths extraction (da Costa et al., 2016). We agree with previous suggestions (Riddick et al., 273 

2017; van Asperen et al., 2016) that step of acetolysis should be of limited use, if not excluded at 274 

all, in a future fossil algae identifications. If fossil algae are the main study subject rather than a 275 

side-project within a pollen routine work, counting NPP from smear slides seem to be the best 276 

option. 277 

 278 

4.2. Taxonomic richness 279 

As expected, our results demonstrate higher phylotaxonomic richness for the sedaDNA than for the 280 

taxonomic richness of fossil algae. Small overlap at species level is not surprising due to low 281 

resolution of 18S rDNA sequences in Eukaryotes in general. In addition, NPP sample preparation 282 

includes sediment treatment using 10% KOH (potassium hydroxide) that dissolves all siliceous 283 

material including diatoms, not to mention that diatom analysis have a different preparation method. 284 

Hence, these are presented only in sedaDNA, and overall biomass showed by algae pigments (Fig. 285 

2). Only bacteria and chemically resistant algae survive the whole cycle from their production in the 286 

lake, through sedimentation to pollen sample preparation, identified under the microscope. In 287 

contrast, sedaDNA and pigments identify even those algal species that have long lost their cells and 288 

left their fingerprint at molecular level. Although it would seem that solely sedaDNA can be used to 289 

reconstruct past algal diversity, unfortunately, it has its merits. For instance, to obtain information 290 

of species, it is necessary to use higher resolution regions in genomes suitable for species detection, 291 

for example ITS, also to have reference barcodes in genebanks against which to compare obtained 292 

record. Methodology and process itself might be time consuming, and in most cases, also 293 

expensive. In addition, taxon can be detected only if their molecular chains are not fragmented and 294 



are long enough to detect by DNA sequencing. In current study, we did not analyse Bacteria 295 

(including cyanobacteria) in sedaDNA and for Pediastrum resolution power in Archaeplastida was 296 

relatively low. Probably mentioned circumstances of NPP and sedaDNA methods could be a reason 297 

why only a few phyla, order and species were overlapping. Since the domain of Bacteria was not 298 

targeted in sedaDNA, the comparison between NPP cyanobacteria and sedaDNA Bacteria should 299 

be done and discussed elsewhere. Collectively, although each method has their pros and cons, they 300 

both complement each other, as highlighted by the composite data-set we display (Fig. 3, 5) and 301 

discuss further.  302 

 303 

4.3. Implications and future prospect of non-pollen palynomorphs  304 

There are several take-home messages from the current study that are implacable for future NPP 305 

analyses. We underline that it is worth to keep tracking NPP alongside routine pollen analysis as it 306 

gives additional insights for various ecological aspects (natural and anthropogenic). Combination of 307 

fossil algae and sedaDNA record complete taxonomic richness and can be used to reconstruct for 308 

instance functional groups or biodiversity through time. Our results show that fossil algae increased 309 

overall algal diversity of phyla, orders and species. Sure enough, solely algal pigments of 310 

cyanobacteria can be used to reconstruct their abundance, but that gives only quantitative biomass 311 

estimates, while fossil algae provide partly from both – biomass and taxonomy. On the other hand, 312 

algal pigments are the most quantitative, the sedaDNA data enables to estimate only proportions 313 

and NPPs are the most selective with certain species as microfossils. 314 

 315 



 316 

Fig. 5. Sørensen dissimilarity index estimated from composite data set of fossil algae (NPP) and 317 

sedaDNA. Background colors indicate main climatic and environmental changes such as 318 

Pleistocene-Holocene boundary, 8.2 ka cooling event and time of agriculture practice at Lake 319 

Lielais Svētiņu. 320 

 321 

Based on composite information of algae taxonomy, we reconstructed algae turnover rates (beta 322 

diversity in time) for the last 14,500 years. Our estimates indicate higher turnover rates for warmer 323 

Holocene period (Fig. 5). During the Lateglacial, only significant shift in algal composition 324 

occurred at the beginning of the lake development stages. Otherwise, the end of Pleistocene was 325 

secluded from a distinct algal turnover, indicating stable aquatic and terrestrial environment that is 326 

in line with the study by Stivrins et al. (2016). The following swing at the boundary of Pleistocene-327 

Holocene occurs when the rate of warming was 0.17 °C/decade that is comparable to the current 328 

warming in the Northern Hemisphere (Stivrins et al., 2016; Smith et al., 2015). Relatively low 329 

Sørensen dissimilarity indices from 8400 to 7900 cal. BP suggest stable algal composition. This 330 

time is known as the 8.2 ka cooling event that led to a drop of mean air temperature in winter by 2–331 

3 °C (Seppä et al., 2007). It seems that algae did not react to this event, but still note high turnover 332 

rates right before and after 8.2 ka event. This suggests that algal turnover took place before and 333 

after, but during the cooling lake conditions and algal composition was stable in time .  334 



 335 

Previous studies from Lake Lielais Svētiņu (Stivrins et al., 2015) and from Lake Højby Sø in 336 

Denmark (Hede et al., 2010) indicate that disruption in thermophilous terrestrial vegetation and 337 

increased erosional export of nutrients lasted for nearly 700 years. In addition, the 8.2 ka cooling 338 

event marks the beginning of increased algae pigment accumulation of Cyanobacteria, Chlorophyta, 339 

Cryptophytes and Diatoms that prosper until 5000 cal. BP. Increased abundance of these pigments 340 

coincide with the warmest time in Holocene, namely Holocene Thermal Maximum (2.5–3.5 °C 341 

above the present day mean temperature; Heikkilä and Seppä, 2010). In our data, algal turnover was 342 

low from 6300 to 4700 cal. BP due to flourish of Cyanobacteria indicating prolonged period of 343 

water column thermal stratification. Our finding suggests that possible future climate change could 344 

shift Lake Lielais Svētiņu trophic state and algae composition back to the state similarly as 345 

observed from 6300 to 4700 cal. BP. The last significant increase of algae turnover can be 346 

associated with human activities such as agriculture practice (Stivrins et al., 2015) leading to trophic 347 

change in lake. However, algae turnover has decreased towards present day that can be explained 348 

by decreased population density and agricultural activities around the lake.  349 

 350 

 351 

While palaeoecological proxies generally reflect changes in landscape, the dynamics in abundance 352 

of planktonic NPPs must be viewed with respect to lake’s ontogeny (Kisand et al., submitted). 353 

Indeed, long-term NPP dynamics probably were dependent from several influencing aspects, such 354 

as water level changes of the lake that can be driven also by infilling process (Belle et al., in press) 355 

leading to transition from deep to unstratified lacustrine ecosystem. 356 

 357 

Conclusions 358 



In the current study, we explored a long-lasting question – how reliable are non-pollen 359 

palynomorphs (fossil algae) data, recovered alongside routine pollen analysis. We used sedaDNA 360 

and algal pigment data to validate the richness and abundance of fossil algae. In addition, for the 361 

first time, we compiled a composite data-set from fossil and sedaDNA algae to show how fossil 362 

algae can be integrated with other palaeo proxies and estimate algae turnover rates for the last 363 

14,500 years from a small lake Lielais Svētiņu sediments. Our results revealed a mismatch between 364 

reconstructed fossil algae accumulation rates between those obtained from algae pigments. As 365 

predicted, taxonomically, fossil algae underrepresents species, but still aid those missing from 366 

sedaDNA. Small amount of species were overlapping between fossil and sedaDNA algae and 367 

possible reasons are discussed. Algae turnover rates estimated from a composite data-set indicate 368 

lower biotic turnover rates for the Lateglacial (14,500–11,700 cal. BP) and higher for the Holocene 369 

(11,700 cal. BP–present). By conducting this study, we encourage a growing number of 370 

palynologists keep tracking NPP in their routine work and seek integration possibilities with other 371 

ecological and palaeoecological disciplines/proxies in order to tackle important research questions.  372 
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