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Abstract 

 

Forest management, agroforestry and tree planting are some of the key approaches to 

sustainable rural development, and climate change adaptation and mitigation in West African 

savannas. However, the planning of land management interventions is hindered by the lack of 

information at relevant spatial resolution. We examined predictive models for mapping various 

tree, soil and species diversity attributes with a comparison of RapidEye and Landsat imagery. 

The field data was collected in the vicinity of the community-managed forest in southern 

Burkina Faso, where the main environmental threats are agricultural expansion and fuelwood 

extraction. The modelling was done using Random Forest algorithm. According to our results, 

tree crown cover and correlated attributes, such as basal area and tree species richness, were 

predicted most accurately. High spatial resolution RapidEye imagery provided the best 

accuracy but difference to medium resolution Landsat imagery was negligible for most 

attributes. Burn scar masked Landsat time series performed similar to dry season single date 

Landsat imagery, but the former avoids image selection and mosaicking, and could be less 

sensitive to artifacts due to the burn scars. The presented approach provides valuable 

information on important tree, soil and species diversity attributes for spatial planning of land 

management interventions. 
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1. Introduction 

 

Land degradation due to agricultural expansion driven by the growing population, 

unsustainable use of wood fuel and climate variability are the main environmental threats in 

the savannas of West Africa. Forest management, agroforestry and tree planting are among the 

key land management approaches to sustainable rural development, restoration of land 

productivity and biodiversity, and climate change adaptation (Bayala et al., 2014; Sinare and 

Gordon, 2014). Furthermore, the tree-based interventions contribute to global climate change 

mitigation objectives and, for example, the carbon sequestration potential of the agroforestry 

parklands is widely recognized (e.g., Takimoto et al., 2008). 

 

The planning of land management interventions is, however, hindered by the lack of suitable 

spatial information. Data on forest and woodland resources is also necessary for engagement 

in international initiatives such as Reducing Emissions from Deforestation and Forest 

Degradation (REDD+). Although continental scale spatial databases are available for some of 

the key attributes, such as biomass (Avitabile et al., 2016) and soil attributes (Hengl et al., 2015), 

those data have low spatial resolution and miss information, for example, on plant alpha (local) 

diversity (Revermann et al., 2016). Some authors have also found existing data unreliable in the 

savannas (Herrmann et al., 2013; Brandt et al., 2016). Furthermore, although vegetation and 

soil attributes can be inventoried in the field concurrently, databases including both types of 

information are scarce. Therefore, more localized information, and integrated assessments of 

trees, soils and biodiversity at landscape scale, are required. 

 

Land cover maps based on remote sensing (RS) have been commonly used in ecosystem service 

assessments, but RS data can be used also for predicting various attributes as continuous 

variables (Andrew et al., 2014). Field measurements, for example, from National Forest 

Inventories, and RS are typically used in combination for generating such information in more 

developed countries (e.g., Reese et al., 2003). Fixed area plots employed in forest inventories 

and carbon projects, and include basic tree measurements, such as, diameters and species, can 

be used for computing a variety of attributes to characterize forest structure and tree species 

diversity. In principle, predictive models can be built for any vegetation or soil attribute but 

accuracy vary considerably between the attributes and RS data source. 

 



In the semi-arid Sudano-Sahelian zone, RS has been used primarily to analyze changes in 

vegetation productivity and broad vegetation types over large areas, and relatively little 

attention has been given to mapping tree attributes (Karlson and Ostwald, 2015). However, 

mapping tree crown cover (or canopy cover) and biomass, have received growing attention in 

the African savannas (e.g., Karlson et al., 2015; Halperin et al., 2016). Tree crown cover is an 

important attribute in forest definitions, which makes it particularly important for REDD+ 

(Romijn et al., 2013), but it has also multiple other applications (Halperin et al., 2016). Attention 

on biomass raise from the needs to quantify, map and monitor carbon pools (Avitabile et al., 

2016). In the semi-arid areas, it is also related to biodiversity, environmental processes, such 

as hydrological cycle, soil erosion and land degradation, and ecosystem variability and 

resilience (Eisenfelder et al., 2012). Furthermore, RS can contribute to the assessment of 

biodiversity in multiple ways (e.g., Lausch et al., 2016) but alpha diversity has been commonly 

studied by using diversity indices, such as species richness and Shannon index (Rocchini et al., 

2016). However, such approaches to mapping tree species diversity have rarely been tested in 

Africa (Maeda et al., 2014; Revermann et al., 2016). 

 

Spatial information on soil attributes related to agricultural productivity and land degradation 

risks is crucial for planning land management interventions (Vågen et al., 2013b). Hence, 

predictive soil mapping has got increasing interest in Africa as soil data has been gathered 

across the continent (Hengl et al., 2015; Vågen et al., 2016). For example, soil organic carbon 

(SOC) and nitrogen contents relate to several important soil attributes, and are sensitive to land 

use and land degradation (Vågen and Winowiecki, 2013). Topsoil SOC content is essential for 

soil productivity, which makes its maintenance an important management goal in the Sudano-

Sahelian zone (Bationo and Buerkert, 2001). Furthermore, in the West African parklands, a 

large fraction of total carbon stock typically resides in the soil (Takimoto et al., 2008), which 

emphasize its role in carbon inventories. 

 

Reasonable spatial resolution, good availability, repeatability, cost and well-established 

processing methods are reasons why medium resolution satellite imagery are likely to remain 

as an important RS data source (Karlson et al., 2015; Halperin et al., 2016) although more 

advanced, yet expensive technologies, such as Light Detection and Ranging (LiDAR) and 

imaging spectroscopy, are superior for some tasks (e.g., Fassnacht et al., 2014). Landsat imagery 

were made freely available in 2008, most recent Landsat 8 Operational Land Imager (OLI) 



provides valuable data continuity, and availability of medium resolution imagery is increasing 

by Sentinel-2 satellites (Wulder et al., 2015). However, also several commercial satellite 

sensors provide high spatial resolution imagery with reasonable cost for many purposes. 

Halperin et al. (2016) compared OLI and RapidEye sensors for tree crown cover prediction in 

miombo woodlands of Zambia, but in general, comparisons of RS data sources are few in African 

savannas. 

 

The dry forests and savanna woodlands pose both opportunities and challenges for optical RS 

(Eisfelder et al., 2012; Karlson et al., 2015). The tree cover is relatively sparse in the woodlands 

and hence reflectance signal should not saturate, which is typical for denser vegetation. In open 

woodlands, image texture could be also an important predictor of tree related attributes 

(Djaroudib, 1993), and hence high spatial resolution could be a considerable advantage. 

Furthermore, strong seasonality in rainfall drives a phenological cycle that can serve as an 

additional information source (Karlson et al., 2015; Brandt et al., 2016). The field layer 

dominates canopy reflectance throughout the seasonal cycle but the trees have the greatest 

contribution on reflectance during the dry season when the field layer is mostly senescent 

(Fuller et al., 1997). This makes dry season imagery particularly relevant but exploiting the full 

seasonal variation has become more feasible with freely available data (Liu et al., 2016). The 

challenges of optical RS, on the other hand, include large contribution of soil and bedrock on 

reflectance (Eisfelder et al., 2012; Karlson et al., 2015), lack of observations during rainy season 

(Brandt et al., 2016), frequent fires (Gessner et al., 2015), and large number of tree species 

(Karlson et al., 2015). 

 

In this study, our objective was to examine predictive models for mapping various tree, soil and 

species diversity attributes for spatial planning of land management interventions in West 

African savannas. In more detail, we examined how accuracy of the predictions varies between 

attributes, and between high resolution RapidEye and medium resolution Landsat imagery. For 

Landsat, we considered single date imagery from the dry and rainy season, but also examined 

a time series of all available Landsat imagery for one year. 

 

 

 

 



2. Material and methods 

 

2.1 Study area 

 

The study area was located in the southern Burkina Faso in the Ziro province (11°44'N 1°56'W) 

(Fig. 1a). This area belongs to the Sudanian regional center of endemism (White, 1983) and 

West Sudanian savanna ecoregion (Olson et al., 2001). The mean annual precipitation is 827 

mm and the mean annual temperature is 27.5°C with most precipitation falling between May 

and September (Hijmans et al., 2005). In the Köppen-Geiger climate classification, the study 

area lies in the transition of Arid steppe (BSh) and tropical savannah climate types (Aw) (Peel 

et al., 2007). Topographically, the area is relatively flat with a mean elevation of 350 m above 

sea level. The most common soil type is plinthosols with subsurface accumulation of ironoxides, 

kaolinitic clay and quartz (plinthite) (Jones et al., 2013). 

 

 

 
Fig. 1. (a) Location of the study area and (b) field plots on top of RapidEye image mosaic (true 
color composite). Also the extents of four RapidEye imagery with overlaps and acquisition dates 
are shown. 
 



Land cover is characterized by woodlands, agroforestry parklands, cropland and settlements 

(Liu et al., 2016). The area is an important source of fuelwood and charcoal to the major towns, 

and majority of the remaining forests is under community forest management and protection 

(Chantiers d'Aménagement Forestier, CAF) (Arevalo, 2016). The agriculture in the area is a 

mixture of traditional subsistence farming of, for example, sorghum, millet and maize, and 

cultivation of cash crops, such as cotton, sesame and peanuts. Woodlands are partly used for 

grazing. Furthermore, bushfires due to anthropogenic and natural causes are common in the 

dry season (Gessner et al., 2015). 

 

The most common tree species in the woodlands are Anogeissus leiocarpa and Vitellaria 

paradoxa. Other common species are Burkea africana, Combretum molle, Lannea acida, 

Detarium microcarpum, Combretum fragrans, Acacia dudgeoni and Balanites aegyptiaca 

(Valbuena et al., 2016). The ground layer is dominated by perennial grasses. Scattered Vitellaria 

paradoxa (Shea nut tree) are the most common tree species in the crop fields. 

 

2.2 Field data 

 

We collected field data from an area of 10 km × 10 km between December 2013 and February 

2014 (Fig. 1b). The sampling design was based on the Land Degradation Surveillance 

Framework (LDSF) (Vågen et al., 2013a). The 10,000 ha site was stratified into 16 tiles, which 

were sampled by 100 ha clusters. Each cluster had ten circular 0.1 ha field plots (radius 17.84 

m), and each plot four circular 0.01 ha subplots (radius 5.64 m). Cluster and field plot center 

points were randomly placed. The field plots were positioned by a consumer grade GPS receiver 

(Trimble Juno 3B) with an accuracy of 1.3–2.8 m. 

 

Stems having diameter at breast height (𝐷𝐵𝐻, cm) > 4 were inventoried. All larger stems (𝐷𝐵𝐻 > 

10) were measured for 𝐷𝐵𝐻 in the 0.1 ha plot. Species was determined for each tree by a local 

forester. Tree height (H, m) and crown diameter (CD, m) were measured for a sample of stems 

(smallest, median and largest 𝐷𝐵𝐻). Furthermore, smaller stems (𝐷𝐵𝐻  10) were counted in 

the 0.01 ha subplots, and H and CD were measured for median 𝐷𝐵𝐻  stem. As detailed in 

Valbuena et al. (2016), non-linear mixed effect modelling was used for predicting height (𝐻̂) 

and linear regression for predicting CD (𝐶𝐷̂  =  2.204 +  0.179 ×  𝐷𝐵𝐻, R2 = 0.57, RMSE = 1.7 

m) for stems that were not measured. Standing dead trees were inventoried similar to the living 



stems. Furthermore, downed dead wood was sampled in the 0.01 ha subplots (diameter > 4 

cm), recording the length of the pieces lying inside the plot, diameter at mid-length and decay 

class. 

 

For estimating aboveground biomass (𝐴𝐺𝐵), we used the pan-tropical allometric model of 

Chave et al. (2014) based on 𝐷𝐵𝐻 , 𝐻̂  and wood specific gravity (). The online databases 

(Zanne et al., 2009; World Agroforestry Centre, 2015) and literature (Nygård and Elfving, 2000) 

were searched for  at the closest taxonomic level. Species-specific  was found for 97.5% of 

the stems, and genus-specific  for the rest. Mean  was used if there were multiple values for 

a species. In addition to 𝐴𝐺𝐵, we also used a generic volume function and form factor of 0.42 

for estimating stem volume (Magnussen and Reed, 2004).  

 

The belowground biomass (𝐵𝐺𝐵) was estimated using aboveground biomass and root:shoot 

ratio of 0.275 (Mokany et al., 2006). Biomass of standing dead trees was computed similarly to 

living trees but using the mean  as species could not be determined. The pieces of the downed 

dead wood were assumed cylinder-shaped, and volume computed based on diameter and 

length. The volume was converted to biomass using the mean  and decay class reduction 

factors of 1.00, 0.78 and 0.45 for ‘sound’, ‘intermediate’ and ‘rotten’, respectively (Waddell, 

2002). Finally, we converted all biomasses (𝐴𝐺𝐵 , 𝐵𝐺𝐵, dead wood) to carbon using carbon 

fraction of 0.47 (IPCC, 2006). 

 

In addition to trees, we collected topsoil samples from 0–20 cm depth at the four subplots using 

a 7.6 cm diameter soil auger. In each plot, the soil samples were mixed thoroughly to form one 

composite sample. Then, the air-dried soil samples were grounded and sieved through 2 mm 

sieve prior to analysis (Aynekulu et al., 2011). Finally, SOC and nitrogen concentrations (g kg–

1) were analyzed using thermal oxidation method (Skjemstad and Baldock, 2008). 

 

Based on the tree inventory and soil sampling, we computed an extensive set of plot-level 

attributes (Table 1). Hereafter, these attributes are called Y-variables. Stem density (𝐷𝑒𝑛𝑠 , 

stems ha–1), basal area (𝐵𝐴, m2 ha–1), mean diameter (𝐷𝐵𝐻̅̅ ̅̅ ̅̅ , cm) and mean height (𝐻̅, m) were 

computed based on the field measured and predicted values. Tree crown cover (CC, %) was 

estimated from the canopy area index (𝐶𝑊) (Torello-Raventos et al., 2013). First, the crown 

area was computed for each stem based on 𝐶𝐷̂, and 𝐶𝑊 was taken as a ratio of total crown area 



and plot area. When a tree had multiple stems, only the stem with the maximum 𝐶𝐷  was 

considered. Then, 𝐶𝐶  was computed as: 𝐶𝐶 = 1 − exp (−𝐶𝑊). Stem volume (𝑉 , m3 ha–1) and 

aboveground carbon stock (AGC, Mg ha–1) were based on tree-wise predictions. We preferred 

SOC (𝑆𝑂𝐶, %) and nitrogen (N, %) contents for mapping, but also computed SOC stock (Mg ha–

1) based on the bulk density of the sample (g m–3) and fraction of the coarse fragments (> 2 mm) 

(Aynekulu et al., 2011). The total carbon stock (𝐶, Mg ha–1) was taken as a sum of aboveground 

and belowground biomass, dead wood and SOC carbon stocks. 

 

Finally, we described the tree species diversity by tree species richness, and Shannon and 

Simpson diversity indices (e.g., Krebs, 1999). Species richness (𝑆) was simply the number of 

tree species in the plot. Shannon index ( 𝐻′ ) was computed as: 𝐻′ = − ∑ 𝑝𝑖ln(𝑝𝑖)
𝑆
𝑖=1  and 

Simpson index (𝐷) as: 𝐷 = 1 − ∑ 𝑝𝑖
2𝑆

𝑖=1 , where 𝑝𝑖 was the relative abundance (share in the total 

number of trees) of each species 𝑖 = 1, 2, … , 𝑆. Both 𝐻′ and 𝐷 were set zero when there were no 

trees present in the plots. Furthermore, A. leiocarpa and V. paradoxa were the most tree 

common tree species (Valbuena et al., 2016). Therefore, we also included basal areas of A. 

leiocarpa (𝐴. 𝑙𝑒𝑖, m2 ha–1) and V. paradoxa (𝑉. 𝑝𝑎𝑟, m2 ha–1) in Y-variables. 

 

Table 1. Descriptive statistics for the Y-variables (n = 160). Total carbon stock (𝐶) includes 
aboveground, belowground, dead wood and soil organic carbon. 59 plots were cultivated (i.e. 
annual crops were present) and 101 plots were not cultivated. 
 
Y-variable Description Range  Mean SD 

𝐷𝑒𝑛𝑠 Stem density, stems ha-1 0–1935 470 406 
𝐵𝐴 Basal area at breast height, m2 ha-1 0–16.1 5.3 3.8 

𝐷𝐵𝐻̅̅ ̅̅ ̅̅  Quadratic mean diameter at breast height, cm 0–48.1 20.5 8.7 

𝐻̅ Basal area weighted mean height, m 0–13.1 7.2 2.3 

𝐶𝐶 Tree crown cover, % 0–70.4 26.9 18.1 

𝑉 Stem volume, m3 ha-1 0–62.0 17.0 12.8 

𝐴𝐺𝐶 Aboveground carbon stock, Mg ha-1 0–31.7 8.8 6.8 

𝑆𝑂𝐶 Soil organic carbon content, % 0.29–2.49 0.81 0.36 

𝑁 Soil nitrogen content, % 0.015–0.107 0.043 0.017 

𝐶 Total carbon stock, Mg ha-1 5.9–75.9 27.3 14.4 

𝑆 Tree species richness, species 0–14.0 5.6 3.8 

𝐻′ Shannon index 0–2.5 0.9 0.6 

𝐷 Simpson index 0–1.0 0.5 0.3 

𝐴. 𝑙𝑒𝑖 Basal area of A. leiocarpus, m2 ha-1 0–10.9 1.2 2.2 

𝑉. 𝑝𝑎𝑟 Basal area of V. paradoxa, m2 ha-1 0–4.5 1.1 1.1 

 
 
 



Table 2. Summary of the remote sensing data. 
 

Input data Description Dates 

RapidEye Mosaic of four RapidEye imagery. 
Ortho product (Level 3A). 

4 Feb 2014, 7 Feb 2014,  
12 Feb 2014 

Landsat (closest to 
RapidEye) 

Landsat 8 OLI image.  
Surface reflectance product. 

16 Feb 2014 

Dry season Landsat Landsat 8 OLI image.  
Surface reflectance product. 

12 Nov 2013 

Rainy season Landsat Landsat 8 OLI image. 
Surface reflectance product. 

8 Jun 2014 

Landsat time series 14 Landsat 7 ETM+ and 21 Landsat 8 OLI imagery. 
Surface reflectance product. 

1 Nov 2013 – 31 Oct 2014  

 

 

2.3 RapidEye data 

 

RapidEye is a constellation of five satellites that can provide high spatial resolution imagery 

with temporal resolution up to daily recurrence. Each satellite has a multi-spectral push broom 

imager with five spectral bands corresponding to blue (0.440–0.510 µm), green (0.520–0.590 

µm), red (0.630–0.685 µm), red edge (0.690–0.730 µm) and near infrared (NIR, 0.760–0.850 

µm) parts of the spectrum. Ground sampling distance in nadir is 6.5 m and radiometric 

resolution is 12 bits. 

 

We purchased imagery best corresponding to the time of field inventory from RapidEye 

archive 1  (Table 2). The Ortho product (Level 3A) with radiometric, geometric and terrain 

corrections and 5 m × 5 m pixel size was used. The study area was covered by four 25 km × 25 

km tiles based on imagery acquired 4, 7 and 16 February 2014 (Fig. 1b). 

 

The digital numbers were converted to radiance (W m−2 sr−1 µm) using the scale factor provided 

in the metadata and atmospherically corrected to surface reflectance (𝑅𝑏 , where 𝑏  denotes 

spectral band) using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) algorithm implemented in ENVI 5.0 software (Exelis Visual Information Solutions, 

Inc.). As one of the tiles showed clear difference in reflectance, probably due to difference in 

view azimuth, we performed relative calibration of the spectral bands by linear regression 

based on overlapping area between the tiles. The image from 12 February was used as a 

                                                           
1 http://eyefind.rapideye.com/ 



reference image as it had the largest cover with the field plots (Fig. 1b). In the final mosaic, 

boundaries between imagery were not visible. We assessed the geometry of the mosaic against 

other geospatial data from the area (e.g., GPS tracks of roads) and did not consider further 

geometric correction necessary.  

 

2.4 Landsat imagery and time series parameters 

 

We downloaded all available Landsat Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 

Operational Land Imager (OLI) Surface Reflectance Climate Data Record (CDR) imagery from 

USGS EarthExplorer2 for the time period between November 2013 and October 2014 (path 195, 

row 52). The CDR imagery are atmospherically corrected using Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) tool (Masek et al., 2006), and clouds and shadows are 

masked using Fmask method (Zhu and Woodcock, 2012). The data included surface reflectance 

(𝑅𝑏) in blue (ETM+ 0.45–0.52 µm, OLI 0.45–0.51 µm), green (ETM+ 0.52–0.60 µm, OLI 0.53–

0.59 µm), red (ETM+ 0.63–0.69 µm, OLI 0.64–0.67 µm), NIR (ETM+ 0.77–0.90 µm, OLI 0.85–

0.88 µm) and two shortwave infrared bands, SWIR1 (ETM+ 1.55–1.75 µm, OLI 1.57–1.65 µm) 

and SWIR2 (ETM+ 2.09–2.35 µm, OLI 2.11–2.29 µm). The full time series consisted of a total of 

35 imagery (14 ETM+ and 21 OLI imagery) (Liu et al., 2016).  

 

In order to compare RapidEye and Landsat imagery, we selected three cloud-free imagery for a 

detailed analysis (Table 2). OLI image from 12 February 2014 was selected because the 

acquisition date was closest to that of RapidEye imagery. Moreover, the OLI imagery from 12 

November 2013 and 8 June 2014 were selected as the best quality dry and rainy season imagery, 

respectively.  

 

In addition to the single date imagery, we used a harmonic model (Eq. 1) to capture the 

seasonality in 𝑅𝑏 and normalized difference vegetation index (NDVI, Table 3): 

 

𝑦̂𝑡 = 𝑎 + 𝑏 × sin (
2𝜋𝑡

𝑇
+ 𝑐) + 𝑒𝑡 (Eq. 1) 

 

                                                           
2 http://earthexplorer.usgs.gov/ 



where 𝑦̂𝑡 is the predicted value (𝑅𝑏 or NDVI) on Julian date 𝑡, 𝑇 is frequency (365 days), 𝑎, 𝑏, 

and 𝑐 are the model parameters (intercept, amplitude and phase), and 𝑒𝑡 is the residual error. 

Parameter 𝑎 is an estimate of the annual mean, 𝑏 captures the inter-annual changes caused by 

vegetation phenology, and 𝑐 represents the timing of the phenological events. Since the model 

(Eq. 1) can be simplified as a linear model, we used the ordinary least squares method to fit it 

for each pixel (Liu et al., 2016). 

 

Large parts of the study area were burnt during dry season (November to March), and 

observations corresponding to the burn scars departed from the harmonic model, influencing 

the model fit and parameters.  Therefore, those observations were removed (Liu et al., 2016). 

First, the model (Eq. 1) was fit using burn area index (BAI, Chuvieco et al., 2002) as a response 

variable (𝑦 ). Then the observations were removed as outliers based on a threshold. The 

threshold was computed as a difference of predicted BAI plus 2.5 times root mean square error 

(RMSE) and observed BAI. If the threshold was less than zero, the pixel was detected as a burn 

scar, otherwise the pixel was regarded unburnt. Since the burn scars could not be identified and 

masked once, we employed the method iteratively as long as further observations were not 

removed.  

 

2.5 Remote sensing predictors 

 

The RS predictors (hereafter X-variables) included typical spectral and textural features used 

with RapidEye and Landsat imagery, and seasonal features based on Landsat time series (see 

Supplement 1 for full list). 

 

For RapidEye, X-variables included reflectance in the spectral bands, vegetation indices (VI) 

and image texture derived from the grey-level co-occurrence matrices (GLCM). VIs requiring a 

red edge band could be used only with RapidEye, whereas those based on SWIR were used only 

for Landsat (Table 3). Mean value across all spectral bands was also computed as it is used 

sometimes in biodiversity studies (Maeda et al., 2014). We computed GLCM measures including 

mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation 

(Haralick et al., 1973) based on the first principal component image and ‘glcm’ package (Zvoleff, 

2015) in R (R Core Team, 2015). We set the offset distance as one pixel and measures were 

averaged over four directions at 64 quantization level. We also used three window sizes (3 × 3, 



5 × 5 and 7 × 7 pixels). Finally, all the RapidEye data were aggregated by a factor of six to 30 m 

× 30 m resolution to approximately match the field plot size. For spectral bands and VIs, we 

computed both their means and standard deviations. For textural features, we computed only 

their means (Supplement 1). 

 

For the single-date Landsat imagery, X-variables included reflectance in the spectral bands, VIs 

and mean reflectance. We computed standard deviation for 3 × 3 pixels window as field plots 

corresponded approximately with the field plot size. Due to the lower spatial resolution of 

Landsat, we did not include image texture besides standard deviations. 

 

For Landsat time series, X-variables included estimates of model parameters (Eq. 1) for the 

spectral bands and normalized difference vegetation index (NDVI). Furthermore, we computed 

other VIs (Table 3), mean reflectance across the spectral bands and standard deviation for 3 × 

3 pixels window using parameter 𝑎 estimates. 

 

Finally, we extracted all the RapidEye and Landsat X-variables at 30 m × 30 m resolution for 

modelling using the field plot center coordinates and bilinear resampling method (i.e. as a mean 

of four nearest pixels). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Summary of vegetation indices. 𝑅𝑏𝑙𝑢𝑒 ,  𝑅𝑔𝑟𝑒𝑒𝑛 ,  𝑅𝑟𝑒𝑑 , 𝑅𝑁𝐼𝑅 , 𝑅𝑟𝑒𝑑 𝑒𝑑𝑔𝑒  and  𝑅𝑆𝑊𝐼𝑅1 

corresponds to surface reflectance in blue, green, red, near infrared, red edge and shortwave 
infrared spectral bands of RapidEye and Landsat sensors, respectively. 
 

Index Formula Reference 

Simple ratio (SR) 𝑅𝑁𝐼𝑅 𝑅𝑟𝑒𝑑⁄  Tucker (1979) 

Normalized difference 
vegetation index (NDVI) 

(𝑅𝑁𝐼𝑅 − 𝑅𝑟𝑒𝑑) (𝑅𝑁𝐼𝑅 + 𝑅𝑟𝑒𝑑)⁄  Tucker (1979) 

Green NDVI (GNDVI) (𝑅𝑁𝐼𝑅 − 𝑅𝑔𝑟𝑒𝑒𝑛) (𝑅𝑁𝐼𝑅 + 𝑅𝑔𝑟𝑒𝑒𝑛)⁄  Gitelson et al. (1996) 

Enhanced vegetation 
index (EVI) 

2.5 ×
(𝑅𝑁𝐼𝑅 − 𝑅𝑟𝑒𝑑)

(𝑅𝑁𝐼𝑅 + 6 × 𝑅𝑟𝑒𝑑 − 7.5 × 𝑅𝑏𝑙𝑢𝑒 + 1)
 Huete et al. (2002) 

Vogelmann red edge 

index (VREI1)
1
 

𝑅𝑁𝐼𝑅 𝑅𝑟𝑒𝑑 𝑒𝑑𝑔𝑒⁄  Vogelmann et al. (1993) 

Red edge NDVI (RENDVI)
 1

 (𝑅𝑁𝐼𝑅 − 𝑅𝑟𝑒𝑑 𝑒𝑑𝑔𝑒) (𝑅𝑁𝐼𝑅 + 𝑅𝑟𝑒𝑑 𝑒𝑑𝑔𝑒)⁄  Gitelson & Merzlyak (1994) 

Infrared SR (ISR)
2
 𝑅𝑁𝐼𝑅 𝑅𝑆𝑊𝐼𝑅1⁄  Fernandes et al. (2003) 

Normalized difference 

water index (NDWI)
2
 

(𝑅𝑁𝐼𝑅 − 𝑅𝑆𝑊𝐼𝑅1) (𝑅𝑁𝐼𝑅 + 𝑅𝑆𝑊𝐼𝑅1)⁄  Gao (1996) 

1 Only RapidEye; 2 Only Landsat 

 

2.6 Random Forest regression 

 

We used Random Forest (RF) regression (Breiman, 2001) for modelling and carrying out 

predictions for the entire study area. RF is an ensemble modelling technique where a ‘forest’ 

consist of a large number of regression trees. A regression tree is a succession of regression 

models (the nodes separating branches) obtained by recursively partitioning the explained 

variance. In RF, each tree is built from a random sample (approximately two-thirds) of the 

training data drawn with replacement. At each node, a random subset of the X-variables is used 

to identify the most efficient split. The most efficient split is defined by identifying the predictor 

variable and the split point that results in the largest reduction in the residual sum of squares 

between the sample observations and the node mean. The final predictions are derived by 

averaging the predictions of the individual trees (Breiman, 2001). RF has been shown to learn 

effectively non-linear and complex patterns, making no assumptions about data distribution, 

requiring very few parameters to be set, and producing predictions only within the range of the 

modelling data. These are all important benefits when several forest attributes have to be 

modelled. 

 



We used ‘RandomForest’ package (Liaw and Wiener, 2002) in R (R Core Team, 2015). The 

number of trees was set to 500 and the number of predictors tested at each node was the square 

root of the total number of predictors (Breiman, 2001). Because of the large number of X-

variables, we used a RF based variable selection algorithm (Genuer et al., 2010) in ‘VSURF’ 

package (Genuer et al., 2015) to remove redundant X-variables. In the final ‘prediction step’ of 

the algorithm, only a minimum set of X-variables remains for prediction. We also fitted models 

using all the X-variables in order to evaluate the effect of variable selection on accuracy. 

 

First, we run VSURF five times for each Y-variable and RS data set as some minor variation 

occurred between the selected X-variables. Then, out of the five VSURF runs, we selected the 

subset that produced the smallest RMSE. The final results were computed as an average of 20 

RF runs because results varied slightly between single RF runs. In all the RF runs, we computed 

accuracy statistics by using leave-one-out cross validation (LOOCV) (Packalén et al., 2012). In 

other words, single RF run included 160 runs where one observation in turn was left out and 

the remaining observations were used as the training set. The prediction was made to the 

observation left out. In addition to RMSE, the accuracy statistics included bias (mean residual 

error) and pseudo coefficient of determination (R2) based on correlation between the observed 

and predicted values of LOOCV. 

 

Finally, we generated the maps for selected tree, soil and species diversity attributes. Similarly 

to previous step, the predictions at 30 m × 30 m resolution were computed as an average of 20 

RF model runs. 

 

 

3. Results 

 

The modeling results varied considerably among the Y-variables (Fig. 2). Because of the large 

number of models, detailed results including full accuracy statistics and selected X-variables 

are given in Supplement 2. The relative RMSE ranged mostly between 25 and 50% but was at 

best only 112.2% for 𝐴. 𝑙𝑒𝑖 and 93.1% for 𝑉. 𝑝𝑎𝑟 (Fig. 2a). Although some models attained small 

RMSE (𝐻̅, 𝑁 and 𝑆𝑂𝐶), the predictions were poorly correlated with the observed values (Fig. 

2b). 𝐵𝐴, 𝐶𝐶 and 𝑆 provided the best trade-off between the RMSE and R2. The Y-variables with 



particularly poor R2 included 𝐷𝐵𝐻, 𝐻̅, 𝐷 and 𝑉. 𝑝𝑎𝑟. The prediction bias was very small in every 

case (Supplement 2). 

 

 

 
Fig. 2. (a) Relative root mean square error (RMSE %) and (b) coefficient of determination (R2) 
for all Y-variables (Table 1) and remote sensing data sets (Table 2). The results are based on 
leave-one-out cross-validation after variable selection for X-variables. 
 

 

In order to better understand how model performance depends on Y-variable, we studied how 

Y-variables were correlated (Supplement 3). Strong correlations were apparent between some 

of the Y-variables (e.g., 𝐶𝐶 and 𝐵𝐴) as expected (both were based on 𝐷𝑒𝑛𝑠 and 𝐷𝐵𝐻). However, 

some of the strong correlations were not as obvious, such as that between 𝐶𝐶  and 𝑆 . 

Furthermore, if Y-variables are strongly correlated, they are also likely to perform similarly in 

the regression modelling. This is demonstrated in Fig. 3, which shows that correlation of Y-

variable with 𝐶𝐶 (variable predicted most accurately by all RS data sets) is related to modelling 

results in terms of R2. 



 

 
Fig. 3. Correlation (Pearson correlation coefficient) between tree crown cover (𝐶𝐶) and Y-
variables (Table 1) versus coefficient of determination (R2) for Random Forest models based 
on RapidEye image, Landsat image closest to RapidEye and Landsat time series. R2 for 𝐶𝐶 
models are shown with dashed line. 
 

 

In comparison to differences between the Y-variables, the variation between RS data sets was 

relatively small (Fig. 2, Supplement 2). However, among the data sets, RapidEye was usually 

ranked the best according to RMSE (ranked first on majority). Furthermore, Landsat image 

closest in time to RapidEye ranked second and Landsat time series as third. The dry season and 

rainy season Landsat imagery provided the poorest accuracies. Scatterplots of observed and 

predicted values for selected Y-variables and the three best RS data sets demonstrate the small 

differences in the model performance (Fig. 4). Some under-prediction of large values is typically 

present, in particular when the number of observations in upper tail is low (e.g., 𝐴𝐺𝐶 and 𝑆𝑂𝐶). 

Furthermore, it is clear that some of the Y-variables, such as 𝐷𝐵𝐻̅̅ ̅̅ ̅̅  and 𝐻̅, are predicted poorly 

(Supplement 4). Although accuracy statistics are not presented, the scatterplots show that 

results can be considerably improved if predictions are averaged to cluster-level (Fig. 4, 

Supplement 4). 

 



 

 
Fig. 4. Observed versus predicted values of tree crown cover (𝐶𝐶), aboveground carbon (𝐴𝐺𝐶), 
soil organic carbon content (𝑆𝑂𝐶) and tree species richness (𝑆) based on RapidEye image, 
Landsat image (closest to RapidEye) and Landsat time series. RMSE given in the panels is based 
on field plots (i.e. not cluster-level mean values). 
 

 

Variable selection improved all the models as shown by reduction in RMSE and improvement 

in R2 (Fig. 5). The number of X-variables after the variable selection ranged 2–14, with most 

models having 5–9 X-variables (Supplement 2). In the case of dry season Landsat image and 

𝑆𝑂𝐶, VSURF was unable to reduce number of X-variables. 



For RapidEye, the most commonly selected and important X-variables were reflectance in blue 

and green spectral bands (Supplement 2). Also Vogelmann red edge index (VREI1), reflectance 

in red spectral band, enhanced vegetation index (EVI) and red edge NDVI (RENDVI) were often 

included. In addition to those, all the RapidEye models included standard deviation or GLCM 

textural features. Standard deviation for red spectral band and GLCM entropy (3 × 3 pixels) 

were selected most often but otherwise there was large variation in the selected X-variables. 

 

 

 
Fig. 5. Effect of variable selection on (a) relative root mean square error (RMSE %) and (b) 
pseudo coefficient of determination (R2). Negative change in RMSE and positive change in R2 
refer to improvement in model performance after variable selection. 
 

 

The blue and green spectral bands, and green NDVI (GNDVI) were the most common X-

variables for the Landsat image closest in time to RapidEye (Supplement 2). Also SWIR2 

spectral band and mean of all spectral bands were commonly selected. Standard deviation of 

the infrared simple ratio (ISR) was the most often selected texture-related X-variable, but some 



models did not include standard deviation. GNDVI was also important for the dry and rainy 

season Landsat imagery along with blue, green and red spectral bands, EVI and normalized 

difference water index (NDWI). In the case of rainy season image, simple ratio (SR) was 

common but also most important variable in several models. 

 

For Landsat time series, GNDVI and SR based on parameter 𝑎 (intercept) were selected most 

frequently, and usually ranked among the three most important X-variables (Supplement 2). 

Also parameter 𝑎  for blue, green and SWIR2 spectral bands, parameter 𝑐 (phase) for SWIR1 

band, and mean of parameter 𝑎 for all spectral bands were commonly selected. Similar to other 

Landsat models, standard deviations did not occur among the most important X-variables. 

 

The maps of 𝐶𝐶, 𝐴𝐺𝐶, 𝑆𝑂𝐶 and 𝑆 based on RapidEye, Landsat image closest in time to RapidEye 

and Landsat time series are shown in Fig. 6. As expected by the small differences in the accuracy 

statistics, the spatial patterns of predictions agreed rather well. The boundaries between 

forest/woodlands and parklands/croplands are clearly visible in the maps of tree attributes. 

However, both parts of the landscape show considerable spatial variation. 

 



 

 
Fig. 6. Maps of tree crown cover (𝐶𝐶), aboveground carbon stock (𝐴𝐺𝐶), soil organic carbon 
content (𝑆𝑂𝐶) and tree species richness (𝑆) based on RapidEye image, Landsat image (closest 
to RapidEye) and Landsat time series. 
 



The most striking difference between the maps occurred in the southernmost woodlands of the 

study area where Landsat based predictions were in general higher than those based on 

RapidEye (Fig. 6). The differences larger than 15% of 𝐶𝐶 occurred in that area (Fig. 7). This part 

was covered by the RapidEye image acquired 4 February 2013 (Fig. 1), and hence, the time 

difference between the RapidEye and Landsat image closest in time was almost two weeks. 

According to the visual analysis of Landsat time series, the southernmost woodlands burnt on 

late December 2012 or early January 2013. In the RapidEye image acquired sooner after 

burning, only the largest tree crowns that have not lost their green leaves were visible. Also 

according to the very high resolution imagery Bing maps3, those woodlands have greater 𝐶𝐶 

than predicted by RapidEye. Furthermore, when comparing RapidEye and Landsat time series 

(Fig. 7b), some large positive differences (>15% of 𝐶𝐶) were also visible in the areas of very 

dark soil (RapidEye larger). 

 

 

 
Fig. 7. Differences in predicted tree crown cover (𝐶𝐶) values: (a) RapidEye minus Landsat 
(closest to RapidEye), (b) RapidEye minus Landsat time series and (c) Landsat (closest to 
RapidEye) minus Landsat time series. 
 

 

 

 

 

                                                           
3http://www.bing.com/maps/ 



4. Discussion 

 

In this paper, we developed predictive models for a range of tree, soil and biodiversity 

attributes based on high and medium resolution RS data from RapidEye and Landsat sensors. 

According to the results, the model performance varied considerably between the attributes 

(Y-variables) but relatively little between the RS data sets. The most accurate predictions were 

based on the late dry season RapidEye and Landsat imagery but Landsat time series might 

provide most robust predictions against the burn scars. Furthermore, our results showed that 

attributes correlated with 𝐶𝐶  were predicted most successfully in the studied semi-arid 

environment. 

 

The attribute predicted most accurately was 𝐶𝐶. Including a local crown radius model based on 

crown radii measured in every plot, improved accuracy in comparison to 𝐵𝐴, which was the 

most accurate field measurement (diameter was measured for every tree in the plot). It is 

known that 𝐶𝐶  (or canopy closure) is among the most important attributes affecting the 

spectral response of forests and woodlands (Franklin and Strahler, 1988). Furthermore, 

reflectance is typically weakly dependent on height-related attributes as increase in tree height 

does not necessarily increase cover (Lefsky and Cohen, 2003). Therefore, it could be expected 

that 𝐻̅ , but also 𝑉  and 𝐴𝐺𝐶  which depend on height, are predicted less accurately than 𝐶𝐶 . 

Furthermore, the species specific maps are commonly asked by the end-users of the data, but 

like shown by our results, the prediction errors can be very large. 

 

RS studies have usually concentrated on single vegetation attributes, such as 𝐶𝐶 (e.g. Halperin 

et al., 2016) or compared only a few attributes, such as 𝐶𝐶  and 𝐴𝐺𝐵  (Karlson et al., 2015). 

Halperin et al. (2016) reviewed 𝐶𝐶 assessments for tropical dry forests of Africa and found that 

RMSE ranged between 7 and 13% (e.g., Hansen et al., 2002; Wu et al., 2013; Karlson et al., 2015), 

which is similar to our results (RMSE 10.2–11.1%). Karlson et al. (2015) modelled 𝐴𝐺𝐵 close 

to our study area and attained R2 of 0.57 and relative RMSE of 66.0%, which are slightly worse 

than our best results for 𝐴𝐺𝐶 (R2 0.61, RMSE 48.1%). Some authors have predicted 𝐴𝐺𝐵 based 

on remotely sensed 𝐶𝐶 (Franklin and Hiernaux, 1991; Wu et al., 2013), and strong relationship 

was also evident in our data. Karlson et al. (2015) compared 𝐶𝐶 and 𝐴𝐺𝐵, and reported smaller 

RMSE for 𝐶𝐶 than 𝐴𝐺𝐵 (40.6% versus 66.0%). This is in line with our results and highlight the 

closer link between 𝐶𝐶 and reflectance than between 𝐴𝐺𝐵 and reflectance. 



Only weak to moderate correlations were observed between tree and soil attributes, which 

could explain relatively poor accuracy of 𝑆𝑂𝐶 and 𝑁 predictions at the landscape scale. Vågen 

and Winowiecki (2013) and Vågen et al. (2013b) developed models for 𝑆𝑂𝐶 and several other 

soil attributes using Landsat spectral bands. The R2 values for 𝑆𝑂𝐶 were 0.65 and 0.86 (RMSE 

not given), respectively, but models were calibrated across several sites and greater range of 

𝑆𝑂𝐶 and environmental conditions, which could explain difference to our results (best R2 0.41). 

For the same reason, the landscape scale analysis is difficult to compare with continental scale 

studies that have used a large number of sampling sites across Africa (Hengl et al., 2015; Vågen 

et al., 2016). 

 

We observed strong correlation between 𝐶𝐶  and 𝑆 , and hence also 𝑆  was predicted rather 

accurately. The spatial predictions of species diversity are scarce for dry forests and woodlands 

of Africa (Revermann et al., 2016). Some studies on biodiversity mapping have suggested that 

other descriptors of alpha diversity, such as 𝐻’, which is less affected by rare species than 𝑆, 

would be more readily predicted by RS data (Oldeland et al., 2010). However, here 𝑆  was 

predicted more accurately than 𝐻’ or 𝐷, particularly at low index values typical for agroforestry 

parklands and croplands dominated by single species and having treeless areas. 

 

Both RapidEye and Landsat OLI fulfil spatial resolution requirements for planning land 

management interventions at landscape scale (e.g., Vågen and Winowieski, 2013). However, the 

benefits of higher spatial resolution of RapidEye imagery in prediction accuracy seem small in 

comparison to Landsat data, which is in line with conclusions of Halperin et al. (2016). In 

tropical woodlands, field plots smaller than 0.1 ha are rarely useful because of low stem density. 

When reference data have spatial resolution commensurate with Landsat data, the higher 

spatial resolution of RS data does not necessarily improve accuracy (Halperin et al., 2016). 

 

Reflectance in the blue and green bands and GNDVI were important predictors (Y-variables) in 

the majority of the models. In Karlson et al. (2015), the panchromatic band was the most 

important spectral predictor of 𝐶𝐶  and 𝐴𝐺𝐵 . EVI and green and red bands were the most 

important predictors in the study of Halperin et al. (2016). This suggests that shorter 

wavelength are valuable for mapping in savannas. The red edge VIs (RENDVI, VREI1) were 

commonly selected to RapidEye models, which is contradictory to Halperin et al. (2016). 

Landsat SWIR band or NDWI was included in most Landsat models. Furthermore, SWIR2 



ranked as the most important predictor for 𝑆𝑂𝐶 in all but rainy season Landsat model. This is 

in accordance with Hengl et al. (2015) who found that MODIS SWIR reflectance was among the 

best predictors of 𝑆𝑂𝐶 . Although some patterns are evident, there is still need for better 

understanding on the link between various land attributes and spectral responses in the 

savannas. However, the lack of SWIR band in RapidEye is a clear disadvantage in comparison 

to Landsat. 

 

Texture has been considered useful in the savannas and other sparsely wooded areas with 

heterogeneous tree cover (e.g., Djaroudib, 1993). Here, several textural features were present 

in most RapidEye models. For Landsat, standard deviations occurred only rarely among the 

most important variables but usually one or two variables were selected. Textural features 

were also included in the best 𝐶𝐶 models of Karlson et al. (2015) and Halperin et al. (2016), and 

𝐴𝐺𝐵 models of Karlson et al. (2015). However, in our models, textural features were not clearly 

more important for any of the attributes, for example, for tree species diversity indices which 

is often assumed (Oldeland et al., 2010; Maeda et al., 2014). 

 

The dry season imagery have been found particularly useful for mapping vegetation attributes 

in the savannas (Karlson et al., 2015; Liu et al., 2016). The acquisition dates of RapidEye image 

and Landsat image closest to it correspond to late dry season (February). Those imagery 

performed in general better than the best image from early dry season (November) or the best 

image from early rainy season (June). Hence, the late dry season could provide better contrast 

between the trees and other vegetation (grasses, crops) because of phenological differences in 

the timing of leaf senescence (Karlson et al., 2015). However, bushfires are common in 

December and January, and recent burn scars can cause artifacts to predictions. In the early dry 

season, before the fires, predictions are not as accurate as phenological differences are not yet 

as pronounced (Brandt et al., 2016), although crops have been harvested in the late rainy 

season, which improves differentiation between natural vegetation and croplands. In the rainy 

season, trees, grasses and crops are green, and modelling results are poorer. 

 

The potential of multi-temporal or seasonal data for mapping vegetation types and attributes 

in the savannas has been emphasized by previous studies (Karlson et al., 2015; Liu et al., 2016) 

although mostly using coarser spatial resolution imagery (Hermann et al., 2013; Revermann et 

al., 2016). Here, late dry season imagery performed slightly better than Landsat time series. 



However, the differences in accuracy were mostly small, and considering other benefits, time 

series could be preferred over single date imagery (Liu et al., 2016). A simple time series model 

makes use of all cloud-free observations for one year and subjective image selection is not 

required. Furthermore, mosaicking of several imagery or gap-filling due to clouds, cloud 

shadows, missing lines of ETM+ SLC-off imagery or burn scars is not required. In comparison 

to statistical metrics (e.g., Karlson et al., 2015), the method also provides estimates of annual 

minimum and maximum values (Liu et al., 2016). 

 

Landsat imagery provide an excellent source of freely available data for mapping tree, soil and 

species diversity attributes measured in the field. The availability of free medium resolution 

imagery has been recently improved by Sentinel-2 data, and virtual constellations of Landsat 

and Sentinel-2 satellites will provide unprecedented temporal resolution at medium spatial 

resolution (Wulder et al., 2015). However, downloading and processing of annual Landsat 

imagery can be automated (Liu et al., 2016) but the Internet constraints remain in Africa and 

limit the downloading of RS data (Roy et al., 2010; Karlson and Ostwald, 2015). Therefore, easy 

access to seasonal metrics with minimum need for downloading, or access to a cloud computing 

platform is necessary for wider use of time series information in the study region.  

 

The spatial predictions (Fig. 6) can be used for identifying areas of high and low attribute values 

at landscape scale, and locating target areas for land management interventions (e.g., Vågen 

and Winowiecki, 2013). In the simplest application, the sites meeting certain criteria could be 

mapped in GIS software based on one or several attributes. However, the criteria or threshold 

values are case-specific (i.e., depend on type of intervention), and even debated (Vågen et al., 

2013b). Alternatively, maps can be utilized in participatory planning approaches. Furthermore, 

additional information, such as present land use, could be required. For example, Liu et al. 

(2016) attained high overall accuracy for cropland class (land cultivated or not) in the same 

study area. Finally, although mapping was the main purpose of this study, the predictions can 

be used, for example, to estimate forest area (Halperin et al., 2016).  

 

Improvements in prediction accuracy are possible through better quality field data, additional 

predictors or alternative modelling methods. Accurate measurement of 𝐶𝐶  is very time 

consuming (Korhonen et al., 2006). The method to estimate 𝐶𝐶 in this study is practical and 

requires only few additional measurements to 𝐷𝐵𝐻 (Torello-Raventos et al., 2013). One way to 



improve the accuracy of 𝐶𝐶 would include measuring 𝐶𝐷 and position for each tree (Halperin 

et al., 2016). Alternatively, 𝐶𝐶 could be interpreted from very high resolution imagery (Hansen 

et al., 2002; Karlson et al., 2015). Furthermore, the stem volume estimates were based on 

generic model (Magnussen and Reed, 2004) and biomass estimates on pan-tropical allometric 

models (Chave et al., 2014). Although these models give reasonable estimates across a wide 

range of conditions, local models should be used when available.  

 

Some alternative predictors have been also used. Sometimes, tasseled cap transformation 

(brightness, greenness and wetness) has been applied for Landsat imagery (Karlson et al., 

2015). Furthermore, ETM+ and OLI provide panchromatic band at 15 m spatial resolution and 

it can be used for computing additional textural features (Karlson et al., 2015). Halperin et al. 

(2016) found soil data useful for 𝐶𝐶 modelling in addition to RS data. Revermann et al. (2016) 

used topographic predictors derived from digital elevation model to model species diversity. 

Furthermore, predictors related to fire frequency and timing of fire could be valuable (Halperin 

et al., 2016; Revermann et al., 2016). However, such data is available only at low spatial 

resolution and fire products at suitable resolution for landscape scale analysis are currently 

lacking. 

 

RF has become popular method for predicting vegetation and soil attributes (Fassnacht et al., 

2014; Hengl et al., 2015). Although RF has been often superior to other methods in terms of 

accuracy (Fassnacht et al., 2014), part of its popularity is due to simplicity of model fitting, 

which requires only very few parameters to be set (Belgiu and Drăguţ, 2016). This is a great 

advantage when several attributes needs to be predicted. However, when modelling small 

number of attributes, results should always be controlled against another method (Halperin et 

al., 2016). Sensitivity of RF to sampling design has been noted as one of its limitations (Belgiu 

and Drăguţ, 2016). When large values are rare, RF, like other regression tree methods, tends to 

underestimate them (Karlson et al., 2015; Halperin et al., 2016), which was observed also in 

our results. Stratified sampling design based on RS data should ensure appropriate data 

distribution for modelling.  

 

 

 

 



5. Conclusions 

 

We demonstrated how fixed area plots, typically collected in forest and carbon inventories, can 

be coupled with RS data to generate spatial predictions of tree, soil and biodiversity attributes. 

The results highlight 𝐶𝐶 as a multipurpose parameter that is best predicted by optical RS data, 

such as RapidEye and Landsat imagery. Therefore, it might be the case that attributes, such as 

𝐴𝐺𝐶 and 𝑆, can be reliably predicted only as long as they are strongly correlated with 𝐶𝐶. In the 

selected approach, the high spatial resolution RapidEye imagery provided only marginal 

improvement in comparison to the medium resolution Landsat data. The Landsat data offer 

good access to seasonal information through annual time series and includes SWIR bands, 

which explained variability in 𝑆𝑂𝐶  content. Therefore, Landsat, and similar freely available 

medium resolution data, provide a good basis for mapping key attributes for planning land 

management interventions in the savannas of West Africa. 
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