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Abstract 

West African savannas are subject to regular fires, which have impacts on vegetation structure, 

biodiversity and carbon balance. An efficient and accurate mapping of burned area associated with 

seasonal fires can greatly benefit decision making in land management. Since coarse resolution 

burned area products cannot meet the accuracy needed for fire management and climate modelling at 

local scales, the medium resolution Landsat data is a promising alternative for local scale studies. In 

this study, we developed an algorithm for continuous monitoring of annual burned areas using 

Landsat time series. The algorithm is based on burned pixel detection using harmonic model fitting 

with Landsat time series and breakpoint identification in the time series data. This approach was 

tested in a savanna area in southern Burkina Faso using 281 images acquired between October 2000 

and April 2016. An overall accuracy of 79.2% was obtained with balanced omission and commission 

errors. This represents a significant improvement in comparison with MODIS burned area product 

(67.6%), which had more omission errors than commission errors, indicating underestimation of the 

total burned area. By observing the spatial distribution of burned areas, we found that the Landsat 

based method misclassified cropland and cloud shadows as burned areas due to the similar spectral 

response, and MODIS burned area product omitted small and fragmented burned areas. The proposed 

algorithm is flexible and robust against decreased data availability caused by clouds and Landsat 7 

missing lines, therefore having a high potential for being applied in other landscapes in future studies. 
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1 Introduction 

Fire is recognized as one of the most important ecosystem disturbances, as it contributes to 

determining vegetation structure, biodiversity and carbon balance (Nielsen and Rasmussen, 1997; 

Mouillot et al., 2014, Giglio et al., 2010). In the African savanna, fires burn extensive areas annually, 

and account for a large proportion of the global extent of burned areas (Dwyer et al., 2000). In addition, 

fires in Africa are driven by factors such as rainfall, tree cover and population density (Archibald et 

al., 2009). Therefore, accurate mapping of burned areas in savannas is crucial for social and 

environmental applications (Boschetti et al., 2015). 

Remote sensing plays a key role in monitoring burned area at regional and global scales. Due to the 

high temporal resolution and large spatial coverage, the current burned area products rely on coarse 

spatial resolution satellite data. A number of global burned area products have been made available, 

for example, MODIS (Moderate Resolution Imaging Spectroradiometer) burned area product 

(MCD45A1) based on Terra and Aqua MODIS data at 500 m spatial resolution (Roy et al., 2008), 

L3JRC burned area product based on SPOT VEGETATION data at 1 km spatial resolution (Tansey 

et al., 2008), and 1 km Globcarbon burned area product derived from SPOT VEGETATION, ERS2-

ATSR2 and ENVISAT AATSR data (Plummer et al., 2006). However, the global burned area 

products with a coarse spatial resolution fail to detect small and patchy fires, and are not detailed and 

accurate enough for climate modelling and fire management at regional and local scales (Smith et al., 

2007; Roy et al., 2009; Bastarrika et al., 2011).  

Medium spatial resolution imagery provides the much needed improvement in spatial resolution of 

burned area mapping although global product has not been produced yet. For example, the Landsat 

satellite image archive stores more than four decades of multispectral observations across the planet, 

having a high potential for studying fire dynamics. Current methods of burned area detection include 

manual interpretation and digitalization (Silva et al. 2005), decision tree classification (Kontoes et al., 

2009), principal component analysis (Koutsias et al. 2009), artificial neural networks (Maeda et al., 

2009), logistic regression (Siljander 2009), thresholding based on post-fire image (Koutsias et al., 

2013) or pre-fire and post-fire images (Kontoes et al., 2009; Maeda et al., 2011; Bastarrika et al., 

2014), and region growing segmentation (Hardtke et al., 2015). However, most studies have 

employed spectral differences between pre-fire and post-fire images for burned area mapping and fire 

severity study. The spectral indices, such as normalized burned ratio (NBR), burned area index (BAI), 

mid infrared burn index (MIRBI) and global environmental monitoring index (GEMI) have 

commonly been used to make such comparisons (Chuvieco et al., 2002; Bastarrika et al., 2011, 

Musyimi et al., 2017; Schepers et al., 2014). Moreover, it was indicated from previous studies that 



the widely used NBR is less sensitive to burn scars in savanna environments (Goodwin and Collett 

2014; Disney et al., 2011), and BAI has been applied effectively for burned area discrimination 

including savanna area in Africa in previous studies (Chuvieco et al., 2002; Bastarrika et al., 2011; 

Dempewolf et al., 2007).   

However, the approach based on image comparison is hampered by several issues. First, it can be 

difficult to obtain suitable pre-fire and post-fire images over large areas due to cloud contamination. 

A manual image selection process is often required to minimize the phenology effect between the 

image pairs. Second, burned areas demonstrate a spatial and spectral diversity due to the burned 

vegetation type, fire severity, and the time difference between the image acquisition date and fire date 

(Stroppiana et al., 2012). During fire seasons, old burn scars are less obvious in comparison to new 

ones, given the rapid recovery of vegetation. Cloud shadows, water bodies and agricultural areas also 

exhibit a similar spectral response to burned areas and result in commission errors (Boschetti et al., 

2015). Although the image comparison method can achieve good results for a particular region, it can 

be difficult to apply over large areas. Therefore, more automated approaches for burned area mapping 

are needed without the limitations of two image comparisons. 

With open access to the image archive, Landsat time series have become an important source of 

medium resolution data for land cover characterization and monitoring. Several time series 

approaches have been used to identify forest disturbance, clouds and cloud shadows. Zhu and 

Woodcock (2014b) proposed an algorithm based on harmonic models to automatically remove pixels 

contaminated by cloud, cloud shadow and snow. Goodwin and Collett (2014) developed an automated 

method for burned area mapping in Queensland, Australia. The method included detection of outliers 

caused by burned vegetation, region growing segmentation to map the changed areas, and the 

classification tree to separate burn scars from other changes. Liu et al. (2016) used seasonal features 

from an annual Landsat time series for land cover characterization. The harmonic model was used to 

detect outliers caused by burn scars. However, the use of Landsat time series to monitor long-term 

burn area dynamics has not been comprehensively studied. Furthermore, burned area detection with 

medium resolution in a continuous and automatic way has been rarely applied to Landsat time series 

in savanna area where fires occur frequently.  

African savannas are experiencing land cover changes, which must be addressed if burned area 

detection is applied to long time series. Liu et al. (2016) showed that parameters of the harmonic 

model vary between land cover types in the savannas of Burkina Faso, particularly between 

woodlands and cropland. Therefore, the conversion of woodlands to cropland, which is the prevailing 

land use and land cover change type in the region (Knauer et al., 2017), affects the seasonality of BAI, 



and for reliable burn scar detection, it is necessary to define periods with stable land cover before 

model fitting. DeVries et al. (2015) applied an automatic algorithm to track tropical deforestation and 

degradation in southern Ethiopia based on Landsat normalized difference vegetation index (NDVI) 

time series data. The algorithm is based on the BFAST method (Verbesselt et al., 2012) and can 

potentially provide time series breakpoint identification required for burned area detection, although 

this remains to be tested. 

In this study, our objective was to develop and evaluate an algorithm based on harmonic model and 

time series breakpoint identification to detect annual burned area using Landsat time series. The 

method was tested in southern Burkina Faso using all available Landsat imagery between 2000 and 

2016. Furthermore, the potential of Landsat time series in burned area mapping was compared with 

MODIS burned area product. 

2 Material and method 

2.1 Study area 

The study area is located in southern Burkina Faso in the Ziro and Sissili provinces (Fig. 1) and 

belongs to the West Sudanian savanna ecoregion (Olson et al., 2001). The mean annual precipitation 

was 827 mm and the mean annual temperature was 27.5 °C in 1950–2000 (Hijmans et al., 2005). 

Most of the precipitation falls between May and September, the wettest month being August. The 

driest months are December, January and February. The topography is relatively flat with a mean 

elevation of 350 m above sea level. The land cover include tropical dry forests and woodlands which 

are surrounded by agroforestry parklands and agriculture (Liu et al., 2016). The ground layer is 

dominated by perennial grasses. Forests are partly under community forest management and 

protection, aiming at providing sustainable fuelwood (Coulibaly-Lingani et al., 2011). The farming 

system is a mixture of traditional subsistence farming of, for example, sorghum, millet and maize, 

and cultivation of cash crops, such as cotton, sesame and peanuts. Due to the immigration of farmers, 

southern Burkina Faso has experienced a rapid population growth with increasing conversion of 

forests and woodland into cropland during the last decade (Ouedraogo et al., 2009; Gessner et al., 

2015). A high level of deforestation and fragmentation exists in southern Burkina Faso, and 

management plans to ensure the sustainable use of forest resources are needed (Ouedraogo et al., 

2011). 

Fires due to anthropogenic and natural causes take place regularly in this region (Sawadogo et al., 

2002). Most of the fires occur during the dry season in November, December, January, and February, 

even in early October, and very late March and April (Gessner et al., 2015). The length of fire season 



differs from year to year, and the variations exist in the starting and ending months of the fire season. 

The early fires are fragment with low intensity because the herbaceous layer still holds moisture from 

the wet season (Sawadogo et al., 2005). Late fires are fierce and devastating which can cause burn 

scars in a large and contiguous pattern (Sawadogo et al., 2002). Fires do not cause permanent land 

cover change, and burned vegetation typically recovers quickly (Silva et al., 2005). It is widely 

understood that ashes can release minerals which promote herbaceous production, and the fire regime 

is also regarded as having significant implications in maintaining species composition and 

biodiversity of the savannas (Sawadogo et al., 2005; Laris et al., 2006).  

 
Fig. 1. The location of study area. 

2.2 Data 

We downloaded all available Landsat Surface Reflectance data with WRS-2 coordinates Path 195 

Row 52 between October 2000 and April 2016 from the Earth Resources Observations and Science 

(EROS) Center archive. A total of 281 images including 40 Landsat 5 Thematic Mapper (TM) images, 

185 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images, and 56 Landsat 8 Operational Land 

Imager (OLI) images were used. The products have been atmospherically corrected and clouds and 

shadows have been detected with Fmask algorithm (Zhu and Woodcock, 2012). We selected blue, 

green, red, near-infrared (NIR) and two shortwave infrared (SWIR1, SWIR2) bands for further 

analysis. 

2.3 Burned area detection algorithm 

An overview of the algorithm for detecting the annual burned area detection is presented in Fig. 2. 

First, we applied the BFAST Monitor algorithm for segmentation of stable periods without land cover 

change by using NDVI time series. Next, a harmonic model was fitted using BAI for each stable 



period. By comparing model predictions with the observed values, the outliers caused by fire events 

were detected. Then, we combined the burned area pixels from each single image into an annual 

Landsat burned area during fire season. Finally, we made accuracy assessment using reference data 

interpreted from Landsat images and compared results with MODIS burned area product. 

 
Fig. 2. The main steps of the burned area detection algorithm. 

2.3.1 Breakpoint detection in Landsat time series 

Land cover change associated with deforestation was detected using the BFAST Monitor (Breaks For 

Additive Season and Trend Monitor) approach (DeVries et al., 2015). The method fits a harmonic 

model to NDVI time series in a baseline period, and then compares predictions and observations in 

the monitoring period. There is little and no observed decline in reflectance in visible and near 

infrared bands after a savanna fire (Goodwin and Collett, 2014), and burned vegetation recovers 

quickly, so NDVI time series was used. 

Considering that NDVI phenology in the study area follows a first order harmonic model, we fit it 

(Eq.1) based on observations in a defined baseline period: 

                                                    yt = a + b × sin(
2𝜋𝑡

𝑇
 + c) + et                                                     (1) 



where yt is dependent variable (vegetation index), t is independent variable (time as Julian date), T is 

temporal frequency, a, b and c are model parameters representing the intercept, amplitude and phase 

component in the harmonic model, respectively, and et is the residual error. 

The baseline period should be stable and have enough observations for model fitting. We defined the 

baseline period between October 2000 and October 2002 with a minimum of nine observations for 

each pixel based on our analysis of the dataset. We fitted the harmonic model for Landsat NDVI time 

series using ordinary least squares (OLS) linear regression. The model can be applied to make 

predictions in the monitoring period. By checking the discrepancy between predictions and 

observations in the monitoring period with a moving sums of residuals (MOSUM) approach, the 

breakpoint was detected when significant deviation appeared. In addition to breakpoints, the BFAST 

Monitor algorithm also computed the change magnitude for each pixel by taking the median of all 

the residuals from observations and predictions in the monitoring period. As the breakpoint may 

falsely detect land cover change, it cannot be the only criterion for land cover change detection, and 

the change magnitude layer enables more accurate detection. Given that breakpoints related to 

positive change magnitudes were not linked to forest disturbance, we only regarded breakpoint pixel 

with negative magnitude (a threshold of zero) as potential disturbance pixel (DeVries et al., 2015). 

After detecting land cover change in the NDVI time series, each pixel had its own stable period. The 

pixel that had disturbance was separated into before and after land cover change periods respectively, 

and the pixel without land cover change was considered stable for the period from 2000 to 2016. 

2.3.2 Burned area detection using BAI time series 

In our study area, seasonal fires rarely lead to land cover conversion (Silva et al., 2005). However, 

they affect the spectral reflectance and indices during the fire season. The burned area detection 

method utilize the time series model and BAI (BAI = 1/((0.1-Red)2+(0.06-NIR)2)). The BAI is 

selected in our study because it is effective for burned area detection in previous studies in savanna 

area in Africa (Dempewolf et al., 2007). The method consisted of three steps and was applied to 

Landsat BAI time series data with a stable period. Because some pixels were disturbed and separated 

into two periods, the method was applied to the time series data before and after land cover change 

periods, respectively. For the pixels without land cover change, the burned area detection method was 

applied for the whole period. First, we generated a BAI image stack from Landsat time series. Second, 

we fitted the time series harmonic model in Equation 1 using all the BAI observations within the 

stable period as dependent variable. Third, we defined a threshold to detect burned pixels by 

comparing the observed and predicted BAI values. The threshold was determined by checking its 

influence for accuracy and was computed as the difference between the predicted value plus the 



threshold value multiplied by the root mean square error (RMSE) and the observed value. If the 

threshold was less than zero, we identified the pixel as a burned pixel and removed it from the time 

series. Otherwise, if the threshold was greater than or equal to zero, the pixel was regarded as an 

unburned pixel. In cases where not all burned pixels could be detected in a single step, we applied the 

method iteratively. The harmonic model was fitted using an iteratively-reweighted least squares 

method, which is robust against outliers (Zhu and Woodcock, 2014a). This meant that we repeated 

the process until no more outliers were detected. 

2.3.3 Annual burned area from Landsat  

To obtain annual burned area, we combined the burned area detection results from separate images 

during the fire season. The fire season was defined as lasting from the early fire season to the late fire 

season in next year. However, the early and late fire seasons varied from year to year in our study 

area. In order to make the comparisons of burned area from Landsat and MODIS consistent in time, 

the precise fire season was determined by checking the date from MODIS burned area product. The 

pixels were classified into burned and unburned types. The definition of the fire season reduced errors 

in the burned area detection, because we could eliminate false detections caused by cloud shadows 

and cropland in other months. 

2.4 Accuracy assessment and comparison with MODIS products 

It is difficult to obtain reference data for burned area detection over a long time period. Therefore, we 

obtained reference data for accuracy assessment by visual interpretation of the Landsat time series, 

which is a practical method indicated in previous studies (Stroppiana et al., 2012; Goodwin and 

Collett, 2014). We sampled 70 points based on random systematic sampling. The distance between 

the points was 10 km in west-east direction and 10 km in north-south direction in order to cover the 

whole study area. Hence, there were 1120 points in total given the 16 years of observations. For each 

point (pixel) and year, we interpreted whether the pixel was burned in that particular year using all 

the available observations. Finally, the annual and overall accuracies were calculated by comparing 

the visually interpreted reference data and Landsat derived burned area for the same pixels. 

We derived burned area from MODIS burned area product (MCD45A1) between October 2000 and 

April 2016. The MODIS burned area product (MCD45A1) provides a monthly gridded 500 m product 

with the burning time, the spatial distribution of burned area and quality information. The burn scars 

are detected by a bi-directional reflectance model-based change detection approach in MODIS 

reflectance time series (Roy et al., 2002; Roy et al., 2005; Roy et al., 2008). We extracted burn scars 

and processed them to an annual burned area product based on the burning date. 



We evaluated the performance of Landsat derived burned area in comparison to MODIS burned area 

product at regional scale. More specifically, we used a 5×5 km grid to estimate the proportion of 

burned area from Landsat and MODIS burned area product. 

3 Results 

3.1 Breakpoint detection by BFAST algorithm 

The BFAST Monitor algorithm was capable of identifying deforestation from stable trajectories, 

although the time series data is irregular. We selected three pixels to demonstrate how the algorithm 

detected deforestation (Fig. 3). It is expected that events such as deforestation lead to a decrease in 

NDVI, whereas stable areas should have NDVI values distributed along the predicted model. In Fig. 

3a, a breakpoint in 2006 is identified, and the decreased NDVI results in a negative magnitude of -

0.148. The time series in Fig. 3b shows a breakpoint in 2004, with a positive magnitude of 0.023. As 

the disturbance should be determined by the breakpoint and negative magnitude together, we still 

regarded the time series in Fig. 3b as stable. In Fig. 3c, there is no breakpoint, and the magnitude is 

positive, indicating it to be a stable time series. By visual interpretation of the time series in Fig. 3c, 

we observed that a fire took place during December 2013. The fire occurred in the dry season which 

is a characteristic of fires in our study area. However, it was not detected as a breakpoint in the pixel 

time series, because the NDVI value for vegetation is also low in dry season, and the difference 

between NDVI values from burned and unburned pixels is small.  

 
Fig. 3. Demonstration of three pixel-wise time series. The green points are NDVI values in the 

baseline period, the red curve is the harmonic model fitted in the baseline period and predicted in 



monitoring period, the green points are NDVI values in monitoring period, the black vertical line 

shows the breakpoint and the orange vertical line shows the fire event. 

The disturbance map generated using the breakpoint and magnitude is shown in Fig. 4. Conversion 

from forest and woodlands to cropland was the main cause of land cover change during the monitoring 

period. Most land cover changes happened in the south-eastern part of the study area. 

 
Fig. 4. The detected land cover change on top of NDVI image acquired on 27 October 2013. 

3.2 Burned area detection using BAI time series 

Fig. 5 demonstrates burned area detection for a stable pixel BAI time series. The burned pixels had 

higher BAI values compared to unburned pixels, and they appeared as outliers in the harmonic model. 

The dates of the outliers showed that they occurred during the fire season. We checked the detected 

outliers with Landsat images, and the results indicated that they were burned pixels. In addition, in 

most cases, not all burned pixels can be detected at once, and the algorithm should be applied 

iteratively to detect all burned pixels. In this example, all the outliers were removed after ten iterations. 



 

Fig. 5. Demonstration of burned area detection for a single pixel based on burned area index (BAI) 

time series. The black points are the BAI values, the red points are outliers, the blue curve is the 

harmonic model, and the dashed blue line is the threshold for detecting outliers. The outliers are 

considered as possibly burned areas. No breakpoint was detected for this pixel.  

Fig. 6 demonstrates the fire detection process for a BAI time series with breakpoint. The algorithm 

identified a breakpoint in 2013 and divided the time series into two periods. Visual interpretation 

showed that this particular disturbance was caused by land cover conversion from woodland to 

cropland. We then fitted harmonic models for the two periods, and all the outliers were removed after 

eight iterations. During the period before the breakpoint, the outliers detected were all correctly 

classified as burned, which occurred during the fire season between December and February. Three 

outliers were detected in the period after the breakpoint. However, these occurred during July and 

October, which are months outside the fire season. Hence, although they were detected as outliers, 

they were not regarded as burned pixels. Further visual interpretation confirmed that these pixels 

represented agricultural land. 



 

Fig. 6. Demonstration of burned area detection for a BAI time series with breakpoint. The black 

vertical line shows the breakpoint. The time series is divided into periods before and after the 

breakpoint. The black points are the BAI values in the time series data, the red points are outliers in 

the detection approach, the blue curves are the harmonic models for each period, and the dashed blue 

curves are the thresholds for detecting outliers for each period. 

3.3 Accuracy assessment 

We evaluated the overall accuracy, producer’s accuracy and user’s accuracy of burned area detection 

for a range of thresholds (Fig. 7). With an increasing threshold, the user’s accuracy for burned area 

increased from 60.3% to 89.0%, while in contrast, the producer’s accuracy for burned area decreased 

from 92.3% to 41.1%. The crossing point for the producer’s and user’s accuracy occurred at a 

threshold of 2.8 × RMSE. The overall accuracy increased from 67.6% to the peak value of 79.2% at 

the threshold of 3 × RMSE, and then decreased to 69.7% at the threshold of 4 × RMSE. We selected 

the threshold 3 × RMSE, because the maximum overall accuracy was achieved with this threshold. 



 

Fig. 7. The dependence of accuracy on the threshold value. 

The burned area from Landsat time series achieved a higher overall accuracy (79.2%) than the 

MODIS burned area product (65.9%) (Fig. 8). The omission error for MODIS burned area product 

was 62.3%, higher than 26.9% for Landsat burn scars, showing that more burned areas were neglected 

and detected as unburned in MODIS product. The commission errors for the burned type from 

Landsat and MODIS burned area product were similar, with values of 18.8% and 20.3%, respectively, 

revealing that the unburned type was more seldom misclassified as the burned type. The omission 

error was much higher than the commission error for MODIS burned area product, however, annual 

burn scars from Landsat had a similar omission error and commission error. 

 

Fig. 8. The overall accuracy, and omission and commission error for the burned type in Landsat and 

MODIS burned area products. 

The overall accuracies of Landsat burned area and MODIS burned area product for each year are 

shown in Fig. 9. The accuracy of Landsat fire scars was consistently higher than the accuracy of 



MODIS burned area product. The overall accuracy of Landsat fire scars ranged from 70.0% to 91.4%. 

By comparison, the overall accuracy for MODIS burned area product was between 57.1% and 77.1%, 

and there were some fluctuations over the 16 year period. The accuracies for Landsat burn scars and 

MODIS burned area product over the 16 year period followed a similar pattern. We observed that the 

peak values of overall accuracy appeared during 2014–2015 for both Landsat burn scar and MODIS 

burned area product. 

 
Fig. 9. Annual variation in the overall accuracies of Landsat burned area and MODIS burned area 

product. 

3.4 Comparison with MODIS burned area product 

Fig. 10 shows the proportion of burned area in 5×5 km grid cells, with MODIS burned area product 

(y-axis) and the burned area from Landsat (x-axis). The color scheme illustrates the number of grid 

cells having the same proportion values. The slope of 0.52 for the burned area from Landsat against 

MODIS burned area product indicated that the MODIS burned area product underestimated burn 

scars compared to Landsat burned area. More specifically, we observe that the burned proportion 

values for Landsat burned area ranging from 0.1 to 0.3 have a higher frequency in Fig. 10, while the 

corresponding values of the MODIS burned area product are around zero. MODIS burned area 

product showed poor agreement with burn scars from Landsat with a low R2 value of 0.30. 

 



 

Fig. 10. Comparison of the proportion burned area in 5×5 km grid: Landsat versus MODIS burned 

area product (slope = 0.52, R2 = 0.30). The color scheme illustrates the number of grid cells having 

the same proportion values. 

Furthermore, we calculated the burned area percentage for annual Landsat burned area and MODIS 

burned area product, respectively. The Landsat burned area reported a higher burned percentage than 

MODIS burned area product, except for 2001-2002, and the comparison indicated that the burned 

areas were underestimated by MODIS burned area product in comparison to Landsat burned area. 

Table 1. Percentage of the study area burned annually based on Landsat burned area and MODIS 

burned area product. 

Burned 

Percentage 

2000-

2001 

2001-

2002 

2002-

2003 

2003-

2004 

2004-

2005 

2005-

2006 

2006-

2007 

2007-

2008 

2008-

2009 

2009-

2010 

2010-

2011 

2011-

2012 

2012-

2013 

2013-

2014 

2014-

2015 

2015-

2016 

Landsat 

burned 

area  

0.54 0.27 0.43 0.76 0.51 0.61 0.55 0.27 0.39 0.49 0.66 0.23 0.39 0.29 0.26 0.24 

MODIS 

burned 

area 

product 

0.44 0.39 0.34 0.37 0.27 0.40 0.22 0.13 0.17 0.17 0.17 0.16 0.06 0.09 0.09 0.09 

 

A spatial comparison of the Landsat burn scar and MODIS burned area product for 2010-2011 and 

2011-2012 are shown in Fig. 11. These two periods were selected because the differences of burned 

percentage from Landsat and MODIS product were largest and smallest for 2010-2011 and 2011-

2012, respectively. Landsat burned area and MODIS burned area product had a consistency in burned 

area distribution in large areas, but Landsat imagery was capable of detecting smaller patches of 

burned area. However, the Landsat burned area misclassified cropland as burned.  

 



 

Fig. 11. Comparison of annual Landsat burned area and MODIS burned area for 2010-2011 and 2011-

2012. Landsat 5 TM image (RGB: NIR, red and green bands; image acquired: 23 January 2011) and 

Landsat 7 ETM+ image (RGB: NIR, red and green bands; image acquired: 17 December 2011) are 

shown as fire season images. 

4 Discussion 

From our results, we observed that both Landsat burned area and MODIS burned area product were 

able to capture relatively large and continuous burn scars. However, the burn scars in West African 

savannas are gradual and heterogeneous in characteristic (Silva et al., 2005). This fragmented pattern 

of burned area poses a problem for detection. The results indicated that the two coarse resolution 

burned area products underestimated the burned area compared to our annual burn scar based on 

Landsat time series, and this result was in line with earlier studies (Laris 2005; Silva et al., 2005; Roy 

and Boschetti, 2009). The underestimation can be explained by the difference in spatial resolution, as 

small and fragmented burn scars are difficult to detect at the resolution of MODIS, which 

demonstrates the importance of a higher spatial resolution in detection. Roy et al. (2008) pointed that 

the accuracy of MODIS burned area product varied according to the tree cover, suggesting that fire 

scars mapping should also consider different tree cover conditions. The accuracy pattern with higher 



errors of omission than commission for MODIS burned area product observed in our study was 

consistent with the results of Roy and Boschetti (2009). 

The fire season in our study area normally lasts from November to February. Because of this long 

fire season, the landscape is a patchwork of burn scars of various severity and vegetation in different 

stages of recovery. The rapid recovery of vegetation makes the old burn scars less obvious and 

demonstrates similar spectral characteristics compared to unburned area (Hardtke et al., 2015). 

Therefore, low severity burn scars are not easily detected by our method, causing omission errors. 

This error is related to the temporal resolution of the sensor, as imagery is not necessarily captured 

soon after a fire, when the burn scars are best detected. The influence of the temporal resolution of 

Landsat imagery on burned area detection accuracy have been reported in previous studies (Koutsias 

et al., 2013; Boschetti et al., 2015, Goodwin and Collett, 2014). With open access to Landsat 8 OLI 

data and Sentinel-2 data, the temporal resolution of medium spatial resolution imagery has been 

improved, resulting in a denser time series (Wulder et al., 2015). Future research should investigate 

the effect of combing all Landsat data and Sentinel-2 data for burned area detection.  

Another source of error arose from the unmasked cloud shadows, which showed large BAI values 

and can cause false burned area detection. This could partly contribute to the overestimation of burned 

area from Landsat. Furthermore, in some images, the unburned cropland and forest were spectrally 

similar to burned areas in terms of BAI, which also complicated the burned area detection in the study 

area. The errors caused by crop harvesting, rapid vegetation senescence, agricultural areas and dark 

soils have also been reported in previous studies (Stroppiana et al., 2012; Boschetti et al., 2015). In 

our study, we combined burn scars from each image within the fire season annually, which helped us 

to exclude other incorrect detections caused by cloud shadows and cropland in wet season months. It 

could also be possible to use another spectral index to eliminate mixed pixels and improve detection 

accuracy in future research (Bastarrika et al., 2011; Schepers et al., 2014). It was also reported in 

other studies that grassland and woodland were frequently burned, and agricultural fields were only 

seldom burned in Burkina Faso (Devineau et al., 2010; Gessner et al., 2015). Hence, the burned area 

detection accuracy could be improved by including land cover type information in the algorithm.  

Combining Landsat time series and harmonic model fitting proved to be an effective method for 

annual burned area detection in the study area. It was also demonstrated by Zhu and Woodcock 

(2014a) that temporal information and harmonic model could be successfully applied for cloud and 

shadow screening and land cover change detection based on Landsat time series. In addition, there is 

no need to select training burned pixels in our algorithm, and the algorithm can automatically provide 

burned pixels as seeds for further analysis with region growing segmentation method (Bastarrika et 



al., 2011). Although the annual burned areas from Landsat imagery are encouraging, one 

disadvantage of the method is the lack of a precise burning date. This is due to the lower temporal 

resolution of Landsat imagery in comparison to coarser resolution MODIS data. The error arising 

from the disturbance detection with the BFAST Monitor algorithm could also lead to failure in 

constructing an accurate harmonic model for BAI time series, and affect the burned area detection 

accuracy.  

With the BFAST Monitor algorithm, we could detect land cover change associated with deforestation 

during the 16 year period before burned area detection with harmonic model. This is necessary in the 

area with rapid and ongoing land cover changes. Although there are gaps in the Landsat time series 

due to the clouds and missing lines, the BFAST Monitor algorithm proved to be effective in detecting 

land cover conversions in our study area. Similarly to Gessner et al. (2015), we found that there was 

an increase in the agricultural area at the expense of forest and woodlands. There were also some 

limitations in our study. We assumed that there was only one time of land cover conversion for 

Landsat time series over 16 years when we applied the BFAST Monitor algorithm. This is probably 

a valid assumption for this study, but less applicable for longer time series and sites with repeated 

land cover conversions. The shifting cultivation (fallow period) does not cause abrupt land cover 

change as woody cover increases gradually. Furthermore, if fallow lasts only for a short period, its 

effect on BAI time series model fitting is small. Furthermore, we defined October 2000 to October 

2001 as the baseline period to construct the harmonic model, assuming this to be a stable period. 

However, it can be difficult to choose a stable period in areas that undergo many land cover 

conversions, and the requirement for a stable baseline period can constrain the application of the 

BFAST Monitor algorithm.  

5 Conclusions 

We explored the potential of using Landsat time series for annual burned area mapping based on 

harmonic model and breakpoint identification. The algorithm used 281 Landsat imageries between 

October 2000 and April 2016, and the results were compared with MODIS burned area product. The 

results demonstrated that our algorithm was able to detect small patchy burn scars with a balance of 

omission and commission errors. In contrast, the MODIS burned area product had a high rate of 

omission errors and underestimated the total burned area. Given the diverse characteristics of burned 

areas and land cover types, as well as the decreased data availability due to clouds and missing lines 

of ETM+ SLC-off images, the Landsat burned area performed well in the savanna area, and achieved 

a higher accuracy than products using coarser resolution data. The framework that includes spectral 



information from medium spatial resolution time series and breakpoint detection should be applicable 

to other savanna regions, although the same spectral indices (i.e., BAI) and thresholds may not be 

suitable in other environments. Finally, our results indicate that higher resolution burned area 

mapping has a high potential to foster local scale decision making on land management with better 

accuracy and lower costs for end-users. 
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