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Abstract. Unlike traditional database management systems which are
organized around a single data model, a multi-model database (MMDB)
utilizes a single, integrated back-end to support multiple data models,
such as document, graph, relational, and key-value. As more and more
platforms are proposed to deal with multi-model data, it becomes cru-
cial to establish a benchmark for evaluating the performance and usabil-
ity of MMDBs. Previous benchmarks, however, are inadequate for such
scenario because they lack a comprehensive consideration for multiple
models of data. In this paper, we present a benchmark, called UniBench,
with the goal of facilitating a holistic and rigorous evaluation of MMDBs.
UniBench consists of a mixed data model, a synthetic multi-model data
generator, and a set of core workloads. Specifically, the data model sim-
ulates an emerging application: Social Commerce, a Web-based applica-
tion combining E-commerce and social media. The data generator pro-
vides diverse data format including JSON, XML, key-value, tabular, and
graph. The workloads are comprised of a set of multi-model queries and
transactions, aiming to cover essential aspects of multi-model data man-
agement. We implemented all workloads on ArangoDB and OrientDB
to illustrate the feasibility of our proposed benchmarking system and
show the learned lessons through the evaluation of these two multi-model
databases. The source code and data of this benchmark can be down-
loaded at http://udbms.cs.helsinki.fi/bench/.

1 Introduction

Multi-Model DataBase (MMDB) is an emerging trend for the database manage-
ment system [16,17], which utilizes a single platform to manage data stored in
different models, such as document, graph, relational, and key-value. Compared
to the polyglot persistence technology [24] that employs separate data stores to
satisfy various use cases, MMDB is considered as the next generation of data
management system incorporating flexibility, scalability, and consistency. The
recent Gartner Magic quadrant [9] for operational database management sys-
tems predicts that, in the near future, all leading operational DBMSs will offer
multiple data models in a unified platform. MMDB is beneficial for modern appli-
cations that require dealing with heterogeneous data sources while embracing the
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agile development. For instance, in a Social Commerce application [27], enter-
prises often gain business insights by integrating graphs from social networks,
documents from the purchase history, and tables from customer information.
Data scientists usually write scripts for each data model separately, then wran-
gles them into a unified form to proceed with real-time and OLAP analysis.
However, as the scale and complexity of data increase, such method becomes
tedious and inefficient. By leveraging the power of MMDB, one can easily ingest
and analyze heterogeneous data in real time and hence swiftly adjust the oper-
ational strategy.

Database benchmark becomes an essential tool for the evaluation and com-
parison of DBMSs since the advent of Wisconsin benchmark [5] in the early
1980s. Since then, many database benchmarks have been proposed by academia
and industry for various evaluation goals, such as TPC-C [25] for RDBMSs, TPC-
DI [21] for data integration; OO7 benchmark [2] for object-oriented DBMSs,
and XML benchmark systems [15,23] for XML DBMSs. More recently, the
NoSQL and big data movement in the late 2000s brought the arrival of the
next generation of benchmarks, such as YCSB benchmark [4] for cloud serving
systems, LDBC [6] for Graph and RDF DBMSs, BigBench [3,10] for big data
systems. However, those general-purpose or micro benchmarks are not designed
for MMDBs. As more and more platforms are proposed to deal with multi-model
data, it becomes important to have a benchmark for evaluating the performance
of MMDBs and comparing different multi-model approaches.

In general, there are two challenges evaluating the performance of MMDBs:
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Fig. 1. Unibench data model

The first challenge is to gen-
erate synthetic multi-model data.
First, existing data generators can-
not be directly adopted to eval-
uate MMDBs because they only
involve one model. Besides, com-
bining them reasonably is a diffi-
cult task since each generator sim-
ulates a particular scenario. In this
study, we develop a new data gen-
erator to provide correlated data in
diverse models. As shown in Fig. 1,

our benchmark system consists of five data models, i.e., Graph, Relational,
JSON, Key-value, and XML. It simulates a social commerce scenario [27]
that combines the social network with the E-commerce context. The relational
model includes the structured customers and vendors, JSON model contains
the semi-structured orders and products. The social network is modeled as
graph, which includes three entities and four relations. i.e., person, post, tag,
person knows person, person has tag, person create post, post has tag. Feedback
and Invoices are modeled as key-value and XML, respectively. These also have
correlations across the data models. For instance, customer knows friends (rela-
tional correlates with the graph model), customer makes transactions. (JSON
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correlates with relational model). Furthermore, we propose a three-phase frame-
work to simulate customers’ behaviors in social commerce. This framework
consists of purchase, propagation-purchase, and re-purchase, which takes into
account a variety of factors to generate the Power-law distribution data that
are widely seen in real life. Particularly, we propose a new probabilistic model
CLVSC (Customer Lifetime Value in Social Commerce) to make fine-grained
predictions in the third phase.

The second challenge is to design multi-model workloads. Such workloads are
the fundamental operations in many complex and modern applications. However,
little attention has been paid to study them. It is non-trivial to design the
workloads which not only cover the most important paradigms of multi-model
query processing but also simulate realistic use cases. In this regard, we first
simulate meaningful business cases in social commerce by dividing them into four
layers: individual, conversation, community, and commerce. Then we define a set
of multi-model queries and transactions based on the choke point technique [22],
which tests the weak points of databases to make the benchmark challenging and
interesting. Choke points of our benchmark workloads involve performances of
the multi-model aggregation, join, and transaction, demanding the database to
determine the optimal multi-model join order, handle the complex aggregations,
and guarantee the concurrency and efficiency simultaneously.
We summarize our contributions as follows:

1. We develop a new data generator, which provides correlated data in diverse
data models. We also propose a three-phase framework to generate data for
modeling the customers’ behaviors in social commerce. We implement the
generator on the top of Spark and Hadoop to provide efficiency and scalability.

2. We design a set of multi-model workloads including ten queries and two trans-
actions from technical and business perspectives.

3. We implement proposed workloads and conduct experiments on two MMDBs:
ArangoDB [1] and OrientDB [19]. We analytically report the performance
comparison and our learned lessons.

The rest of this paper is divided as follows. Section 2 introduces the back-
ground and related work. Section 3 illustrates the workflow of data generation.
Section 4 presents the multi-model workload in detail. The experimental results
are shown in Section 5. Finally, Sect. 6 concludes this work.

2 Background and Related Work

Background. Multi-model data management is proposed to address the “Vari-
ety” challenge of data in a complex world. The first evolution is the prevalence
of Polyglot Persistence [24] method, which exploits numerous databases to han-
dle different forms of data and integrates them to provide a unified interface.
Unfortunately, such method imposes further operational complexity and cost,
because the need for integrating multiple databases has a significant engineering
and operational overhead. The drawback of Polyglot Persistence leads to the
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Table 1. Comparison of multi-model DBMSs

System Query language Primary model Secondary model Storage strategy

AgensGraph OpenCypher, SQL Relational Graph, JSON One engine

ArangoDB AQL JSON Graph, Key-value One engine

OrientDB SQL-like Graph JSON, Key-value One engine

Marklogic Xpath XML JSON, RDF One engine

Redis API Key-value Graph, JSON One engine

NitrosBase SparQL, SQL RDF Graph, JSON, Key-value One engine

Datastax CQL Column JSON, Graph Multiple engines

DynamoDB API, SQL - JSON, Graph, Key-value Multiple engines

CosmosDB API, SQL - ALL but XML Multiple engines

Oracle 12c SQL-extension Relational ALL Both

second evolution of multi-model data management. First, many SQL-extension
ecosystems and NoSQL systems have been transformed to multi-model systems
by integrating additional engines or functions into a unified platform for sup-
porting additional models. On the other hand, there emerge many native multi-
model databases, e.g., ArangoDB, AgensGraph, OrientDB. These systems utilize
a single store to manage the multi-model data, along with a unified or hybrid
query language. Table 1 shows the representatives of MMDBs compared by sev-
eral properties, namely, query language, primary model, secondary model, and
storage strategy. The secondary model of each system is extended in the second
evolution. Redis, for example, adds JSON and graph to its key-value store. On
the other hand, DynamoDB employs several engines to support multiple models
including JSON, graph, and key-value, and it has no specified primary model
because each model is regarded as the first-class citizen.

Related Work. There are a few works on multi-model data modeling, data gen-
eration and database benchmarking. In [16], we have envisioned a multi-model
database benchmark system (but without any detailed solution and implementa-
tion). Regarding the data modeling and data generation, TPC-DI [21] features
a multi-model input data including XML, CSV, and textual parts, which is
used to evaluate the transformation cost in data integration process. Also, Big-
bench [10] incorporates semi-structured (logs) and unstructured data (reviews)
into TPC-DS’s structured data. However, no consideration was given to JSON
and graph, which are currently two most popular models in data management.
As for the performance evaluation, several evaluation efforts [18,20] have been
done on multi-model databases recently. Nevertheless, they only focus on simple
workloads, such as CRUD operation, aggregation, graph depth traversal, which
are inadequate since they do not account for complex workloads concerning
multi-model characteristics.

The most relevant work about our approach is LDBC social network bench-
mark [6]. First, our graph generation is based on LDBC [6], we choose it as
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the starting point for its scalability and rich semantics in simulating social net-
works. It also supports the generation of correlated graph by leveraging the
MapReduce paradigm of Hadoop. However, since our goal is concentrating on
benchmarking multi-model databases rather than graph databases, we have sim-
plified the graph complexity to better fit our goal. Moreover, in order to generate
the E-commerce transactions with associated graph entities, we replace some of
its dictionaries by collecting commerce metadata from Amazon review [14] and
DBpedia dataset [13]. Second, our workload design is motivated by LDBC [6],
TPC-C [25] and Bigbench [10]. In particular, LDBC follows the graph-based
choke points approach, and Bigbench focuses on the business questions in five
main categories. Motivated by these two design principles, we also propose the
choke-point and business-driven query design. For the transaction design, despite
the business cases of two proposed transactions e.g., New Order and Payment
are similar to those in TPC-C [25], the data involved in our benchmark sys-
tems come from multiple data models. Therefore we focus on the multi-model
transactions rather than single-model transactions.

3 Data Generation

In this section, we introduce the process of multi-model data generation. Figure 2
shows our three-phase data generation framework. Specifically, (i) in Purchase
phase, LDBC [6] obtains metadata from the repository, then generates graph
data and initial interests of persons. These data is feed to our generator to
produce transaction data. (ii) In Propagation-Purchase phase, interests of cold-
start customers are generated based on information obtained in the previous
phase. (iii) In Re-purchase phase, interests of all customers will be generated
based on CLVSV model, which is discussed shortly. In each phase, we generate
transaction data according to the interests of customers and unite all three
portions as an integral part of the multi-model dataset. The entire generation
process is presented in Algorithm 1, and discussed in detail as follows:
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Algorithm 1. Data Generation
Input: Scale factor f , constant c controlling number of transaction, real value

λ as Poisson parameter, and meta data
Output: Multi-model dataset D

1 G ← LDBC (f) // graph data generated by the LDBC generator

2 R ← relational data transformed from graph and meta data
3 L1 ← initial list of purchase interest of persons from G
4 J, X,KV , D ← ∅ // initial sets of JSON, XML, Key-value, and output

5 Pt, Pf ← persons having interests, persons having no interests
6 foreach p ∈ Pt do

7 count ← L1/c
8 while count �= 0 do

9 r ← Poisson(λ)
10 count ← count − 1
11 J , X, KV ← Purchase(r, p) // generate transaction data

12 D ← D ∪ J ∪ X ∪ KV

13 BayesModel ← fit the bayes model based on R and KV
14 foreach p ∈ Pf do

15 L2 ← generate new interest list based on equation 1
16 D ← D ∪ Propagation-Purchase(p, L2)

17 CLVSC ← fit the CLVSC model based on a small portion of samples
18 foreach p ∈ Pt ∪ Pf do

19 L3 ← CLVSC(J ,G) // generate new interests by CLVSC model

20 D ← D ∪ Re-Purchase(p, L3) // generate new transaction data

21 return D

3.1 Purchase

In this phase, we consider two factors when generating the data. First, persons
usually buy products based on their interests. Second, persons with more inter-
ests are more likely to buy products than others. The person’s interests for the
products are generated by the LDBC. This phase is implemented on the top of
Spark SQL using Scala, which utilizes a plentiful APIs and UDFs to generate
the multi-model data. Specifically, we first determine the number of transactions
for each person by dividing the number of their interests with a constant c, then
select the size for each transaction from a Poisson distribution with parameter λ,
finally assign items to each transaction by randomly choosing items from their
interest sets. The orders will be output in JSON format with an embedded item
array of orderline. Meanwhile, The invoices will be generated with the same
information but in XML format. In addition, we randomly select the product’s
real review and corresponding rating from the Amazon dataset as the feedback.
Consequently, our data consist of five models: social network (Graph), vendor
and customer (Relation), order and product (JSON), invoice (XML), feedback
(Key-value).
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3.2 Propagation-Purchase

In this phase, we incorporate two ingredients from previous data generation:
(i) person’s basic demographic data, e.g., gender, age, location. (ii) feedback of
friends. This is motivated by the observation that people with same attributes
more likely have the same behaviors, and people also trust the product recom-
mendations from friends. The scoring function is defined as follow:

Sui =
∑

k

k × Pr(Rui = k|A = au) + E(Rvi : ∀v ∈ N(u)) (1)

where
∑

k k×Pr(Rui = k|A = au) is the expectation of the probability distribu-
tion of the target user u’s rating on the target item i, and A = {a1, a2, . . . , am}
is user attribute set computed based on Naive Bayesian method. The latter part
E(Rvi : ∀v ∈ N(u)) is the expectation of u’s friends’ rating distribution on the
target item, where N(u) is the friends set of user u, and the item i is from
the purchase transaction of friends. To train the bayes model, we implemented
our techniques using Python’s scikit-learn, which takes users’ profiles and rating
history from the previous phase as the training set. For each person without
interests, we take the items rated by their friends as the candidate set, then
rank them using Eq. (1). Finally, we take the first n percent portion as the new
interests, and then generate the new transactions the same as the process in the
purchase phase.

3.3 Re-purchase

The CLV (Customer Lifetime Value) model [11] is proposed to address the
RFM’s limitation in forecasting non-contractual customer behavior. We propose
a new probabilistic model CLVSC (Customer Lifetime Value in Social Com-
merce) to make fine-grained predictions by incorporating the customer’s social
activities regarding the brand. In general, the CLVSC is comprised of three com-
ponents: the expected number of behaviors, the expected monetary value, and
the expected positive social engagement of customer. The scoring function for
CLVSC is defined as follow:

Sib(CLV SC) = E(X∗ |n∗, x′, n,m, α, β, γ, δ)
× (E(M | p, q, υ,mx, x) + E(S | s̄, θ, τ))

(2)

where i and b are the customer and brand index, respectively,
E(X∗|n∗, x′, n,m, α, β, γ, δ) denote the expected number of behaviors over

the next n∗ periods by a customer with observed behavior history (x′, n,m),
where x′ is the number of behavior that occurred in n period, with the last behav-
ior m � n; (α, β) and (γ, δ) are the beta distribution parameters for active prob-
ability and inactive probability respectively, the behavior is either the purchase
or the post. Utilizing the beta-geometric/beta-binomial (BG/BB) [7] model, we
have
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E(X∗ |n∗, x′, n,m, α, β, γ, δ)

=
B(α + x + 1, β + n − x)

B(α, β)

× B(γ − 1, δ + n + 1) − B(γ − 1, δ + n + n∗ + 1)
B(γ, δ)

÷ L(α, β, γ, δ|x, n,m)

(3)

where L(·) is the likelihood function. This result is derived from taking the
expectation over the joint posterior distribution of active probability and inactive
probability.

E(M | p, q, υ,mx, x) denote the expected monetary value. Following the
Fader, Hardie, and Berger’s approach [8] of adding monetary value, we have

E(M | p, q, υ,mx, x)

=
(

q − 1
px + q − 1

)
υp

q − 1
+

(
px

px + q − 1

)
mx

(4)

E(S | s̄, θ, τ) denote the expected social engagement of customer, we assume
that the number of social engagement of customer follows a Poisson process
with rate λ, and heterogeneity in λ follows a gamma distribution with shape
parameter θ and rate parameter τ across customers. According to the conjuga-
tion of Poisson-gamma model, the point estimate E(S | s̄, θ, τ) can be factorized
as follow,

E(S | s̄, θ, τ) = θ′τ ′ =
τ

1 + τ
s̄ +

τ

1 + τ
θτ (5)

The resulting point estimate is therefore a weighted average of the sample
mean s̄ and the prior mean θτ .

We implemented the CLVSC model using R’s BTYD package [26], which
takes a small portion of samples from the previous phases as the training set.
For all persons, we estimate their interests of brands, then acquire the m interests
from top n brands, finally generate the new transactions the same as the process
in the purchase phase.

4 Workload

The UniBench workload consists of a set of complex read-only queries and read-
write transactions that involve at least two data models, aiming to cover different
business cases and technical perspectives. More specifically, as for business cases,
they fall into four main levers [12]: individual, conversation, community, and com-
merce. In these four levers, common-used business cases in different granularity
are rendered. Regarding technical perspectives, they are designed based on the
choke-point technique [22] which combines common technical challenges with
new intractable problems for the multi-model query processing, ranging from
the conjunctive queries (OLTP) to analysis (OLAP) workloads. Their character-
istics are summarized in Table 2. Note that in the description column, the italic
and bold texts denote the intended input and output data, respectively.
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Table 2. Characteristics of workload

Label Business
category

Technique dimension Description

Q1 Individual Perform point query on a
customer’s all multi-model
data

For a given customer, find
her profile, orders,
feedback, and posts

Q2 Conversation Join data from Relation,
Graph, and JSON

For a given product, find the
persons who had bought it
and posted on it

Q3 Conversation Join data from Relation,
Graph, and Key-value, filter
structured and unstructured
data

For a given product, find
persons who have
commented and posted on it,
and detect negative
sentiments from them

Q4 Community Aggregate and sort the JSON
order, Perform the 3-hop
graph traversal in the
subgraph, return the
intersection of two sets

Find the top-2 persons who
spend the highest amount of
money in orders. Then for
each person, traverse her
knows-graph with 3-hop to
find the friends, and finally
return the common friends
of these two persons

Q5 Community Join data from Relation,
Graph, and Key-value with
two predicates, recursive
path query for Graph,
embedded array operation for
JSON, and composited-key
lookup for Key-value

Given a start customer and a
product category, find
persons who are this
customer’s friends within
3-hop friendships in
knows-graph, and they have
bought products in the given
category. Finally, return
feedback with the 5-rating
review of those bought
products

Q6 Community Perform the shortest path
calculations between two
nodes, find the correlated
JSON orders of nodes in the
path, aggregation on
returned JSON orders

Given customer 1 and
customer 2, find persons in
the shortest path between
them in the subgraph, and
return the TOP 3 best
sellers from all these
persons’ purchases

Q7 Commerce Join data from Relation,
JSON and Key-value,
compare the aggregation
results between two periods,
identify the reviews with
negative sentiment

For the products of a given
vendor with declining sales
compare to the former
quarter, analyze the reviews
for these items to see if there
are any negative sentiments

(continued)
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Table 2. (continued)

Label Business
category

Technique dimension Description

Q8 Commerce Perform the embedded array
filtering and aggregation on
JSON order, aggregate the
correlated graph data for
each records

For all the products of a
given category during a given
year, compute its total sales
amount, and measure its
popularity in the social
media

Q9 Commerce Perform the embedded array
filtering, aggregation, and
sorting on JSON order, then
find the correlated graph
data

Find top-3 companies who
have the largest amount of
sales at one country, for each
company, compare the
number of the male and
female customers, and return
the most recent posts of
them

Q10 Commerce Perform the aggregation and
sort on graph data, then find
the correlated Key-value and
JSON data

Find the top-10 most active
persons by aggregating the
posts during the last year,
then calculate their RFM
(Recency, Frequency,
Monetary) value in the
same period, and return their
recent reviews and tags of
interest

T1 New order
transaction

Check the ACID properties
and evaluate the efficiency on
read-heavy multi-model
transaction that involves
JSON and XML

(i) Create and insert the
order, (ii) update the
quantity of involved
products, (iii) insert the
invoice

T2 Payment
transaction

Check the ACID properties
and evaluate the efficiency on
write-heavy multi-model
transaction that involves
Relation, JSON and XML

(i) Retrieve the unpaid
order, (ii) update the
balance of the seller and
buyer, (iii) update the
order status to paid, (iv)
update the related invoice

4.1 Business Cases

We identify two transactions and four layers of queries that include ten multi-
model queries to simulate realistic business cases in social commerce. Specifically,
the two transactions, namely, New Order and Payment transactions, simulates
the huge parallel transactions for online shopping. They represent heavy-weight,
read-write transactions with a high frequency of execution to satisfy on-line
users. As for multi-model queries, the individual level mimics the case that
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companies build a 360-degree customer view by gathering data from customer’s
multiple sources. There is one query for this level. conversation level focus
on analyzing the customer’s semi-structured and unstructured data, including
Query 2 and 3. The two queries are commonly used for the company to cap-
ture customer’s sentiment polarity from the feedback and then adjust the online
advertising or operation strategy. Query 4, 5, 6, in the community level target
at two areas: mining common purchase patterns in a community and analyz-
ing the community’s influence on the individual’s purchase behaviors. Finally,
commerce level aims at the assortment optimization and performance trans-
parency. Specifically, Query 7, 8, 9 identify products or vendors with downward
or upward performance and then find the cause for improvements. Query 10 is to
compute the Recency, Frequency, Monetary (RFM) value of customers regarding
the vendor, and then find the common tags in the posts.

4.2 Technical Dimensions

Our workload design is based on the choke point technique that tests many
aspects of the database when handling the query. Typically, these aspects may
concern different components of databases, such as the query optimizer, the
execution engine, and the storage system. Moreover, the choke points in our
workload not only involve common query processing challenges for the tradi-
tional database systems but also take a few new problems of multi-model query
processing. Here we list three key points:

Choosing the Right Join Type and Order. Determining the proper join
type and order for multi-model queries is a new and non-trivial problem. This is
because it demands the query optimizer to estimate the cardinality with respect
to involved models. Moreover, it needs the query optimizer to judiciously deter-
mine the optimal join order for multi-model query. The execution time of differ-
ent join orders and types may vary by orders of magnitude due to the domination
of different data model. Therefore, this choke point tests the query optimizer’s
ability to find an optimal join type and order for the multi-model query. In our
proposed workload, all the queries involve multiple joins across different data
model.

Performing Complex Aggregation. This choke-point includes two types of
queries concerning the complex aggregation. The first type is the aggregation
towards the complex data structure which requires MMDB to deal with schema-
agnostic data when proceeding with aggregation. The second one is the query
with subsequent aggregations, where the results of an aggregation serve as the
input of another aggregation. Also, these aggregations involve the union of mul-
tiple models’ results. For instance, Query 10 requires the MMDB to access the
product array in the JSON orders when processing the first aggregation. Then
the results will be an input for the second aggregation in the Graph.
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Ensuring the Consistency and Efficiency. A database transaction should
possess ACID properties. Therefore, this choke-point tests the ability of the
execution engine and the storage system to find an appropriate concurrency
control technique to guarantee the consistency and efficiency. In particular, the
transactions not only involve read-write operations on multiple entities but also
require the MMDB to guarantee the consistency across the data model.

4.3 Example

To illustrate our choke-point-based design of queries, we take Query 5 (in Fig. 3)
as an example to explain the technical challenge under the hood. Query 5 is
that: Given a start customer and a product category, find persons who are this
customer’s friends within 3-hop friendships in Knows graph, besides, they have
bought products in the given category. Finally, return the feedback with the 5-
rating review of those bought products.

{
"id": 1,
"customer_id": 33,
"total_price": 135,
"items": [
{"product_id": 85,"brand": "Nike"},
{"product_id": 86,"brand":"Adidas"}

]  
}

Person
_id: 145

Person
_id: 101

Person
_id: 56

Person
_id: 33

friend

friend

Order(JSON)
Excerpt of Multi-Model Data:

Feedback(Key-value)
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CustId ProductId Rating
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Fig. 3. Example of multi-model join

As Fig. 3 depicts, this query involves three data models: customer with 3-
hop friends (Graph), order embedded with an item list (JSON ), and customer’s
feedback (Key-value). From the business perspective, it can be used to explain
the recommendation model for better transparency and user experience. From
the technical dimension, there are three types of joins in the query: Graph-Graph
(
�a), Graph-JSON (
�b) and JSON-KV (
�c) join. Nevertheless, as the order of
filters and joins can affect the execution time, an important task for the query
optimizer is to evaluate available plans and select the best one. Note that picking
a wrong join order makes the performance drastically worse. For example, when
there is no qualified tuple in the orders, traversing one thousand tuples in the
graph and looking up thousands of key-value pairs would be a bad choice. A
judicious way for this case is to filter the orders with given parameters, and
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avoid the graph traversal and index lookup for key-value pairs when there are
no valid orders. Furthermore, Query 5 is challenging also because each model
arises a cardinality estimation issue to the query optimizer, i.e., recursive path
query for Graph, embedded array operation for JSON, and composite-key lookup
for key-value.

5 Experiments

In this section, we report our experimental results, including the performance
of data generation and the benchmark results. In the case of the setup, we
generate the synthetic data on a cluster of three machines, each with double 4-
core Xeon-E5540 CPU, 32 GB RAM, and 500 GB HDD. In addition, we conduct
all benchmark experiments on another machine with double 6-core Xeon-E5649
CPU, 100 GB RAM, and 500 GB HDD. The client machine has a 4-core i5-
4590 CPU with 16 GB RAM. We select two representative MMDBs: OrientDB
and ArangoDB with community version 2.2.16 and 3.3.7. On the client-side,
we develop a Node.js program integrated with each DB’s official driver. All
benchmark workloads are implemented in the program (except for the OrientDB
transaction, which can only be fully supported using JAVA API at present).

5.1 Data Generation

Table 3 presents characteristics of three generated datasets, each of which con-
sists of five data models. Unibench defines a set of scale factors (SFs), targeting
systems of different sizes. The size of the resulting dataset is mainly affected by
the number of persons (Relational entries). For benchmarking the databases, we
leverage the data generator to produce three datasets with roughly size 1 GB,
10 GB, and 30 GB by using scale factors 1, 10, and 30, respectively. In the case
of efficiency, experiment results suggest the data generator produced 1 GB and
10 GB multi-model datasets in 10 and 40 min, on our 8-core machine running
MapReduce and Spark in “pseudo-distributed” mode. In terms of scalability,
we successfully generate 30G multi-model data within 60 min on our three-node
cluster.

Table 3. Characteristics of datasets.

SF Generation

time (min)

Number (×104) & size in megabytes

Relational

entries

Key-value pairs JSON objects XML objects Nodes and edges of graph

1 10 1.2 & 1.1 25.2 & 233.7 25.2 & 219.2 25.2 & 326.5 (123.1, 338.9) & 236.6

10 40 7.4 & 6.5 234.2 & 2313.1 234.2 & 2189.8 234.2 & 3568.6 (969.3, 3208.3) & 2095.8

30 60 (3 nodes) 18.3 & 15.8 636.8 & 6367.8 636.8 & 6184.9 636.8 & 11771.31 (2674.3, 10951.5) & 6191.5



20 C. Zhang et al.

5.2 Importing Time

We import three datasets, SF1, SF10, and SF30, into ArangoDB and OrientDB
using command-line utilities arangoimp and oetl. Both are executed in a single
thread. Since both of them have no native XML support, we skip the XML
importing test (Note that one can also convert XML objects into JSON objects,
but the method is simply similar to that for JSON documents). The importing
time of key-value pairs is merged into the relational model’s because both DBs
employ the same import method. Regarding the additional cost for supporting
join operations, OrientDB needs to create inverse links between relational and
JSON data using CREATE LINK command. In comparison, there is no such
cost for ArangoDB, because once the data is imported into the system, one can
perform join queries immediately.
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ArangoDB OrientDB
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Relational JSON Graph Additional

ArangoDB OrientDB
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28.78 88.89 278.72 306.74 1149.59

(a) SF1 (b) SF10 (c) SF30

Fig. 4. Processing time for importing the multi-model datasets.

Figure 4 illustrates the result for loading three datasets. For better illustra-
tion, we measured the data loading time by four aspects, i.e., relational, JSON,
graph, and additional cost. Overall, ArangoDB is 7.5x, 3.4x, and 3.8x faster
than OrientDB for SF1, SF10, and SF30, respectively. Our observations are
as follows. (i) For relational data, OrientDB is slightly slower as it takes time
for creating unique RID to record the physical position for each row. On the
contrary, ArangoDB employs original IDs as primary keys directly. (ii) For the
JSON data, OrientDB has to transform each semi-structured JSON object into
an ODocument object, while ArangoDB imports JSON data as JSON lines for-
mat, which allows it to load data in batches. (iii) For the graph data, OrientDB
utilizes adjacency lists to store relations between all nodes. Thus an index lookup
is needed when extracting every edge. In contrast, ArangoDB imports all edges
into a edge collection as long as all imported documents have from and to
attributes. This makes ArangoDB much faster than OrientDB for loading graph
data. (iv) OrientDB requires additional cost for other tasks, e.g., creating links.
Such cost increases drastically as data grows.

5.3 Performance of Multi-model Query

In this part, we issued ten multi-model queries on three datasets against
ArangoDB and OrientDB. These queries are implemented using their query lan-
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guages, i.e., AQL and Orient SQL. We use default indexes which are built on
primary keys, and no secondary index is created. We provide the processing time
of these queries in Fig. 5. We expect OrientDB could perform better at queries
in the community level since these queries involve advanced graph traversal, but
surprisingly, ArangoDB wins in most of the cases. This is due to its flexible data
modeling, sophisticated query optimizer, and C++-implemented query func-
tion. Nevertheless, one exception is Q5 where OrientDB outperforms ArangoDB
because the latter’s query optimizer does not handle inner joins between graph
and JSON efficiently, while OrientDB uses composite SQL queries to fetch cor-
related data from graph and JSON at the same time.
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Fig. 5. Processing time on a logarithmic scale for queries, x-axis labels are query ids,
i.e., Q1 to Q10.

5.4 Transaction Performance

We adopt Java and Node.js APIs which are only feasible ways at present to
implement multi-model transactions for OrientDB and ArangoDB, respectively.
This leads to two different patterns: synchronous processing for OrientDB, and
asynchronous processing for ArangoDB. Similar to transactional operations in
RDBMS, OrientDB utilizes begin, rollback, commit commands to proceed trans-
actions. However, no such commands exist in ArangoDB. Instead, it executes a
transaction via an executeTransaction JavaScript function. All involved data in
the transaction needs to be declared beforehand.

Table 4. Throughput (transactions/second) of multi-model transactions

Database Access method Throughput
for new order

Throughput
for payment

ArangoDB Asynchronous (Nodejs) 230.6 738.5

OrientDB Synchronous (Java) 138.3 22.9

We ran two individual transactions (i.e., New Order and Payment) with a
single thread for one minute, then compute the throughput per second. The
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operations of transactions in detail can be found in Table 2. Two DBs manage
to roll back invalid transactions and commit valid ones, which means ACID
properties on two multi-model transactions are guaranteed. Table 4 illustrates
performances of both systems. The results indicate ArangoDB is better at write-
heavy transaction (Payment) and OrientDB is more efficient in performing read-
heavy transaction (New order). We believe this is due to the difference of their
storage engines, i.e., LSM-tree-based storage for ArangoDB and B-tree-based
storage for OrientDB.

6 Conclusion

Benchmarking multi-model databases is a challenging task since current public
data and workloads can not well match various cases of applications. In this
article, we introduce UniBench, a novel benchmark for multi-model databases.
UniBench consists of a mixed data model, a scalable multi-model data gener-
ator, and a set of workloads including the multi-model aggregation, join, and
transaction. Furthermore, we implement our proposed workloads on ArangoDB
and OrientDB to illustrate the feasibility and usability of UniBench.

Several lessons are learned from the experimental study: (i) MMDBs are
able to ingest a variety of data into storage without much additional efforts,
(ii) MMDBs are able to support multi-model joins, such as graph-JSON, JSON-
relational, and graph-relational. However, they lack specific algorithms to opti-
mize the execution plan. (iii) MMDBs are able to support multi-entity and
multi-model ACID transactions in the stand-alone mode, but the support for
distributed ACID transactions remain on the future schedule.

As for future work, we would like to (i) introduce the flexibility into data
generation because the data schema and data model in the real application could
be changed dynamically, (ii) evaluate the performance of multi-model databases
regarding different sharding strategies, and (iii) provide an open-source kit used
to setup and run the benchmark, including the release of data generator and
query implementations.
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