
A Creative Dialog Generator for Fallout 4
Khalid Alnajjar

khalid.alnajjar@helsinki.fi
Dept. of Computer Science & HIIT, University of Helsinki

Helsinki, Finland

Mika Hämäläinen
mika.hamalainen@helsinki.fi

Dept. of Digital Humanities, University of Helsinki
Helsinki, Finland

ABSTRACT
This software demonstration describes a mod for Fallout 4 that will
adapt in-game dialog to the context of the current state of the game.
The dialog is generated by a computationally creative back-end
software during the game play. The mod solves the problem of
Fallout 4 not supporting dynamically generated dialog by showing
dialog in an overlay application on top of the game window.

CCS CONCEPTS
•Computingmethodologies→Discourse, dialogue andprag-
matics; Natural language generation; Natural language process-
ing; • Applied computing→ Computer games.

KEYWORDS
dialog generation, contextual adaptation, video game dialog, com-
putational creativity
ACM Reference Format:
Khalid Alnajjar and Mika Hämäläinen. 2019. A Creative Dialog Generator
for Fallout 4. In The Fourteenth International Conference on the Foundations
of Digital Games (FDG ’19), August 26–30, 2019, San Luis Obispo, CA, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3337722.3341824

1 INTRODUCTION
Fallout 41 is an open world RPG (role-playing game) that gives
the player a great freedom to explore the wasteland and complete
dozens of side quests. The game has a massive number of hand-
written dialog to cater for credible characters the player might not
even encounter if he is not undertaking all the side quests in the
game.

However, the predefined dialog comes with a problem of adapt-
ability. The dialog will stay the same regardless of the condition of
the player or the wider state of completion of the game. A player
who has slaughtered an entire city will be still called a hero in the
NPC (non-player character) dialog in the next city, and so on.

For this particular reason, we have decided to seek for a solution
to the poor contextual adaptability of the Fallout 4 dialog. We de-
scribe our work on a computationally creative generative system
1Fallout is a registered trademark of Bethesda Softworks LLC in the U.S. and/or other
countries. All Rights Reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3341824

that can take in a piece of existing dialog and adapt it to fit the
context of the game state dynamically during the game play. Our
generator is not just a piece of separate code, but it actually inte-
grates with Fallout 4 via a mod we have developed for the purpose
of showing externally generated dialog in the game.

While dialog generation for video games and digital media has
received some research attention in the past [3, 9, 11, 13], for the
best of our knowledge, our approach is the first one using machine
learning to generate a virtually unlimited number of novel contex-
tually adapted dialog for a video game. To further widen the impact
of our research, we are releasing the code for the mod with an open
source license on Zenodo2 together with this paper.

Our work relates to the field of computational creativity, in which
a computer is used to produce artefacts that would be deemed cre-
ative if observed by people cf. [17]. Computational creativity has
grown as a field with a wide range of topics covered through-
out the past decade such as slogan generation [1, 14, 15], poem
generation [5, 6] and humor generation [2, 18]. Our demo brings
computational creativity close to a real human user in a video game
setting.

2 SHOWING GENERATED DIALOG IN
FALLOUT

Fallout 4 does not support showing dynamically generated dialog,
but instead, the game engine expects all the dialog be written and
voice acted beforehand. Nothing new can be displayed during the
run-time. For our approach to be integrated into the game, this
requires a workaround to solve the problem. Our solution involves
an external overlay application that shows the dialog on top of the
game window. The whole process is depicted in Figure 1.

Our mod adds a creative NPC character called Mr Creative into
Diamond City. This character has empty dialog with empty dialog
options, so that the actual generated dialog can be shown instead. A
script written in the Fallout 4 modding language Papyrus is attached
to the NPC and it will log out different game state variables when
the player initiates dialogwith the NPC. The logged game state has 8
values of the player object (such as health, strength, endurance) and
104 values of the game stats (such as quests completed, monsters
killed, locks picked and so on).

The log file is continuously checked by a log daemon, and once
new log is available, the daemon will parse the game state variables
output by the Papyrus script and send an HTTP request to the
generator script that is running as a Flask3 based web application.
This will inform the generator that the player has entered in a
dialog with the creative NPC character.

2https://doi.org/10.5281/zenodo.3232863
3http://flask.pocoo.org/

https://doi.org/10.1145/3337722.3341824
https://doi.org/10.1145/3337722.3341824

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Alnajjar and Hämäläinen

Figure 1: The flowchart of themod displaying the generated
dialog.

The generator compares the game state to the previously stored
one and picks the changed game state variables as potential dialog
options. Out of these variables, three are picked at random as dialog
options to be shown to the player. The fourth dialog option is always
fixed as a dialog ending bye option. Once the dialog options are
ready, the generator will make an HTTP request to the overlay
application with the options.

Once the overlay application gets the new dialog options, it
makes its application window visible and reshapes it to the shape
of the dialog option text. This way it does not look like there was
an external window on top of the game window as seen in Figure 2.
The overlay application starts to listen to the joy-pad buttons. The
player can pick a dialog option in Fallout 4 by pressing one of the
following Xbox 360 controller buttons: X, Y, B or A. When the
player makes the choice, the overlay application registers the same
button press as Fallout 4, sends an HTTP request to the generator
script with the picked option and makes itself invisible.

The generator generates two pieces of utterances. One to be
displayed as uttered by the player and another by the NPC. As
generation is a computationally demanding process, the generator
application generates possible dialogues into a cache before they
are actually needed. After the generation, the overlay application
is informed by another HTTP request.

Figure 2: Dialog options shown in the game.

Figure 3: The actual dialog shown by the overlay applica-
tion.

Finally the overlay application starts showing the generated
dialog as seen in Figure 3. The dialog is shown for a predefined
duration of time that corresponds to how long Fallout takes to show
the empty dialog of the NPC character. After the dialog sequence
is over, either new options are requested from the generator, or if a
dialog ending option was picked, the overlay application just hides
its application window and the dialog finishes.

3 DIALOG GENERATOR
The dialog is generated by picking at random two consecutive
utterances in the existing Fallout 4 dialogues. These are the initial
utterances that will undergo the contextual adaption process given
the player picked topic. The topics are the names of the game state
variables that have increased from the last time the player had a
conversation with the NPC.

Each game state variable is by hand assigned with four key
words describing an increase in that variable. For example, for Locks
Picked, the words are burglar, crook, robber and suspicious, and for
Locations Discovered: wanderer, discovery, traveller and explore. The
four seed words associated with the chosen variable together with

A Creative Dialog Generator for Fallout 4 FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

the two randomly picked existing utterances serve as an input for
the generation pipeline as shown in Figure 1.

Figure 4: The flowchart of the dialog generation pipeline.

The dialog adaptation process starts by parsing the dialog to an
abstract syntax with spaCy [8]. By abstract syntax we mean a struc-
ture, where closed class part-of-speech words are replaced with a
placeholder indicating only their POS tag. This abstract syntax is
then paraphrased by using a sequence-to-sequence syntactic para-
phrasing model trained with OpenNMT [10]. We train the model
with otherwise the default settings but use the copy attention mech-
anism and use a BRNN (bi-directional recurrent neural network)
encoder instead of the default one-directional RNN encoder.

The model is trained by using Opusparcus [4] subtitle corpus
tailored for paraphrasing as it has parallel data of subtitles written
by different translators for the samemovies.We convert the data-set
into the aforementioned abstract syntax form and use the first one
hundred thousand parallel sentences where the syntactic structure
of the paraphrase is different from the original.

The syntax is changed by randomly picking from the top 5 para-
phrased syntactic structures generated by the OpenNMT model.
We replace the placeholders of the new syntax with the words from
the original utterance. This step only changes the syntax for more
structural variety in the final output. Changing the vocabulary
semantically is done by the next step of the pipeline.

The semantic change process begins after the paraphrasing phase.
The process can be divided into 4 steps, which are 1) finding and
selecting words in the utterance to change, 2) retrieve semantically

similar words (candidates) to the selected ones, 3) evaluate the
fitness of these candidates and 4) apply the semantic change.

During the first step, the process highlights words in the ut-
terance that match a list of predefined parts-of-speech (e.g. verbs,
adjectives, nouns, . . . etc). Out of the highlighted words, a random
non-empty subset of words is chosen to be replaced. In following
step, the processes uses a pre-trained semantic model [12] for re-
trieving the top k semantically similar words (candidates) to each
highlighted word. We empirically set k to be 300. The retrieved
candidates are then evaluated during the next phase of the process,
where the process checks whether these candidates are different
from the original word, match its part-of-speech, are semantically
similar to it and are semantically similar to the context (i.e. the
passed seed words). To measure the semantic similarity to the con-
text, we represent words describing it as a single vector in the
semantic model (called centroid) by averaging their corresponding
vectors. The semantic similarity to the context is measured by cal-
culating the dot product of the candidates’ vectors with the centroid
(i.e. cosine similarity).

Any candidate word that does not meet these conditions is
pruned out. From the remaining candidates, a random candidate
for each highlighted word is selected to be its replacement. After-
wards, the replacements are applied and the resulting utterance is
returned.

Finally, the new replacement words are inflected to match the
original morphology by Pattern [16]. The whole generative pipeline
is repeated 5 times after which the output dialogues are ranked
by using a 3-gram language model, picking the highest ranking
dialog and serving that for the player. The language model is trained
with all the data in Opusparcus with a language model tool called
KenLM [7].

4 CONCLUSIONS
In this software demonstration paper, we have presented our work
on contextually adapting dialog in Fallout 4 to a set of game state
variables. The work has involved overcoming the practical prob-
lem of showing dynamically created dialog in the game that only
supports static, predefined dialog. In addition to that, we have pre-
sented our initial work on using modern machine learning methods
in generating adapted dialog in a computationally creative fashion.

The mod presented in this paper is fully functional with Fallout
4 and can be, with minor adjustments, installed on any Windows
machine running the game. Therefore, the source code of the mod
presented in this paper is made openly available on Zenodo4.

REFERENCES
[1] Khalid Alnajjar, Hadaytullah Hadaytullah, and Hannu Toivonen. 2018. “Talent,

Skill and Support.” A Method for Automatic Creation of Slogans. In Proceed-
ings of the 9th International Conference on Computational Creativity (ICCC 2018).
Association for Computational Creativity, Salamanca, Spain, 88–95.

[2] Khalid Alnajjar and Mika Hämäläinen. 2018. A Master-Apprentice Approach
to Automatic Creation of Culturally Satirical Movie Titles. In Proceedings of the
11th International Conference on Natural Language Generation. Association for
Computational Linguistics, Tilburg University, The Netherlands, 274–283.

[3] Marc Cavazza and Fred Charles. 2005. Dialogue generation in character-based
interactive storytelling. In Proceedings of the First AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment. AAAI Press, Marina del Rey,
California, 21–26.

4https://doi.org/10.5281/zenodo.3232863

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Alnajjar and Hämäläinen

[4] Mathias Creutz. 2018. Open Subtitles Paraphrase Corpus for Six Languages. In
Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC-2018). European Languages Resources Association (ELRA),
Miyazaki, Japan, 1364–1369.

[5] Hugo Gonçalo Oliveira. 2017. A Survey on Intelligent Poetry Generation: Lan-
guages, Features, Techniques, Reutilisation and Evaluation. In Proceedings of the
10th International Conference on Natural Language Generation. Association for
Computational Linguistics, Santiago de Compostela, Spain, 11–20.

[6] Mika Hämäläinen. 2018. Harnessing NLG to Create Finnish Poetry Automatically.
In Proceedings of the Ninth International Conference on Computational Creativity.
Association for Computational Creativity, Salamanca, Spain, 9–15.

[7] Kenneth Heafield. 2011. KenLM: Faster and Smaller Language Model Queries. In
Proceedings of the EMNLP 2011 Sixth Workshop on Statistical Machine Translation.
Association for Computational Linguistics, Edinburgh, Scotland, United Kingdom,
187–197. https://kheafield.com/papers/avenue/kenlm.pdf

[8] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural Language Under-
standing with Bloom Embeddings, Convolutional Neural Networks and Incre-
mental Parsing. To appear (2017).

[9] Christopher Kerr and Duane Szafron. 2009. Supporting dialogue generation
for story-based games. In Proceedings of the Fifth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment. AAAI Press, Stanford, California,
154–160.

[10] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush.
2017. OpenNMT: Open-Source Toolkit for Neural Machine Translation. In Pro-
ceedings of ACL 2017, System Demonstrations. Association for Computational
Linguistics, Vancouver, Canada, 67–72.

[11] Jonathan Lessard, Etienne Brunelle-Leclerc, Timothy Gottschalk, Marc-Antoine
Jetté-Léger, Odile Prouveur, and Christopher Tan. 2017. Striving for Author-
friendly Procedural Dialogue Generation. In Proceedings of the 12th International

Conference on the Foundations of Digital Games (FDG ’17). ACM, New York, NY,
USA, Article 67, 6 pages.

[12] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Ar-
mand Joulin. 2017. Advances in Pre-Training Distributed Word Representations.
CoRR abs/1712.09405 (2017). arXiv:1712.09405

[13] Hannah Morrison and Chris Martens. 2017. A Generative Model of Group Con-
versation. In Proceedings of the 12th International Conference on the Foundations
of Digital Games (FDG ’17). ACM, New York, NY, USA, Article 66, 7 pages.

[14] Gözde Özbal, Daniele Pighin, and Carlo Strapparava. 2013. BRAINSUP: Brain-
storming Support for Creative Sentence Generation. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Sofia, Bulgaria, 1446–1455.

[15] Andraž Repar, Matej Martinc, Martiň Znidaršič, and Senja Pollak. 2018. BISLON:
BISociative SLOgaN generation based on stylistic literary devices. In Proceed-
ings of the 9th International Conference on Computational Creativity (ICCC 2018).
Association for Computational Creativity, Salamanca, Spain, 248–255.

[16] Tom De Smedt and Walter Daelemans. 2012. Pattern for python. Journal of
Machine Learning Research 13, Jun (2012), 2063–2067.

[17] Dan Ventura. 2014. Can a Computer be Lucky? And Other Ridiculous Questions
Posed by Computational Creativity. InArtificial General Intelligence, Ben Goertzel,
Laurent Orseau, and Javier Snaider (Eds.). Springer International Publishing,
Cham, 208–217.

[18] Thomas Winters, Vincent Nys, and Daniel De Schreye. 2019. Towards a Gen-
eral Framework for Humor Generation from Rated Examples. In Proceedings of
the Tenth International Conference on Computational Creativity. Association for
Computational Linguistics, Charlotte, North Carolina, U.S., 274–281.

https://kheafield.com/papers/avenue/kenlm.pdf
http://arxiv.org/abs/1712.09405

	Abstract
	1 Introduction
	2 Showing Generated Dialog in Fallout
	3 Dialog Generator
	4 Conclusions
	References

