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In the current longitudinal study, we investigated the development of working memory in
musically trained and nontrained children and adolescents, aged 9–20. We measured
working memory with the Digit Span (DS) forwards and backwards tests (N = 106)
and the Trail-Making A and B (TMT-A and B; N = 104) tests three times, in 2011,
2013, and 2016. We expected that musically trained participants would outperform
peers with no musical training. Indeed, we found that the younger musically trained
participants, in particular, outperformed their nontrained peers in the TMT-A, TMT-B
and DS forwards tests. These tests all primarily require active maintenance of a rule in
memory or immediate recall. In contrast, we found no group differences in the backwards
test that requires manipulation and updating of information in working memory. These
results suggest that musical training is more strongly associated with heightened working
memory capacity and maintenance than enhanced working memory updating, especially
in late childhood and early adolescence.

Keywords: musical training, longitudinal, working memory, updating, maintenance, development, trail-making
test, Digit Span

INTRODUCTION

Musically trained individuals have been reported to outperform musically nontrained peers in
various kinds of cognitive tests not directly related to music-making, including ones measuring
long-term verbal and visual memory (Chan et al., 1998; Ho et al., 2003), executive functions
(Bialystok and Depape, 2009; Degé et al., 2011; Moreno et al., 2011; Zuk et al., 2014; Saarikivi
et al., 2016; however, see Schellenberg, 2011), and even intelligence (Schellenberg, 2004, 2006;
Moreno et al., 2011). Executive functions (Stuss and Alexander, 2000; Jurado and Rosselli,
2007; Diamond, 2013) are cognitive processes typically divided into three related components:
working memory, inhibition, and cognitive flexibility (Miyake et al., 2000; Lehto et al., 2003;
Miyake and Friedman, 2012; Diamond, 2013). These three processes allow individuals to
acquire, maintain, manipulate, and update representations of information of the environment,
and monitor, direct and alter behavior according to these representations. Multicomponent
models of working memory propose subprocesses for maintaining representations of
information in memory and for manipulating this information. For instance, the influential
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model of Baddeley and Hitch (1974) divided working memory
into two components for storage and manipulation of verbal
and visual material, and a cognitive control unit (for other
models, see e.g., Cowan, 1988, 1999; Unsworth and Engle, 2007).
Neuroimaging and lesion studies have found separate neural
functions for memory representations and attention processes
that govern manipulation of this information, supporting these
modular views of working memory (Postle et al., 1999; Gerton
et al., 2004; Owen et al., 2005; reviews: D’Esposito et al.,
1995; Miller and Cohen, 2001; Linden, 2007; Nee et al., 2012;
Rottschy et al., 2012; Eriksson et al., 2015; for a discussion on
differences between short-term memory and working memory,
see e.g., Unsworth and Engle, 2007; Cowan, 2008; Aben
et al., 2012). Multicomponent models of working memory have
been validated in child studies (Gathercole et al., 2004; Gray
et al., 2017), and separate brain mechanisms for encoding,
maintenance and retrieval of verbal information have also
been found in neuroimaging studies of children, from the age
6 onwards, and in adolescents (Gathercole et al., 2004; Siffredi
et al., 2017).

Workingmemory and other executive functions develop from
early childhood until adolescence (Cepeda et al., 2001; De Luca
et al., 2003; Vuontela et al., 2003; Luna et al., 2004; Zelazo
et al., 2004; Huizinga et al., 2006), following the maturation
of prefrontal areas (Casey et al., 2000; Fuster, 2002; Kwon
et al., 2002; Bunge and Wright, 2007; Kharitonova et al.,
2013). Different executive functions however mature at slightly
different rates. Development of shifting ability, which is related to
cognitive flexibility, has been found to continue until adolescence
(Huizinga et al., 2006; Best and Miller, 2010; Huizinga and van
der Molen, 2011), and development of working memory even
further, until early adulthood (Kwon et al., 2002; Huizinga et al.,
2006; Satterthwaite et al., 2013).

Several cross-sectional studies have reported varying
musician advantage in working memory tasks. For example, in
a study by George and Coch (2011), years of musical training
correlated positively with scores in both verbal and visual span
tests for memory in college-aged individuals. Similarly, in
another study (Talamini et al., 2016), musically trained adults
outperformed nontrained peers in auditory as well as visual span
tests for working memory. Finally, Zuk et al. (2014) found better
performance in the Digit Span backwards test in adult musicians
compared to nonmusicians, but not in musically trained children
compared to nontrained peers.

Longitudinal studies with children suggest that the putative
musician advantage in memory tasks may be caused by training
and does not solely reflect pre-existing differences (for a
discussion on problems of inferring causation from these kinds
of studies, see Schellenberg, 2015). In the study by Ho et al.
(2003), verbal long-term memory improved in children who
continued musical training during a year-long follow-up, but
not in those who did not. Similarly, in a study following
the development of musically trained and nontrained children
(Bergman Nutley et al., 2014), musical training was associated
with improvement of verbal working memory as measured
by the backwards Digit Span test, but also visual working
memory as measured by a visuo-spatial working memory task.

Another longitudinal study (Fujioka et al., 2006), comparing
the development of children who undertook music lessons for
1 year to the development of children in a Control group, found
significant improvement of working memory as measured by
the Digit Span test only in the Music group. In another study
(Roden et al., 2014), improvement of working memory was
observed in preschool-aged children after 18 months of musical
training, but not in an active Control group. In the study, effects
were found specifically in tests measuring the phonological loop
and the central executive subcomponents of working memory.
The phonological loop was measured with the One Syllable
Word Span Test, requiring participants to memorize and recite
a sequence of words in the order they were presented, and
the Nonword recall test, requiring participants to recite a
nonword immediately after hearing it. The central executive
was measured by complex span tasks requiring processing and
storing information at the same time or requiring reversal of
the order of a memorized sequence of information units. Last,
in a recent study with quasi-random assignment of children
into musical training and Control groups (Guo et al., 2018), it
was found that 6 weeks of musical training improved working
memory. Auditory working memory was assessed with the Digit
Span forward and backward tests and with the Letter-Number
Sequencing test. Both require working memory maintenance of
aurally acquired information and updating and manipulation of
that information in memory.

The notion that musical training might influence memory
skills is further supported by findings of training-related changes
in brain structures important for working memory. In their
seminal study on structural differences, Gaser and Schlaug
(2003) found that musicians had greater gray matter density
in areas important for motor and auditory processes, and also
a region of the cerebellum connected to working memory
(Stoodley et al., 2012). Similarly, in a study by James et al.
(2014), musical training correlated positively with gray matter
density in a cerebellar areas and basal ganglia important for
working memory. Another MRI study found increased thickness
of frontal areas related to working memory in musicians, when
compared to non-musicians (Bermudez et al., 2008).

Musical training has also been connected to changes in brain
functions related to working memory. In the study by George
and Coch (2011), musicians had shorter latencies of electrical
brain responses (P3) to changes in visual as well as auditory
stimuli, as well as larger P3 amplitudes to tonal changes. The
P3 response is thought to reflect updating of workingmemory. In
a recent study (Cheung et al., 2017), musically trained individuals
outperformed nontrained peers in tasks for verbal memory and
also differed in electrical brain activity measured during a verbal
memory task. Specifically, musically trained individuals showed
more intrahemispheric coherence in the theta band. In an fMRI
study (Pallesen et al., 2010), musicians showed greater activation
of brain networks for attention and working memory, including
frontal, parietal, and subcortical areas than nonmusicians. In
another study (Schulze et al., 2011), musicians showed different
patterns of activation of brain areas during memory encoding
and rehearsal of structured and unstructured tonal sequences.
Nonmusicians did not show differences in activation patterns

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 November 2019 | Volume 13 | Article 62

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Saarikivi et al. Musical Training and Working Memory

during these tasks. Musicians also outperformed nonmusicians
in learning the tonal sequences.

A recent meta-analysis on cross-sectional and longitudinal
studies on music-related enhancement of working memory
in children and adults (Talamini et al., 2017) concluded
that musicians and musically trained individuals have a clear
advantage across different memory tasks when compared to
nontrained peers. However, according to the results, the effect
size depended on the type of information that was processed
and on the memory processes required by the task. In general,
the musician advantage was stronger for working memory than
long-term memory, and for auditory rather than visual stimuli.

Another recent meta-analysis (Sala and Gobet, 2017a) found
only a weak musician advantage in memory tasks. In this meta-
analysis, however, no distinction was made between working
memory and long-term memory, which may have obscured
the effects of musical training on working memory reported in
several cross-sectional and longitudinal studies.

In sum, there is evidence of an association between musical
training and specifically verbal working memory. However,
longitudinal studies have focused on school- or preschool-aged
children even though executive functions are known to develop
long into adolescence. As a result, it is still unclear how
musical training specifically augments the development of
working memory, and for how long into adulthood the possible
advantage persists.

In this longitudinal study, we compared the working memory
skills of 114 musically trained and nontrained children and
adolescents aged 9–20. During this age range, executive functions
including working memory undergo significant development,
owing to the protracted development of brain areas such as the
frontal lobes that important for these skills, but also begin to
reach maturity (Taylor et al., 2013, 2015) The sample allows for
investigating the effects of musical training on working memory,
and the persistence of these effects during a developmentally
highly interesting window of time. The study aims at answering
questions that remain unresolved in research examining the
effects musical trainingmay have on cognitive development: does
musical training augment the development of working memory,
does musical training produce an advantage in working memory
tasks, does this advantage persist into adulthood?

To investigate working memory, we employed two broadly
studied and well-established tests: the Digit Span backward and
forwards tests and the Trail-Making Test A and B. Data on
performance in Digit Span tests were collected during a 3-year
follow-up and the TMT-A and B tests during a 2 year follow-
up. Based on previous literature, we expected musically trained
children and adolescents to perform better than nontrained peers
in all tests.

MATERIALS AND METHODS

Participants
Altogether 106 children and adolescents aged 9–20 years
participated in the study (Tables 1, 2). The musically trained
participants (N = 54, 32 females) had started training on a

musical instrument approximately at age 7. They had attended
or were currently attending a public elementary school that
emphasizesmusic in the curriculum. In addition to weekly classes
in classical instrumental training, school days contained music
lessons such as choir and ensemble training and performances.
Thus, at age 9, participants had a total of approximately 2 years
of musical training and participation in the musical curriculum,
at age 11, 4 years and so on. The nontrained participants (N = 52,
26 females) had no formal training on a musical instrument.
They attended or had attended a standard elementary school
with weekly group-based music lessons until the age of 13, but
no instrumental tuition. No children reported hearing deficits or
neurological impairments. The Music and Control groups were
matched in SES and IQ (Putkinen et al., 2014).

Written informed consent for participation was obtained
from guardians of underaged participants or from over
18-year old participants themselves before the experiment. All
participants also gave verbal consent for their participation.
Participants were rewarded three movie tickets for taking part
in the measurement. The experiment protocol was approved by
the Ethical Committees of the Department of Psychology and
of the Faculty of Behavioural Sciences, both at the University of
Helsinki, Finland.

Working Memory Tests
The Digit Span forwards and backwards (DS forwards, DS
backwards) tests (WISC-IV, Wechsler, 2010) as well as the
TMT-A and B (TMT-A, TMT-B; Poutiainen et al., 2010) were
used to measure verbal working memory. In the Digit Span
forwards test, subjects are aurally presented with a series of
digits, and immediately recite them from memory. In the DS
backwards test, participants are required to recite the presented
digits in reverse order. There are multiple presentation rounds,
with the experimenter always adding one to-be-memorized digit.
The forwards test requires active maintenance of information
in mind, and the backwards tests also manipulation of this
information. Performance is evaluated by the total of digits that
the participant is able to correctly recite.

The TMT-A requires the participant to connect digits printed
randomly on paper by drawing a line from number to number in
a sequential order. The Trail-Making Test B requires participants
to alternate between connecting numbers and letters printed
on the paper in order (1-A-2-B-3-C. . .). Both tests require
maintenance of the rule of the task in mind and also maintaining
awareness of where one is progressing on the sequence of digits
(A) and both digits and letters (B). Performance is measured by
the time taken to complete the test.

Procedure
This study is part of a longitudinal study that started
in 2003 investigating the maturation of auditory processes
and executive functions in children undergoing musical training
and a control group. The study entailed also EEG measurements
and other tests for various cognitive skills (these data are reported
elsewhere). Measurements were conducted every 2 years, with
a new group of 7-year-olds recruited every 2 years. The data,
therefore, contains measurements from the same participants
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but from different years. The data reported here include
measurements conducted in the years 2011, 2013, and 2016 for
the DS forwards and backwards tests and from the years 2011 and
2013 for the Trail-Making A and B Tests (The TMT was
not conducted in 2016). Not all children took part in every
measurement. For the tests, 25 children participated in only one
measurement, 43 in two, and 38 in all three measurements. For
the Trail-Making A and B Tests, 43 children participated in one
measurement and 61 in both.

The cognitive tests were conducted before the EEG
experiments and took a maximum of 1 h altogether. Upon
arrival at the laboratory, written informed consent as well as
oral consent was received from the participants. After this,
the participants accompanied the experimenter to a room to
complete the tests. Experimenters were graduate students,
trained to work with children and adolescents and to administer
the tests. The space was a comfortably lit sound-proofed room,
previously used as an EEG lab, converted for testing use. The
experimenter and the subject were orthogonally seated at a
table. After the tests were completed, the subject was escorted
to the EEG lab, where the EEG cap was attached, and the
subject informed more closely about the EEG experiment.
EEG measurement ensued. Participants were offered bathroom
breaks when needed, and cookies and juice before the EEG
measurement as well as half way through it.

Statistical Analysis
Completion times in the TMT-A and B, and span (number of
correctly recited digits) in DS forwards and backwards were
included separately in analyses of test performance. The effect
of age and group membership on test performance was modeled
with linear mixed modeling using the lmer function [Test Score
∼ Age ∗ Group + (1|Subject)] of the Lme4 package in R (Bates,
2005; Bates et al., 2007). Age was mean centered so that the
significant effect of Group indicates a group difference in the
test score at average age of the participants (mean ages for the
DS and TMTs were 14.39 and 13.44 years, respectively). Linear
mixed modeling was selected as the analysis approach since it
allows a different number of data points across subjects and takes
into account the correlated nature of the data within a subject.
Values below the Q1–1.5 ∗ IQR (inter-quantile-range) or above
Q3 + 1.5 ∗ IQRwere classified as outlier and replaced by the lower
or upper cutoff values of this range, respectively. This procedure
was applied twice for the DS backwards and Trail Making A data
and five times for the Trail Making B data.

RESULTS

Performance of participants in all tests except for the DS
backwards test improved with age (Figures 1, 2). Musically
trained participants outperformed nontrained participants in the
DS forwards test, but not in the backwards test. The musically
trained individuals also outperformed nontrained peers in the
TMT-A. However, the group difference depended on age. The
difference between performance in theMusic andControl groups
decreased with age. A similar age-dependent effect was also

found for performance in Trail-Making Test B. The results are
described in more detail below.

Digit Span Forwards and Backwards
Performance in the DS forwards test improved with age
(estimated increase in span per year: 0.22, p < 0.001). The Music
group outperformed the Control group (estimates for the Music
and Control groups: Control difference in span: 0.56, p < 0.05).
The model revealed no evidence that this group difference was
dependent on age (Group∗Age interaction, ns).

For the DS backwards test, there were no significant effects
of Age or Group or and no significant interaction between
these predictors.

Trail-Making A and B Tests
Subjects’ performance in the TMT-A improved with age
(estimate for the decrease in completion time per year: −2.87,
p < 0.001). There was a trend-level effect of group suggesting
that the Music group outperformed the Control group in this test
(estimate for the Music < Control difference: −2.50, p < 0.07).
However, there was also a significant interaction between Age
and Group indicating that the group difference was more
pronounced in the younger children and decreased with age
(estimate for the Music < Control differences in the change in
completion time per year: 1.11, p < 0.05).

The performance in the Trail-Making Test B also improved
with age (Estimate for the decrease in completion time per year:
−9.25, p < 0.001). For this test, there was a significant effect of
group indicating that the Music group outperformed the Control
group (estimate for the Music < Control difference: −12.06,
p < 0.05) as well as a significant interaction between Age and
Group indicating that this group difference decreased with age
(estimate for the Music < Control differences in the change in
completion time per year: 4.69, p < 0.05).

DISCUSSION

In this study, we investigated the development of working
memory in musically trained and nontrained children and
adolescents. Musically trained participants outperformed
nontrained peers in the DS forwards test as well as the Trail-
Making A and B tests. Furthermore, the group difference in the
two latter tests decreased with age. We did not find a significant
difference between the Music and the Control groups in the DS
backwards test.

A Musician Advantage in the DS Forwards
and Trail-Making A and B Tests
The better performance of the Music group in the DS
forwards test concurs with previous research showing a musician
advantage in tests for memory (Chan et al., 1998; Fujioka et al.,
2006; George andCoch, 2011; BergmanNutley et al., 2014; Roden
et al., 2014; Zuk et al., 2014; Talamini et al., 2016; Guo et al.,
2018; review: Talamini et al., 2017). It is noteworthy, however,
that studies reporting memory enhancement in musicians have
conceptual and methodological differences. In the study by
Cheung et al. (2017), verbal memory enhancement was reported
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FIGURE 1 | Performance of participants in the Digit Span forwards and backwards, and the Trail-Making A and B tests across all age groups. Music and Control
groups represented with different colors.

FIGURE 2 | The intercepts (i.e., estimated performance at mean age) and slopes (i.e., estimated change in performance with age) for each test separately for the
Music and Control groups. The errorbars indicate 95% confidence intervals. ∗p < 0.05, †p = 0.07.
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TABLE 1 | Ages of participants in the Music and Control groups per measurement year for the Digit Span Test.

Group Year Mean age Minimum age Maximum age Standard deviation

Control 2011 12.77 8.75 15.92 2.26
Control 2013 14.61 10.43 17.81 2.45
Control 2016 17.25 13.56 20.78 2.51
Music 2011 12.46 8.92 15.83 2.31
Music 2013 14.09 10.60 17.44 2.20
Music 2016 16.76 13.50 20.29 2.30

TABLE 2 | Ages of participants in the Music and Control groups per measurement year for the Trail-Making Test.

Group Year Mean age Minimum age Maximum age Standard deviation

Control 2011 12.77 8.75 15.92 2.26
Control 2013 14.61 10.43 17.81 2.45
Music 2011 12.46 8.92 15.83 2.31
Music 2013 14.09 10.60 17.44 2.20

based on performance in a task requiring immediate as well
as delayed recall of a word list, i.e., working memory as
well as long-term memory. In contrast, the current study
focused on working memory and employed the classical DS
measure. Therefore, this study adds to the evidence for enhanced
working memory in musically trained children along with earlier
longitudinal studies that have used the similar span tests (Fujioka
et al., 2006; Bergman Nutley et al., 2014; Guo et al., 2018).

Interestingly, we found enhancement of performance in only
the forwards and not the DS backwards test. Similar results have
been obtained in the study by Hansen et al. (2013) who found
that musical training was associated with better performance in
the DS forwards, but not backwards test. Furthermore, in their
study, DS forward performance was connected to performance in
musical ability tests. Along the same lines, Lee et al. (2007) found
that musically trained adults outperformed nontrained peers in
forwards, but not DS backwards. In their study, musically trained
children, aged 12 on average, however, outperformed nontrained
peer both in the forwards and DS backwards tests. Guo et al.
(2018), in turn, found enhancement of the backwards but not the
DS forwards after a short-term instrumental training program.
Likewise, Bergman Nutley et al. (2014) found only enhancement
of DS backwards performance in musically trained adults and
children, but unfortunately they did not include DS forwards to
allow for comparison. Thus, the literature is mixed as to whether
musical training is associated with enhancement of forwards or
DS backwards or both.

In any case, the current study found longitudinal evidence
in a large sample of subjects in favor of selective enhancement
of DS forwards in musically trained children and adolescents.
Although negative results cannot be taken as evidence for the
null hypothesis that there is no difference between the groups
in DS backwards, the substantial statistical power of the current
study indicates that a putative undetected group difference
in DS backwards would have to be very small and of little
practical importance.

In this study, we also found that musically trained
participants outperformed nontrained peers in both of the Trail-
Making Tests. Previously, adult musicians have been found to

outperform nonmusicians in TMT-A and B (Bugos andMostafa,
2011), or TMT B alone (Strong and Mast, 2019). However, for
instance Bialystok and Depape (2009) and Virtala et al. (2014)
found no differences between adult musicians and nonmusicians
in span tests or the TMT-A or B. Our results concur with
previous findings of enhanced performance in TMT-A and B
in musically trained individuals but extend these findings to
children and adolescents.

Working Memory Subcomponents
Measured by the Digit Span Test and the
Trail-Making Test
The Digit Span test has usually been categorized as a simple
span test, requiring maintenance of information in memory.
Complex span tests in turn require memory maintenance
of information during another, unrelated cognitive operation
(Wilhelm et al., 2013). However, in a meta-analysis conducted by
Redick and Lindsey (2013), the correlation between DS backward
performance and performance in n-back tasks as well as a verbal
complex span tests was greater than the correlation between DS
forward and these tests. Because the DS backward test requires
subjects to reverse the order of the strings presented in mind, it
also requires working memory updating. Furthermore, the DS
forward and backward tests have both been found to recruit in
part separate brain networks (Manan et al., 2014). Both activate
areas connected to working memory, but with the backward
test more strongly activating brain areas related to cognitive
control and phonological processing (Gerton et al., 2004;
Yang et al., 2015).

As the DS forwards and backwards tests have been found
to recruit in part separate working memory processes, it is
possible that performance in one but not the other could be
enhanced through training. Indeed, selective enhancement of
working memory updating (Linares et al., 2018, 2019) and
maintenance (Carretti et al., 2007) skills has been found as a
result of working memory training in adults. Another study
achieved selective impairment of working memory maintenance,
but not updating with tDCS (Wang et al., 2018). Our findings
of musician advantage in DS forwards, but not backwards points
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towards selective enhancement of workingmemorymaintenance
but not updating.

The Trail-Making Test is usually used to measure executive
functions, and neuroimaging and lesion studies have identified
that TMT recruits large-scale fronto-parietal brain networks
related to these functions (Varjacic et al., 2018). However, there
is evidence that performance in the TMT is related primarily to
processing speed and working memory ability, as well as fluid
intelligence (Sánchez-Cubillo et al., 2009; Satterthwaite et al.,
2013). These findings are supported by evidence of genetic
correlations between trail-making performance, reasoning ability
and general cognitive ability, processing speed, and memory
(Hagenaars et al., 2018). Research has also found differences
between the cognitive processes underlying TMT-A and B
performance. TMT-A is thought to rely mainly upon processing
speed, and TMT-B to additionally require working memory and
switching ability (Arbuthnott and Frank, 2000; Sánchez-Cubillo
et al., 2009). According to a validation study of a computerized
version of the TMT, TMT-B performance was explained to a
large degree by inhibition and visual working memory skills
(Fellows et al., 2017). Similar results were obtained in a factor
analysis of TMT performance and several other neurocognitive
measures in older individuals, where TMT-B performance was
connected to measures of working memory and inhibition, and
TMT-A to processing speed (Llinàs-Reglà et al., 2017).

There is also significant overlap between the cognitive
processes that the TMT recruits. For instance, working memory
skills and working memory capacity are tightly related to fluid
intelligence (Kane et al., 2005; Kail, 2007; Demetriou et al., 2014;
Salthouse, 2014; Heinzel et al., 2016). It has also been found
that working memory predicts switching (Blackwell et al., 2009),
presumably through supporting the maintenance of switching
rules. Inhibitory control, in turn, may have a role in supporting
working memory maintenance (Jonides et al., 1998; Zanto and
Gazzaley, 2009; Getzmann et al., 2018).

In behavioral studies, DS backwards performance has been
found to predict TMT-B performance, suggesting a partial
overlap between the cognitive requirements of these tasks
(Sánchez-Cubillo et al., 2009). Both DS backwards and TMT-B
engage cognitive control more than DS forwards and TMT-A,
but there are also obvious differences between test requirements.
TMT-B requires switching attention from one rule and sequence
of information in memory to another (letters or numbers). It
also requires continuous updating of information about the
respondent’s position along the series of letters or numbers they
are connecting. DS backwards requires recoding a string of digits
in mind into reverse order, or updating the representation of the
acquired information, but does not require switching between
rules or response patterns during responding. The TMT-A
and B also engage specifically working memory maintenance,
by requiring the participant to keep the response rule and
progression along the sequence of letters and numbers in
mind. As in this study, we observed a musician advantage in
DS forwards but not backwards, and both the TMT-A and
B, our results point towards enhancement of skills that are
required by these tests but not by the DS backwards test.
These include working memory maintenance for DS forwards,

as well as TMT-A and B. TMT-B also requires switching
ability, not required by the DS backwards test. In addition
to working memory maintenance, the musician advantage in
TMT-B can therefore also be explained by enhancement of
switching ability.

In sum, while the Digit Span and the Trail-Making
Test are routinely used to assess and connected to working
memory ability, the task impurity problem complicates reaching
conclusions about specifically which cognitive functions are
measured and to what extent. Our results are best explained by
enhancement of working memory maintenance, required by the
TMT-A, B and the DS forward test. In addition, enhancement
of switching ability may explain the musician advantage
in TMT-B.

How Musical Training Could Exert
Selective Effects on the Development of
Working Memory
Learning to play a musical instrument or sing requires working
memory in a multitude of ways. For example, memorizing and
producing sequences of tones when learning music by heart,
and responding to changes in music when playing together with
others both require working memory. It is possible that musical
training during childhood could enhance working memory to
the extent that this could be seen as faster development of
these skills.

Augmentation ofmemory skills has been obtained by working
memory programs (Melby-Lervåg and Hulme, 2013; Sala and
Gobet, 2017b). It has been suggested that programs focusing on
core working memory skills are most effective (Morrison and
Chein, 2011). These programs are characterized by tasks that
contain stimuli in more than one modality, require working
memory maintenance and interference control, quick memory
encoding and retrieval, change according to the individual’s
skill level and require high engagement and focus (Morrison
and Chein, 2011). Musical training matches these characteristics
of core working memory training programs well. For instance,
learning to play sheet music requires transformation of visual
stimuli into motor actions, which produce sound stimuli. Playing
from notes requires concurrent working memory maintenance
and updating of visual information from notation and auditory
information produced by the musician. Playing from memory
adds to working memory updating and maintenance demands
through requiring monitoring of the sounds and movements
produced and matching them to the model of the musical
piece in memory. In ensemble playing, interference control
is needed in order to be able to segregate the stream of
sound produced by the individuals from those produced by
others. Ensemble playing also requires rapid working memory
encoding and retrieval, as musicians need to follow not only
their own stream of sound but also that of others, and respond
to changes in others’ output. In joint improvisation, these
rapid working memory encoding and retrieval requirements are
accentuated. Musical training increases in challenge according
to the proficiency of the individual, and successful learning and
playing of music requires great engagement and focus. It is
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therefore feasible that musical training might influence working
memory processes.

The results on selective enhancement of the participants’
working memory maintenance, but not working memory
updating skills, would mean that musical training selectively
engages these mechanisms and perhaps selectively supports
development of one more than the other. This explanation
resonates with findings of different patterns of brain activation
during memory encoding and rehearsal, reflecting differences
in memory processes in musicians compared to nonmusicians
(Schulze et al., 2011). It is feasible that musical training
might exert powerful effects specifically on working memory
maintenance. Learning to play by ear relies heavily on
an individual’s capability of acquiring and storing auditory
information, melodies, and then reproducing this information
immediately. Learning to play from notes, in turn, hones
working memory maintenance in the visual domain. Conversely,
classical musical training may not as much emphasize the ability
to augment the presented information in mind, but rather
reproduce it exactly as presented.

An alternative explanation for selective enhancement of
working memory maintenance is that musical training improves
selective attention. Indeed, there is evidence that selective
attention underlies working memory maintenance (Sreenivasan
and Jha, 2007; Berry et al., 2009; Gazzaley and Nobre, 2012).
Selective attention seems to support encoding and maintenance
of information in memory by shielding it from distracting
information. This notion is supported by neuroimaging evidence
of attenuated processing of distracting information during a
working memory maintenance task (Sreenivasan and Jha, 2007).
There is also tentative evidence of a musician advantage selective
attention, indexed by decreased variability of frontal brain
responses to attended stimuli (Strait and Kraus, 2011; Strait
et al., 2015). It is possible that music training, for instance
through playing in ensembles, and learning to focus on only
the sound produced by one’s instrument, could develop selective
attention, which is of benefit in tasks requiring memorization
of aurally presented information. Selective attention may also
be required and therefore trained in learning to play sheet
music. For instance, in learning to play piano, there are two
notations to follow—one for the right and one for the left hand.
Selectively attending to this visual information is required for
successful production of sound. Trail-Making Test performance
has been connected to selective attention skills, as measured
by the ability to recognize speech in noise (Ellis et al., 2016),
but to the knowledge of the authors, similar results on a
connection between specifically selective attention and Digit
Span performance have not been obtained. In future studies
investigating working memory in musically trained individuals,
including measures for selective attention would help further
elucidate this possible connection.

Augmented Developmental Trajectories in
Trained and Nontrained Participants
The difference in performance between the Music and Control
group observed in this study diminished over time. It is possible

that musical training enhances the development of working
memory maintenance or selective attention, which can be seen
as faster maturation in the Music group, but with time the
Control group children attain the same level of performance.
This explanation is contrasted by studies that have found
enhanced working memory still in musically trained adults
(Chan et al., 1998; Bialystok and Depape, 2009; George and
Coch, 2011; Zuk et al., 2014; Talamini et al., 2016; Ding et al.,
2018). There are, however, also contrary findings. In one study,
adult nonmusicians were found to outperform musicians in
tests requiring immediate as well as delayed recall of newly
acquired information, with no significant group differences in
performance in the TMT-A or B or DS (Virtala et al., 2014).
Thus, the existence of working memory benefits associated
with musical expertise in adulthood should be considered
with caution.

As stated before, the task impurity problem complicates
understanding of which cognitive functions are putatively most
affected by musical training. Furthermore, the maturation of
other executive functions may influence the maturation of
subprocesses of working memory. For instance, the protracted
development of inhibitory control and shifting ability influence
performance in complex working memory span tasks that
require these skills in addition to maintaining information
in working memory (Jonides et al., 1998; Schleepen and
Jonkman, 2009). Future longitudinal studies investigating
working memory development should include measures
that allow for disentangling the unique contributions of
development in these cognitive skills to the development of
working memory.

Since our study lacks baseline measurement of working
memory skills prior to musical training, our results may
also be explained by pre-existing differences between the two
groups, instead of developmental causal explanation (for a
study pointing towards pre-existing differences in intelligence,
which may explain better performance in executive functions,
see Schellenberg, 2015). The lack of the baseline measurement
is caused by our choice to minimize the length of the
experimental session when the children were only 7 years
old and about to start their instrumental training. We added
more behavioral and ERP paradigms gradually when the
children became older and could then better cope with longer
sessions. By this arrangement, we were able to minimize the
number of drop-out participants—a serious problem in all
longitudinal studies (for discussion, see Tervaniemi et al., 2018;
Barbaroux et al., 2019).

One might consider the lack of random group allocation
also as a caveat of our study. However, in our view, it is
not feasible to plan a longitudinal study for several years
on children and adolescents, at least if a control group is
included. If the participants are not motivated, they either
quit the training, do not participate in the investigations,
or both. Even in shorter longitudinal studies, it has been
a challenge to maintain the motivation of the participants
unless the study is conducted in special circumstances such as
summer camp like the study environment in the innovative
study by Moreno et al. (2011). Thus, the current choice of
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having a longitudinal study on children who chose their music
training based on their own and their family’s initiative, gives
solid evidence about the development of cognitive functions of
music-oriented and control children obtained in an ecologically
valid context.

SUMMARY AND CONCLUSIONS

In this study, we investigated the maturation of working
memory in musically trained and nontrained children and
adolescents. We found different patterns of development for
different subcomponents of working memory in the trained and
nontrained participants. Musically trained individuals had better
performance in tests tapping working memory maintenance, but
not updating, than musically nontrained individuals. However,
the difference lessened over time, as nontrained participants
attained a similar level of performance as trained participants.
Our results extend previous findings of a musician advantage in
tests for working memory by specifying which subcomponents
of working memory may be most affected, and by clarifying the
trajectory of enhancement from childhood into adolescence.
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