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Machine-learning based 
reconstructions of primary and 
secondary climate variables from 
North American and European 
fossil pollen data
J. Sakari Salonen   1,2*, Mikko Korpela1, John W. Williams   3 & Miska Luoto   1

We test several quantitative algorithms as palaeoclimate reconstruction tools for North American and 
European fossil pollen data, using both classical methods and newer machine-learning approaches 
based on regression tree ensembles and artificial neural networks. We focus on the reconstruction 
of secondary climate variables (here, January temperature and annual water balance), as their 
comparatively small ecological influence compared to the primary variable (July temperature) presents 
special challenges to palaeo-reconstructions. We test the pollen–climate models using a novel and 
comprehensive cross-validation approach, running a series of h-block cross-validations using h values 
of 100–1500 km. Our study illustrates major benefits of this variable h-block cross-validation scheme, 
as the effect of spatial autocorrelation is minimized, while the cross-validations with increasing h 
values can reveal instabilities in the calibration model and approximate challenges faced in palaeo-
reconstructions with poor modern analogues. We achieve well-performing calibration models for 
both primary and secondary climate variables, with boosted regression trees providing the overall 
most robust performance, while the palaeoclimate reconstructions from fossil datasets show major 
independent features for the primary and secondary variables. Our results suggest that with careful 
variable selection and consideration of ecological processes, robust reconstruction of both primary and 
secondary climate variables is possible.

Microfossil data (pollen, diatoms, foraminifera, chironomids, testate amoebae, ostracods) are widely employed as 
proxy indicators of past environmental variations, with applications in palaeoclimatology, environmental mon-
itoring, and the study of ecosystem sensitivity, resilience and anthropogenic impact. Since the 1970s, a range of 
quantitative approaches have emerged to infer palaeoenvironmental variables from microfossil assemblages1–3. 
Numerical palaeoenvironmental reconstructions are generally based on a modern calibration dataset, consisting 
of surface sediment (i.e., chronologically recent) samples of species assemblages, with modern environmental 
data attached to each surface sample. Palaeoenvironmental reconstructions are then prepared using a model 
trained with the calibration dataset and applied to samples of fossil assemblages. A persistent challenge, however, 
has been to validate these reconstructions, due to limited independent knowledge about past environmental con-
ditions4. Cross-validation (CV) analyses of the modern calibration data help give an estimate of reconstruction 
ability for fossil samples5–8. In this work, we explore the ability of a range of quantitative algorithms to robustly 
reconstruct climate variables from fossil pollen data. Our particular focus is on the reconstruction of secondary 
climate variables, i.e., variables with a lesser ecological effect on the studied biological proxy, compared to the 
larger effect of the primary climate variable9,10.

Several factors motivate this focus on refining methods to extract reconstructions of secondary climate vari-
ables. First, secondary variables have a long history of use in palaeoclimatology, because the multivariate nature 
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of micropalaeontological datasets permits application of multivariate statistical methods that can, in theory, 
independently reconstruct multiple environmental variables, with analysis of variance enabling designation of 
variables with primary, secondary, etc. explanatory power11. However, recent literature has highlighted important 
challenges in the reconstruction of secondary (and further) variables. These challenges include the risk of spuri-
ous reconstructions, due to the ecological model for the secondary model lacking independence from the effects 
of the primary variable10,12, the assumption that the covariance structure between environmental variables is 
preserved over time13, and the unreliability of common CV schemes in identifying models which can reconstruct 
secondary variables in the presence of spatially autocorrelated and ecologically significant nuisance variables6,8. 
These results have cast doubt on many published reconstructions of secondary variables. Yet, secondary variables 
are important for palaeoclimatology, because they reveal diagnostic signals of the past variability in vital climate 
factors, forcings, feedbacks, or atmospheric-oceanic circulation mechanisms, that would otherwise be undetect-
able. For example, while in northern latitudes climate reconstructions from pollen and chironomids usually indi-
cate summer temperature as a primary variable, past changes in winter temperature or precipitation may be vital 
to detecting and understanding past variation in sea ice extent14, oceanic circulation15, or drought regimes16,17. In 
ideal situations, palaeoclimate information is available from multiple proxies, allowing an independent valida-
tion4 of reconstructions for hard-to-reconstruct variables such as moisture18 or winter temperature19.

Second, there is a strong basis in ecological theory for the reconstruction of secondary variables: species dis-
tributions and abundances are affected by multiple environmental variables, and each species is likely to have its 
own unique fundamental niche20,21. Taxon responses to past and present climate changes are highly individualis-
tic22, and indicator taxa exist for a number of climate variables9,23,24. Thus some signal of multiple climate variables 
should be extractable from multivariate fossil datasets that include multiple indicator taxa25, though potentially 
challenging in practice.

Our final motivation is the on-going and rapid advances in a relatively new class of reconstruction approaches, 
consisting of machine-learning (ML) algorithms that use ensemble models of regression trees7,9,26,27. ML 
approaches have important theoretical strengths in the reconstruction of secondary variables. First, tree ensem-
bles make selective use of predictor variables, and are thus able to focus on the potentially small number of useful 
indicator taxa for a secondary variable, while ignoring the numerous and abundant indicators of the primary 
variable. Second, the tree models give equal weight to rare and abundant taxa, which can help capture the signal 
of secondary variables in the variation of relatively rare fossil taxa7,27,28. Beyond these conceptual strengths, an 
increasing number of recent studies suggest regression tree ensembles can provide well-performing calibration 
models for microfossil proxies7,9,26,27,29 and for species distribution models applied to fossil pollen data30. Here, 
we employ three types of regression tree ensemble models: random forest (RF), boosted regression tree (BRT), 
and extremely randomized trees (ETREES). We also test another family of ML models, artificial neural networks, 
using both the traditional (NNET) and the Extreme Learning Machine (ELM) implementations. This is the first 
use of two of these ML methods (ETREES, ELM) in palaeoclimate reconstruction.

In this study, we test the ability of pollen–climate calibration models to detect the signals of both primary and 
secondary climate variables, while controlling for two key sources of bias. First, we select minimally correlated 
primary and secondary variables, to ensure the independence of the pollen–climate calibration models. Second, 
we evaluate the models using a new CV approach, a variation on h-block CV6,8 that employs a variable radius. In 
this approach, the models are tested in several CV cycles while omitting samples from an increasingly large radius 
(h) around the test sample. In this way, model performance is evaluated with increasingly poor analogues available 
for the test sample in the calibration data, providing a strong test of the generality and robustness of the models. 
This approach also allows h to be customized to the dataset at hand, to find the optimal tradeoff between remov-
ing spatial autocorrelation effects and maximizing calibration dataset size. We prepare the models using pollen–
climate calibration datasets (surface sediment pollen samples and modern climate data) from North America 
and Europe (Fig. 1). Finally, we test these models in palaeo-reconstructions using four fossil pollen datasets of 
the present (Holocene) and last interglacial (LIG) periods from North America and Europe (Fig. 1, Table 1). 
We use eight quantitative methods to prepare the calibration models (Table 2), with the five ML-based methods 
compared against three classical approaches (weighted averaging (WA), weighted averaging-partial least squares 
(WAPLS), and the modern analogue technique (MAT)). We show that the pollen–climate calibration models 
developed here perform well for both primary and secondary variables. Further, we find regression-tree-based 
ML approaches to consistently outperform other reconstruction methods.
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Figure 1.  Modern and fossil pollen datasets in North America and Europe.
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Results
Variable selection.  We choose mean July temperature (Tjul; Fig. 2a) as the primary reconstructed variable 
for both North America and Europe, due to the strong effect of this variable on calibration species data varia-
tion. The secondary reconstructed variables used differ between North America and Europe, due to the different 
cross-correlation structures between climate variables on the two continents. Most notably, in North America 
summer and winter temperature related variables are strongly correlated, while in Europe they are not. We thus 
select mean January temperature (Tjan; Fig. 2b) as the secondary variable to be reconstructed in Europe, however 
in North America water balance (Fig. 2c), i.e. the difference between the total annual precipitation and evapo-
transpiration24, is reconstructed. These secondary variables are known to be ecologically important with respect 
to affecting plant distributions and abundances and each has a low correlation with the primary reconstructed 
variable Tjul (Fig. 2d).

Cross-validations.  Transitioning from leave-one-out CV (h = 0) to a small h of 100–200 km produces an ini-
tial decrease in model performance, indicated by an increase in RMSEP (Fig. 3a,b). This is expected from earlier 
h-block experiments6–8,26, due to the removal of pseudo-replicate samples that closely resemble the test sample 
due to spatial autocorrelation in nuisance variables. This initial decrease in performance varies between methods 
and is especially noteworthy for MAT in Europe, where MAT is the best-performing method in leave-one-out 
CV, but falls behind the best-performing methods with increasing h (Fig. 3a,b). At intermediate h values (~200–
1000 km), prediction performance decreases only gradually, and the relative performance of the methods remains 
largely unchanged. At large h values (>~1000 km) model performance markedly deteriorates (Fig. 3a,b), as the 
number (Fig. 3c) and quality (Fig. 3d) of available analogues in the calibration data worsens. As at small h values, 
this deterioration is larger for some methods, particularly MAT and neural networks (NNET, ELM), compared 
to unimodal transfer functions (WA, WA-PLS) and regression tree ensembles (RF, BRT, ETREES) which perform 
better in prediction with poor analogues.

This intermediate h range, and the corresponding RMSEP-vs-h plateau is expected to give an unbiased esti-
mate of predictive ability, with the effect of pseudoreplicate samples minimized, but with the models still having 
sufficient data for prediction7. We independently estimated the correct h to use based on the range of a circular 
variogram fitted to the residuals of a WA model (as suggested in refs6,8). These estimates for correct h (200–
600 km; orange bars in Fig. 3) fall on the observed RMSEP-vs-h plateaus (Fig. 3a,b), indicating a congruence 
among methods.

In the medium-h zone expected to give unbiased estimates, the tree-ensemble approaches (BRT, ETREES, RF) 
have the best performance and rank as the top three methods in all cases (Table 3). Among these three methods, 
BRT has the lowest RMSEP in three cases out of four, while ETREES has the lowest RMSEP for Tjul in North 
America. While the RMSEP differences between the tree-ensemble methods are relatively minor, in the European 
models for both Tjul and Tjan, BRT has a lower maximum bias by a considerable margin compared to ETREES and 
RF (Table 3). The three tree-ensemble methods are followed by WA, WAPLS, MAT and ELM in varying order, 
while NNET is the worst-performing method, ranking at bottom in three cases out of four and second-worst in 
the fourth case. The overall performance achieved is strong, with the RMSEP of the best-performing model, for 
each dataset-variable pairing, constituting between 6.5% (Tjul in North America) and 10.0% (water balance in 

Site # Samples Time range (cal. ka)

Deep Lake, Minnesota73,74 62 0.2–11.2

Moon Lake, North Dakota75 170 0–14.0

Laihalampi, Finland76 150 0–11.0

Sokli, Finland19,41 217 117.4–130.3

Table 1.  Fossil pollen datasets used for the study.

Code Method Parameters

MAT Modern analogue technique Weighted mean of 5 closest analogues

WA Weighted averaging Monotonic deshrinking, tolerance down-weighting, square-root 
transformation of species data

WAPLS Weighted averaging-partial least squares 3-component models, square-root transformation of species data

RF Random forest 100 trees

ETREES Extremely Randomized Trees Number of random cuts = 5

BRT Boosted regression trees Maximum number of trees = 3000, learning rate = 0.025, tree 
complexity = 4, bagging fraction = 0.5

NNET Artificial neural network
Linear output units. Number of units in the hidden layer = 18 (Europe, 
Tjul), 19 (Europe, Tjan), 13 (North America, Tjul), or 8 (North America, 
Water balance)

ELM Extreme Learning Machine
Prediction with a mean of 5 networks. Positive linear activation function. 
Number of units in the hidden layer = 180 (Europe, Tjul), 130 (Europe, 
Tjan), 290 (North America, Tjul), or 280 (North America, Water balance)

Table 2.  Modelling tools used and their parameterization.
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North America) of calibration data gradient length. The coefficients of determination (R2) of the models range 
from 0.20 (NNET model for North American water balance) to 0.88 (ETREES model for North American Tjul). 
For further details, see Supplementary Figs S5–S8.

Palaeo-reconstructions.  In the reconstructions of Holocene climate variations at the two North American 
test sites (Fig. 4a,b), the main feature in Tjul is the early-Holocene rise, followed by a late-Holocene fall, showing 
the well-known mid-Holocene temperature maximum of the northern mid-latitudes31. The water balance curves, 
by contrast, show an early-Holocene decline, culminating in a dry period starting around 8 ka (depending on 
smoothing bandwidth considered), and followed by a gradual rise in water balance at around 6 ka. The early–mid 
Holocene maximum in aridity is consistent with numerous multi-proxy records from the Great Plains17,18,32–34. 
The strong differences in temporal pattern further suggests that both temperature and water balance signals can 
be separately deconvolved from mid-continental North American pollen records16,18,32,34.

The European Holocene reconstructions (Fig. 4c) for Tjul and Tjan are broadly similar to each other. In 
the long-bandwidth (>1 ka) end of the SiZer map, the early-Holocene rise, mid-Holocene maximum, and 
late-Holocene decline are statistically significant features for both variables. The Tjul reconstruction thus shows 
the classical, mid-Holocene summer temperature maximum of the European high latitudes seen in palaeoclimate 
reconstructions35,36 and modelling37. The Tjan reconstruction is more difficult to validate compared to Tjul, because 
of broader uncertainty about whether the temporal variations of Tjan and Tjul should be correlated (e.g. due to 
GHG forcing) or anti-correlated (e.g. due to orbital forcing)31,38,39. Earlier reconstructions35,36 and modelling37 
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Figure 2.  Spatial distribution and correlation of reconstructed variables. The maps show the modern values 
for (a) July mean air temperature (Tjul), (b) January mean air temperature (Tjan), and (c) Annual water balance. 
Panel (d) shows observed values and the Spearman correlation (ρ) for the reconstructed climate variables for 
the European and North American pollen–climate calibration datasets.
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have shown only weak trends for Tjan in NE Europe, and reconstruction and modelling uncertainties are much 
greater for Tjan compared to Tjul. However, our mid-Holocene maximum in Tjan is consistent with fossil evidence 
for one well-understood winter temperature indicator in Northern Europe, the hazel (Corylus avellana), which 
shows a major, northward range expansion in Finland and Scandinavia during the mid-Holocene40.

By contrast, for the European LIG site (Fig. 4d), the main features at the long-bandwidth end of the SiZer 
map differ between Tjul and Tjan. The Tjul reconstruction shows an early-LIG rise, mid-LIG maximum followed 
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Figure 3.  Cross-validation (CV) results. Results are shown with a series of h-block CV’s, with h increasing from 
0 to 1500 km at 100 km increments (note: h = 0 is equivalent to leave-one-out CV). Orange bars indicate the best 
h, estimated based on the range of a variogram fitted to the residuals of a weighted averaging (WA) model. (a) 
Root-mean-square error of prediction (RMSEP) for the primary variable in North America and Europe (July 
mean temperature). (b) RMSEP for the secondary variable (water balance in North America, January mean 
temperature in Europe). (c) Loss of calibration data in CV models, shown for individual sites and as the median 
for all sites. (d) Compositional distance (squared chord distance) to best pollen analogue in CV models, shown 
for individual sites and as the median for all sites.
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by a late-LIG cooling. However, the Tjan reconstruction only shows a significant warming trend spanning much 
of the LIG. These trends are consistent with major identified forcings, as the first-order rising (Tjan) and falling 
(Tjul) temperature trends closely follow the changes in winter and summer insolation, respectively19. At shorter 
bandwidths, the beginning and end of an abrupt cold event at ca. 128–126 ka, correlated with changes in North 
Atlantic circulation19,41, are also significant features.

The agreement between different methods is generally good in all reconstructions, however increased spread 
is observed especially in early parts of the interglacials and the late-glacial section included in the Moon Lake 
record (Fig. 4d). The periods of larger spread between methods generally coincide with periods of increased mod-
ern analogue distances found for the fossil samples (Supplementary Fig. S9), likely due to non-climatic effects 
during pioneer vegetation stages or non-analogue climates not included in the calibration data42. However, NNET 
is in several instances a clear outlier. For the European fossil sequences (Fig. 4c,d), the NNET curves exhibit 
larger sample-to-sample noise compared to other methods, and for some sections of the Laihalampi sequence 
(Fig. 3c) also indicate much colder temperatures than other methods. In North America, NNET jumps between 
a handful of values in the Tjul reconstructions, and reconstructs no variation in water balance but only a single 
outlier value. For water balance in North America, a second outlier is seen in WA, for which the mid-Holocene 
decline is considerably smaller than for the multi-method median. The reason for the shallower water balance 
anomaly with WA might be the well-known weakness of this method in predicting for samples near the ends of 
the calibration-data gradient4,43. This tendency is evident in the residual pattern of the WA-based pollen–water 
balance model, which (along with NNET) has a considerably larger positive bias among all eight models at the 
dry end of the modern water balance gradient (Supplementary Fig. S6), likely contributing to a positive bias in the 
palaeoclimate reconstruction during the mid-Holocene dry stage.

Discussion
Based on these findings, we consider BRT or other regression tree ensemble machine-learning methods as highly 
promising tools for climate reconstructions from fossil pollen data. The other regression tree ensemble methods 
RF and ETREES show a broadly similar performance and behaviour in CV (Fig. 3) compared to BRT, and also 
produce similar palaeo-reconstructions (Fig. 4). The most important difference between BRT, RF, and ETREES 
is found in maximum bias, where BRT significantly improves on RF and ETREES in three cases out of four. The 
maximum bias usually affects the gradient ends7,26, and this is also seen in the residual patterns of the models 
prepared in this study (Supplementary Figs S5–S8). This means BRT is relatively strong in predicting for samples 
located near the ends of the environmental gradient covered by the calibration data. Hence, BRT may be par-
ticularly useful for palaeo-reconstructions in situations where the fossil dataset is located towards a fringe of the 
available calibration data.

Beyond the strong performance, we note that BRT has numerous practical benefits in applications with micro-
fossil datasets. First, among these calibration methods, BRT has unusually powerful tools to analyse the model 
structure. For example, the user can extract the percentage contributions and plot the modelled responses curves 
of each taxon9,26,44, which can be invaluable to estimate the effect of each taxon and to verify that the models are 
consistent with prior ecological knowledge19. For example, Table 4 shows that the secondary-variable models have 
a distinct structure compared to the primary-variable models, and well-understood indicators for the secondary 
variables, such as Corylus and Quercus for Tjan in Europe and Artemisia and Chenopodiaceae for water balance 
in North America, are employed. Second, the BRT models are not affected by monotonic data transformations 
performed on the predictor set (here, calibration species data). Third, BRT can handle complex responses and 
assumes no specific response shape, which is a benefit with microfossil calibration datasets which commonly 
show a mixture of linear, unimodal and multi-modal species responses. This is in contrast with parametric cali-
bration methods assuming a specific response type, such as WA and WA-PLS which fit unimodal response func-
tions regardless of the shape of the underlying response. Fourth, BRT implicitly incorporates interactions between 
predictors, e.g., situations where a given taxon is only useful in a subset of the calibration data, or indicates differ-
ent environmental conditions in different subsets44.

Rank

North America, Tjul (°C)
North America, Water 
balance (mm) Europe, Tjul (°C) Europe, Tjan (°C)

Method RMSEP
Max.
bias Method RMSEP

Max.
bias Method RMSEP

Max.
bias Method RMSEP

Max.
bias

1 ETREES 1.73 6.87 BRT 161.55 529.50 BRT 1.61 5.59 BRT 2.92 7.16

2 BRT 1.75 6.91 RF 161.92 570.55 RF 1.61 7.75 ETREES 3.08 9.36

3 RF 1.84 7.92 ETREES 162.14 557.45 ETREES 1.63 7.81 RF 3.19 9.66

4 MAT 1.89 5.14 WAPLS 171.97 595.71 WA 1.72 7.47 WAPLS 3.28 10.29

5 WAPLS 1.96 7.88 MAT 190.71 574.10 WAPLS 1.73 5.90 ELM 3.37 10.00

6 WA 2.18 8.71 ELM 194.05 612.41 MAT 1.82 8.78 WA 3.46 13.48

7 NNET 2.29 7.54 WA 216.10 676.09 ELM 1.98 6.35 MAT 3.47 6.73

8 ELM 2.37 6.83 NNET 231.63 660.83 NNET 2.15 7.77 NNET 4.03 7.99

Table 3.  Cross-validated performance metrics for the individual pollen–climate calibration models. Results 
are shown for eight models and for primary and secondary climate variables in each calibration dataset (North 
America and Europe), using h-block cross-validation with h determined by the variogram-range method. The 
metrics shown for each model are root-mean-square error of prediction (RMSEP) and maximum (Max.) bias. 
Models are ranked based on increasing RMSEP.
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Figure 4.  Palaeoclimate reconstructions. Reconstructions are shown for primary and secondary climate 
variables and prepared with eight calibration methods from each fossil dataset. The black dashed lines indicate 
the modern climate values at the fossil sites. The SiZer maps (lower panels) show the significant features of the 
reconstructions, based on the curve using the calibration method with the strongest CV performance for the 
climate variable in question (BRT or ETREES; Table 3). The reconstruction is smoothed at different bandwidths, 
with the bandwidth used at each point on the vertical axis indicated by the horizontal distance between the 
white lines. For each point in time and each bandwidth (h), red indicates a significant rising trend, blue a 
significant falling trend, purple a lack of a significant trend, and grey a lack of sufficient data for meaningful 
inference.
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However, BRT may not be the optimal choice with small datasets (n < 100) and/or data exhibiting strong lin-
ear responses45, a limitation also observed with relatively small microfossil proxy calibration datasets7. A further 
practical challenge of BRT is the non-trivial parameterization (Table 2), which requires CV testing with alterna-
tive parameterizations for each dataset44. Moreover, BRT uses relatively large ensemble models (ca. 2,000–20,000 
trees) which can be a challenge especially with large datasets and in calculation-intensive CV schemes like the 
leave-one-out or the h-block, potentially involving calculation times of several CPU hours for a full CV cycle. 
Hence, for some applications, RF may represent a cost-effective alternative to BRT, with similar predictive perfor-
mance (Fig. 3, Table 2) here reached with small ensemble models of 100 trees, and requiring no further param-
eterization. The practical benefits of BRT also largely apply to RF, as they arise from the general properties of 
regression tree based modelling28.

Among neural network models, we find ELM to improve on the classical NNET, which has the over-
all weakest performance of all methods (Table 2). In palaeo-reconstructions (Fig. 4), NNET has clear trouble 
producing diverse predictions for the fossil samples. For North-American water balance only a single value is 
reconstructed. For North-American Tjul the reconstructions are semi-discrete, with most data points falling on 
a handful of values, although the reconstructions generally follow the main features of the reconstructions with 
other methods. ELM generally outperforms NNET in CV (Fig. 3, Table 3) while also producing more realistic 
palaeo-reconstructions (Fig. 4). However, ELM fails spectacularly during CV for some h values (Fig. 3), suggest-
ing great sensitivity to small variations in the calibration data. We thus recommend caution in the use of ELM 
until its behaviour is better understood. However, this result showcases another benefit of the variable-radius 
h-block CV, because it reveals an instability in ELM that would have been missed with a single CV cycle.

Good CV performance is no guarantee of reconstruction ability. Even if the CV scheme used gives a 
robust estimate of predictive ability in the modern world, fossil samples come with additional caveats, such 
as non-analogue climates not represented in the modern calibration data13,46 and taphonomic inconsistencies 
between some calibration and fossil data29. Thus, the criteria used here (low correlation to other environmen-
tal factors, a significant effect in calibration data, an ecological basis for selection) should be considered neces-
sary but not sufficient guarantees that a useful palaeo-reconstruction is obtained for the variable in question. 
Large-radius h-block CV may approximate the problem of no analogues, due to spatial autocorrelation in the 
calibration species data: as calibration data is lost with increasing h (Fig. 3c) the predictions are done with increas-
ingly poor analogues available for the test sample (Fig. 3d). In our results, we see important differences in the CV 
performance at high h values (>1000 km), with especially MAT and neural network based models (NNET, ELM) 
struggling compared to the other approaches (Fig. 3a,b).

Our reconstructions from fossil datasets (Fig. 4) are mainly proofs of concept, in which we check the results 
for major suspicious features, e.g., differences between methods, high noise, or major patterns inconsistent with 
prior knowledge. These are possibly “easy” test cases, with e.g. exceptionally strong opposite trends in winter 
and summer temperature forcing during the LIG19,37 and prior multiproxy evidence for major mid-Holocene 
aridity in the Great Plains of North America17,18,33,34,47 as well as prior applications of pollen-based palaeoclimatic 
transfer functions to separately reconstruct past temperature and moisture variations16,48,49. Whether robust and 
repeatable reconstructions can be achieved for secondary or tertiary variables across a larger body of micropal-
aeontological data remains a question for future research. These efforts should include not only the refinement 
of the proxy–climate calibration models, but also an increasing use of supporting multi-proxy data to control for 
proxy-specific biases.

While multivariate climate reconstructions from pollen and other microfossil proxies have been prepared 
for decades, important pitfalls have been identified in this approach, including the possible lack of model inde-
pendence10 and issues in model validation6. Here we show that reconstruction of primary and secondary climate 
variables is indeed possible, at least for some variables and regions, given careful variable selection, considera-
tion of the proxy ecology, and sufficiently sensitive reconstruction algorithms. We find major independent fea-
tures in our primary and secondary variable palaeo-reconstructions, including the opposite summer and winter 
temperature trends of the LIG in Europe, as well as the mid-Holocene drought in North America coinciding 
with the temperature maximum. These opposite first-order trends in primary and secondary variables emerge 

Rank

North America, Tjul

North America, Water 
balance Europe, Tjul Europe, Tjan

Taxon % Taxon % Taxon % Taxon %

1 Quercus 53.5 Abies 29.7 Selaginella 20.3 Quercus 17.3

2 Cyperaceae 9.9 Pinus 12.6 Cyperaceae 7.9 Picea 13.4

3 Picea 6.0 Artemisia 8.8 Quercus 6.9 Betula 12.3

4 Salix 4.2 Chenopodiaceae 4.5 Juniperus 6.0 Corylus 11.9

5 Chenopodiaceae 4.0 Salix 4.5 Alnus 5.3 Poaceae 8.2

6 Pinus 3.5 Lycopodiaceae 4.5 Artemisia 5.1 Pinus 3.7

7 Betula 2.4 Picea 3.9 Polypodiaceae 4.2 Rumex/Oxyria 3.5

8 Ulmus 1.7 Betula 3.7 Betula 3.8 Ericaceae 2.9

9 Oxyria 1.7 Quercus 2.6 Ericaceae 3.3 Polypodiaceae 2.2

10 Ericaceae 1.6 Fagus 2.3 Chenopodiaceae 3.2 Juniperus 2.0

Table 4.  Relative contribution of the ten most important predictor taxa for the boosted regression tree pollen–
climate models for July mean temperature (Tjul), January mean temperature (Tjan), and water balance.
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despite weak positive correlations in the calibration data, which means the secondary-variable reconstructions 
are unlikely to be driven by calibration data correlations (sensu ref.10). Considering the independent features in 
the palaeo-reconstructions, the agreement with the identified climate forcings and complementary proxy data, 
the robust CV performance, and the ecological realism of the calibration models, we suggest current advanced 
machine-learning techniques are able to detect the independent signals of both primary and secondary climate 
variables. Hence, this work supports the judicious use of numerical techniques and microfossil data to reconstruct 
both primary and secondary climate variables.

Conclusions

•	 Well-performing pollen–climate calibration models were achieved for secondary climatic variables (January 
temperature in Europe, water balance in North America), despite a conservative CV scheme, and in the 
absence of correlations with the primary climate variable (July temperature). Palaeoclimate reconstructions 
prepared from fossil datasets for the primary and secondary variables show independent features consistent 
with known climate forcings, palaeoclimate modelling, and other proxy data.

•	 Among different calibration techniques, regression tree ensemble methods (BRT, RF, ETREES) generally per-
form best. BRT further outperforms RF and ETREES in maximum bias, particularly for samples located near 
the ends of the data gradient. In prediction for samples without good analogues in the training data, MAT and 
neural network models (NNET, ELM) perform considerably worse than the other methods.

•	 Our study highlights the usefulness of variable-radius h-block CV as a practical and a neutral scheme for cali-
bration model selection. This approach (1) removes the effect of spatial autocorrelation from the CV results, 
(2) helps identify the h range giving unbiased performance estimates, (3) tests model behaviour with poor 
modern analogues at large h values, and (4) may reveal the instability of a calibration method with small data 
variations.

•	 Overall, these analyses show how concerns about the robustness of palaeoclimatic reconstructions due to 
effects of spatial autocorrelation and temporally varying cross-correlation can be allayed through use of newer 
ML approaches and careful attention to the CV method. Reconstruction of secondary variables is possible, 
at least for some regions and variables. Careful consideration of the underlying ecology of the biotic proxy 
being used, and of the modern cross-correlation structure of environmental variables, are vital to guarantee 
that useful and independent calibration models are obtained for both the primary and secondary variables.

Methods
Datasets.  The North American modern pollen data (2254 samples) were derived from a subset of the North 
American Modern Pollen Database50,51, with samples removed if they source from regions that floristically differ 
from the north-central US, where the two fossil pollen sites are located. For this analysis, all samples from the 
southeastern US and western North America were removed, due to different species of Pinus and other taxa 
found in these regions and known interregional differences in species-climate relationships51. For Europe, we 
use an 807-sample pollen–climate calibration set derived from the European Modern Pollen Dataset52 (EMPD), 
including lakes from the northern part of the EMPD and using a harmonized taxonomy of 73 terrestrial pollen 
and spore types19. We extracted climate data for both the European and North American calibration samples 
from the CRU CL v. 2.0 climate grids53 with the raster library54 for R55, using bilinear interpolation based on four 
closest grid cells and lapse-rate corrected (6.4 °C/km) based on the difference between site elevation and grid cell 
elevation.

To test the pollen–climate models in palaeo-reconstruction we use four previously published fossil pollen 
datasets (Table 1). The North-American datasets cover the Holocene (and about 2 ka of the late-glacial period 
in the Moon Lake dataset) and are located at the prairie–mixed forest ecotone at the eastern fringe of the North 
American Great Plains. The European sites Laihalampi and Sokli are located in Finland within the boreal forest 
zone and cover the present and last interglacials, respectively. The North American datasets were acquired from 
the Neotoma Paleoecology Database. The Laihalampi dataset was provided by the original data author, while the 
Sokli dataset was published by the present authors19.

Variable selection.  To guide the selection of reconstructed climate variables, we consider the following to be 
requirements for a useful variable. The variable should have:

	 1.	 a significant effect on species variation in the calibration data,
	 2.	 a low correlation with other ecologically significant variables, to guarantee that the effect can be inde-

pendently modelled, and by extension, that no spurious features emerge in palaeo-reconstructions10, and
	 3.	 an autecological basis, to guarantee that the statistical effect (point 1) is not due to correlation with un-

known, ecologically significant variables.

To find the two climate variables for each region (Europe and North America) that best meet these require-
ments, we use the following workflow:

	 1.	 Calculate a Spearman correlation matrix for a large number of climate variables. We included 20 variables 
with possible ecological influence, representing temperature (annual mean, December-to-February mean, 
mean of coldest month, January mean, June-to-August mean, mean of warmest month, July mean, number 
of frost days, growing degree days) precipitation (annual total, total for driest month, total for wettest month, 
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total for warmest quarter, total for coldest quarter) and moisture availability (water balance (difference 
between annual precipitation and evapotranspiration24), Priestley-Taylor alpha (ratio of actual to potential 
annual evapotranspiration23)), and their seasonal variation (temperature range (range of monthly temper-
ature means), temperature seasonality (SD of monthly temperature means × 100), precipitation seasonality 
(ratio of largest to smallest monthly precipitation total), continentality index56).

	 2.	 From the full set of 20 variables, pick a subset for which all between-variable absolute correlations 
are < 0.7. (Note: at this stage the variables are not taken as ecologically meaningful, merely that their inde-
pendent effects can be modelled.)

	 3.	 Run an ensemble of modelling tools to estimate how well the variation in each climate variable is explained 
with the calibration species data. Rank the variables based on variance explained (mean R2 across for all 
modelling tools used). Here, we used an ensemble of 10 modelling tools (generalized additive models, 
conditional inference trees, random forests, extremely randomized trees, multivariate adaptive regres-
sion splines, generalized additive models by likelihood based boosting, gradient boosting with regression 
trees, gradient boosting for additive models, Extreme Learning Machine neural networks, and single-hid-
den-layer neural networks).

	 4.	 Check that each variable has an independent effect in non-metric multidimensional scaling; if not, exclude.
	 5.	 Check that each variable is ecologically credible; if not, exclude.
	 6.	 Pick the two best remaining variables.

The full results of these analyses are presented in Supplementary Figs S1–S4 and Tables S1–S4. The choice of 
reconstructed climate variables differs between Europe (Tjul, Tjan) and North America (Tjul, water balance), due to 
differences in cross-correlation structure among climate variables on the two continents.

In North America, summer and winter temperature related variables are strongly correlated (ρ = ~0.8) 
(Supplementary Fig. S1), precluding using both for reconstruction, and we only choose Tjul for further consid-
eration. Within a subset of five variables with acceptable between-variable correlations (Supplementary Fig. S2), 
pollen–climate models for Tjul have the highest mean R2 (0.89) (Supplementary Table S1), and Tjul is thus selected 
as the primary variable. Tjul is followed in the R2 ranking by two moisture-related variables, precipitation of the 
warmest quarter (0.75) and water balance (0.71). Of these variables, we select water balance as the secondary 
variable despite a slightly lower R2, due to being a moisture-related variable incorporation evapotranspiration (see 
below), and due to having only a minimal (ρ = 0.05) although still statistically significant (p = 0.02) correlation 
with the primary variable Tjul, while for precipitation of the warmest quarter the correlation to Tjul is considerably 
higher (ρ = 0.46).

In Europe, summer and winter temperature related variables are much lower correlated (Supplementary 
Fig. S3), allowing both Tjul and Tjan (correlated at ρ = 0.28; p < 0.001) to be considered. Within the subset of five 
variables with acceptable between-variable correlations (Supplementary Fig. S4), Tjan and Tjul are the two variables 
with highest mean R2 values (0.79 and 0.72, respectively; Supplementary Table S3), and are thus selected as the 
two reconstructed variables. While Tjan has a higher R2 compared to Tjul in the cross validation, we designate Tjul 
the primary variable as our fossil datasets are located in the northern subset of the calibration data, and here the 
effect of summer temperature is clearly dominant to winter temperature9,26, and the signal of Tjul is thus expected 
to be stronger in these fossil datasets.

Our three climate variables (Tjul, Tjan, water balance) reflect principal limitations on plant growth and sur-
vival23,24,57. In seasonally variable environments, annual mean temperature does not represent the growing season 
or over-wintering conditions, which play a more central role in governing the distribution and abundance of 
plants58,59. In high- and mid-latitudes in the northern hemisphere, Tjul describes the temperature of the warm-
est month and overall growing season conditions, whereas Tjan indicates the wintertime conditions and gen-
eral stress (related to overwintering survival) of the coldest period of the year. Predictors representing water 
availability for plants are often derived from mean annual precipitation, however precipitation is a poor surro-
gate for plant-available water. This is because water availability is strongly related to evaporation, for example 
in cold climates 500 mm rainfall per year produces a positive water balance (precipitation minus evapotranspi-
ration), whereas in temperate systems the same amount of rainfall creates semi-arid conditions with a negative 
water balance. Thus, water balance represents a more accurate measure of plant available water compared with 
precipitation59.

Calibration methods.  We use eight quantitative reconstruction approaches which can be divided into four 
methodological families. The models were run in R55 using parameterizations listed in Table 2. The CV runs were 
performed on the Taito supercluster of CSC – IT Center for Science Ltd., Espoo, Finland. For the code imple-
menting the h-block CV run, see Supplementary Code.

The modern analogue technique2 (MAT) is a traditional non-parametric reconstruction approach with micro-
fossil data. The method looks for n closest modern assemblages for each fossil sample, using a chosen composi-
tional distance metric, and calculates the reconstructed palaeoclimate value as the mean (or weighted mean) of 
the values at the modern sample sites. Weighted averaging3 (WA) and weighted averaging-partial least squares43 
(WAPLS) are closely related methods with a long history of use in microfossil-based palaeoclimate reconstruc-
tions. They are based on fitting unimodal response functions to the modern distribution of each taxon, and then 
calculating the palaeoclimate value based on the modern responses of all the taxa found in the fossil sample. 
MAT, WA, and WAPLS were implemented with the R package rioja60.

We also use two families of machine-learning based modelling approaches: regression tree ensembles and 
neural networks. The random forest61 (RF; implemented with the R package randomForest62) and extremely ran-
domized trees63 (ETREES; for implementation see ref.64) are ensemble models of regression trees, in which a 
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number of trees are calculated and the final prediction calculated as the mean of the predictions from the indi-
vidual trees. RF and ETREES differ in the approaches used to create variety in the individual trees: while RF 
uses bootstrap samples of the entire training data for each tree, and uses a randomly selected subset of the entire 
predictor set when determining each tree split, ETREES selects the cut point at random. Our final tree-ensemble 
method, the boosted regression tree44,65 (BRT; implemented with the R package gbm66), differs in that the ensem-
ble is built sequentially, with each added tree aiming to explain the residuals of the previously fitted ensemble. The 
BRT can thus be likened to an additive regression model in which the individual terms are regression trees. RF 
and BRT have seen some recent use with microfossil data7,9,19,26,27,29,30. To our knowledge, this is the first applica-
tion of ETREES in this field. Finally, we use two variations neural network algorithms, the traditional implemen-
tation67 (NNET) and Extreme Learning Machine68 (ELM). The R packages nnet69 (NNET) and elmNN70 (ELM) 
both implement single-hidden-layer feedforward neural networks. NNET uses sigmoid activation functions in 
the hidden layer and optimizes the weights of all connections. ELM has a wider variety of alternative activation 
functions and uses random weights in the hidden layer. NNET has seen some use in palaeo-environmental recon-
structions from microfossil proxies4 while ELM has not.

Cross-validation.  A recognized limitation of many commonly used CV schemes is their susceptibility to 
over-estimate predictive ability in the presence of spatial autocorrelation in the calibration data6,8. The h-block 
CV6 has been suggested as a solution, in which in each CV iteration the training set omits not only the test sam-
ple, but also all samples within a specified radius (h) from the test sample. However, the h-block CV introduces 
a new challenge of choosing a correct h which removes pseudo-replicate samples but does not undermine per-
formance by removing too much data8. Here, we adopt the approach of running h-block CV with a range of h 
(0–1500 km at 100 km increments). Of these, the h = 0 iteration is equivalent to the common leave-one-out CV. 
We observe the change in RMSEP with increasing h to estimate an h that represents a balance between removing 
pseudo-replicates but retaining sufficient data coverage7. As a guide to assessing the results, we also estimate the 
optimal h following ref.6, who suggest estimating h as the range of a circular variogram fitted to the residuals of 
a WA model in a leave-one-out CV. CV performance is summarized with 1) the root-mean-square error of pre-
diction (RMSEP) and 2) maximum bias (the largest mean of prediction residuals found for any of the 10 equal 
length segments of the calibration data climate gradient), representing a “worst case” error for some segment of 
the calibration data climatic gradient.

Palaeoclimate reconstructions.  Palaeoclimate reconstructions for the primary and secondary variable 
were prepared from the fossil datasets with each of the eight calibration models. To assess the presence of inde-
pendent features in the reconstructions, we prepare SiZer maps71 (implemented with the R package SiZer72) based 
on the palaeoclimate curves. Here we use the palaeoclimate curve prepared with the method which showed the 
strongest CV performance in predicting the reconstructed climate variable on that continent (BRT or ETREES; 
Table 3). In the SiZer analysis, a family of smoothers with a range of bandwidths is first applied to the palaeocli-
mate curve. The derivative of the smoother of each bandwidth is then analysed for significant deviations from 
zero, to identify time segments at which the smoother has a statistically significant rising trend, a falling trend, 
or no trend. The results are displayed as a two-dimensional coloured raster (the SiZer map) where the y axis 
indicates the smoothing bandwidth considered, x axis the point in time, and the cell colour the presence of a 
significant rising trend (red), a significant falling trend (blue), the lack of a significant trend (purple), or the lack 
of data for meaningful inference (grey).

Data availability
Data (https://doi.org/10.6084/m9.figshare.9938375) and code (https://doi.org/10.6084/m9.figshare.8082221) 
related to this paper are available online.
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