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Network pharmacology modeling identifies synergistic Aurora
B and ZAK interaction in triple-negative breast cancer
Jing Tang 1,2,3, Prson Gautam 1, Abhishekh Gupta1,4, Liye He1, Sanna Timonen1, Yevhen Akimov1, Wenyu Wang1,
Agnieszka Szwajda1, Alok Jaiswal1, Denes Turei5, Bhagwan Yadav1,6, Matti Kankainen1,7, Jani Saarela1, Julio Saez-Rodriguez5,8,
Krister Wennerberg1,9 and Tero Aittokallio 1,3

Cancer cells with heterogeneous mutation landscapes and extensive functional redundancy easily develop resistance to
monotherapies by emerging activation of compensating or bypassing pathways. To achieve more effective and sustained clinical
responses, synergistic interactions of multiple druggable targets that inhibit redundant cancer survival pathways are often required.
Here, we report a systematic polypharmacology strategy to predict, test, and understand the selective drug combinations for MDA-
MB-231 triple-negative breast cancer cells. We started by applying our network pharmacology model to predict synergistic drug
combinations. Next, by utilizing kinome-wide drug-target profiles and gene expression data, we pinpointed a synergistic target
interaction between Aurora B and ZAK kinase inhibition that led to enhanced growth inhibition and cytotoxicity, as validated by
combinatorial siRNA, CRISPR/Cas9, and drug combination experiments. The mechanism of such a context-specific target interaction
was elucidated using a dynamic simulation of MDA-MB-231 signaling network, suggesting a cross-talk between p53 and p38
pathways. Our results demonstrate the potential of polypharmacological modeling to systematically interrogate target interactions
that may lead to clinically actionable and personalized treatment options.
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INTRODUCTION
Aberrant activation of protein targets such as kinases plays a
fundamental role in cancer progression. Hundreds of chemical
compounds that inhibit dysregulated targets have been under
investigation in clinical trials.1 However, many such targeted
compounds have resulted in a limited efficacy as the cancer cells
are capable of exploiting complex genetic and epigenetic bypass
mechanisms to escape the mono-targeted treatments. A
polypharmacology-based paradigm has therefore been proposed
for designing multi-targeted therapy to achieve more effective
and sustained clinical responses.2–4 However, there remains a
practical challenge of how to systematically identify synergistic
target interactions that are amenable for combinatorial therapies.
It has recently been shown that systems-level compound-target
interaction networks that capture both on and off-target effects
can reveal functional links between cancer vulnerabilities and
target gene dependencies, hence supporting the concept of
network pharmacology approach to systematically identify novel
target interactions that may inhibit synergistically dysregulated
cancer survival pathways.5–7

Triple-negative breast cancers (TNBC) constitute a heteroge-
neous group of breast cancers, defined histologically by the lack of
expression of the estrogen receptor (ER), progesterone receptor
(PR), and the human epidermal growth factor receptor 2 (HER2).

TNBC patients tend to respond initially to a conventional
chemotherapy, however, the risk of relapse is high, especially if
the pathological complete response (pCR) cannot be achieved.8

Therefore, the prognosis for TNBC patients remains poor
compared to other main subtypes of breast cancer. TNBC patients
and cell line models often show heterogeneous responses to
targeted drugs.9,10 The limited efficacy of single-targeted drugs is
most likely due to multiple survival pathways being activated in
TNBC. Further, many prognostic markers (e.g., EGFR) are not
necessarily among drivers of the cancer initiation and progres-
sion.11 Thus, there is an urgent need to develop personalized
approaches that can suggest more selective, multi-targeted
therapies for treating TNBC patients.
Cancer cell lines are being widely used as models for

comprehensive drug testing and preclinical investigations. Among
the TNBC cell models, MDA-MB-231 has been shown to resemble
the transcriptional profiles of the claudin-low tumor TNBC
subtype, where the stem cell-like features are enriched.12 Further,
MDA-MB-231 harbors a TP53 missense mutation, which occurs in
over 50% of human cancers, and is one of the key drivers that
contribute to early tumorigenesis and tumor progression in
TNBC.13 The complex cross-talks between p53 loss of function
and other oncogenic pathways partly explain why therapeutic
strategies to reactivate mutated p53 have shown only little
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efficacy in vivo.14 MDA-MB-231 also harbors KRAS and BRAF
mutations. Therefore, better understanding of the cross-talks
among multiple dysregulated pathways in MDA-MB-231 could
lead to general principles toward designing of tailored combina-
torial treatments for high-grade TNBCs, where increased RAS/RAF/
MEK pathway activity is common.15,16

We have developed a network pharmacology model called
TIMMA (Target Inhibition interaction using Minimization and
Maximization Averaging) that utilizes set theory to predict
synergistic drug combinations based on monotherapy drug
sensitivity data and drug-target interaction data for a given
cancer cell type.17 The prediction accuracy of TIMMA has been
previously validated using multiple cell lines of different cancer
types. For instance, we have tested the TIMMA predictions on
MCF-7 breast cancer and BxPC-3 pancreatic cell lines, where the
model was able to predict essential and synthetic lethal target
pairs as validated by double siRNA knockdown experiments.17 In a
follow-up study, the TIMMA predictions were also experimentally
validated in drug combination experiments for a dedifferentiated
liposarcoma (DDLS) cell line.18 More recently the TIMMA approach
was extended to patient-derived cancer samples.19 However, since
the TIMMA model predicts drug combinations in a data-driven
manner, it lacks a systematic exploration of the mechanisms of
action for the predicted drug combinations. Without efficient
computational and experimental techniques to validate the
underlying target interactions, it remains challenging to identify
predictive biomarkers for the drug combination responses for
personalized medicine applications.
In the present study, we developed and tested a systematic

strategy that combines extensive computational and experimental
techniques to explore and therefore better understand why
specific drug combinations were predicted to be synergistic by
TIMMA in MDA-MB-231 cells. The predicted drug and target
combinations were experimentally validated using systematic
drug combination and pairwise siRNA knockdown assays,
respectively. Interestingly, we found complex interactions among
three multi-target kinase inhibitors including midostaurin, niloti-
nib, and motesanib: while midostaurin and nilotinib synergistically
inhibited cell growth, the midostaurin–motesanib combination led
to antagonistic effect, resulting in a synthetic rescue of the cancer
cells. Through a systematic investigation of the kinome-wide drug-
target profiles, we identified a synergistic interaction between
Aurora B, a key regulator of mitosis, and ZAK, a key regulator of
p38 MAPK pathway. We confirmed the Aurora B and ZAK
inhibition synergy using combinatorial siRNA, CRISPR/Cas9, and
compound screens. Using a dynamic simulation of the MDA-MB-
231-specific cancer signaling network, we further identified the
context-dependent cross-talks between p53 and p38 pathways
upon the inhibition of Aurora B and ZAK. Using patient data, we
showed that ZAK expression is negatively correlated with the
survival of breast cancer patients. In the TNBC patient subset, we
further discovered a specific pattern of AURKB and ZAK upregula-
tion with frequent TP53mutation, suggesting a clinical potential of
combined Aurora B and ZAK inhibition for certain groups of TNBC
patients. Taken together, our results demonstrated the potential
of a systematic computational–experimental strategy to identify
novel target interactions that may lead to clinically actionable and
personalized combinatorial therapies in cancer.

RESULTS
The network pharmacology model predictions are in agreement
with drug and siRNA combination experiments
To prioritize specific drug combinations for a particular cancer cell
sample, we made use of our network pharmacology model
TIMMA17 (Fig. 1a). TIMMA utilized set theory to predict synergistic
drug combinations based on monotherapy drug sensitivity

profiles and drug-target interaction data for a given cancer cell
sample. The algorithm starts by identifying a set of essential drug
targets that are most predictive of single-drug sensitivity. A drug
combination is then treated as a combination of these essential
targets, the effects of which can be estimated based on the set
relationships between the drug combination target profiles and
the single-drug target profiles. As a case study, here we applied
the TIMMA model to single-drug sensitivity profiles of 41 kinase
inhibitors in MDA-MB-231 cell line, combined with the kinome-
wide drug-target interaction profiles for the 41 compounds
covering 385 kinase targets (Supplementary Data 1; Methods).
Based on these input data, TIMMA constructed a network
pharmacology model comprising of 8 drug-target inhibition
nodes among 19 drugs and 20 targets that were most predictive
of the drug combination sensitivity in MDA-MB-231 (Fig. 1b). The
sensitivity of a drug combination can be inferred from the
topology of the network, by checking whether the drug
combination inhibits nodes that lead to a breakdown of the
network into disconnected subunits. To systematically validate the
model predictions on MDA-MB-231, we carried out a drug
combination screen involving 50 drug pairs, where several pairs
were repeated using different concentration ranges, totaling in 70
combination matrices (Supplementary Data 2). The results showed
that the predicted low and high synergy drug combinations were
in line with the experimental synergy scores determined by the
Bliss model (p= 0.0008, Wilcoxon rank sum test; Fig. 1c, left panel;
Supplementary Data 2; Supplementary Fig. 1).
We further explored whether the selected targets in the

network can explain the observed drug combination synergy.
We found that the low and high synergy drug combinations also
showed significant differences in the siRNA combination experi-
ments (n= 69, p < 0.0001, Wilcoxon rank sum test; Fig. 1c, right
panel; Supplementary Data 3), suggesting that the model-selected
drug targets were able to explain the observed drug synergies. As
a specific example, the MDA-MB-231 drug combination network
positioned dasatinib and its kinase targets (EPHA5, TXK, BMX, CSK,
EPHB1, and EPHB4) as a central hub, which was supported by the
enrichment of dasatinib in the top-synergistic drug combinations
(p < 0.0001, Wilcoxon rank sum test; Fig. 1d, left panel; Supple-
mentary Data 2), as well as by the enrichment of dasatinib targets
in the top-effective siRNA combinations (n= 110, p= 0.017,
Wilcoxon rank sum test, Fig. 1d, right panel; Supplementary Data
4). On the other hand, sorafenib uniquely appeared in both of the
parallel branches. The removal of dasatinib and sorafenib thus
broke the network into three disconnected components, suggest-
ing that such a combination may achieve a maximal sensitivity. In
line with such a prediction from the network topology, we
experimentally confirmed that the dasatinib–sorafenib combina-
tion had the strongest synergy among all the tested drug
combinations (Bliss synergy score: 8.2, Supplementary Fig. 2,
Supplementary Data 2). On the other hand, BI 2536 was
positioned at the root of the network, indicating a strong efficacy
for any combination that includes BI 2536 (Supplementary Fig. 3).
The model linked BI 2536 sensitivity with the target PLK1, which is
known to be critical for the growth of MDA-MB-231 and many
other cancer cell lines.20 In summary, these results demonstrated
that the data-driven drug combination network model can
accurately prioritize potent combinations as well as suggest their
underlying target interactions for further experimentation.

Identifying Aurora B–ZAK and Aurora B–CSF1R interactions
underlying the predicted drug combinations
To focus on potentially more selective combinations (compared to
promiscuous dasatinib and sorafenib), we next investigated
specifically those drug combinations that inhibit the kinases
Aurora B and ZAK, which appeared in the two parallel branches of
the network (Fig. 1b). As predicted, we found that midostaurin and
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nilotinib synergistically decreased cell viability (Bliss synergy score:
4.48, Fig. 2a, left panel). We also found the same level of synergism
in the combination of AZD1152-HQPA, a selective Aurora B
inhibitor, with two ZAK inhibitors nilotinib (Bliss synergy score:
4.40) and motesanib (Bliss synergy score: 3.41), respectively. These
results confirmed the Aurora B–ZAK inhibition synergy in MDA-
MB-231 cells. In contrast, the midostaurin–motesanib combina-
tion, despite of inhibiting also Aurora B and ZAK, showed a strong
antagonistic effect (Fig. 2a, right panel). Such an opposite
interaction pattern that involved a common drug (midostaurin)
combined with different inhibitors (nilotinib versus motesanib)
suggests a polypharmacological complexity due to promiscuous
and reversed target interactions. We therefore hypothesized that
there may exist antagonistic target interactions that are under-
lying the midostaurin–motesanib combination (Fig. 2b, top panel).
To probe the target interaction space behind these drug

combinations, we extracted the drug-target interaction profiles
from a kinome-wide binding affinity assay,21 and defined a kinase
as a target for a given drug if the dissociation constant (Kd) is
lower than 10-fold of the minimal (Kd) across all the kinases for the
particular drug. The drug-specific thresholds were used due to the
very different inherent (on-target and off-target) activities
between kinase inhibitors.7 Furthermore, we focused on the

expressed targets by removing non-expressed targets, i.e., log2
gene expression values lower than 6, according to the transcrip-
tomic profiles of MDA-MB-231 from Cancer Cell Line Encyclope-
dia22 (Fig. 2b; Supplementary Data 5). This filtering process led to
the identification of 45 target pairs involving 18 genes that can be
classified into three groups, depending on whether they are
shared by the midostaurin–motesanib and midostaurin–nilotinib
combinations (Fig. 2b, middle panel). We then carried out a siRNA
combination screen testing systematically all the 45 target pairs.
The results again confirmed a strong synergy between Aurora B
and ZAK (Fig. 2c, left panel; Supplementary Data 6–7). On the
other hand, we found that a majority of the antagonistic target
interactions involved CSF1R, including the Aurora B–CSF1R pair
(Fig. 2c, right panel). Although the Aurora B–CSF1R interaction was
not the most antagonistic pair, the interplay among Aurora B, ZAK,
and CSF1R in the midostaurin–motesanib combination suggested
intriguing dual roles of Aurora B towards ZAK and CSF1R that lead
to unexpected opposite interactions.
To further confirm the synergistic interaction between Aurora B

and ZAK in MDA-MB-231 cells, we performed a non-pooled siRNA
knock-down combination screen, using four independent siRNAs
from two providers (Qiagen and Ambion) (Supplementary Data 8).
Although there were differences between the individual siRNA
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Fig. 1 Network pharmacology modeling for MDA-MB-231 cancer cells. a Schematic outline of the computational–experimental approach to
predicting and validating effective drug combinations and their underlying target interactions. The TIMMA algorithm takes as input single-
drug sensitivity profiles and drug-target interaction profiles (here, among 41 kinase inhibitors and 385 kinase targets), and utilizes min–max
averaging rules to search a target subset that is most predictive of the observed single-drug sensitivities in the given cells (see Methods). A
drug combination is then treated as a combination of the selected targets, the combined effect of which can be quantitatively predicted
based on the set relationships between the target profiles of the drugs. The outcome of the TIMMA model consists of a list of predicted drug
synergy scores and a drug combination network for further experimental validation. b The drug combination network predicted for MDA-MB-
231 cancer cells. The network consists of drugs (rectangular nodes) and their kinase targets (oval nodes). An effective drug combination can
be inferred by checking whether the removal of them breaks the network into disjoint components (e.g., BI2536–dasatinib combination and
dasatinib–midostaurin combination). The EPHA5 and MAK target nodes contain multiple kinases that are unique to dasatinib and alvocidib,
respectively, but indistinguishable by their target profiles. c The predicted drug combinations and their target interactions were confirmed
using pairwise drug combination screen (left) and double knock-down siRNA screen (right) using cell viability assay (CellTiter-Glo). Drug
combinations with predicted synergy score higher than the average (0.3485) were classified as high synergy group. d The double knock-
downs that involved a predicted target of dasatinib showed a stronger cell viability inhibition compared to the other target pairs (right), which
may explain the stronger synergies observed in the dasatinib-involving drug combinations compared to non-dasatinib combinations (left).
Statistical significance was evaluated using Wilcoxon rank sum test (two-sided)
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efficacies, the majority of double knock-downs showed significant
synergy in both cell viability (CellTiter-Glo) and cell toxicity
(CellTox Green) assays (Fig. 3a; Supplementary Fig. 4). Further, the
knock-down efficiency of the Qiagen siRNAs for AURKB and ZAK
was confirmed both at the transcript and protein levels (Fig. 3b,
Supplementary Data 9). To confirm whether such synergies are
also observed with loss-of-function gene knock-outs, we per-
formed combinatorial CRISPR/Cas9 cell viability and toxicity
screens, and found a similar level of synergistic effects in three
out of the four individual AURKB and ZAK double sgRNAs (Fig. 3c;
Supplementary Fig. 5). Due to the lack of highly selective ZAK
inhibitors, we further evaluated ZAK siRNAs in combination with
three selective Aurora B kinase inhibitors (AZD1152-HQPA, TAK-
901, and GSK-1070916). Although the siRNA-specific differences
were again present, significantly higher inhibition measured by
CellTiter-Glo and cytotoxicity effects by CellTox Green were
observed in all the combination experiments, compared to the
use of inhibitors alone (Fig. 3d).
To confirm that the predicted synergistic interaction between

Aurora B and ZAK is cell context-specific, we applied the TIMMA
prediction model also to MDA-MB-361, an ER-positive, HER2-
positive, and PR-negative breast cancer cell line, as well as to
another triple negative cell line, MDA-MB-436 (Supplementary
Data 10–11). In line with the model predictions, the AURKB
inhibitors combined with ZAK siRNAs showed synergy in MDA-MB-
436 (predicted synergy score= 0.28), while the interaction
became antagonistic in MDA-MB-361 (predicted synergy score
= 0.17) (Supplementary Fig. 6), suggesting a context-specificity of
the identified target interactions.

Understanding Aurora B–ZAK and Aurora B–CSF1R interactions by
dynamic simulation of signaling pathways
To investigate the potential mechanisms of how ZAK and CSF1R
partners mediate their dual roles with Aurora B in the synergistic
and antagonistic interactions, we compiled a signaling network
consisting of proteins that have previously been reported to
interact with either Aurora B, ZAK, or CSF1R, for which the
directions and signs of the network connections were retrieved
from OmniPath,23 a comprehensive collection of human signaling
pathways curated from the literature (Supplementary Data 12;
Methods). To make the signaling network specific to MDA-MB-231,
genome-wide gene expression profiles from a recent RNA-seq
study24 were utilized to further pinpoint 20 proteins that were
differentially expressed in MDA-MB-231 cell compared to other
cancer cell lines (Supplementary Fig. 7, Supplementary Data 13).
The constructed signaling network positioned wildtype p53 as the
central hub, which interacts with Aurora B directly, while the links
with ZAK and CSF1R were established via the p38 MAPK pathway
and TGF-β pathway, respectively (Fig. 4a). While these links cannot
be claimed to be causal, we speculated that the observed
synergistic and antagonistic interactions may be related to the
cross-talk between p53 and p38 pathways. To model the signaling
network, we further determined the degradation and production
rates for each gene based on their Reads Per Kilobase of transcript,
per Million mapped reads (RPKM) values.24 To accurately capture
the effect of inherent stochasticity in gene expression, we
simulated the model using SGNS2 (Stochastic Genetic Network
Simulator).25,26 We chose SGNS2 because of its computational
efficiency and ability to model partitioning at division.27 In our
model, cell growth was assumed to be TP53 dependent. More
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Fig. 2 Identification of synergistic and antagonistic target interactions behind drug combinations. a Opposite drug combination effects for
midostaurin–nilotinib (left panel) versus midostaurin–motesanib (right panel). Motesanib alone produced a minimal effect on cell viability
(black curves). In the pairwise combinations, 3 µM nilotinib or motesanib was combined with midostaurin across seven concentrations,
ranging from 10 to 10,000 nM. Compared to the reference dose-response curves of no synergy (green dotted lines), nilotinib potentiated
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target interactions behind the TIMMA-predicted midostaurin–nilotinib synergy and the midostaurin–motesanib antagonism. To explain the
synergistic and antagonistic interactions, the possible target combinations were determined from the kinome-wide drug-target interactions21

and gene expression data,22 resulting in three groups of potential target pairs: Group 1 (G1) contains the target pairs that are unique to
midostaurin–nilotinib combination. Group 2 (G2) contains the target pairs that are shared between midostaurin–nilotinib and
midostaurin–motesanib combinations. Group 3 (G3) contains the target pairs that are unique to midostaurin–motesanib combination. A
kinase was defined as target for a given drug if the dissociation constant (Kd) is lower than 10-fold of the minimal Kd across all the kinases for
this drug. Further, non-expressed targets were removed if their log2 gene expression values were lower than 6 in MDA-MB-231 cells,
according to the mRNA expression data from the Cancer Cell Line Encyclopedia.22 All the target pairs were profiled in-house using the double
siRNA knock-down experiments, resulting in the identification of the synergistic and antagonistic target interactions. c Left panel: the
percentage inhibition and synergy scores for the target interactions in the siRNA combination experiments. AURKB–ZAK interaction (red
triangle) showed top synergy among all the target pairs (p < 0.001), while the AURKB–CSF1R interaction (blue triangle) showed strong
antagonistic effects (p < 0.05). Right panel: the synergy scores for the target interactions involving CSF1R and ZAK separately (p < 0.01). The
green dotted line shows the baselines of zero synergy. Statistical significance was evaluated using Wilcoxon rank sum test (two-sided)
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specifically, in the absence or low expression of TP53, MDA-MB-
231 cells grew exponentially and divided according to their
experimentally observed doubling time. With an increased TP53
expression, its effect on cell growth was modeled using a Hill
function. The simulation results suggested that the knock-out of

AURKB and ZAK leads to loss of cell viability, while the knock-out
of AURKB and CSF1R leads to gains in cell viability (Fig. 4b).
To investigate the robustness of the simulation results and the

sensitivity of the model parameters, we next transformed the
stochastic model into an ordinary differential equation (ODE)-
based model in COPASI,28 which is a widely used open-source

a

b c

0

10

20

30

sg
A1_

sg
Z1

sg
A1_

sg
Z2

** ***

0

5

10

sg
A1_

sg
Z1

sg
A1_

sg
Z2

** ***
H

S
A 

sc
or

e 
(in

hi
bi

tio
n)

H
S

A 
sc

or
e 

(to
xi

ci
ty

)

ZAK

Aurora B

GAPDH

TF siA1siA2 siZ1 siZ2 siA2
siZ2

siA1
siZ1

siA1
siZ2

siA2
siZ1

0

10

20

30

40

siA
1_

Z1

siA
1_

Z2

siA
2_

Z1

siA
2_

Z2

*

***
***

H
S

A 
sc

or
e 

(in
hi

bi
tio

n)

0

10

20

30

40

siA
3_

Z3

siA
4_

Z3

siA
3_

Z4

siA
4_

Z4

*

*
* *

H
S

A 
sc

or
e 

(to
xi

ci
ty

)

0

10

20

30

40

siA
3_

Z3

siA
4_

Z3

siA
3_

Z4

siA
4_

Z4

***
*

H
S

A 
sc

or
e 

(in
hi

bi
tio

n)

d

siZAK1 siZAK2

%
 In

hi
bi

tio
n

0

10

20

30

40

50 AZD1152-HQPA
siRNA

combination

siZAK1 siZAK2

%
 In

hi
bi

tio
n

0

10

20

30

40

50

60 siRNA
TAK-901
combination

siZAK1 siZAK2

%
 In

hi
bi

tio
n

0
10
20
30
40
50
60

siRNA
GSK-1070916
combination

siZAK1 siZAK2

%
 T

ox
ic

ity

0

20

40

60

80

siZAK1 siZAK2

%
 T

ox
ic

ity

0

20

40

60

80

siZAK1 siZAK2

%
 T

ox
ic

ity

0

20

40

60

80
AZD1152-HQPA
siRNA

combination

siRNA
TAK-901
combination

siRNA
GSK-1070916
combination

*

*

*

**

**

***

*
*

*
**

91kDa

37kDa

39kDa

J. Tang et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2019)    20 



simulator for biochemical reaction networks. We chose COPASI as
it provides optimized functionality for sensitivity analysis,28,29

which is currently lacking in SGNS2. To verify the proper
transformation of the model from stochastic to ODE-based, we
compared the steady state expression levels of genes in both of
the models. The model comparison results showed that the steady
state expression levels of genes inferred by the ODE model were
similar to those obtained using the stochastic simulation model,
suggesting the validity of the signaling network simulation results
(Fig. 4c, left panel). Furthermore, we also found that the
degradation and production rate parameters for ZAK were among
the top ones that significantly affected the expressions of other
genes (Fig. 4c, right panel, Supplementary Data 14), suggesting
the importance of ZAK, for which more experimental validation is
needed. The other sensitive genes included TP53, which is closely
related to AURKB, and those genes that have no input connections
(e.g., PKN1 and PARP1). On the other hand, CSF1R showed a
minimal influence on the gene expressions of the whole network,
thus suggesting that its inhibition should not affect the survival of
the MDA-MB-231 cancer cells. This further supports the observed
antagonistic effect of CSF1R and AURKB, where the inhibition of
both rescued the cancer cells.
We further analyzed the gene expression data of all the breast

cancer cell lines available from the Klijn et al. study.24 The AURKB
and ZAK gene expression levels were significantly higher in TNBC
than in non-TNBC cell lines (two-sided Wilcoxon rank sum test, p <
10−5, Supplementary Fig. 8, Supplementary Data 15), suggesting
that AURKB and ZAK targets are up-regulated in TNBC. Finally, we
retrieved the TCGA patient tumor data from the cBioPortal
platform to query the clinical frequency and relevance of the
identified AURKB, ZAK, and TP53 status in breast cancer patients.30

Interestingly, we found that a higher expression of ZAK is
associated with poor survival of breast cancer patients (log-rank
test, p < 0.0001, n= 1105, Fig. 4d). This observation was corrobo-
rated by a recent study of the key role of ZAK in promoting the
epithelial–mesenchymal transition in cancer progression, which
showed that ZAK overexpression is significantly associated with
poor survival in a number of human cancer types including breast
cancer.31 In the TNBC subset of breast cancer patients (n= 117),
the TP53 mutation frequency and the AURKB gene expression
were found to be significantly higher compared to non-TNBC
patients (Wilcoxon rank sum two-sided test, p < 0.0001). Further-
more, we found that the median survival was lower in the
subgroup of TNBC patients with AURKB z-score > 2, ZAK z-score >
0, and TP53 mutation (51.1 months versus 114.1 months, p= 0.04,
Fleming–Harrington test with weights p= 1 and q= 1), but not in
the subgroup of TNBC with AURKB z-score > 2, CSF1R z-score < 0,
and TP53 mutation (Supplementary Fig. 9). The up-regulation of
MAP2K3 and MAPK11, the key regulators of p38 pathway, was also
associated with lower survival rates (Supplementary Fig. 10). The
aberrant status of TP53, AURKB, and ZAK might therefore suggest
clinical, selective benefits of the combinatorial AURKB and ZAK
inhibition to perturb the p53 and p38 pathways in TNBC patients.

DISCUSSION
Given the vast search space of possible drug combinations,
combined with the heterogeneity of survival dependencies in
many cancer types, efficient prioritization of the most potential
drug combinations for a given cancer type or patient subgroup
pose a clinical and experimental challenge. By integrating drug-
target interaction profiles and single-drug sensitivities, we have
previously developed a logic-based network pharmacology
modeling approach, called TIMMA, for systematic prioritization
of effective drug combinations for a given cancer sample.17–19 The
TIMMA model generates a data-driven hypothesis for selecting
potential drug combinations, while downstream analyses are
required to leverage the polypharmacologic target information as
well as molecular profiling data to pinpoint the actual target
interactions. The novel contribution of the present study was
therefore to apply a series of computational and experimental
methods to systematically explore the predicted drug combina-
tions and further validate their target interactions. Experimental
validation techniques included combinatorial siRNA, CRISPR/Cas9,
and drug synergy screening experiments, combined with compu-
tational mining of the kinome-wide drug-target interaction data
and gene expression profiles to pinpoint the underlying target
interactions.
In the last step, dynamic modeling of signaling pathways using

stochastic simulation algorithm (SSA) was implemented to
understand the mechanisms of action of the identified target
interactions. Using the dynamic modeling approach, we con-
structed a MDA-MB-231 signaling network to simulate the effect
of perturbing the genes of interests on the cell viability. The
qualitative similarity of the model predictions to the experimental
observations suggests that the constructed signaling network
comprises of key protein–protein interactions that may mediate
the synergistic and antagonistic relationship of Aurora B with ZAK
and CSF1R, respectively. While we chose to use dynamic signaling
model, given the proper use of prior based on available data and
interactions, we believe that a causal Bayesian network modeling
or any other mechanistic modeling approach would produce
similar insights. This proof-of-concept study introduced a
systematic experimental–computational pipeline to identify com-
binatorial vulnerabilities of MDA-MB-231 cells, but it can be also
applied to other cell lines and patient-derived samples.
Among the identified drug combinations, we specifically

explored the underlying target interactions that resulted in
opposite cell growth phenotypes: the inhibition of Aurora B and
ZAK showed a synergistic effect in MDA-MB-231, while inhibiting
CSF1R rescued the cells from the Aurora B inhibition. Dynamic
simulations of the signaling pathways indicated that Aurora B,
ZAK, and CSF1R might be involved in the cell division processes
related to p53, while the cross-talks with p38 MAPK or TGF-β
pathways seem to lead to different states in the cell cycle. Since
direct targeting of mutant p53 has not yet been successful,32 the
Aurora B and ZAK inhibition may be considered as an indirect
strategy to effectively restore the normal function of p53. On the
contrary, the Aurora B and CSF1R inhibition showed antagonistic

Fig. 3 Experimental confirmation of the Aurora B and ZAK interactions in MDA-MB-231. a Validation of the AURKB–ZAK interactions using two
Qiagen siRNAs (siA1 and siA2) and two Ambion siRNAs (siA3 and siA4) for AURKB, and similarly for ZAK (siZ1–siZ4). For each siRNA, 16 nM of
final concentrations were used for both single siRNAs and double siRNAs (i.e., an 8+8 nM combination in double siRNAs). The highest single
agent (HSA) synergy scores were calculated as the difference between the siRNA double knockdown effects minus the maximal effects of the
single knockdowns in cell viability inhibition (CellTiter-Glo) and toxicity (CellTox Green) assays, respectively (see Methods for details). Standard
error of means was calculated over three replicates. b Knockdown effect of AURKB and ZAK by each of the individual Qiagen siRNAs and their
combinations using Western blot assays. Standard error of means was calculated over three replicates. c HSA synergy scores for AURKB and
ZAK double knock-out using combinatorial sgRNAs (sgA1 for AURKB and sgZ1, sgZ2 for ZAK) in CRISPR/Cas9 system. Standard error of means
was calculated over eight replicates. d Cell inhibition and toxicity effects were measured for Aurora B inhibitors combined with the two ZAK
siRNAs. *p < 0.05; **p < 0.01; ***p < 0.001 (Wilcoxon rank sum test, two-sided). The labels on the x-axis indicate the different siRNA
combinations
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interaction, which is supported by the study33 of Patsialou et al.,
2014, in which the CSF1R signaling was shown to mediate a switch
between the invasion and proliferation states via the TGF-β
pathway in MDA-MB-231, and thus may provide new insights into
the tumor progression.

Synergistic drug combinations are rare in the clinic. Most drug
combinations have been approved as they showed higher clinical
efficacy than monotherapies. However, due to the large variability
in the monotherapy responses, it is not surprising that a drug
combination where two drugs act independently is sufficient to
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achieve a higher clinical efficacy in a patient population.34

However, to achieve a more effective cancer treatment, we aimed
here to identify personalized drug combinations that work
synergistically. TNBC is known to be a collection of very
heterogeneous diseases, both in terms of genetic background
and therapy responses, making it a highly challenging case for
combinatorial therapy prediction. Instead of relying on established
molecular subtypes of TNBC, we made use of the comprehensive
drug sensitivity profiling, which is likely to provide more
actionable starting point for precision medicine of TNBC.10 We
have previously shown that the TNBC cell lines present with highly
heterogeneous responses to anticancer drugs.10 Therefore, when
applied to patient-derived samples, we argue that personalized
combinatorial treatment options need to be tailored based on
individual ex vivo drug sensitivity profiles for each primary patient
sample separately, and ideally compared to healthy control
profiles, whenever available. As was recently demonstrated in a
case study on leukemia patients,19 polypharmacological modeling
approaches such as the one proposed here has several benefits for
clinical translation: (i) it identifies patient-selective target combi-
nations, rather than broadly toxic effects that often lead to severe
side-effects, (ii) compared to genomics-only approach, the
predictions on the target interactions are pharmaceutically
actionable, (iii) it provides unbiased, experimentally testable
predictions for treatment decision making when the patient-
derived and comparable control cells are available.
We used combinatorial drug screening, complemented with

RNAi and CRISPR/Cas9 knockout experiments for systematic and
detailed validation of the model predictions, due to the known
limitations and complementary nature of these assays.35 Despite
the experimental variation that was observed in siRNA and
CRISPR/Cas9 systems, we confirmed that the Aurora B and ZAK
interaction could explain the synergy between midostaurin and
nilotinib. The Aurora B and CSF1R interaction also explained the
antagonism between midostaurin and motesanib, consistent with
its role in breast cancer development.36 The successful model
predictions for experimentally-validated drug combinations and
their target interactions exemplified the rationale of leveraging
polypharmacology data and network modeling to identify cell-
specific drug combinations. The dynamic network simulations also
provided clues about the potential mechanisms behind the
observed synergistic effects between AURKB and ZAK interaction
in this particular cell-context. Even though the parameter
sensitivity analysis showed that our signaling network model is
fairly robust (with a small set of sensitive parameters such as the
degradation and production rates of ZAK), in future, a more
systematic analysis of parameter sensitivity will be required to
generate data-driven hypothesis about the mechanisms of action
behind other interactions in different cancer contexts. To validate
the data-driven hypothesis about the p38 and p53 pathway
interaction, a more comprehensive analysis in other TNBC breast
cancer cell lines is needed.
As a future development, integration of the drug combination

networks with known signaling interactions between the selected
drug targets and cancer-driving mutations should be explored in a

combined manner to make even more accurate drug combination
and target interaction predictions for individualized anticancer
treatments. Although we focused here on MDA-MB-231 as our
primary model system, the data-driven network pharmacology
approach is widely applicable to a rational design and under-
standing of unexpected drug combinations also in other cancer
cell lines or patient-derived samples, once systematic functional
assay data together with molecular and genomic profiles become
increasingly available.

METHODS
Cell lines
Human breast cancer cell lines MDA-MB-231, MDA-MB-361, and MDA-MB-
436 were obtained from ATCC and were maintained in 10% FBS-DMEM
(Life Technologies) at 37 °C with 5% CO2 in a humidified incubator,
according to provider’s instructions.

Kinase inhibitors collection and the TIMMA network pharmacology
modeling
Utilizing drug-target interaction data and single-drug sensitivities, the
TIMMA algorithm started by identifying a set of essential targets that are
most predictive of single-drug sensitivity (Supplementary Data 16). The
mathematical details of the TIMMA modeling can be found in Tang et al.17

Briefly, for a drug combination with a target profile d, the drug
combination sensitivity yd can be predicted based on the set relationships
between d and the target profiles for the N single drugs di, i∈ N:

yd ¼
P
i2N

Iðd¼ diÞyiP
i2N

Iðd¼ di Þ ; if
P
i2N

Iðd ¼ diÞ≠0

yd ¼ ðymin þ ymaxÞ=2; if
P
i2N

Iðd ¼ diÞ ¼ 0

8>>><
>>>:

(1)

where Iðd ¼ diÞ ¼ 1; if d ¼ di
0; if d≠di

�
;

ymin ¼
yh þ

P
j2N;j≠h

Iðd � dj\dj � dh \ yj<yhÞyj
1þ P

j2N;j≠h
Iðdnew � dj\dj � dh \ yj<yhÞ ; h ¼ argmax

i2N
ðIðd � diÞyiÞ

ymax ¼
yl þ

P
j2N;j≠l

Iðdnew � dj\dj � dl \ yj>ylÞyj
1þ P

j2N;j≠l
Iðdnew � dj\dj � dl \ yj>ylÞ ; l ¼ argmin

j2N
ðIðd � djÞyjÞ

The single drug sensitivity data yi, i∈ N for the MDA-MB-231 cell line
were quantified as drug sensitivity score (DSS)37 derived from cell viability
readout, which was further normalized into the [0, 1] interval where a
higher value indicates a more sensitive drug. The drug-target interaction
data for the 41 kinase inhibitors were retrieved originally from the
KINOMEscan binding affinity assay platform, covering a panel of 385
kinases covering the majority of catalytically active human protein
kinases.21 For each drug, targets that showed 50-fold or less of the
minimal binding affinity Kd levels were considered as the positive targets
(including both on and off-targets) for the TIMMA modeling (Supplemen-
tary Data 1). These targets were further narrowed down by applying a
more stringent 10-fold threshold to identify the target interactions for the
midostaurin and nilotinib synergy as well as for the midostaurin and
motesanib antagonism (Supplementary Data 5).

Fig. 4 Dynamic modeling of MDA-MB-231 signaling network supports the context-specific combination effects. a Signaling network based on
selected interaction partners of Aurora B, ZAK, and CSF1R. The node colors indicate the log2 mRNA expression levels of the genes. Arrow-
heads represent activation and bar-headed edges represent inhibition of the target proteins, retrieved from OmniPath.23 Red-circled area
highlights the p38 pathway that may be activated by ZAK and blue-circled area suggested the role of TGF-β pathway that involves CSF1R.
b Simulated cell viability in response to single and double gene knock-downs. The fraction of viable cells decreased further when both AURKB
and ZAK were silenced, while a simultaneous knock-down of AURKB and CSF1R increased the cell proliferation compared to the knock-down
of AURKB alone. Standard error of means was calculated over ten replicates. c Left panel: the steady state expression levels of genes inferred
by SGNS2 and COPASI. Right panel: the average influence of the Kd (degradation rate) and Kp (production rate) parameters of each gene on
the expression level of all the genes in the signaling network. d Left panel: the overall survival curves for breast cancer patients with higher
ZAK gene expression (z-score > 1.5 in RNA-Seq data, n= 59) versus the others (n= 1036). Right panel: the AURKB gene expression and TP53
mutation frequency differences between TNBC and non-TNBC patients. Error bars represent standard errors
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Validation of the drug combination network for MDA-MB-231
using drug combination and siRNA combination screens
For the primary screening of kinase targets predicted by the drug
combination network (Fig. 1b), three different siRNAs (Qiagen) for each
gene were pooled together at a total concentration of 6 nM. A total of 18
kinase targets were evaluated both individually and in pairwise combina-
tion in the siRNA screens, for which the percentage inhibition data were
retrieved from Dataset S8 in Tang et al.17 For each drug pair (d1, d2), the
siRNA-based synergy score was calculated by averaging the multiplicative
synergy scores of the corresponding target pairs:

SsiRNA ¼ 1
n

X
iϵd1 ;jϵd2

yi;j � yiyj
� �

; (2)

where i,j are the targets of drugs d1,d2, respectively and yi.j, yi and yj are the
% inhibition levels of the double knock-down and single knock-down; n is
the total number of target pairs underlying the drug pair.
To further validate the drug combination predictions, 50 drug pairs (of

which 16 drug pairs were tested in duplicates and 2 drug pairs in triplicates
with different concentration ranges, see Supplementary Data 2 and
Supplementary Fig. 1) were screened in an 8 × 8 dose-response matrix
assay with positive and negative controls. We did not test all the drugs in
the network in pairwise combinations. For example, BI 2536 alone already
inhibited the cancer cell survival, and therefore was expected to result in a
limited synergy in combinations with other drugs. For the rest of the nodes
in the network, we rather focused on more critical targets and interactions
including the hub nodes and node combinations that break down the
connectivity structure of the graph.
The cell growth phenotype was measured as percentage inhibition

using a luminescent cell viability assay (CellTiter-Glo, Promega), following
the protocols that were described previously.10 Scoring of drug combina-
tions was done by first fitting the dose-response curves using the four-
parameter logistic models using the drc package in R.38 The volumes
between the observed response surface and the expected response
surface using the Bliss model were used to quantify the average synergistic
effects of a drug combination based on the 7 × 7 dose combinations of the
two drugs:

SBliss ¼ 1
7 ´ 7

X7
i;j

ycombination;i;j � yiyj
� �

; (3)

where ycombination is the percentage inhibition value of drug 1 and drug 2
combined at concentration i and j, while yi and yj are the percentage
inhibition values of the single drugs at i and j, respectively. The Bliss
synergy scores were also visualized in a three-dimensional landscape on
the dose-response matrix (Supplementary Fig. 2), similar to the method
that was used in Yadav et al.39

Validation of AURKB and ZAK interaction using RNAi combination
screens
For the confirmation screening of target interactions for
midostaurin–nilotinib and midostaurin–motesanib, we utilized the
kinome-wide drug-target profiles21 to derive the common target pairs
for these two drug combinations, as well as those that are exclusively
present for only single drug treatment. We then utilized the gene
expression data to filter out those inactivated targets in MDA-MB-231 cells.
45 target pairs remained which can be classified into three categories in
the Venn diagram shown in Fig. 2b. Three siRNAs (Qiagen) for each target
gene were selected and tested individually in the combinations against
MDA-MB-231 in 384-well plate format with 500 cells per well. 16 nM (total
concentration) of siRNAs were used in both single and double RNAi
mediated knock-downs, with three replicates. The percentage inhibition
values for each gene pair were calculated as the average over all the 3 ×
3 siRNA combinations.
For the confirmation screening of AURKB–ZAK interaction, three siRNAs

for each target gene were purchased from Qiagen and Ambion,
respectively. Two Qiagen siRNAs and two Ambion siRNAs that showed
more consistent phenotypes to each other were selected in the
subsequent data analyses. For the Ambion siRNAs, CellTox Green assays
(Promega) were further implemented to access the cytotoxicity of the
siRNA knock-downs, following the protocols that were described
previously.10

Since the same concentrations were used in single and double siRNA
knock-downs, the highest single agency (HSA) synergy score was used to

assess the degree of synergy:

SHSA ¼ ycombination �maxðy1; y2Þ: (4)

The statistical significance was based on testing whether the synergy
score is different from zero based on Wilcoxon rank sum test (two-sided).

RT-qPCR and western blot analysis
siRNA transfected cells were lysed using RealTime ready Cell Lysis Kit
(Roche) and cDNA was synthesized using Transcriptor Universal cDNA
Master kit (Roche). PCR reactions with LightCycler 480 SYBR Green I Master
mix (Roche) were detected with LightCycler 480 II Instrument (Roche). The
primer sequences for AURKB, ZAK and the housekeeping gene HMBS are
shown in Supplementary Data 9.
To obtain sufficient amount of material for the experiments, 96-well

plates with 6000 cells/well were used and siRNA transfections were
performed at 64 nM due to the increase of cell concentrations. The
percentage expression of the target gene after siRNA mediated knock-
down was calculated as:

% gene expression ¼ 100 ´ 0:5ðCp1�Cp2Þ=0:5ðCp3�Cp4Þ (5)

where Cp1 and Cp2 are the cross-point numbers of the gene after and
before knock-down; Cp3 and Cp4 are the cross-point numbers of the
housekeeping gene.
For western blot, siRNA transfected cells were lysed in 4% sodium

dodecyl sulfate (SDS), 0.1 M Tris–HCl pH 7.5, 0.1 M dithiothreitol (DTT).
Protein lysates were run on a 12% polyacrylamide gel with SDS and
transferred to a polyvinylidene difluoride (PVDF) membrane that was
blocked with 5% bovine serum albumin (BSA) in Tris-buffered saline (TBS).
After blocking the membrane, it was incubated with primary antibodies
anti-ZAK (Bethyl Laboratories, A301-993A, mouse monoclonal antibody),
anti-Aurora B (Novus Biologicals, NB110-55480, rabbit monoclonal anti-
body), GAPDH (Sigma-Aldrich, G8795, mouse monoclonal antibody) in 5%
BSA in Tris-buffered saline and 0.05% Tween 20 (TBS-T). The membrane
was incubated with secondary antibodies anti-mouse IRDye 680 and anti-
rabbit IRDye 800CW (Odyssey; LI-COR Biosciences) in 5% BSA TBS-T.
Odyssey Imaging System (LI-COR Biosciences) was used to visualize the
proteins. All blots derived from the same experiment and were processed
in parallel.

sgRNA combination screens
Two oligonucleotides encoding sgRNAs against AURKB and ZAK were
ordered from SigmaAldrich (Supplementary Data 9). The sgRNAs were then
crossed in the combinations. Oligonucleotides were cloned into Lenti-
Guide plasmid (Addgene Plasmid #52963) as previously described.40 For
packaging, LentiGuide or LentiCas9 (Addgene Plasmid #52962) lentiviral
plasmids and packaging plasmids pCMV-VSV-G (Addgene Plasmid #8454)
and pCMV-dR8.2 dvpr (Addgene Plasmid #8455) were transfected into
293T cells. Transfection was done using Lipofectamine 2000 (Thermo
Fisher Scientific) reagent according to the manufacturer’s instruction. Virus
supernatants were collected 24 h post transfection.
Cells were seeded in 24-well plate format at a density of 5 × 104 cells/

cm2. Two hours after seeding culture media was replaced with media
containing lentiviral particles (lentiCas9, MOI= 5) and polybrene (8 μg/ml).
Next day, media was supplemented with Blasticidine (6 μg/ml) and cells
were selected for 7 days. Cas9 expressing cell lines were seeded in a 24-
well plate format (5 × 104 cells/cm2) and incubated with lentivirus particles
expressing sgRNA (MOI= 10 for each virus) and polybrene (8 μg/ml). Next
day, the media was replaced with MDA-MB-231 growth media containing
1 μg/ml puromycin. Cells were allowed to grow for 3 days. After that cells
were seeded in 96-well format (1000 cells per well) and grown for 5 days.
Cell viability and cell death were measured with CellTiter-Glo (CTG)
Luminescent Cell Viability Assay and CellTox Green Cytotoxicity Assay
(Promega Inc.) correspondingly. The cell viability was calculated as the
ratios of CellTiter-Glo readouts between day 5 and day 1 after transfection:

Cell viability ¼ CellTiter� Gloday5

CellTiter� Gloday1
(6)

The percentage of inhibition was derived by normalizing the viability to
the positive and negative control sgRNAs.
The cytotoxicity values were calculated as the ratio of cell death to cell

viability, hence more cell death and less viable cells indicate stronger
cytotoxicity. The cell death was measured as the CellTox Green readout at
day 5; the cell viability was calculated as the CellTiter-Glo readout at day 5
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divided by the initial readouts at day 1:

Cytotoxicity ¼ Cell death
Cell viability

¼ CellTox� Greenday5

CellTiter� Gloday5=CellTiter� Gloday1
(7)

RNAi+ drug combination screens
MDA-MB-231, MDA-MB-361, and MDA-MB-436 were screened against
1000 nM of AZD1152-HQPA and GSK-1070916, 100 nM of TAK-901, in
combination with 16 nM of ZAK siRNA. TAK-901 and GSK-1070916 were
purchased from Selleck (S2718, S2740) while AZD1152-HQPA was
purchased from ChemieTek (CT-A1152H).
Percentage inhibition values in the CellTiter-Glo assay and percentage

cytotoxicity values in the CellTox Green assay were calculated by using
DMSO as negative control and 100 µM benzethonium chloride (BzCl) as
positive control. The HSA synergy score was calculated.

Construction of the MDA-MB-231 signaling network model
Differentially-expressed genes in MDA-MB-231 were determined by
calculating the distance:

D ¼ abs ExpressionMDA�MB�231 �Mean Expresssionallð Þð Þ
Mean Expresssionallð Þ (8)

which captures the normalized deviation of the gene expression in MDA-
MB-231 from the average over the 675 cell lines that were reported in Klijn
et al.24 Only those genes with D > 1 were included into the network
construction (Supplementary Fig. 7). The topology of the signaling network
was built by retrieving the interaction patterns (i.e., activation or inhibition)
between the proteins that are connected to AURKB, ZAK, and CSF1R from
OmniPath23 (Supplementary Data 12).
The simulation model has two main components: (i) a gene interaction

mechanism; (ii) and a mechanism of cell growth and division. For the first
component, the interactions between genes are modeled as a source to
target reaction. We considered three types of interactions, namely
activation, inhibition, and degradation. While activation and inhibition
were inferred from OmniPath, the degradation was added to achieve a
steady state gene expression levels. Examples depicting reactions for these
interactions are:

A�!Bkp B gene A activates gene Bð Þ (9)

Bþ C�!Ckd ; gene B inhibits gene Cð Þ (10)

A�!Akd ; gene A or associated mRNA degrades on its ownð Þ (11)

The propensities of each reaction are assumed to be driven by the gene
expression profile of the source gene. To obtain the reported expression
levels for each gene during simulation (Supplementary Data 13), we
manually tuned the ratio of its degradation rate (Kd) to production rate (Kp)
(Supplementary Data 16).
The second component of the model consists of cell growth and

division. We modeled the division as an instantaneous event that occurs
once the cell reaches a growth threshold, a variable that increases
exponentially. We assumed that this growth threshold is affected by TP53
and is modeled by:

; �!
pGrowth� ln2

tdiv

� �
�f ðTP53Þ

pGrowth
(12)

The rate constant of this equation is such that in the absence or low
expression of TP53 expression, cells grow exponentially in time (tdiv) to
match the doubling time of MDA-MB-231 cells. The effect of TP53 on cell
growth was modeled using a Hill function f(TP53), with the threshold Q=
65 and exponent β= 7, which regulate the degree of growth rate
reduction when TP53 is expressed.
It should be noted that on a division event, the components of the

mother cell are partitioned between the daughter cells according to an
unbiased, independent partitioning scheme (implemented in SGNS225).
This results in a binomial distribution of molecules inherited by resulting
daughter cells.

Dynamic simulation of the signaling network
Once the signaling model is constructed based on the network topology,
the effect of knock-out of any genes was predicted using SGNS2,25 an
open-source simulator of chemical reaction systems according to the
SSA.26 To measure the viability of the cells in normal MDA-MB-231 model
as well as in knock-out models, we counted the average number of viable
cells during the last 50 h of simulation period from 10 runs. To further
investigate the sensitivity of the parameters, we transformed the SGNS2
model to an ODE-based model using the same interactions and
parameters. After verifying the accurate transformation using the steady
state gene expression levels for genes in both models, we computed the
sensitivities of each parameter using COPASI.28

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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