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Abstract 1 

Objectives: The transition from osteoblasts to osteocytes is associated with dramatic changes in the 2 

cytoskeleton. We previously showed that the formation of osteoblast cell processes in 3D culture is 3 

microtubule dependent. However, the distribution of microtubules during the transition from osteoblasts 4 

to osteocytes in vivo is unknown. In this study, we investigated the distribution of microtubules in 5 

osteocytes in vivo. 6 

Methods: We observed the microtubules in osteocytes in chick embryonic calvaria via fluorescence 7 

staining of microtubules and confocal laser scanning microscopy. 8 

Results: Microtubules were observed throughout the cytoplasm in all examined osteoblasts. In immature 9 

osteocytes, several cell processes contained microtubules, whereas in mature osteocytes, microtubules 10 

were localized only in the cell body. 11 

Conclusion: These results suggest that the early arrangement of microtubules may be correlated with the 12 

initial development of osteocyte processes. 13 

Keywords: osteocyte, osteoblast, microtubule, differential distribution, in vivo 14 
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1. Introduction 1 

Osteocytes are mature osteoblasts that become embedded within the lacuno-canalicular network of bone 2 

during the formation phase of bone remodeling [1-4]. During this process, osteocytes develop 3 

cytoplasmic processes that run throughout the canaliculi, forming a communication network that can 4 

convert mechanical signals into biochemical signals [5-13]. Therefore, osteocytes are considered to be the 5 

major mechanosensory cells in bone tissue that control bone remodeling. 6 

 7 

Microtubules are hollow, nanoscale, biopolymer rods that, together with actin filaments and intermediate 8 

filaments, form the composite cytoskeleton, which controls cell shape and mechanics [14,18]. Recently, 9 

microtubules have been linked to the mechanoresponsive of cultured osteocytes to fluid shear stress [19]. 10 

The microtubule network has also been implicated in the regulation of Ca2+ signaling and sclerostin 11 

production in osteocytes [19] and has been proposed as a target for manipulating the osteocyte response to 12 

mechanical cues for therapeutic interventions in bone [19]. Microtubule involvement in the assembly of 13 

adhesions has also been well documented [20,21]. In addition, microtubules are used as guides for the 14 

localization of cellular structures and act as a highway for the trafficking of organelles [22,23]. 15 

Furthermore, microtubules are required for the initial formation of podosomes [24]. We also showed that 16 

the formation and integrity of osteoblast cell processes in 3D culture is microtubule dependent [25]. 17 

The transition from osteoblasts to osteocytes is associated with dramatic changes in the cytoskeleton 18 

[26,27]. Microtubules are present in osteocyte cell bodies and processes in vitro, but their distribution in 19 

the processes only extends to the proximal regions [27]. However, the differential distribution of 20 

microtubules during the transition to osteocytes and where they reside in vivo is unknown. We previously 21 

developed a method for observing vinculin in osteoblasts and osteocytes in chick calvaria by confocal 22 

laser scanning (CLS) and differential interference contrast (DIC) microscopy of cells labeled with a 23 
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fluorescent dye [28]. In this study, we used this technique to visualize the differential distribution of 24 

microtubules in osteocytes in vivo. 25 
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2. Materials and methods 1 

2.1. Preparation of bone fragments 2 

Calvaria were obtained from 16-day-old embryonic chickens and washed with PHEM (60 mM 3 

piperazine-N,N'-bis[2-ethanesulfonic acid], 25 mM N-[2-hydroxyethyl] piperazine-N'-[2-aminoethyl 4 

ether]-N,N,N',N'-tetraacetic acid, and 2 mM magnesium chloride; pH 6.9) to remove nonadherent cells. 5 

After stripping the periosteum, the calvaria were cut into 3 mm × 3 mm pieces for further use. 6 

2.2. Fluorescence staining of actin filaments and microtubules in chick calvaria 7 

The localization of microtubules in chick calvaria was determined by immunostaining using a mouse 8 

monoclonal antibody specific for alpha-tubulin (Molecular Probes, Eugene, OR). Actin staining with 9 

fluorescently labeled Alexa488-phalloidin (Molecular Probes) was used to delineate the cellular outlines 10 

of the osteoblasts and osteocytes. DIC images were used to visualize the outlines of the bone surface, 11 

lacunar walls, and canalicular walls. After the 16-day-old chick calvaria were cut into 3 mm × 3 mm 12 

pieces, they were rinsed with PHEM and then fixed with 3% paraformaldehyde and 0.05% glutaraldehyde 13 

in PHEM for 10 min. The fragments were then washed, stained with an anti-alpha tubulin monoclonal 14 

antibody (a 1:200 dilution in PBS containing 1% bovine serum albumin [BSA]) for 24 h at 4 °C and then 15 

washed with PBS. After incubation with an Alexa594-conjugated secondary antibody (excitation 16 

wavelength, 595 nm; emission wavelength, 615 nm; Molecular Probes) against mouse IgG in PBS 17 

containing 1% BSA, the fragments were again washed and incubated overnight with Alexa488-phalloidin 18 

(1:200 dilution; excitation wavelength, 495 nm; emission wavelength, 519 nm; Molecular Probes) in PBS 19 

containing 1% BSA. After washing with PBS, samples were embedded in fluorescence mounting medium 20 

(Dako, Carpentaria, CA) containing 1 mg/ml p-phenylenediamine dihydrochloride (Sigma, St. Louis, 21 

MO) and then immediately viewed. The bone cells in the chick calvaria as well as the localization of 22 

microtubules were visualized with a FLUOVIEW FV500 CLS microscopy system (Olympus, Tokyo, 23 
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Japan), with 0.5 µm optical slices of the 60 µm-thick specimen. Images were digitally processed with 24 

Adobe Photoshop 5.0 (Adobe Systems, Mountain View, CA). 25 
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3. Results 1 

The osteoblast layer (Fig. 1; a) and lacunar walls (Fig. 1; e and i) were observed by DIC microscopy, and 2 

the distribution of microtubules in osteoblasts and osteocytes in vivo was examined. In the osteoblasts, 3 

microtubules radiated from the perinuclear space (Fig. 1; b), filling the entire cell body, while staining of 4 

the actin filaments showed the outline of cells (Fig. 1; c and d). In immature osteocytes, some of cell 5 

processes contained microtubules (Fig. 1; f), and the microtubules co-localized with actin along the entire 6 

length of the processes (Fig. 1; g and h). However, in mature osteocytes, microtubules were localized 7 

only in the cell body (Fig. 1; j) and did not co-localize with actin in the processes (Fig. 1; k and l). 8 
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4. Discussion 1 

The transition from osteoblasts to osteocytes is accompanied by dramatic changes in the distribution of 2 

cytoskeletal components [26,27]. We previously developed a method for observing vinculin in osteoblasts 3 

and osteocytes in chick calvaria in fluorescently labeled cells by both CLS and DIC microscopy [28]. In 4 

this study, we used this technique to visualize the differential distribution of microtubules in chick 5 

calvaria. 6 

 7 

In this study, we observed the distribution of microtubules in vivo. Our results demonstrate that, during 8 

the transition from osteoblasts to osteocytes, the distribution of microtubules undergoes three distinct 9 

changes. In osteoblasts, microtubules radiate from the perinuclear space to fill the entire cell body. In 10 

immature osteocytes, several cell processes contain microtubules along their entire length. Finally, in 11 

mature osteocytes, microtubules are only localized in the cell body and not in the processes. These 12 

changes were compared to the distribution of microtubules in osteoblasts and osteocytes observed in vitro 13 

(Fig. 2), which are presented in a schematic in Fig. 3. In osteoblasts, microtubules radiated from the 14 

perinuclear space to fill the entire cell body. In osteocytes, microtubules were only localized to the cell 15 

body and did not co-localize with actin in the processes. In vivo, microtubules were only present in the 16 

cell processes of immature osteocytes, when the processes initially formed, at a time when the 17 

microtubules may transport actin subunits and other molecules [29] to the cell processes in the initial 18 

formation of these processes. Once the processes formed, the microtubules were pushed back to the base 19 

of the process. At this time point, actin is a major component of the stable osteocyte process. In isolated 20 

osteocytes, there were well-formed, relaxed, stable processes covering the cell body, and these processes 21 

could only reform after seeding on a glass support [30]. During the initial step of process formation, the 22 

microtubules may transport actin and other molecules to the processes from within the cell body; 23 

however, these processes are likely to be unstable in culture. The results of this study suggest a 24 

correlation between the early arrangement of microtubules and the initial development of osteocyte 25 
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processes. Although the evidence presented in this study supporting the existence of interactions between 26 

microtubules and the initial development of osteocyte processes is limited, it is sufficient to show that 27 

microtubules exist in some processes of immature osteocytes. 28 

 29 

In summary, this study showed for the first time the distribution of microtubules during the transition 30 

from osteoblasts to osteocytes, which may be related to changes in cell shape and function. The 31 

establishment of osteocyte processes may depend, in part, on the function of microtubules. Studying the 32 

cytoskeleton of bone cells will facilitate a greater understanding of the mechanism of 33 

mechanotransduction within bone cells and the physiological regulation of bone remodeling. 34 
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Figure legends  1 

 2 

Figure (1) DIC and fluorescence images of osteoblasts, immature osteocytes, and mature osteocytes in 3 

chicken calvaria. Dual fluorescence staining with anti-alpha-tubulin (b, f, j) and Alexa448-conjugated 4 

phalloidin (c, g, k) as well as merged images (d, h, l). The anti-alpha-tubulin staining shows microtubules 5 

filling the entire cell body of the osteoblasts (compare b and c). In immature osteocytes, several cell 6 

processes contained microtubules (Arrows in f) and actin (compare f and g). In mature osteocytes, 7 

microtubules were localized only in the cell body, while the cell processes contained actin (compare j and 8 

k). The large inset in (d) is a merged image of the small inset in (d). The large inset in (h) is a merged 9 

image of the small inset in (h). The large inset in (l) is a merged imaged of the small inset in (l). Bars, 10 10 

µm. 11 

 12 

Figure (2) Images of osteoblasts and osteocytes cultured in vitro. Dual fluorescence staining with 13 

Alexa488-conjugated phalloidin (a, d) and anti-alpha-tubulin (b, e), and merged images showing dual 14 

fluorescence staining (c, f). Anti-alpha-tubulin staining shows that in osteoblasts, the microtubules filled 15 

the entire cell body (compare a and b). In osteocytes, the microtubules were localized only in the cell 16 

body, while the cell processes contained actin (compare d and e); Bars, 10 µm. 17 

 18 

Figure (3) Schematic diagram showing two possibilities for the eventual fate of the microtubules 19 

observed in some of the processes in immature osteocytes (b) during the differentiation from osteoblasts 20 

(a) to mature osteocytes (c, d) in chicken calvaria. In osteoblasts, microtubules filled the entire cell body. 21 

In immature osteocytes, several cell processes contained microtubules. In mature osteocytes, microtubules 22 

were localized only in the cell body, which may have been due to disappearance of processes that 23 

contained microtubules (c) or the disappearance of microtubules from the processes (d). 24 
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