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Abstract

We studied the configurational sampling of non-covalently bonded molecular clus-

ters relevant to the atmosphere. In this article, we discuss possible approaches to

searching for optimal configurations, and present one alternative based on systematic

configurational sampling, which seems able to overcome the typical problems associated

with searching for global minima on multidimensional potential energy surfaces. Since

atmospheric molecular clusters are usually held together by intermolecular bonds, we

also present a cost-effective strategy for treating hydrogen bonding and proton trans-

ferring by using rigid molecules and ions in different protonation states, and illustrate

its performance on clusters containing guanidine and sulfuric acid.
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1 - Introduction

1.1 - Atmospheric Cluster Formation

Atmospheric aerosols are among the most interesting and challenging research topics in

physics and chemistry for several reasons. They directly affect the daily lives of billions of

people by degrading air quality, and thus, for instance, increasing the risk of cardiovascular

and respiratory diseases.1 Aerosol particles also play a significant role in the Earth’s weather

and climate, and aerosol–cloud interactions are the biggest contributor to the uncertainty

in radiative forcing. Therefore, it is of utmost importance to understand the formation and

growth of atmospheric aerosol particles.

A large fraction of atmospheric aerosol particles are formed via gas-to-particle conversion,

in which molecular clusters bridge the gap between individual vapor molecules and newly

nucleated particles. Molecular clusters have a central role in the atmospheric new-particle

formation process, but exact cluster formation mechanisms remain poorly understood. The

driving forces for the formation of atmospheric cluster are proton transfer reactions and

hydrogen bonding interactions, whose strength determines the thermodynamic stability of

the formed clusters. Gas-to-particle conversion occurs through random collisions of molecules

in the gas phase. In the cluster formation process, both enthalpy and entropy are decreasing,

i.e., ∆H < 0 and ∆S < 0. Hence, although the process is thermodynamically favorable

accordingly to the first law of thermodynamics (exothermic reaction), cluster formation is

hindered by the second law of thermodynamics (entropy decreases).

In priciple, studying atmospheric cluster distributions involves finding all energetically

low-lying structures for all relevant cluster compositions. However, a common assumption in

atmospheric cluster formation studies is that the structure with the lowest Gibbs free energy

(the global minimum structure) can be used for modelling, e.g., cluster distributions. (See,

e.g., ref. 2 for an investigation of the accuracy of this assumption.) Thus, the main focus in

configurational sampling of atmospheric clusters is usually the search for the global minimum.
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The calculated Gibbs free energies of the global minimum structures are then further used to

estimate cluster kinetics and population dynamics, for example, evaporation rates computed

using detailed balance. It should be noted that evaporation rates are exponentially dependent

on the Gibbs free energies, and thus even small errors the in Gibbs free energies can lead to

errors of several orders of magnitude in, for instance, the modelled particle formation rates.

We have previously introduced a high-level quantum chemical approach, in which geometries

are optimized and vibrational frequencies are calculated using Density Functional Theory

(DFT), and the electronic energy correction is calculated on top of the DFT structure using

the domain-based local pair natural orbital coupled cluster method (DLPNO–CCSD(T)).3

We have shown that this approach, here referred to as DLPNO//DFT, yields accurate Gibbs

free energies even for large molecular clusters. However, another key question remains: how

to find the global minimum–(free) energy configuration.

1.2 - Configurational Sampling

The vast number of possible molecular cluster configurations makes it very difficult to find

the global minimum structure.4,5 Over the last decade, searching for cluster configurations

has become the main bottleneck in quantum chemical studies of atmospheric clusters with

respect to both human and computer time.

Proper searching for global minimum requires exploring the multidimensional Potential

Energy Surface (PES). In principle, the PES has 3n− 6 coordinates, where n is the number

of atoms in the cluster. Moreover, at non-zero temperature, the entropy effect has to be

included in the calculations as well. Unfortunately, it is not possible to use simple ”brute-

force” approaches such as sampling on a (3n − 6)-dimensional grid (too large number of

combinations even for modest values of n), sampling from stochastic or simple brute-force

Monte Carlo (MC) simulations (sticking within one or few minima for too long time) etc.;

as all of them are simply computationally too expensive. Various promising techniques

have therefore been developed for exploring the PES at lower cost but with a sufficient
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accuracy: basin hopping,6 umbrella sampling,7 neural networks,8,9 or genetic algorithms

(GA) methods, which have recently been shown to be quite successful.10–14

Furthermore, exploration of a PES using just high-level quantum chemical methods is

computationally very expensive. Therefore, configurational exploration at low level of the-

ory is utilized. We present a systematic approach for configurational sampling based on a

“building up” approach.15 This approach is commonly used in configurational sampling of

proteins from single amino-acids.16 Several structures of local minima of clusters (or pro-

teins) are found on a PES described by methods of Molecular Mechanics (MM). MM uses

classical mechanics, Force Field (FF), to describe molecular interactions. Such structures are

already geometrically close to the real structures. However, they still have to be optimized

on a higher level of theory. First, some redundant candidate structures can be eliminated by

optimization using a low level of theory (e.g., semi-empirical or tight-binding DFT methods).

Thus, the number of optimizations and/or energy evaluations that need to be performed at a

high level of theory (typically DFT or some wave-function-based method) can be reduced by

performing a sequential series of calculations, and filtering out most structures already dur-

ing the computationally cheaper stages. Since configurational sampling of molecular clusters

is mainly about forming clusters with different binding patterns from a relatively small set of

different monomers (single molecules), the same approach as for proteins can be used here.

Figure 1 illustrates three schematic PESs of the same system at different levels of theory.

The positions and depth of wells for the lowest theory (bottom PES) differs slightly from

other methods, but, they still have many similarities. After first optimization (middle PES),

the structures already have quite good geometries, however, the energy description has to

be provided by some high-level quantum chemical method (top PES).

As mentioned above, genetic algorithm (GA) methods seem to be promising tools for

exploring multidimensional PES. GA methods have been implemented in the programs

OGOLOM17 and cluster,18 and later applied for the configurational sampling of molec-

ular clusters by Temelso et al.19 and Kildgaard et al.20 Karaboga21 proposed the Artificial
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Figure 1: Illustrative scheme of mapping Potential Energy Surfaces (PES) using quantum
chemical (top), semi-empirical (middle) and force-field (bottom) methods.

Bee Colony (ABC) algorithm for exploring multidimensional spaces, which was later imple-

mented in the ABCluster program,22,23 with focus on configurational sampling of systems

composed of multiple atoms or molecules. The ABC algorithm has been applied to molecular

clusters containing molecules such as ammonia,24 ammonia and nitric acid,25 and a series of

amides and sulfuric acid.26

In this paper, we discuss some critical issues which have to be taken into account to

ensure proper configurational sampling. We also present a protocol which we have found to

be sufficient for configurational sampling of hydrogen-bonded molecular clusters containing

up to 8 molecules. We selected the sulfuric acid–guanidine system to demonstrate our

configurational sampling process. This system is rich in hydrogen bond donor and acceptor

groups, leading to a very large number of different possible bonding patterns even for a

modest number of molecules, which makes configurational sampling challenging.

This work is divided into three subsections. First, we present computational meth-

ods involved in the configurational sampling protocol itself, and a detailed description and

analysis of each optimization step. Second, we demonstrate its application on the sulfuric

acid–guanidine system and compare our results with results presented in previous publica-

tion.3 Finally, we discuss the effect of proper configurational sampling on both the sulfuric

acid–guanidine system, as well as other molecular clusters.
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2 - Computational Methods

2.1 - Configurational Exploration

2.1.1 - Molecular Mechanics Methods

Atmospheric molecular clusters are mostly held together through Coulomb interactions and

hydrogen bonds. Since structures of the individual molecules inside of clusters do not change

significantly, the molecules can be treated as rigid bodies in the initial step of exploring the

Potential Energy Surface (PES). Moreover, the rigid molecule approximation also avoids the

possibility of undesired chemical reactions occurring during the PES exploration. Coulomb

interactions are the most significant factor for self-organizing polar molecules in clusters.

Thus, a configurational sampling algorithm based on Force Field (FF) methods describing

these interactions in terms of partial atom-center charges can be utilized. Such approaches

are indeed part of many existing configurational sampling programs.17,18,22,23

In our approach, the orientation and position of all rigid molecules are optimized to

minimize the total intermolecular energy. The intermolecular interaction terms of force

fields practically always contain a repulsive part, which prevents overlapping of atoms or

molecules. A typical example is the Lennard-Jones potential ELJ
ij which is given for atoms i

and j with distance rij by

ELJ
ij (rij) = εij

((σij
rij

)12
−
(σij
rij

)6)
, (1)

where ε is the energy well depth and σ is the lowest non-overlapping distance of interacting

atoms. (Here, the r−12
ij term corresponds to the repulsive part, and the r−6

ij term corresponds

to attractive, but rather weak dispersion interactions.) For polar molecules, the formation

of different bonding patterns are mainly driven by Coulomb interactions EC
ij

EC
ij(rij) = ke

qiqj
rij

, (2)
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where ke ≈ 9 · 109 Nm2C−2 and q represents a (typically atom-centered) partial charge.

In this work, we use the CHARMM (Chemistry at Harvard MM) FF parameters.27,28

Structures and parameters for those molecules which are not included in the CHARMM pa-

rameters can be obtained by optimizing the structures at the MP2/6-31++G(d,p)29–33 level

of theory. Partial charges can then be extracted using the Natural Bond Orbital (NBO)34

population analysis at this level. Missing parameters, such as the Lennard-Jones energy

ε or distance σ, were taken from similar structures presented in the CHARMM force field

database.27,28 This approach is generally sufficient for configurational sampling of atmo-

spheric molecular clusters. When necessary, system-specific FF molecular parameters can

also be developed more rigorously, as described in ref. 35 and 36.

2.1.2 - Protonation State/Conformer Prediction Algorithm

The rigid molecule approximation made above prevents proton transfer between acids and

bases. Consequently, some low-energy conformations might not be found at all. Therefore,

all possible protonation states, as well as different conformational structures of the studied

molecules, have to be introduced as different input structures. This often leads to a certain

degree of redundancy, as the same hydrogen bond can be described by both A-H· · ·B and

A· · ·H-B, depending on whether the simulation was run with either AH and B, or A and HB,

as rigid bodies. The correct structures (hydrogen bond lengths and positions) are reached

after optimizations with methods describing proton transfer (e.g., semi-empirical or quantum

chemistry methods).

Figure 2 illustrates how different protonation states/conformers could be introduced for

the configurational sampling of a cluster containing 1 sulfuric acid (sa) and 1 guanidine

(gd) molecule. A guanidine molecule has two protonation states: neutral (guanidine, gd =

CN3H5) and its protonated form (guanidinium, gd+ = CN3H
+
6 ). In the case of sulfuric acid,

not only different protonation states but also different conformers have to be introduced

(hydrogen sulfate, sa− = HSO−
4 ; ”trans”- and ”cis”-sulfuric acid, sa = H2SO4). Thus, to
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Figure 2: An illustrative scheme of different protonation states/conformers participating in
the construction of 1(sa)1(gd) clusters. Atom representation: S = yellow, O = red, N =
blue, C = grey, H = white.

construct a molecular cluster, all possible combinations of these molecular states have to

be taken into account (while keeping the overall charge of the cluster constant). With an

increase of cluster size (number of molecules), the number of possible combinations also

increases. However, even the relatively large cluster 4(sa)4(gd) requires only 27 different

combinations.

2.1.3 - Force-Field Based PES Exploration

In order to test the performance of Molecular Mechanics (MM) for atmospheric molecular

clusters, we performed configurational sampling of the 2(sa)2(gd) cluster with two different

approaches, as described in section 2.1.2 - Protonation State/Conformer Prediction

Algorithm, using either 2×(”trans”-sa)+2×(gd) or 2×(sa−)+2×(gd+) as the rigid bodies.

1000 randomly generated and optimized structures were saved from the ABCluster program

in both cases. As an illustration of the MM energy performance, single point electronic

energy calculations were performed with both a semi-empirical method (GFN-xTB37) and

with a quantum chemistry method (DFT: ωB97X-D38 with the 6-31++G(d,p) basis set).

Figure 3 shows the correlation between all three methods. When the system is composed

of ionic rigid bodies, the MM description provides satisfying correlation with high levels of

theory (see figure 3a). The partial charges of the force-field method are able to represent the
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strong binding between anions and cations relatively well. The force-field description does

not contain terms for, e.g., the polarization of neutral molecules, and thus fails to accurately

describe the strong hydrogen bonds between neutral acid and base molecules. Thus, in the

case of neutral rigid bodies, the correlation of the three methods (see figure 3b) is not as

strong as in the previous case (figure 3a). However, we can still conclude that structures

with low energy at high levels of theory also tend to have low energies at the MM level.

(a) Cluster consisting of 2 guanidinium (gd+)
and 2 hydrogen sulfates (sa−) ions.

(b) Cluster consisting of 2 guanidine (gd) and
2 sulfuric acid (sa) molecules.

Figure 3: Relative single point energies of 1000 randomly generated and optimized structures
by the ABCluster program in two different protonation cases. Energies are related to global
minima in each method. All samples are sorted according to increasing MM energy.

Based on results described in the previous paragraph, we do not have to save all minima

found by the MM configurational search: energetically high-lying structures may safely be

filtered out. To illustrate the usefulness of this filtering, we performed exhaustive configura-

tional sampling of molecular clusters containing up to 4 molecules (all possible combinations

of sulfuric acid and guanidine clusters) followed by GFN-xTB optimization. Figure 4 illus-

trates the amount of local minima which need to be optimized in order to find a certain

percentage of all possible local minima of a particular molecular cluster. All minima of small

clusters can be found with little effort. However, when the cluster size increases, the com-

plete exploration of the PES becomes impossible. Fortunately, since MM energies correlate

with energies calculated by quantum chemistry methods, the amount of structures required

for further analysis is significantly reduced. Moreover, studying all minima would not be
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even possible for larger systems, since the amount of local minima scales with cluster size N

at least as O(eN).

Figure 4: Illustrative picture of the number of structures which must be extracted from
configurational sampling (by the ABCluster program) to find a certain percentage of all
possible local minima on the GFN-xTB potential energy surface (note the logarithmic axes).

2.2 - Towards Quantum Chemistry Calculations

2.2.1 - Pre-optimization Step: Low Level of Theory

Molecular Mechanics (MM) configurational sampling of rigid molecules provides structures

which require further optimization. At a higher (e.g., semi-empirical or DFT) level of theory,

the molecules in the MM-generated structures are under tension, because of their previously

assumed rigidity, and because the hydrogen bonds between molecules are not relaxed to their

minimum-energy positions due to the limited ability of the FF to describe H-bonding. Con-

figurational sampling of clusters, where H-bonds and proton transfers are present and the

configurations are mainly driven by them (typical for atmospheric clusters), require correct

identification of H/proton positions. Thus, carefully selecting an appropriate approach for

dealing with H-bonding and proton transfer is very important. Performing quantum chem-

istry optimization immediately would require many optimization steps (each associated with

several self-consistent field steps to find the energy) to fully relax the whole molecular cluster.

Moreover, there are hundreds to thousands of configurations provided by MM configurational
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sampling, and some of them are redundant as they may end up in the same local minimum

after further optimization. Therefore, we strongly recommend pre-optimization using com-

putationally fast semi-empirical chemistry methods such as GFN-xTB method37 (or the new

GFN2-xTB version39), PM6,40 or PM7.41 Semi-empirically optimized structures also repre-

sent local minima quite similar to the ”real” (e.g., DFT) minima. The list of structures taken

to further quantum chemistry calculations might then also be reduced by filtering redundant

structures due to similarity (see section 2.2.2 - Uniqueness, Filtering and Sampling).

It should be noted that semi-empirical methods might not be well parameterized for all

molecular systems (e.g., some radical systems or reactive systems). Thus, optimization of

these system at a semi-empirical level could lead to non-physical structures, or even to the

formation of impossible (or at least unwanted) new bonds. For these systems we recommend

skipping this step, and focusing on a narrow selection of a representative set of structures

already from the MM configurational sampling (see section 2.2.2 - Uniqueness, Filtering

and Sampling). One could also perform just single point calculations with semi-empirical

methods to obtain inter-comparable energies (e.g., for filtering) also for clusters with different

sets of rigid-molecule building blocks, however, we suggest to use other collective coordinates

since the energy evaluated at a different level than the level at which the structure was

optimized might lead to erroneous assumptions or results. This energy calibration is needed

as comparing total intermolecular MM energies from configurational sampling for clusters

consisting of different building blocks (= protonation states/conformers) does not make sense

as their reference energies are different.

2.2.2 - Uniqueness, Filtering and Sampling

In each step of a configurational sampling protocol, we can exclude redundant structures,

and thus save computation time. One possible strategy for identifying redundant structures

is to calculate the Mean-Squared-Deviation (MSD, or Root-MSD (RMSD))42 of two different
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configurations A and B (centered and oriented in the same manner43,44)

MSDA,B =
1

N

N∑
i=1

|~ri,A − ~ri,B|2, (3)

where ~ri,X is the position of atom i in configuration X, which has overall N atoms. Per-

forming pair-wise comparisons of MSD for more than thousands of configurations becomes

computationally exhausting especially due to non-trivial centering and orienting two clusters

in the same manner. Therefore, we recommend comparing only those structures which have

similar values for some suitable (easily computed) collective coordinate(s).

Collective coordinates quantify some properties of molecular clusters, and can thus help

to distinguish between two different structures. For describing cluster configurations, we use

a collective variable called the radius of gyration Rg (inspired by polymer science45)

R2
g =

∑N
i=1mi|~ri − ~rCOM|2∑N

i=1mi

, (4)

where mi is the mass of atom i, ~ri is its position and ~rCOM represents the centre of mass of the

whole cluster. However, it is possible to use other collective coordinates such as electronic

energy, dipole moment or amount of hydrogen bonds (see Principal Component Analysis

(PCA)46,47).

UNIQUENESS: Two molecules or clusters can be assumed to be the same if all selected

collective coordinates differ by less than some threshold. We use thresholds of 0.01 Ångström,

0.001 Hartree and 0.1 Debye for the radius of gyration, the energy and the dipole moment,

respectively. Smaller systems or more detailed global minimum searches may require lower

energy thresholds.

FILTERING: Structures which have high energies with respect to the global minimum can

also be omitted from higher-level calculations. The left-hand side of figure 5 illustrates unique

(defined as above) minima of 2(sa)2(gd) clusters plotted using two collective coordinates

(radius of gyration and relative electronic energy) after semi-empirical optimization. If we
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assume that the semi-empirical structure corresponding to the global minimum at the DFT

level is within, for example, 30 kcal/mol (illustrative arbitrary number) of the energetically

lowest-lying semi-empirical configuration, we can remove all structures above 30 kcal/mol

(see blue dashed line in the graph).

SAMPLING: After processing uniqueness and filtering, a large amount of structures

might still remain. One can uniformly select (sample) just a representative amount of points

covering the surface described by all (2 or more) collective coordinates.48 Figure 5 illustrates

sampling using two collective coordinates for configurations of a 2(sa)2(gd) cluster. The

energetically lowest-lying structure is selected for each combination of collective coordinates

(red point) and all neighbouring structures are removed (gray circle/ellipse). This step is

repeated until no more points can be selected. Figure 5 shows a selection of 25 points. The

amount of points can be varied by elongating the ellipse axis.

Figure 5: Scheme for sampling a representative set of structures from a PES for further
analysis. The points represent different geometry minima of a 2(sa)2(gd) cluster. The energy
and radius of gyration of structures are evaluated after optimization at the GFN-xTB level.37

2.3 - Calculation of Molecular/Cluster Properties

2.3.1 - Final Optimization, Electronic Energy Corrections,

and Thermodynamic Properties

The selected structures have to be optimized at a quantum chemistry level. Note that differ-

ent quantum chemical methods might lead to different global minima. Even if the bonding

patterns of the global minima are the same, the bond lengths vary, and re-optimization at the

14



desired level has to be performed (for example, when structures are extracted from previous

studies).

Density Functional Theory (DFT) with functionals M06-2X,49 PW91,50 ωB97X-D,38 or

PW6B95-D351 has been successfully applied to atmospheric molecular clusters in recent

years.20,52–54 In this work we use just the 6-31++G(d,p) basis set because DFT calculations

are followed by electronic energy corrections. This basis set has been tested to be sufficient

for geometries and vibrational frequencies of molecular clusters.52 However, if DFT is used

to calculate final Gibbs free energies, a larger basis set is needed to reach converged binding

energies.

For configurational sampling, we suggest that an initial DFT optimization is performed

with loose convergence criteria, followed by sequential optimizations with tighter convergence

criteria (and where needed, e.g., finer integration grids) to obtain the final DFT electronic

energy EDFT
el . Again, between these optimization steps, a new filtering (and if needed also

sampling) can be processed to remove redundant structures. For the optimized structures,

a vibrational frequency analysis should then be performed to obtain the Gibbs free energy

GDFT at a desired temperature. Correctly optimized structures do not contain any imagi-

nary frequencies, but might contain low-lying frequencies (lower than 100-200 cm−1). These

”vibrational frequencies” may originate from internal rotations of molecules or functional

groups within the cluster, and should not be treated as vibrations in the calculation of par-

tition functions. One can use the quasi-harmonic approximation to recalculate frequencies

(implemented in the program GoodVibes55) or just simply replace low-lying frequencies (<X

cm−1) by some cut-off value X cm−1.56,57 The anharmonic corrections would slightly decrease

free energy of cluster, however, the correction is much smaller in amplitude compared to the

quasi-harmonic approximation.52 Due to its low magnitude, the anharmonic corrections do

not affect the configurational sampling, and thus we do not apply them in this article. If

necessary, a single point energy calculation at, e.g., Coupled-Cluster (CC) level of theory

can also be performed to obtain a correction to the electronic energy ECC
corr. The corrected
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Gibbs free energy then has the form

G = GDFT − EDFT
el + ECC

corr. (5)

Molecular clusters have many relevant low-lying configurations, and when necessary the

Gibbs free energy can also be computed for an ensemble of conformers as2

G = −RT ln
(∑

i

e−Gi/RT
)
, (6)

where R is the universal gas constant, T is the temperature and Gi represents the Gibbs

free energy of conformer i. Partanen et al.2 showed that the effect of multi-configurational

averaging is modest compared to, e.g., error sources in EDFT
el , and thus the global minima

search remains the main focus of our configurational sampling. We confirm Partanen’s

conclusion for the system of sulfuric acid–guanidine in Supporting Information.

Finally, the formation (binding) Gibbs free energy ∆G of a cluster can be calculated as

∆G = Gcluster −
∑
i

Gmonomer i . (7)

We would like to also point out that some quantum chemistry programs do not correctly

classify the symmetry point groups of molecules/clusters due to a low numerical threshold

in the symmetry identification. For instance, molecules like water, ammonia, guanidine or

sulfuric acid should have the assigned symmetry C2v(σR = 2), C3v(σR = 3), C1(σR = 1)

and C2(σR = 2) respectively, where σR represents the rotational symmetry number.58,59

External programs can be used to check the symmetry of a molecule/cluster within adjustable

threshold.60 Where necessary, corrections for the incorrect rotational symmetry number σR

should then be performed, as otherwise the partition function double counts several micro-
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states of the same type. The corrected expression is then

G = GC1 +RT ln(σR), (8)

where GC1 represent the Gibbs free energy calculated with no symmetry. Consequently,

∆G = ∆GC1 +RT ln(
σR,cluster∏

i σ
i
R,monomer i

), (9)

where σR,cluster corresponds to the point group of the cluster, as also clusters may be sym-

metric.

In this article, we have assumed that the global minima of clusters of sulfuric acid and

guanidine behave as crystals due to the dense network of strong hydrogen bonds. In other

words, we assume that molecules do not easily exchange positions with each other within the

cluster. If molecules inside a cluster are easily interchanged, the total symmetry number,

which is much more complicated to calculate (the indistinguishability of molecules have

to be assumed), would have to be used instead of the rotational symmetry number.58,61,62

However, we believe that this assumption is correct at least for the most strongly bound

clusters with equal number of sulfuric acid and guanidine molecules, which are the most

important structures for the studies of new-particle formation in the atmosphere.

3 - Results

In this section, we first present all global minima found in our research, and compare them

with global minima found in previous study using a different approach. Next, we present a

universal protocol for configurational sampling of hydrogen-bonded molecular clusters, and

describe the details of all steps involved in it. We also illustrate the performance of our

protocol. Finally, we briefly discuss symmetries of global minima clusters and the effect of

symmetry on the formation Gibbs free energy.
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3.1 - Global Minima

Figure 6: Geometric structures of global minima for clusters containing a mixture of
guanidine and sulfuric acid molecules. The global minima are found with respect to
DLPNO//ωB97X-D/6-31++G(d,p) PES. The Gibbs free formation energies are shown be-
low each structure. Atom representation: S = yellow, O = red, N = blue, C = grey, H =
white.

We have developed a program named Jammy Key for Configurational Sampling (JKCS),

which is composed of sets of scripts operating with a large amount of files (structures etc.),

communicating with different quantum chemistry computational programs, and managing

all required calculations on a supercomputer via the SLURM scheduler. The JKCS program

is not available online yet, but can be obtained by contacting the authors.

We utilized JKCS to find global minima of sulfuric acid–guanidine molecular clusters

at room temperature T = 298.15 K. The free energy of the clusters is computed using a

range-separated hybrid density functional with an empirical dispersion correction, ωB97X-

D,38 and the 6-31++G(d,p) basis set. Low frequencies were treated with the quasi-harmonic

approximation using a frequency threshold of 100 cm−1. On top of the DFT optimized struc-

tures, we corrected the electronic energy using the Domain-based Local Pair Natural Orbital

Coupled Cluster (DLPNO–CCSD(T)) method63–66 with an aug-cc-pVTZ basis set.67,68 The
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linear scaling DLPNO–CCSD(T) method and the Tight Pair Natural Orbital (TightPNO)

criteria are used, as recommended for non-covalently bound systems.69 Henceforth, we refer

to this combination using the shorthand notation DLPNO//ωB97X-D/6-31++G(d,p).

Configurational sampling was performed using the ABCluster program.22,23 Intermediate

re-optimizations were done using GFN-xTB.37 All DFT calculations (structure optimization

and vibrational frequency analysis) were performed with Gaussian 16 Revision A.03.70 Low

vibrational frequencies were corrected via the GoodVibes program.55 DLPNO calculations

were performed with the Orca program version 4.0.1.2.71

We have tested various sequences of optimization steps, filtering steps, sampling/selecting

procedures etc. As result of this, we have found a large number of local minimum struc-

tures. The lowest minima found are assumed to be the global minima and are presented in

figure 6. The XYZ coordinates and quantum chemistry programs outputs are also given in

the Supporting Information. In figure 6, the formation energies of clusters (excluding the

monomer of sulfuric acid, σ(sa)= 2) are computed with the assumption that all clusters have

a symmetry number of 1 (see section 3.3 - Symmetry Contribution for further discussion

of symmetry).

To compare our results with previous study, we compare the Gibbs free energies of global

minima presented by Myllys et al.3 who have studied the sulfuric acid–guanidine system using

a configuration sampling approach presented by Elm et al.72 Figure 7 shows the difference

of Gibbs free energies between our and their results. In most cases, we have found the same

global minimum. However, we can show that several cases, structures with energies lower

than 0.5 kcal/mol compared to previous studies have been found (the greatest improvement

reaches almost 8 kcal/mol).

The structure of (sa)1(gd)3 represents an exceptional case. The global minimum shown in

figure 8a has been taken from a previous study by Myllys et al.3 because the lowest structure

that we have found (see figure 8b) is 0.05 kcal/mol higher in free energy than the structure

presented by Myllys et al. However, the structures are almost identical with very small dif-
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Figure 7: Difference of DLPNO//ωB97X-D/6-31++G(d,p) Gibbs free energies (at 298.15 K)
between global minima found by our studies and structures shown as global minima in
previous study.3 Negative value means that we have found better structure with energy
lower than X kcal/mol, and vice versa. The green color background highlights improvements
greater than 0.5 kcal/mol. The red color highlights cases where we were unable to find the
global minimum reported in previous studies.

ferences in bond lengths and molecule orientations. The reason that our approach does not

find this minimum is likely that the corresponding structure is removed during the unique-

ness check stages, because both structures are the same minimum based on our uniqueness

evaluation parameters (see section 2.2.2 - Uniqueness, Filtering and Sampling). More-

over, the energy difference of 0.05 kcal/mol is small enough that the lowest-energy structure

found by our approach can be considered a good approximation of the global minimum - the

error from the configurational sampling is at least an order of magnitude smaller than the

errors associated with the quantum chemical methods (including especially the calculation

of entropies).

3.2 - Universal Protocol for Configurational Sampling

Using the set of global minima for sulfuric acid–guanidine described above, we next strive

to develop a universal protocol which can find these minima as cost-effectively as possible,

and which can easily be adapted to clusters containing other molecules. Table 1 lists all the

individual steps of our protocol, which are described in detail in the following paragraphs.
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(a) Global minimum of (sa)1(gd)3 found by
Myllys et al.3

(b) The lowest minimum of (sa)1(gd)3 found
in this work.

Figure 8: Comparison of the two ”different” minima structures (sa)1(gd)3. The lowest
minimum (figure 8b) found in this work is over 0.05 kcal/mol higher than the global minimum
(figure 8a). Atom representation: S = yellow, O = red, N = blue, C = grey, H = white.

To illustrate the typical computational cost of different jobs or different configurational

sampling steps, the computational times (= computational cost in cpu-hours) from table 1

are visualized in figure 9.

Table 1: The universal protocol for configurational sampling. The variable N
corresponds to the number of molecules in the molecular cluster.

METHOD
Amount

of INPUT
structures

JOB
TIME

[ hours
job×CPU ]

TOTAL
TIME

[hoursCPU ]

ENERGY
FILTER

THRESH.
[kcal/mol]

Amount
of OUTPUT

structures
selected

search by ABCluster - - ≈ 1N4 - ≈ 2.5N104

GFN-xTB pre-optim. ≈ 2.5N104≈ 0.83 · 10−4N2 ≈ 2N3 <5N ≈ 100N
low DFT (loose opt.) ≈ 100N ≈ 22 · 10−4N3≈ 0.22N4 <2.5N all
high DFT (v.tight opt.) ≈ 20N ≈ 125 · 10−4N3≈ 0.25N4 <1.7N all
high DFT (freq. calc.) ≈ 15N ≈ 27 · 10−4N3≈ 0.04N4 <1 ≈ 3
DLPNO (SP calc.) ≈ 3 ≈ 2.4N3 ≈ 7.2N3 - -

First, we perform a PES exploration at the MM level using the ABC algorithm for each

combination of monomers and their protonation states and/or conformers. The simulation

box size, which defines spaces where the molecules are randomly placed in the initial step,

was selected proportionally to each cluster. We use the strategy of a large amount of random
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Figure 9: Computational costs of different configurational sampling steps for the sampling
protocol used in this work. Different colors represent costs for different cluster sizes (see the
legend in the middle). We also distinguish the computational cost of 1 job (left figure) and
the computational cost multiplied by amount of jobs (right figure). Note the non-linear scale
of the y-axis.

initial guesses (trial solutions) SN = 3000 and a small amount of generations glim = 200. (glim

should not be lower than 100, otherwise the system will not have time to converge properly).

One could also use the opposite approach as suggested by the authors of ABCluster: SN ≈

20 - 100 and glim ≈ 100000, which works better for atomic clusters or clusters containing

small molecules.22,23 We save large amounts of local minima LM = 104 for each combination

of monomers, which are then treated at higher levels in the subsequent steps. The amount of

scout bees (scout limit, i.e. the maximum number of generations that one minimum can last

until it is replaced by a new random configuration) was set to SCbee = 4. As shown in figure

9, the total computational cost of ABCluster run with the above mentioned parameters

might be up to 1 cpu-year. However, for each combination of monomers, a separate run

can be performed on different CPU. Moreover, since ABCluster is well parallelized, we can

perform a calculations using more processors/cores. Therefore, a proper exploration of a

PES for cluster containing eight molecules can be performed within 1 day provided that a

sufficient number of processors/cores are available.

Next, we perform a GFN-xTB optimization for all structures saved from the ABCluster.

We use the very tight optimization criteria. The optimization converges many different
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input structures to the same minimum, which helps sort out redundant configurations (as

described in the section 2.2.2 - Uniqueness, Filtering and Sampling). Moreover, as

shown in figure 9, the computational cost of this step is not critical, since performing a lot

of short single jobs can be done in parallel. On the other hand, using this semi-empirical

method might cause some relevant minima to be lost because the GFN-xTB PES slightly

differs from the DFT PES.

Figure 10: Energy correlations between different procedure steps (GFN-xTB energy→ DFT
[ωB97X-D/6-31++G(d,p)] electronic energy → DFT [ωB97X-D/6-31++G(d,p)] Gibbs free
energy → Gibbs free energy at DLPNO//ωB97X-D/6-31++G(d,p) level) for four different
molecular systems (see labels on top). Fit function (orange) and 95%-probability distribution
area (yellow) are shown. (See Supporting Information for more details.)

For all subsequent steps, we performed statistical analysis of the correlations between the

energies computed for all the minima found as part of our global minimum search. Figure 10

shows the correlations between the steps shown in table 1 (excluding the ABCcluster step,

and the DFT pre-optimization step). The numerical results of this statistical analysis are

shown in the Supporting Information. The first row of figure 10 shows that the relative ener-

gies of GFN-xTB correlate with the electronic energies of DFT optimized structures within

an uncertainty ≈ 5N kcal/mol (see supporting information). Therefore, we filter out all
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structures with a relative energy higher than 5N kcal/mol after the GFN-xTB optimization

step.

Even though we delete redundant structures and filter out high-energy configurations, a

prohibitively large number of structures still remains after the GFN-xTB step. Therefore,

we perform a uniform selection/sampling of ≈ 100N structures for further DFT calculations

from the whole filtered set of structures (see section 2.2.2 - Uniqueness, Filtering and

Sampling). Based on our experience, it is not yet clear, if it is better to sample a larger

number of structures, or sample a smaller number of structures followed by another re-

sampling based on the DFT results of the first sampled set.

The structures selected by the sampling are then analysed using DFT. To reduce com-

putational cost, we recommend performing a DFT pre-optimization step at a lower level.

In our case, we use the same functional as for the ”high-level DFT” (ωB97X-D), but with

a smaller basis set (6-31+G(d)), and loose optimization criteria. As shown in figure 9 and

table 1, performing DFT pre-optimizations allows us to optimize an order of magnitude more

structures compared to using just the high-level DFT method, at minimal additional cost.

Moreover, the DFT pre-optimization also somewhat reduces the computational cost of the

subsequent higher-level optimizations, as fewer optimization steps are needed.

After the pre-optimization, we optimize all structures with a relative energy lower than

2N kcal/mol using ωB97X-D/6-31++G(d,p) with very tight optimization criteria. Opti-

mization and vibrational frequency analysis could be performed together, but we prefer to

first optimize the structures, address problematic jobs (e.g., those that did not converge,

reached saddle points instead of minima), filter high-energy structures, and then perform

vibrational frequency calculations for the remaining structures. We filter out high-energy

structures using a threshold 1.7N kcal/mol (see Supporting Information). The frequency

analysis also provides the possibility to check for imaginary frequencies, and thus see which

structures need more optimization steps. The Gibbs free energy is then calculated using a

quasi-harmonic approximation for vibrations with a frequency threshold of 100 cm−1.

24



Figure 11: Difference of DLPNO//ωB97X-D/6-31++G(d,p) Gibbs free energies (at
298.15 K) between the lowest minima found by the universal protocol and global minima
shown in figure 6. The red color background highlights the minimum energy difference from
global minimum greater than 0.5 kcal/mol.

Finally, on top of the high-level DFT structures with the lowest Gibbs free energies,

we calculate the electronic energy correction using DLPNO. Figure 10 shows that the

DLPNO//ωB97X-D/6-31++G(d,p) Gibbs free energy strongly correlates with the Gibbs

free energy calculated solely using DFT. Therefore, just the few (2-3) lowest-energy clusters

need to be treated with the memory-demanding and computationally expensive DLPNO

method (see figure 9 and supporting information).

To summarize this section, we have developed the JKCS program and showed that it

is able to find global minima compared to previous study (figure 7). We analysed the

configurational sampling steps and stated parameters (for filtering etc.) to create a protocol

dependent just on a cluster size (table 1). The protocol was applied for configurational

sampling of sulfuric acid–guanidine system (figure 11). Figure 11 shows the energy difference

between the lowest minimum found by our protocol, and the global minimum shown in figure

6. The figure shows that the protocol usually finds either the global minimum, or at least

a structure energetically very close to it. However, there are also two structures, where the

protocol fails by more than 0.5 kcal/mol. Nevertheless, this protocol represent a cost-effective

approach for configurational sampling with an uncertainty of only a few kcal/mol. Especially

for the larger clusters studied here, the other error sources of the computed quantum chemical
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free energies can easily be several kcal/mol.

The protocol presented in this section is universal in the sense that all steps are simply

functions of the number of molecules. Thus, it is easy to understand the complexity/system-

size dependence. Users can adjust and apply this protocol to other systems as well. How-

ever, this might require considerable extra effort for systems very different from the one

studied here, and users may thus have to adjust all configurational sampling parameters.

The following key criteria should be checked when the protocol is applied to a new sys-

tem: the amount/dimensionality of bonding patterns, the energy gain by addition of a new

molecule, and the uniqueness criteria. These can be approximately compared to the sulfuric

acid–guanidine system, and appropriate parameters for configurational sampling should then

be rescaled when necessary.

3.3 - Symmetry Contribution

We utilized the program SYMMOL60 to analyse the symmetry point groups of all global

minima. The program SYMMOL tries to find the largest symmetry point group of molecular

clusters with a pre-defined symmetry matrix deviation threshold. In this article, we varied

SYMMOL tolerance thresholds between values 0.01 and 1.5 Ångström, and also used the

options of either accounting or not accounting for the presence of hydrogen atoms in the

symmetry matrix calculations. Unfortunately, the suitable symmetry matrix threshold varies

with the cluster in question, and thus we assign point groups to the clusters based on a

combination of SYMMOL results and our chemical intuition.

Table 2 shows clusters (excluding the monomer of sulfuric acid, σ(sa)= 2) which have

global minima (as shown in figure 6) with a symmetry point group different from C1. As

shown in the table, higher symmetry leads to a higher Gibbs free energy. This is correct,

because the symmetry number is a correction for over-counting all micro-states reachable by

rotations of the cluster. In our case, all clusters have a rotational symmetry number between

1 and 3, except the very symmetrical (sa)4(gd)4.
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Table 2: Point groups, rotational symmetry numbers and corrections to forma-
tion Gibbs free energy of symmetrical global minima from figure 6.

cluster point group rot. symm. number form. free energy [kcal/mol]
(sa)2 Ci 1 -
(gd)2 C2v 2 −0.96 → −0.61
(gd)4 S4 2 −8.51 → −8.16

(sa)2(gd)2 C2v 2 −65.05 → −64.70
(sa)4(gd)1 C3v 3 −56.49 → −55.93
(sa)4(gd)3 Ci 1 -
(sa)4(gd)4 TD 12 −165.04 → −163.79

Even though assigning a point group different from C1 might cause another local mini-

mum to become lower in free energy (thus becoming the new global minimum), the energy

difference caused by variations in the rotational symmetry number is smaller than the uncer-

tainty caused by approximations of anharmonic vibrations. Therefore, the search for global

minima can still be carried out, and formation free energies of cluster can be calculated,

without needing to make assumptions about symmetry.

4 - Conclusion

Configuration sampling of molecular clusters is important, for example, in atmospheric clus-

ter distribution studies, because a key variable, the cluster evaporation rate, is exponentially

dependent on free energies. Thus, energy differences greater than 1 kcal/mol cause differences

in the order of magnitude of the evaporation rate.

We present a systematic method for performing configurational sampling of atmospher-

ically relevant hydrogen-bonded molecular clusters. We develop and validate our sampling

protocol based on clusters containing sulfuric acid and guanidine molecules, which have a

large number of different bonding patterns.

Proton transfers reactions, which play a key role in the atmospheric chemistry, signifi-

cantly complicate the process of searching for global minima, as accurately describing proton

transfer requires a quantum chemical treatment (i.e., can not be done using simple molecular
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mechanics based on force field methods). In this article, we introduce a method for treating

this problem by carrying out the molecular mechanics–based potential energy surface sam-

pling using rigid molecules or ions corresponding to all possible combinations of acid/base

protonation states (as well as different conformers of the monomers).

Further, we propose a sequence of pre-optimizations, re-optimizations, filtering, sam-

pling/selection etc. processes allowing the generation of representative low-energy minima

of molecular clusters at a minimal computational cost. We illustrate the application of this

protocol to sulfuric acid–guanidine clusters of different sizes, and show that it is able to find

global minimum structures within an uncertainity of around 2 kcal/mol. We also present

all global minima which we have found during our research, and compare them to those

presented in a previous study by Myllys et al.3 By changing the parameters of the protocol,

we can improve our configurational sampling, and thus increase the probability of finding

the global minimum. A very important point and advantage of the configurational sampling

approach presented in this article is that it does not require any information about minima

of cluster size N in order to find the global minimum of cluster size N + 1.

Understanding the configurational sampling problem in greater detail allows us to study

multi-component atmospheric clusters much more systematically and up to larger sizes than

previously.
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of the stability of atmospheric acid–base clusters with up to 10 molecules. J. Phys.

Chem. A 2016, 120, 621–630.

(64) Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based

local coupled cluster method. J. Chem. Phys. 2013, 138, 034106.

(65) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local

coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139,

134101.

(66) Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse maps – A system-

atic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling

domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016, 144,

024109.

(67) Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The

atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

(68) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row

36



atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96,

6796–6806.

(69) Liakos, D. G.; Sparta, M.; Kesharwani, M. K.; Martin, J. M. L.; Neese, F. Exploring

the accuracy limits of local pair natural orbital coupled-cluster theory. J. Chem. Theory

Comput. 2015, 11, 1525–1539.

(70) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-

man, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian

16 Revision A.03. 2016; Gaussian Inc. Wallingford CT.

(71) Neese, F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci.

2012, 2, 73–78.

(72) Elm, J.; Bilde, M.; Mikkelsen, K. V. Influence of nucleation precursors on the reaction

kinetics of methanol with the OH radical. J. Phys. Chem. A 2013, 117, 6695–6701.

37



Graphical TOC Entry

38


