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Abstract
Kooij and Sun (J Math Anal Appl 208:260–276, 1997) proposed a theorem to guar-
antee the uniqueness of limit cycles for the generalized Liénard system dx/dt =
h(y) − F(x), dy/dt = −g(x). We will give a counterexample to their theorem.
Moreover, we shall give some sufficient conditions for the existence, uniqueness and
hyperbolicity of limit cycles.
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1 Introduction

Consider the generalized Liénard system

dx

dt
= h(y) − F(x),

dy

dt
= −g(x), (1)

where the functions in (1) are assumed to be continuous and such that uniqueness
for solutions of initial value problems is guaranteed. We define, as usual, G(x) :=∫ x
0 g(s)ds and H(y) := ∫ y

0 h(s)ds. Huang and Sun [8] have shown a theorem to
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guarantee the uniqueness of limit cycles for system (1) as following (see [8, Theorem
2.3]).

Theorem 1.1 (Huang and Sun [8, Theorem 2.3]) If the following conditions (i–v) hold.
Then system (1) has exactly one limit cycle which is stable.

(i) h(0) = 0, h(y) is strictly increasing, and h(±∞) = ±∞;
(ii) xg(x) > 0 for x �= 0 and G(±∞) = ∞;
(iii) there exist constants x1, x2 with x1 < 0 < x2 such that F(x1) = F(0) =

F(x2) = 0 and x F(x) < 0 for x ∈ (x1, x2)\{0};
(iv) there exist constants M > 0, K , K0 with K > K0, such that F(x) > K for

x ≥ M and F(x) < K0 for x ≤ −M;
(v) one of the following holds:

(a) G(x1) = G(x2), or

(b) G(−x) ≥ G(x) for x > 0. Furthermore, let W (x) := ∫ h−1(F(x))

0 h(y)dy,
where h−1 is the inverse function of h. Then
(α) if x2 ≤ |x1| then max0≤x≤x2 [G(x) + W (x)] ≥ G(x1),
(β) if 0 < |x1| < x2 then maxx1≤x≤0[G(x) + W (x)] ≥ G(x2).

Kooij and Sun [9] pointed out that Theorem 1.1 is incorrect. In fact, in their proof
Huang and Sun compare the values of the differential of the function G(x) + H(y)

integrated along two limit cycles. However, this comparison is valid only if the fol-
lowing condition is added:

F(x) is nondecreasing for x ∈ (−∞, x1) ∪ (x2,∞). (2)

Kooij and Sun [9] gave a modified theorem as following

Theorem 1.2 (Kooij and Sun [9, Theorem 2.1]) If conditions (i)− (v) of Theorem 1.1
and (2) hold. Then system (1) has exactly one closed orbit, a hyperbolic stable limit
cycle.

We shall give an example such that the conditions of Theorem 1.2 are satisfied,
but there are at least two limit cycles. Our investigation shows that the conditions of
Theorem 1.2 cannot ensure that all closed orbits of system (1) have to intersect both
x = x1 and x = x2. In fact, we will give an example to show that under the conditions
of Theorem 1.2 there may be at least two limit cycles which intersect x = x2 but do not
intersect x = x1. Therefore, Theorem 1.2 is incorrect. Moreover, we will give some
sufficient conditions for the existence, uniqueness and hyperbolicity of limit cycles of
system (1).

The idea of the proof of the uniqueness of limit cycles for the classical Liénard
system (i.e. system (1) with h(y) ≡ y), via a comparison of integral curves, appears
already in the paper by Liénard [12], and other references in this direction [1,5,10,
11,13–16]. By utilizing the traditional comparison method, we obtain that system (1)
with h(y) ≡ y has exactly one nontrivial periodic solution which is orbitally stable,
however, we cannot show that the limit cycle of system (1) with h(y) ≡ y is hyperbolic
(i.e. exponentially asymptotically stable).
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The Proof of Theorem 3.1 for system (1) with h(y) ≡ y appears for the first time
in [4], but the problem is also treated in [2] and generalized in [6] and [15]. The
monotonicity assumption on F(x) is relaxed in [16]. In this paper, we estimate the
divergence of corresponding system integrated along a limit cycle and apply suitable
transformations ( see, for example, [3,17,19,20]). By this we can show that the limit
cycle of system (1) is unique, hyperbolic and stable.

2 A Counterexample to Theorem 1.2

In this section we give a counterexample such that the conditions of Theorem 1.2 are
satisfied, but there are at least two limit cycles which intersect x = x2 but do not
intersect x = x1.

Example 1 Consider the Liénard system

dx

dt
= y − F(x),

dy

dt
= −g(x), (3)

which satisfies the following assumptions:

(1) g(x) is continuous on R, xg(x) > 0 for x �= 0 and G(±∞) = ∞;
(2) F(x) is continuously differential on R, F(0) = 0.

By the transformation u = √
2G(x)sgnx , then system (3) is transformed into

du

dt
= y − F[x(u)] = y − H(u),

dy

dt
= −u, (4)

where x = x(u) is the inverse function of u = √
2G(x)sgnx .

The main ideas in the construction of the counterexample are as follows: Denote
ϕ(u) = H ′(u); and construct H(u) such that (4) has at least two limit cycles. Then
construct the function g(x) such that it satisfies the conditions of Theorem 1.2, and
after the transformation u = √

2G(x)sgnx , the function

F(x) =
∫ x

0
f (s)ds =

∫ x

0
H ′(u)u′

sds =
∫ x

0

ϕ[u(s)]g(s)

u(s)
ds

satisfies the conditions of Theorem 1.2. The system (3) will then have at least two
limit cycles.

As indicated in Fig. 1, let ̂P O E DG be part of the graph for y = H(u). D = (1, 0).
On arc ̂O E D, we have H(u) ≤ 0 and H ′′(u) > 0.On line segments P O , DG, we have
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Fig. 1 The construction graph for system (4)

H(u) ≥ 0. On P O , H ′(u) = c2, and on DG, H ′(u) = c1, with − 6
5c2 > c1 > −c2,

−c2 < 1. The function H(u) is continuously differentiable if u P ≤ u ≤ uG .
For the system (4), perform the Filippov’s transformation z = u2/2 to transform

(4) into

dz

dy
= H1(z) − y, H1(z) = H(

√
2z), z > 0.

dz

dy
= H2(z) − y, H2(z) = H(

√−2z), z > 0. (5)

From the construction of y = H(u), Eq. (5) satisfies:

(1) there exists δ > 0 such that H1(z) ≤ H2(z) for 0 < z < δ, (H1(z) �≡ H2(z)),
H1(z) < a

√
z, H2(z) > −a

√
z (a <

√
8);

(2) there exists z0 > δ such that
∫ z0
0 (H1(z) − H2(z))dz > 0; when z ≥ z0, H1(z) ≥

H2(z), H1(z) > −a
√

z, H2(z) = H(−√
2z) = −c2

√
2z <

√
2z < a

√
z (a <√

8).

Using Theorem 1.3 in [21, pp. 181–188], we can construct inner and outer boundaries
l1 ⊂ l2 for Eq. (5) or system (4) such that orbits starting from l1, l2 can only enter
the annular region bounded between l1 and l2 as time increases. Thus there must
exist a limit cycle in the annular region. Let the outer boundary l2 intersect the curve
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y = H(u) on the right halfplane at the point G. In order that system (4) has at least
two limit cycles, we continue to construct the curve ̂G M N as part of the graph of
y = H(u) where H ′(u) > 0. Moreover, H ′′(u) = λ < 0 on ̂G M , H ′(u) = c3 > 0
on M N , where 3

2c3 > c1 > −c2 > c3. For such curve y = H(u), there exists
z1 > z0 such that the above condition (2) is satisfied with the role of H1(z) and H2(z)
interchanged. That is, there exists z1 > z0 such that

∫ z1
0 (H2(z)− H1(z))dz > 0; when

z ≥ z1, H2(z) ≥ H1(z), H2(z) > −a
√

z, H1(z) = H(
√
2z) = H(uM ) + c3

√
2z <

H(uM ) + √
2z < a

√
z (here z1 is sufficiently large, a <

√
8).

Using Theorem 1.3 in [21] again, we can construct an outer boundaries l3 ⊃ l2
such that any orbit starting at l2, l3 will enter the annular region bounded between l3
and l2 as time decreases. Thus there must exist at least one limit cycle L2 ⊃ L1 in the
annular region between l2 and l3.

The construction for y = H(u) is nearly complete. We continue to extend its graph
to both the left and right such that H ′(u) = c3 if u > uN , H ′′(u) < 0 if u < u P ;
uQ ≤ −2, H ′(u) ≥ 1 for u ≤ uQ , H(u) ∈ C1(−∞,∞). In this way, Eq. (4) has at
least two limit cycles.

We further construct the function g(x) as follows:

g(x) =
{

kx for x ≤ 0,
x for x > 0,

where k = 4c20, c0 = |uQ |.
It is clear that the conditions (i), (i i), (iv) and (2) are satisfied. SinceG(x) = kx2/2

for x ≤ 0, G(x) = x2/2 for x > 0, uQ = −c0 ≤ −2, u D = 1, by the transformation
u = √

2G(x)sgnx , we have x1 = − 1
2 , x2 = 1, it follows that 0 < |x1| < x2,

G(x1) = c0
2 > 1

2 = G(x2), and G(−x) > G(x) for x > 0. Thus, the conditions (iii)
and (β) in (v) are also satisfied. This concludes the construction of the counterexample.

3 Existence, Uniqueness and Hyperbolicity of Limit Cycles

In this section we give some sufficient conditions for the existence, uniqueness and
hyperbolicity of limit cycles of system (1).

Theorem 3.1 If conditions (i) − (iv) of Theorem 1.2 and (2) hold, F(x) and h(y)

are continuously differentiable on R, and condition (v∗) holds if one of the following
conditions

(i) G(x1) = G(x2);
(ii) if G(x1) < G(x2) then maxx1≤x≤0[G(x) + W (x)] ≥ G(x2);

(iii) if G(x1) > G(x2) then max0≤x≤x2 [G(x) + W (x)] ≥ G(x1).

is satisfied. Then system (1) has exactly one closed orbit, a hyperbolic stable limit
cycle.

This theorem will be proved by showing that if γ is a closed orbit then its charac-
teristic exponent

∫
γ

− f (x)dt < 0, where f (x) = (d/dx)F(x). This shows that γ is

hyperbolic and stable (see, for example, [3,17,19,20]).
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Because twoadjacent limit cycles cannot bothbe stable, the uniqueness ofγ follows.
In order to estimate the characteristic exponent we need the following lemma by
Zeng [19].

Lemma 3.1 Let γ be arc of an orbit of the system (1), described by y(x), α ≤ x ≤ β.
Then

∫

γ

− f (x)dt = sgn(h(y(α)) − F(α))

[

ln | F(β) − h(y(α))

F(α) − h(y(α))

∣
∣
∣
∣

+
∫ β

α

(F(β) − F(x))g(x)(dh/dy)

(F(β) − h(y(x)))(F(x) − h(y(x)))2
dx

]

.

Proof of Theorem 3.1 By [7] or [18], it follows from the conditions of Theorem 3.1
that system (1) has at least one limit cycle γ . Let γ be a closed orbit of system (1).
Hence, the closed orbit γ must contain (0, 0) in its interior. Consider the function

E(x, y) = G(x) + H(y)

and evaluate the derivative of the function E(x, y) with respect to system (1),

d E

dt
= −g(x)F(x) ≥ 0 for x1 ≤ x ≤ x2. (6)

Since x F(x) < 0 for 0 < |x | � 1, the equilibrium (0, 0) is unstable and no closed
orbit of system (1) lies wholly in the interval x1 ≤ x ≤ x2. Hence, one of the points
(x1, 0) and (x2, 0) is in the interior of γ . It is obvious that the point (x1, 0) must be
in the interior of γ if G(x1) < G(x2), and (x2, 0) must be in the interior of γ if
G(x2) < G(x1), both (x1, 0) and (x2, 0) are in the interior of γ if G(x2) = G(x1).
Without loss of the generality, we assume G(x2) < G(x1), the point (x2, 0) is in the
interior of γ . Let B, C and D be the points at which γ intersects the line x = x2, the
negative y-axis and the negative x-axis, respectively as time t increases, where yB < 0,
yC < 0 and xD < 0.Let P be a point on the arc B̂C ofγ . Then the coordinates (xP , yP )

of P satisfy 0 ≤ xP ≤ x2, yP < 0. Hence, h(yP ) < F(xP ) < 0. ��
Next we prove that the point (x1, 0) is in the interior of γ . Suppose it is not the

case, then x1 ≤ xD < 0.
From (6), we have

G(xD) = E(xD, 0) > E(xP , yP )

and by yP < h−1(F(xP )) < 0,

E(xP , yP ) = G(xP ) + H(yP ) > G(xP ) + H(h−1(F(xP ))).

Thus, by the condition (iii) in condition (v∗) of Theorem 3.1, we have

G(x1) ≥ G(xD) > max0≤x≤x2 [G(x) + W (x)] ≥ G(x1)
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Fig. 2 The phase portraits on � of class 29 with interior fixed point. The fixed point notation is as in [19]

This is a contradiction. Therefore, the closed orbit γ must contain the segment (x1, x2)
of the x-axis in its inner region.

Denote the intersection point of γ with the positive y-axis by A. Let B and C be the
intersections of γ with x = x2 in the first and fourth quadrant( see Fig. 2), respectively.
If we denote the arc of γ between A and B by γ1, then applying Lemma 3.1 with α = 0
and β = x2 yields

∫

γ1

− f (x)dt =
∫ x2

0

F(x)g(x)(dh/dy)

h(y(x))(F(x) − h(y(x)))2
dx .

This integral is negative because the integrand is negative by virtue of (i)-(iii). Thus
we have proved

∫

γ1

− f (x)dt < 0.

For γ2, the arc of γ between B and C , we obtain by condition (2) and f (x) =
(d/dx)F(x)

∫

γ2

− f (x)dt < 0.

Proceeding in this way we can prove that
∫
γ

− f (x)dt < 0. This completes the Proof
of Theorem 3.1.
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