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TWO WEIGHT INEQUALITY FOR VECTOR-VALUED POSITIVE

DYADIC OPERATORS BY PARALLEL STOPPING CUBES

TIMO S. HÄNNINEN

Abstract. We study the vector-valued positive dyadic operator

Tλ(fσ) ∶= ∑
Q∈D

λQ ∫
Q
f dσ1Q ,

where the coefficients {λQ ∶ C → D}Q∈D are positive operators from a Banach
lattice C to a Banach lattice D. We assume that the Banach lattices C and
D∗ each have the Hardy–Littlewood property. An example of a Banach lattice
with the Hardy–Littlewood property is a Lebesgue space.

In the two-weight case, we prove that the L
p
C
(σ) → L

q
D
(ω) boundedness

of the operator Tλ( ⋅σ) is characterized by the direct and the dual L∞ testing
conditions:

∥1QTλ(1Qfσ)∥Lq
D
(ω) ≲ ∥f∥L∞C (Q,σ)σ(Q)1/p ,

∥1QT ∗λ(1Qgω)∥
L

p′

C∗
(σ)
≲ ∥g∥L∞

D∗
(Q,ω)ω(Q)1/q

′
.

Here L
p
C
(σ) and L

q
D
(ω) denote the Lebesgue–Bochner spaces associated with

exponents 1 < p ≤ q <∞, and locally finite Borel measures σ and ω.
In the unweighted case, we show that the L

p
C
(µ) → L

p
D
(µ) boundedness of

the operator Tλ( ⋅µ) is equivalent to the endpoint direct L∞ testing condition:

∥1QTλ(1Qfµ)∥L1

D
(µ) ≲ ∥f∥L∞C (Q,µ)µ(Q).

This condition is manifestly independent of the exponent p. By specializing
this to particular cases, we recover some earlier results in a unified way.
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Notation

E A Banach lattice (E, ∣ ⋅ ∣E ,≤).
E+ The positive cone of a Banach lattice, E+ ∶= {e ∈ E ∶ e ≥ 0}.
E∗ The dual space of a Banach lattice, equipped with

the order: e∗ ≥ 0 if and only if e∗e ≥ 0 for all e ∈ E+.
D A finite collection of dyadic cubes.
µ A locally finite Borel measure.
dx The Lebesgue measure.
∣Q∣ The Lebesgue measure of a set Q.
⟨f⟩µQ The average ⟨f⟩µQ ∶= 1

µ(Q) ∫Q f dµ.

⟨f⟩Q The average ⟨f⟩Q ∶= ⟨f⟩dxQ .

L
p
E(µ) The Lebesgue–Bochner space,

equipped with the norm ∥f∥Lp

E
(µ) ∶= (∫ ∣f ∣pE dµ)1/p.

L
p
E The Lebesgue–Bochner space L

p
E ∶= Lp

E(dx).
M̄

µ
D The lattice maximal function: M̄µf ∶= supQ∈D⟨f⟩µQ1Q,

where the supremum is taken in the lattice order.
∥M̄µ∥Lp

E
(µ)→L

p

E
(µ) Shorthand for the uniform bound: supD∥M̄

µ
D∥Lp

E
(µ)→L

p

E
(µ).

1. Introduction and the main results

Let (C, ∣ ⋅ ∣C ,≤) and (D, ∣ ⋅ ∣D ,≤) be Banach lattices. We consider the vector-valued
positive dyadic operator Tλ( ⋅σ) defined as follows: For every locally integrable
function f ∶ Rd → C, the function Tλ(fσ) ∶ R

d →D is defined by

(1.1) Tλ(fσ) ∶= ∑
Q∈D

λQ ∫
Q
f dσ1Q,

where D is a finite collection of dyadic cubes on R
d, σ is a locally finite Borel

measure, and {λQ ∶ C →D}Q∈D are positive operators.
Let Lp

C(σ) and L
q
D(ω) denote the Lebesgue–Bochner spaces associated with the

exponents 1 < p ≤ q < ∞, locally finite Borel measures σ and ω, and the Banach
lattices C and D. We assume that C and D∗ each have the Hardy–Littlewood
property. We characterize the two-weight norm inequality

(1.2) ∥Tλ(fσ)∥Lq

D
(ω) ≲ ∥f∥Lp

C
(σ)

by means of testing conditions. Furthermore, we characterize the unweighted norm
inequality

∥Tλ(fµ)∥Lq

D
(µ) ≲ ∥f∥Lp

C
(µ)
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by means of an end-point testing condition. Among the corollaries of this char-
acterization is that the operator Tλ( ⋅µ) ∶ L

p
C(µ) → L

p
D(µ) is bounded for some

p ∈ (1,∞) if and only if it is bounded for every p ∈ (1,∞).
A Banach lattice (C, ∣ ⋅ ∣C ,≤) is a Banach space (C, ∣ ⋅ ∣C) equipped with a partial

order ≤ that is compatible with the vector addition, the scalar multiplication, and
the norm of the Banach space, and such that each pair of vectors has the least upper
bound, or, in other words, the supremum. (The precise definition of a Banach lattice
is given in Section 2.1.) A linear operator λ ∶ C → D from a Banach lattice C to
a Banach lattice D is positive if c ≥ 0 implies Tc ≥ 0, for every c ∈ C. The dyadic
lattice Hardy–Littlewood maximal operator M̄D ∶ L

p
C → L

p
C is defined by

(1.3) M̄Df ∶= sup
Q∈D
⟨f⟩Q1Q,

where the supremum is taken with respect to the order of the lattice.

Definition 1.1 (Dyadic Hardy–Littlewood property). A Banach lattice (E, ∣ ⋅ ∣E ,≤)
has the dyadic Hardy–Littlewood property if for some p ∈ (1,∞) there exists a finite
constant Cp,E such that

(1.4) ∥M̄D∥Lp

E
→L

p

E
≤ Cp,E

for every finite collection D of dyadic cubes.

Remark. The estimate (1.4) holds for some p ∈ (1,∞) if and only if it holds for
every p ∈ (1,∞), as proven by Garćıa-Cuerva, Maćıas, and Torrea in [4].

Example 1.2. a) The Lebesgue space Lr(A,A, α) associated with an exponent
r ∈ (1,∞) and a σ-finite measure space (A,A, α) is a Banach lattice that has the
dyadic Hardy–Littlewood property, which is a choice of words for saying that the
dyadic Fefferman–Stein vector-valued maximal inequality [3] holds:

∥M̄∥Lp

Lr(A)
→L

p

Lr(A)
≤ Cp,r.

b) A Köthe function space X with the Fatou property has the UMD property if and
only if both X and its function space dual X ′ have the Hardy–Littlewood property,
as proven by Bourgain, and Rubio de Francia (see [1], and [19]).

The Hardy–Littlewood property is studied by Garćıa-Cuerva, Maćıas, and Torrea
in [4] and [5]. Among other things, they obtain various characterizations of the
property. In fact, they define the Hardy–Littlewood property by means of the
Hardy–Littlewood maximal operator with the supremum taken over centered balls,
whereas we define it with the supremum taken over dyadic cubes. In any case, for
the Lebesgue measure, these maximal functions are comparable, as explained in
Section A.1.

By duality, the norm inequality (1.2) for the operator Tλ( ⋅σ) ∶ L
p
C
(σ) → L

q
D
(ω)

is equivalent to the norm inequality

(1.5) ∥T ∗λ (gω)∥Lp′

C∗
(σ)
≲ ∥g∥

L
q′

D∗
(ω)

for the adjoint operator T ∗λ ( ⋅ω) ∶ L
q′

D∗(ω)→ L
p′

C∗(σ) defined by

T ∗λ (gω) ∶= ∑
Q∈D

λ∗Q ∫
Q
g dω1Q.
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The localized versions TR of the operator T and the localized version T ∗R of its
adjoint T ∗ are defined by

(1.6) Tλ,R(fσ) ∶= ∑
Q∈D∶
Q⊆R

λQ ∫
Q
f dσ1Q and T ∗λ,R(gω) ∶= ∑

Q∈D∶
Q⊆R

λ∗Q ∫
Q
g dω1Q.

The characterization of the norm inequality (1.2) is obtained by weakening it
and its dual (1.5) by restricting the class of functions and by localizing the operator
T and its adjoint T ∗ as in (1.6). Thus, we obtain the direct and the dual L∞ testing
condition:

∥TR(fσ)∥Lq

D
(ω) ≤ T∥f∥L∞

C
(R,σ)σ(R)

1/p,(1.7a)

∥T ∗R(g ω)∥Lp′

C∗
(σ)
≤ T∗∥g∥L∞

D∗
(R,ω)ω(R)

1/q′ ,(1.7b)

for every R ∈ D, every f ∈ L∞C (R,σ), and every g ∈ L∞D∗(ω,R).
Theorem 1.3 (Two-weight norm inequality is characterized by the direct and the
dual L∞ testing conditions). Let 1 < p ≤ q <∞. Let σ and ω be locally finite Borel
measures. Let C and D be Banach lattices. Assume that C and D∗ each have
the dyadic Hardy–Littlewood property. Let {λQ ∶ C → D}Q∈D be positive operators.
Let the operator Tλ( ⋅σ) be defined as in (1.1), and the localizations Tλ,R( ⋅σ) and
T ∗λ,R( ⋅ω) as in (1.6). Then,

max{T,T∗} ≤ ∥T ( ⋅σ)∥Lp

C
(σ)→L

q

D
(ω) ≲q,p ∥M̄∥Lp

C
→L

p

C
T + ∥M̄∥

L
q′

D∗
→L

q′

D∗
T∗,

where the testing constants T and T∗ are the least constants in the testing conditions
(1.7a) and (1.7b). Here, ∥M̄∥Lp

C
→L

p

C
denotes the norm of the dyadic lattice Hardy–

Littlewood maximal operator M̄ ∶ Lp
C → L

p
C defined in (1.3).

We note that, in the real-valued case (that is, C = D = R), the L∞ testing
conditions (1.7) can be rephrased as the Sawyer testing conditions:

(1.8) ∥TR(1Rσ)∥Lq(ω) ≲ σ(R)
1/p, and ∥T ∗R(1Rω)∥Lp′(σ) ≲ ω(R)

1/q′ .

Such testing conditions were used by Sawyer [20] to characterize the boundedness
of a large class of integral operators I( ⋅σ) ∶ Lp(σ) → Lq(ω) with non-negative
kernels, in particular, fractional integrals and Poisson integrals. In the real-valued
case T ( ⋅σ) ∶ Lp(σ)→ Lq(ω), Theorem 1.3 was first proven

● for p = q = 2 by Nazarov, Treil, and Volberg [15] by the Bellman function
technique,
● and for 1 < p ≤ q < ∞ by Lacey, Sawyer, and Uriarte-Tuero [11] by tech-
niques that are similar to the ones used by Sawyer [20];

Alternative proofs were obtained

● by Treil [22] by splitting the summation over dyadic cubes in the dual

pairing by the condition ‘σ(Q)(⟨f⟩σQ)
p > ω(Q)(⟨g⟩ωQ)

q′ ’,

● and by Hytönen [7] by splitting the summation by using parallel stopping
cubes. This technique originates from the work of Lacey, Sawyer, Shen, and
Uriarte-Tuero [10, Version 1] on the two-weight boundedness of the Hilbert
transform.
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For an exponent s ∈ (1,∞), and a collection {βQ}Q∈D of non-negative real numbers,
consider the particular vector-valued case Lp(σ) → L

q

ℓs(D)
(ω), and the particular

class of operators Tλβ
( ⋅σ) defined by

(1.9) Tλβ
(fσ) ∶= {βQ∫

Q
f dσ1Q}Q∈D.

(We note that this is the operator (1.1) associated with the following coefficients:
For each Q ∈ D, for every r ∈ R, the sequence λβ,Qr ∈ ℓs(D) is componentwise
defined by setting (λβ,Qr)R ∶= δQ,RβQr for every R ∈ D.) In this case, Theorem 1.3
was proven

● by Scurry [21] by adapting Lacey, Sawyer, and Uriarte-Tuero’s [11] proof
of the real-valued case T ( ⋅σ) ∶ Lp(σ) → Lq(ω).

In this paper, the characterization by the L∞ testing conditions is extended to
Banach lattices with the Hardy–Littlewood property. Note that this generality also
has the advantage of being symmetric with respect to T and T ∗, which simplifies
the notation.

We prove Theorem 1.3 by using parallel stopping cubes, similarly as in Hytönen’s
[7] proof of the real-valued case Lp(σ) → Lq(ω) of the theorem. However, because of
the vector-valuedness, we need to choose the stopping cubes by a different stopping
condition: Let µ be a locally finite Borel measure, and let (E, ∣ ⋅ ∣E ,≤) be a Banach
lattice. For each dyadic cube F , its stopping children chF(F ) are defined as the
maximal dyadic cubes F ′ ⊊ F such that

(1.10) ∣ sup
Q∈D∶
Q⊇F ′

⟨f⟩µQ∣E > 2⟨∣sup
Q∈D
⟨f⟩µQ1Q∣E⟩

µ
F ,

where the supremum is taken with respect to the order of the lattice.
Note that, in the right-hand side of the stopping condition (1.10), there appears

the dyadic lattice Hardy–Littlewood maximal function M̄
µ
Df , which is defined by

M̄
µ
Df ∶= supQ∈D⟨f⟩µQ1Q. To control the averages appearing in the stopping condition

(1.10), we assume that the operator M̄µ ∶ Lp
E
(µ)→ L

p
E
(µ) is bounded. However, we

want to obtain an estimate for the operator norm of the operator T ( ⋅σ) ∶ Lp
C(σ)→

L
q
D(ω) such that the estimate depends on the measures σ and ω only via the testing

contants. In particular, we do not want the estimate to depend on the measure σ

via the operator norm of the auxiliary operator M̄σ ∶ Lp
C(σ) → L

p
C(σ). Thus, we

want to view the boundedness of M̄σ ∶ Lp
E(σ) → L

p
E(σ) as a consequence of the

geometry of the Banach lattice E itself, which we can do, thanks to the following
theorem:

Theorem 1.4 (Universal norm bound for the dyadic lattice Hardy–Littlewood
maximal operator, [17] and [9]). Let 1 < p < ∞. Assume that (E, ∣ ⋅ ∣E ,≤) is a
Banach lattice. Then

∥M̄µ∥Lp

E
(µ)→L

p

E
(µ) ≲p ∥M̄∥Lp

E
→L

p

E

for all locally finite Borel measures µ.

Remark. This theorem follows from either the technique [17] or, as communicated
to the author by M. Kemppainen, the technique [9]. For reader’s convenience, the
proof is presented in Section A.2.
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Thus, it is the proof technique of stopping cubes, in particular, the stopping
condition (1.10), that leads us to consider the class of Banach lattices that have
the Hardy–Littlewood property. The author is unaware of whether the statement,
the characterization of the two-weight boundedness by the L∞ testing conditions,
holds without assuming the Hardy–Littlewood property (see Question 6.2).

Next, we characterize the L
p
C(σ) → L

q
D(ω) boundedness of the operator Tλ( ⋅σ)

in the case that the measures σ and ω satisfy the A∞ condition with respect to
each other. In particular, this includes the unweighted case σ = ω = µ. By duality,
the norm inequality (1.2) is equivalent to the bilinear norm inequality

(1.11) ∫ gT (fσ)dω ≲ ∥f∥Lp

C
(σ)∥g∥Lq′

D∗
(ω)

.

Again, by restricting the class of functions and by localizing the operator, we obtain
the L∞ dual pairing testing condition:

(1.12) ∫ gTR(fσ)dω ≤B∥f∥L∞
C
(R,σ)∥g∥L∞

D∗
(R,ω)σ(R)

1/pω(R)1/q
′

for every R ∈ D, every g ∈ L∞D∗(ω,R), and every f ∈ L∞C (σ,R). The A∞ character-
istic [σ]A∞(ω) of a measure σ with respect to a measure ω is defined by

(1.13) [σ]A∞(ω) ∶= sup
R∈D

1

σ(R) ∫ Mω
R(σ)dω,

where, for each R ∈ D, the localized Hardy–Littlewood maximal operator Mω
R is

defined by Mω
R(σ) ∶= supQ∈D∶

Q⊆R

σ(Q)
ω(Q)

1Q.

Theorem 1.5 (Norm inequality for A∞ weights is characterized by the L∞ dual
pairing testing condition). In addition to the assumptions of Theorem 1.3, assume
that the measures σ and ω satisfy the A∞ condition with respect to each other. Then

B ≤ ∥Tλ( ⋅σ)∥Lp

C
(σ)→L

q

D
(ω) ≲p,q ∥M̄∥Lp

C
→L

p

C
∥M̄∥

L
q′

D∗
→L

q′

D∗
([σ]1/p

A∞(ω)
+ [ω]1/q′

A∞(σ)
)B,

where the dual pairing testing constant B is the least constant in the dual pairing
testing condition (1.12). Here, the A∞ characteristics are defined as in (1.13),
and ∥M̄∥Lp

C
→L

p

C
denotes the norm of the dyadic lattice Hardy–Littlewood maximal

function M̄ ∶ Lp
C → L

p
C .

We observe that the L∞ dual pairing testing condition (1.12) for Tλ( ⋅µ) ∶
L
p
C(µ)→ L

p
D(µ) is independent of p. Therefore:

Corollary 1.6. Assume that C and D∗ each have the Hardy–Littlewood property.
Then, the operator Tλ( ⋅µ) ∶ Lp

C(µ) → L
p
D(µ) is bounded for some p ∈ (1,∞) if and

only if it is bounded for every p ∈ (1,∞).
More corollaries, among which is is an alternative proof for an embedding theo-

rem by Nazarov, Treil, and Volberg [16, Theorem 3.1], are stated in Section 5.
Next, we point out that the assumption that the Banach space has the Hardy–

Littlewood property can be replaced by assuming that the measure is doubling, or
by strenghtening the testing condition. In the unweighted case Tλ( ⋅µ) ∶ Lp

E(µ) →
L
p
E
(µ), this reads as:

Theorem 1.7 (L∞ testing condition together with an additional assumption im-
plies the boundedness). Let p ∈ (1,∞). Let (E, ∣ ⋅ ∣E ,≤) be a Banach lattice. Let µ
be a locally finite Borel measure. Then, the operator Tλ( ⋅µ) ∶ Lp

E(µ) → L
p
E(µ) is

bounded if any of the following conditions is satisfied:
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i) The operator Tλ( ⋅ ) satisfies the endpoint direct L∞ testing condition:

(1.14) ∥TR(fµ)∥L1

E
(µ) ≤B∥f∥L∞

E
(R,µ)µ(R)

for every R ∈ D, and every f ∈ L∞E (R,µ), and, additionally, the Banach
lattice E has the Hardy–Littlewood property.

ii) The operator Tλ( ⋅ ) satisfies the endpoint direct L∞ testing condition (1.14),
and, additionally, the measure µ is doubling.

iii) The operator Tλ( ⋅ ) satisfies, for some t ∈ (p,∞), the endpoint direct Lt

testing condition:

(1.15) ∥TR(fµ)∥L1

E
(µ) ≤Bt∥f∥Lt

E
(µ,R)µ(R)1−1/t

for every R ∈ D and every f ∈ Lt
E(R,µ).

We remark that the L∞ testing condition has been used to characterize Lp
E → L

p
E

boundedness in at least the following instances:

● Let (E, ∣ ⋅ ∣E ,≤) be a Banach lattice. By using the theory of vector-valued
singular integrals, Garćıa-Cuerva, Maćıas, and Torrea [4] proved that the
smooth lattice Hardy–Littlewood maximal operator M̄ϕ,J ∶ L

p
E → L

p
E is

bounded if and only if it satisfies the end-point direct L∞ testing condi-
tion (1.14). An alternative proof for this is given in Section A.3 by using
stopping cubes.
● Let (E, ∣ ⋅ ∣E) be a UMD space. By using stopping cubes, the author and
Hytönen [6] proved that the operator-valued dyadic paraproduct Πb ∶ L

p
E →

L
p
E

is bounded if and only if it satisfies the direct L∞ testing condition
(1.7a).

We conclude the introduction by comparing the testing conditions. Observe
that the direct L∞ testing condition (1.7a) or the dual L∞ testing condition (1.7b)
each imply, by Hölder’s inequality, the L∞ dual pairing testing condition (1.12).
Furthermore, the direct Lt testing condition,

(1.16) ∥TR(fσ)∥Lq

D
(ω) ≤ Tt∥f∥Lt

C
(σ,R)σ(R)1/p−1/t

for every R ∈ D, and every f ∈ Lt
C(σ,R), implies, again by Hölder’s inequality, the

direct L∞ testing condition (1.7a). Altogether, the testing constants satisfy the
comparision:

B ≤ T ≤ Tt ≤ ∥T ( ⋅σ)∥Lp(σ)→Lq(ω).

The L∞ testing condition (1.7a) can be viewed as the limiting case (t =∞) of the Lt

testing condition (1.16). Furthermore, the L∞ dual pairing testing condition (1.12)
is, by duality, equivalent to the end-point direct L∞ condition or the end-point dual
L∞ condition:

∥TR(fσ)∥L1

D
(ω) ≲ ∥f∥L∞

C
(R,σ)σ(R)1/pω(R)1/q′ ,(1.17a)

∥T ∗R(gω)∥L1

C∗
(σ) ≲ ∥g∥L∞

D∗
(R,ω)σ(R)1/pω(R)1/q′ .(1.17b)

In particular, in the unweighted case T ( ⋅µ) ∶ Lp
C(µ)→ L

p
D(µ), these conditions can

be viewed as the limiting case of the L∞ testing conditions (1.7).
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2. Preliminaries

2.1. Rudiments of Banach lattices. A lattice (C,≤) is a set equipped with a
partial order relation ≤ such that for every c, d ∈ C there exists the least upper
bound c ∨ d and the greatest lower bound c ∧ d.

Definition 2.1 (Banach lattice). A Banach lattice (C, ∣ ⋅ ∣C ,≤) is both a real Banach
space (C, ∣ ⋅ ∣C ) and a lattice (C,≤) so that both structures are compatible:

i) c ≤ d implies c + e ≤ d + e, for every c, d, e ∈ C.
ii) r ≥ 0 and c ≥ 0 implies rc ≥ 0, for every r ∈ R and c ∈ C.
iii) ∣c ∣C = ∣ ∣c∣ ∣C , and 0 ≤ c ≤ d implies ∣c ∣C ≤ ∣d ∣C , for every c, d ∈ C. Here, the

positive part c+ of a vector c ∈ C is defined by c+ ∶= c ∨ 0, the negative part
c− by c− ∶= −c ∨ 0, and the absolute value ∣c∣ by ∣c∣ ∶= c ∨ −c.

From the existence of the pairwise supremum (in other words, the least upper
bound), it follows that for every finite set there exists the supremum. This supre-
mum can be computed by taking pairwise suprema and using the recursive formula
sup{cn}Nn=1 = sup{cn}N−1n=1 ∨ cN .

From the definitions, it follows that c = c+ − c−, and ∣c∣ = c+ + c− for every c ∈ C.
This splitting implies that, for every linear operator T ∶ C → D from a Banach
lattice C to another D, the norm estimate ∣Tc ∣D ≲ ∣c∣C holds for all c ∈ C if and
only if it holds for all c ∈ C such that c ≥ 0.

The Lebesgue–Bochner space Lp
C
(σ) associated with a Banach lattice (C, ∣ ⋅ ∣C ,≤)

is again a Banach lattice. The order is defined by using the lattice order pointwise:
For f1, f2 ∈ Lp

C(σ), we impose that f1 ≤ f2 if and only f1(x) ≤ f2(x) for σ-almost

every x ∈ Rd.

Dual of a Banach lattice. The dual C∗ of a Banach lattice C is also a Banach
lattice, provided that it is equipped with the lattice order defined as follows: For
c∗, d∗ ∈ C∗, we impose

(2.1) c∗ ≤ d∗ if and only if c∗c ≤ d∗c for every c ∈ C with c ≥ 0.
In this paper, it is implicitly understood that the dual of a Banach lattice is

equipped with this lattice order. The supremum c∗ ∨ d∗ of c∗, d∗ ∈ C∗ is given by

(c∗ ∨ d∗)(c) = sup{c∗(d) + d∗(c − d) ∶ 0 ≤ d ≤ c}.
Positive operator. An operator T ∶ C → D from a Banach lattice C to a Banach
lattice D is positive if c ≥ 0 implies Tc ≥ 0, for every c ∈ C. By the definition of
the lattice order of the dual (2.1), the adjoint T ∗ ∶ D∗ → C∗ of a positive operator
T ∶ C →D is also a positive operator, which reads

(T ∗d∗)c = d∗(Tc) ≥ 0 for every d∗ ∈D∗ with d∗ ≥ 0 and c ∈ C with c ≥ 0.
For more on Banach lattices, see Lindenstrauss and Tzafriri’s book [12, Chapter

1].

2.2. Stopping families and dyadic analysis.
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2.2.1. Terminology. Let S be a collection of dyadic cubes. Let µ be a locally finite
Borel measure.

● S-children of S ∈ S, denoted by chS(S), are defined by

chS(S) ∶= {S′ ∈ S ∶ S′ maximal with S′ ⊊ S}.
● S-parent of Q ∈ D, denoted by πS(Q), is defined by

πS(Q) ∶= {S ∈ S ∶ S minimal with S ⊇Q}.
● ES(S) ∶= S ∖⋃S′∈chS(S) S

′.
● Let 0 < c < 1. The collection S is (c, µ)-sparse if, for every S ∈ S,

(2.2) µ(ES(S)) ≥ cµ(S).
By taking the complement, this is equivalent to the condition that, for every
S ∈ S,

∑
S′∈S(S)

µ(S′) ≤ (1 − c)µ(S).
In the case that the constant c is not explicitly specified, we use the con-
vention that c = 1

2
.

● Let C > 1. The collection S is (C,µ)-Carleson if, for every S ∈ S,
∑

S
′∈S∶

S′⊆S

µ(S′) ≤ Cµ(S).
In the case that the constant C is not explicitly specified, we use the con-
vention that C = 2.
● For each Q ∈ D, let chS(Q) be a collection of pairwise disjoint dyadic
subcubes of Q. We say that S is the family starting at a dyadic cube
S0 and defined by the children chS if S is defined recursively as follows:
S0 ∶= {S0}, Sk+1 ∶= ⋃S∈Sk

chS(S), and S ∶= ⋃∞k=0 Sk. (Once S is defined so,
then chS(S) = {S′ ∈ S ∶ S′ maximal with S′ ⊊ S}, for every S ∈ S.)

2.2.2. Basic lemmas. The dyadic (real-valued) Hardy–Littlewood maximal operator
Mµ is defined by

Mµh ∶= sup
Q∈D
⟨h⟩µQ1Q.

Lemma 2.2 (Universal norm bound for the dyadic Hardy–Littlewood maximal
operator). Let 1 < p ≤ ∞. Let µ be a locally finite Borel measure. Then

∥Mµ∥Lp(µ)→Lp(µ) ≤ p′.
Lemma 2.3 (Dyadic Carleson embedding theorem). Let 1 < p < ∞. Let µ be a
locally finite Borel measure. Let E be a Banach space. Suppose that S is a sparse
collection. Then

(∑
S∈S

(⟨∣f ∣E⟩µS)pµ(S))1/p ≤ 2p′∥f∥Lp

E
(µ).

Lemma 2.4 (Lp-variant of Pythagoras’ theorem, Lemma 2.7 in [6]). Let 1 ≤ p < ∞.
Let µ be a locally finite Borel measure. Let E be a Banach space. Assume that S is
a sparse collection of dyadic cubes. Assume that {fS}S∈S is a collection of E-valued
functions such that every fS is supported on S and constant on each S′ ∈ chS(S).
Then

∥∑
S∈S

fS∥Lp

E
(µ) ≤ 3p(∑

S∈S

∥fS∥pLp

E
(µ)
)1/p.
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2.3. Equivalence of the A∞ condition and the Carleson condition. The
equivalence presented in this section is well-known. However, for reader’s conve-
nience, we represent a proof for it.

Lemma 2.5 (Equivalence of the A∞ condition and the Carleson condition). Let
σ and ω be locally finite Borel measures. Then the measure σ satisfies the A∞
condition with respect to the measure ω if and only if every ω-Carleson collection
is also σ-Carleson. Quantitatively,

[σ]A∞(ω) ≂ [σ]Car(ω),

where

[σ]A∞(ω) ∶= sup
Q∈D

1

σ(Q) ∫ Mω
Q(σ)dω, [σ]Car(ω) ∶= sup

G⊆D∶
G w-Carleson

sup
G∈G

1

σ(G) ∑
G′∈G∶
G
′⊆G

σ(G′).

Proof. First, we prove that [σ]Car(ω) ≲ [σ]A∞(ω). LetH be an ω-Carleson collection.
Fix H0 ∈H. Let G be the stopping family starting at H0 and defined by

chG(G) ∶= {G′ ∈H ∶ G′ ⊆ G maximal with
σ(G′)
ω(G′) > 2

σ(G)
ω(G)}.

Observe that the collection G is ω-sparse because

∑
G′∈chG(G)

ω(G′) < 1

2
ω(G)( 1

σ(G) ∑
G′∈chG(G)

σ(G′)) ≤ 1

2
ω(G).

Let EG(G) ∶= G∖⋃G′∈chG(G)G
′. Moreover, observe that πG(H) = G implies that H

satisfies the opposite of the stopping condition. Altogether,

● The sets EG(G) are pairwise disjoint and satisfy ω(G) ≤ 2ω(EG(G)).
● σ(H)

ω(H)
≤ 2 σ(G)

ω(G)
whenever G ∈ G and H ∈H are such that πG(H) = G.

Now,

∑
H∈H∶
H⊆H0

σ(H) = ∑
G∈G

∑
H∈H∶

πG(H)=G

σ(H)
ω(H)ω(H) ≤ 2 ∑G∈G

σ(G)
ω(G) ∑H∈H∶

H⊆G

ω(H) ≤ 4 ∑
G∈G

σ(G)
ω(G)ω(G)

≤ 8 ∑
G∈G

σ(G)
ω(G)ω(EG(G)) ≤ 8∫H0

Mω
G(σ)dω ≤ 8[σ]A∞(ω)σ(H0).

Next, we prove that [σ]A∞(ω) ≲ [σ]Car(ω). Fix Q0 ∈ D. Again, let G be the
stopping family starting at Q0 and defined by

chG(G) ∶= {G′ ∈ D ∶ G′ ⊆ G maximal with
σ(G′)
ω(G′) > 2

σ(G)
ω(G)}.

Then, 1EG(G)M
ω
Q0
(σ) ≤ 2 σ(G)

ω(G)
, and 1Q0

= ∑G∈G 1EG(G) ω-almost everywhere. More-

over, since G is ω-sparse, it is ω-Carleson:

∑
G′∈G∶
G′⊆G

ω(G) ≤ 2 ∑
G′∈G∶
G′⊆G

ω(EG(G′)) = 2ω( ⋃
G′∈G∶
G′⊆G

EG(G′)) ≤ 2ω(G).
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Now,

∫
Q0

Mω
Q0
(σ)dω = ∫

Q0

∑
G∈G

1EG(G)M
ω
Q0
(σ)dω ≤ 2 ∑

G∈G

σ(G)
ω(G)ω(EG(G))

≤ 2 ∑
G∈G∶
G⊆Q0

σ(G) ≤ 2[σ]Car(ω)σ(Q0).

�

3. Weighted characterizations

In this section, we prove Theorem 1.3 and Theorem 1.5.

3.1. Particular family of stopping cubes.

Lemma 3.1 (Properties of a particular stopping family). LetE be a Banach lattice.
Let µ be a locally finite Borel measure. Let D be a finite collection of dyadic cubes.
Let f ∶ Rd → E+ be a locally integrable, positive function.

For each dyadic cube F ∈ D, the stopping children chF(F ) of F is defined as the
collection of all the maximal dyadic cubes F ′ ∈ {F ′ ∈ D ∶ F ′ ⊆ F} that satisfy the
stopping condition

(3.1) ∣ sup
Q∈D∶
Q⊇F ′

⟨f⟩µ
Q
∣E > 2⟨∣sup

Q∈D
⟨f⟩µ

Q
1Q∣E⟩µF .

Let F be the stopping family defined by the stopping children chF . For each F ∈ F ,
define the auxiliary function

fF ∶= sup
πF (Q)=F

⟨f⟩µQ1Q.
Then, the following conditions are satisfied:

a) The collection F is sparse.
b) Each auxiliary function fF satisfies the L∞ estimate

(3.2) ∥fF ∥L∞
E
≤ 2⟨∣sup

Q∈D
⟨f⟩µQ1Q∣E⟩µF .

c) Each auxiliary function fF satisfies the replacement rule

∫
Q
f dµ ≤ ∫

Q
fF dµ whenever πF(Q) = F .

Proof. First, we check that each auxiliary function satisfies the L∞ estimate. We
note that the condition πF(Q) = F implies that Q satisfies the opposite of the
stopping condition. Now, fix x ∈ ⋃Q∈D∶πF(Q)=F Q. Let Qx be the minimal (which
exists since the collection D is finite) dyadic cube such that πF(Qx) = F and Q ∋ x.
Since the cube Qx satisfies the opposite of the stopping condition (3.1), we have

∣fF (x)∣E = ∣ sup
Q∈D∶

πF(Q)=F,
Q∋x

⟨f⟩µ
Q
∣E ≤ ∣ sup

Q∈D∶
Q⊇Qx

⟨f⟩µ
Q
∣E ≤ 2⟨∣sup

Q∈D
⟨f⟩µ

Q
1Q∣E⟩µF .
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Next, we check that F is sparse. By the stopping condition (3.1),

⟨∣sup
Q∈D
⟨f⟩µ

Q
1Q∣E⟩µF ≥ ∑

F ′∈chF(F )

µ(F ′)
µ(F ) ⟨∣supQ∈D

⟨f⟩µ
Q
1Q∣E⟩µF ′ ≥ ∑

F ′∈chF(F )

µ(F ′)
µ(F ) ∣ supQ∈D∶

Q⊇F ′

⟨f⟩µ
Q
∣E

≥ 2⟨∣sup
Q∈D
⟨f⟩µQ1Q∣E⟩µF ∑

F ′∈chF (F )

µ(F ′)
µ(F ) .

Dividing out the factor ⟨∣supQ∈D⟨f⟩µQ1Q∣E⟩µF yields ∑F ′∈chF (F ) µ(F ′) ≤ 1
2
µ(F ).

Finally, we observe that the replacement follows from positivity:

∫
Q
f dµ = ∫

Q
⟨f⟩µQ1Q dµ ≤ ∫

Q
fF dµ.

�

Remark. Instead of the stopping condition (3.1), we could use the stopping condi-
tion

(3.3) ∣ sup
Q∈D∶

F⊇Q⊇F ′

⟨f⟩µQ∣E ≥ 2∥M̄µ∥L1

E
(µ)→L

1,∞
E
(µ)⟨∣f ∣E⟩µF ,

which in the real-valued case (that is, E = R) coalesces with the Muckenhoupt–
Wheeden principal cubes stopping condition ∣⟨f⟩∣µF ′ > 2⟨∣f ∣⟩µF . The stopping family
defined by the condition (3.3) is sparse, because

∑
F ′∈chF(F )

µ(F ′) ≤ µ({∣M̄µ(1F f)∣E > 2∥M̄µ∥L1

E
(µ)→L

1,∞
E
(µ)⟨∣f ∣E⟩µF }) ≤ 1

2
µ(F ),

and the auxiliary function fF ∶= supπF (Q)=F ⟨f⟩µQ1Q associated with the stopping
family satisfies the estimate

∥fF ∥L∞
E
≤ 2∥M̄µ∥

L1

E
(µ)→L

1,∞
E
(µ)⟨∣f ∣E⟩µF ,

because of a similar argument as in the proof of Lemma 3.1.

3.2. Proof of the two weight characterization. In this subsection, we prove
Theorem 1.3.

Proof. We prove the norm estimate (1.2) by using duality. Let f ∈ Lp
C(σ) be such

that f ≥ 0, and g ∈ Lq′

D∗(ω) be such that g ≥ 0. By writing out the definition of the
operator,

S ∶= ∫ gT (fσ)dω = ∑
Q∈D
∫
Q
g dωλQ ∫

Q
f dσ.

First, we define stopping families. Associated with f ∈ Lp
C(σ), let F be the

stopping family defined by the stopping children

chF(F ) ∶= {F ′ ∈ D ∶ F ′ ⊊ F maximal with ∣ sup
Q∈D∶
Q⊇F ′

⟨f⟩σQ∣C > 2⟨∣sup
Q∈D
⟨f⟩σQ1Q∣C⟩σF }.

Similarly, let G be the stopping family associated with g ∈ Lq′

D∗(ω).
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Next, we rearrange the summation by means of the stopping cubes. We use the
notation π(Q) = (F,G) to indicate that πF(Q) = F and πG(Q) = G. We have

S ∶= ∑
Q∈D

= ∑
F ∈F ,G∈G

∑
Q∈D∶

π(Q)=(F,G)

i)= ( ∑
F ∈F

∑
G∈G∶
G⊆F

+ ∑
G∈G

∑
F ∈F∶
F⊊G

) ∑
Q∈D∶

π(Q)=(F,G)

ii)≤ ( ∑
F ∈F

∑
G∈G∶

πF(G)=F

+ ∑
G∈G

∑
F ∈F∶

πG(F )=G

) ∑
Q∈D∶

π(Q)=(F,G)

=∶ SG⊆F + SG⊇F ,

(3.4)

because of the following observations:

i) Under the condition π(Q) = (F,G), we have F ∩G ≠ ∅. Hence, by dyadic
nestedness, either G ⊆ F or G ⊋ F .

ii) Under the conditions π(Q) = (F,G) and G ⊆ F , we have Q ⊆ G ⊆ F .
Hence F = πF(Q) ⊆ πF(G) ⊆ πF(F ) = F , which implies that πF(G) = F .
Similarly, when π(Q) = (F,G) and F ⊊ G, we have πG(F ) = G.

By symmetry, it suffices to consider the summation SG⊆F in the inequality (3.4).
Under the condition πG(Q) = (F,G), we can write

(3.5) ∫
Q
g dωλQ ∫

Q
f dσ ≤ ∫

Q
gG dωλQ ∫

Q
fF dσ = ∫ gGλQ(∫

Q
fF dσ)1Q dω,

where

gG ∶= ∑
G′∈chG(G)

⟨g⟩ωG′1G′ + g1EG(G),
fF ∶= sup

Q∈D∶
πF(Q)=F

⟨f⟩σQ1Q,

which follows from the following observations:

● If G′ ∈ chG(G) is such that G′ ∩Q ≠ ∅, then, by dyadic nestedness, either
G′ ⊊Q or Q ⊆ G′, the latter of which is excluded by the condition πG(Q) =
G. Therefore

∫
Q
g1G′ dω = ∫

Q
⟨g⟩ωG′1G′ dω,

which implies that

∫
Q
g dω = ∫

Q
( ∑
G′∈chG(G)

1G′ + 1EG(G))g dω
= ∫

Q
( ∑
G′∈chG(G)

⟨g⟩ωG′1G′ + 1EG(G)g)dω =∶ ∫
Q
gG dω.

(3.7)

● By positivity,

∫
Q
f dσ = ∫

Q
⟨f⟩σQ1Q dσ ≤ ∫

Q
( sup

Q∈D∶
πF(Q)=F

⟨f⟩σQ1Q)dσ.

Combining (3.4) and (3.5) yields, by positivity,

SG⊆F ≤ ∑
F ∈F
∫ ( ∑

G∈G∶
πF (G)=F

gG)( ∑
Q∈D∶
Q⊆F

λQ ∫
Q
fF dσ1Q)dω.
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By definition, TF (fFσ) ∶= ∑Q∈D∶
Q⊆F

λQ ∫Q fF dσ1Q. We write GF ∶= ∑ G∈G∶
πF(G)=F

gG. By

Hölder’s inequality, the direct L∞ testing condition (1.7a), and Hölder’s inequality
with the exponents p and q′ (which holds because, by assumption, 1

p
+ 1

q′
≥ 1), we

obtain

SG⊆F ≤ ∑
F ∈F
∫ GFTF (fFσ)dω

≤ ∑
F ∈F

∥GF ∥Lq′

D∗
(ω)
∥TF (fFσ)∥Lq

D
(ω)

≤ T ∑
F ∈F

∥GF ∥Lq′

D∗
(ω)
∥fF ∥L∞

C
σ(F )1/p

≤ T( ∑
F ∈F

∥GF ∥q′
L

q′

D∗
(ω)
)1/q′( ∑

F ∈F

∥fF ∥pL∞
C
σ(F ))1/p.

(3.8)

Next, we estimate the second factor in the right-most side of the inequality (3.8).
We now invoke the properties of the stopping cubes that are stated in Lemma 3.1:
The auxiliary function fF satisfies the L∞ estimate

∥fF ∥L∞
C
≤ 2⟨∣M̄σf ∣C⟩σF ,

and the collection F is σ-sparse. Therefore, by the dyadic Carleson embedding
theorem (Lemma 2.3), and by the universal bound for the dyadic lattice Hardy–
Littlewood maximal function (Theorem 1.4), we obtain

( ∑
F ∈F

∥fF ∥pL∞
C

σ(F ))1/p ≤ 2( ∑
F ∈F

⟨∣M̄σf ∣C⟩pσ(F ))1/p ≤ 4p′∥M̄σf∥Lp

C
(σ)

≤ 4p′∥M̄σ∥Lp

C
(σ)→L

p

C
(σ)∥f∥Lp

C
(σ) ≲p ∥M̄∥Lp

C
→L

p

C
∥f∥Lp

C
(σ).

(3.9)

Finally, we estimate the first factor in the right-most side of the inequality (3.8).
Again, the collection G is ω-sparse. Using the Lp-variant of Pythagoras’ theorem
(Lemma 2.4), and the rearrangement ∑F ∈F ∑ G∈G∶

πF(G)=F
= ∑G∈G yields

( ∑
F ∈F

∥ ∑
G∈G∶

πF (G)=F

gG∥q′
L

q′

D∗
(ω)
)1/q′ ≤ 3q′( ∑

G∈G

∥gG∥q′
L

q′

D∗
(ω)
)1/q′ .

The proof is completed by the estimate

( ∑
G∈G

∥gG∥q′
L

q′

D∗
(ω)
)1/q′ ≤ 3q∥g∥

L
q′

D∗
(ω)

,

which is checked as Lemma 3.2.
�

Lemma 3.2. Let 1 < p ≤ ∞. Let µ be a locally finite Borel measure. Let E be a
Banach space. Assume that S is a sparse collection of dyadic cubes. Let

fS ∶= ∑
S∈chS(S)

⟨f⟩µ
S′
1S′ + f1ES(S).

Then

(∑
S∈S

∥fS∥pLp

E
(µ)
)1/p ≤ 3p′∥f∥Lp

E
(µ).
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Proof. Note that, for each S, the sets {S′}S′∈chS(S) are pairwise disjoint, and the
sets {ES(S)}S∈S are pairwise disjoint. Therefore, by Hölder’s inquality,

(∑
S∈S

∥fS∥pLp

E
(µ)
)1/p

≤ ( ∑
S∈S

∑
S′∈chS(S)

∥⟨f⟩µ
S′
1S′∥pLp

E
(µ)
)1/p + ∥∑

S∈S

1ES(S)f∥Lp

E
(µ)

≤ ( ∑
S′∈S

(⟨∣f ∣E⟩µS′)pµ(S′))1/p + ∥f∥Lp

E
(µ).

Using the dyadic Carleson embedding theorem (Lemma 2.3) completes the proof.
�

3.3. Proof of the A∞ weights characterization. In this subsection, we prove
Theorem 1.5.

Proof. Following verbatim the beginning of the proof of Theorem 1.3 (in particular,
the stopping families are defined similarly), we arrive at:

S ∶= ∫ gT (fσ)dω = ∑
Q∈D
∫
Q
g dωλQ ∫

Q
f dσ

≤ ( ∑
F ∈F

∑
G∈G∶

πF(G)=F

+ ∑
G∈G

∑
F ∈F∶

πG(F )=G

) ∑
Q∈D∶

π(Q)=(F,G)

∫
Q
g dωλQ ∫

Q
f dσ

=∶ SG⊆F + SG⊇F .

(3.10)

By symmetry, it suffices to consider the first summation SG⊆F . Under the condition
π(Q) = (F,G), we obtain, by positivity, that

∫
Q
g dωλQ ∫

Q
f dσ ≤ ∫

Q
gG dωλQ ∫

Q
fF dσ = ∫ gGλQ(∫

Q
fF dσ)1Q dω,(3.11)

where gG ∶= sup Q∈D∶
πG(Q)=G

⟨g⟩ωQ1Q, and fF ∶= sup Q∈D∶
πF(Q)=F

⟨f⟩σQ1Q. Combining (3.10)

and (3.11) yields, by positivity,

SG⊆F ≤ ∑
F ∈F

∑
G∈G∶

πF (G)=F

∫ gG ( ∑
Q∈D∶
Q⊆G

λQ ∫
Q
fF dσ1Q)dω.

(3.12)

By definition, ∑Q∈D∶
Q⊆G

λQ ∫Q fF dσ1Q =∶ TG(fF σ). By the dual pairing L∞ testing

condition (1.12), and by Hölder’s inequality with the exponents p and q′ (which
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holds because, by assumption, 1
p
+ 1

q′
≥ 1) applied twice, we obtain

SG⊆F ∶= ∑
F ∈F

∑
G∈G∶

πF(G)=F

∫ gG TG(fF )dω

≤B ∑
F ∈F

∥fF ∥L∞
C
∑
G∈G∶

πF(G)=F

σ(G)1/p∥gG∥L∞
D∗

ω(G)1/q′

≤B ∑
F ∈F

∥fF ∥L∞
C
( ∑

G∈G∶
πF(G)=F

σ(G))1/p( ∑
G∈G∶

πF (G)=F

∥gG∥q′L∞
D∗

ω(G))1/q′

≤B( ∑
F ∈F

∥fF ∥pL∞
C

( ∑
G∈G∶

πF(G)=F

σ(G)))1/p( ∑
F ∈F

∑
G∈G∶

πF(G)=F

∥gG∥q′L∞
D∗

ω(G))1/q′ .

Since G is ω-sparse, it is ω-Carleson, which follows from the observation

∑
G′∈G∶
G
′⊆G

ω(G′) ≤ 2 ∑
G′∈G∶
G
′⊆G

ω(EG(G′)) = 2ω( ⋃
G
′∈G∶

G′⊆G

EG(G′)) ≤ 2ω(G).

By assumption, σ satisfies the A∞ condition with respect to ω. By Lemma 2.5, the
ω-Carleson collection G is also σ-Carleson. Hence,

∑
G∈G∶

πF(G)=F

σ(G) ≲ [σ]A∞(ω)σ(F ).

Moreover, ∑F ∈F ∑ G∈G∶
πF (G)=F

= ∑G∈G . Altogether,

SG⊆F ≤ 8B[σ]1/pA∞(ω)
( ∑
F ∈F

∥fF ∥pL∞
C

σ(F ))1/p( ∑
G∈G

∥gG∥q′L∞
D∗

ω(G))1/q′ .
The proof is completed by estimating each factor on the right-hand side of this
inequality as in (3.9). �

4. Unweighted characterization under alternative assumptions

In this section, we prove Theorem 1.7. First, we reduce the theorem to the
existence of an auxiliary collection F of dyadic cubes, and an auxiliary family{fF}F ∈F of functions (Lemma 4.1). Then, we construct these auxiliary quantities
by using stopping conditions.

4.1. Reduction to the existence of a stopping family.

Lemma 4.1 (Reduction of the characterization). Let E be a Banach lattice. Let
1 < p < t ≤ ∞. Let f ∶ Rd → E+ be a non-negative, locally integrable function.

Assume that there exists a collection F of dyadic cubes and a family {fF}F ∈F
of auxiliary functions that satisfy the following properties:

a) The family {fF}F ∈F satisfies the replacement rule:

(4.1) ∫
Q
f dµ ≤ ∫

Q
fF dµ whenever Q ∈ D and F ∈ F such that πF(Q) = F .
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b) The family {fF}F ∈F satisfies the norm estimate:

(4.2) ∥fF ∥Lt
E
(µ) ≲ ⟨∣If ∣E⟩µFµ(F )1/t for every F ∈ F .

Here, I ∶ Lp
E(µ) → L

p
E(µ) is an auxiliary operator that is bounded with∥I∥Lp

E
(µ)→L

p

E
(µ) ≲ 1. For example, I can be the identity operator.

c) We have the norm estimate:

(4.3) ∥ ∑
Q∈D∶

πF(Q)=F

λQ ∫
Q
f dµ1Q∥L∞

E
≤ 4⟨∣T (fµ)∣E⟩F .

d) The collection F is sparse.

Furthermore, assume that the operator T ( ⋅µ) ∶ Lp
E(µ) → L

p
E(µ) satisfies the end-

point Lt testing condition:

(4.4) ∥TR(fµ)∥L1

E
(µ) ≤Bt∥f∥Lt

E
(R,µ)µ(R)1−1/t

for every R ∈ D, and f ∈ Lt
E(R,µ).

Then, we have the norm estimate

∥T (fµ)∥Lp

E
(µ) ≲p Bt∥f∥Lp

E
.

Proof of Lemma 4.1. By the Lp variant of Pythagoras’ theorem (Lemma 2.4), and
by the replacement rule (4.1), we obtain

∥T (fµ)∥Lp

E
(µ) = ∥∑

Q∈D

λQ ∫
Q
f dµ1Q∥Lp

E
(µ)

≲p ( ∑
F ∈F

∥ ∑
Q∈D∶

πF (Q)=F

λQ ∫
Q
f dµ1Q∥pLp

E
(µ)
)1/p

≤ ( ∑
F ∈F

∥ ∑
Q∈D∶

πF(Q)=F

λQ ∫
Q
f dµ1Q∥p−1L∞

E
(µ)
∥ ∑

Q∈D∶
πF(Q)=F

λQ ∫
Q
fF dµ1Q∥L1

E
(µ))1/p.

The first factor is estimated by the norm estimate (4.3). For the second factor, from
the endpoint Lt testing condition (4.4), and the norm estimate for the auxiliary
functions (4.2), it follows that

∥ ∑
Q∈D∶

πF(Q)=F

λQ ∫
Q
fF dµ1Q∥L1

E
(µ) ≤ ∥TF (fFµ)∥L1

E
(µ)

≤Bt∥fF ∥Lt
E
(µ)µ(F )1−1/t ≲Bt ∑

F ∈F

⟨∣If ∣E⟩µFµ(F ).
Altogether,

∥T (fµ)∥Lp

E
(µ) ≲p B

1/p
t ( ∑

F ∈F

⟨∣T (fµ)∣E⟩p−1F µ(F )1/p′⟨∣If ∣⟩µFµ(F )1/p)1/p.
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By Hölder’s inequality, the dyadic Carleson embedding theorem (Lemma 2.3), and
the assumption that ∥I∥Lp

E
(µ)→L

p

E
(µ) ≲ 1, we obtain

∥T (fµ)∥Lp

E
(µ) ≤B1/p

t (( ∑
F ∈F

⟨∣T (fµ)∣E⟩pFµ(F ))1/p)
1/p′

(( ∑
F ∈F

(⟨∣If ∣⟩µF )pµ(F ))1/p)
1/p

≲ ∥T (fµ)∥1/p′
L

p

E
(µ)
(Bt∥If∥Lp

E
(µ))1/p

≲ ∥T (fµ)∥1/p′
L

p

E
(µ)
(Bt∥f∥Lp

E
(µ))1/p.

Dividing out the factor ∥T (fµ)∥1/p′
L

p

E
(µ)

completes the proof. �

4.2. Table of stopping families. Note that we can use multiple stopping con-
ditions in order to use multiple auxiliary families of functions, while keeping the
estimate for each family of auxiliary functions and keeping the measure condition
(sparseness). This is based on the following observations. Let A and B be condi-
tions for cubes. (By a condition for cubes it is meant a condition such that of each
cube it can be said whether the cube satisfies the condition or not.)

● (Keeping the measure condition) If chFA
(F ) is the collection of all the

maximal F ′ ∈ {F ′ ∈ D ∶ F ′ ⊆ F} that satisfy the condition A, and chFB
(F )

is the collection of all the maximal F ′ ∈ {F ′ ∈ D ∶ F ′ ⊆ F} that satisfy
the condition B, then the collection chF(F ) of all the maximal F ′ ∈ {F ′ ∈
D ∶ F ′ ⊆ F} that satisfy the condition A or the condition B is the union
chF(F ) = chFA

(F )⋃ chFB
(F ). We have the measure condition:

∑
F ′∈chF(F )

µ(F ′) ≤ ∑
F ′∈chFA

(F )

µ(F ′) + ∑
F ′∈chFB

(F )

µ(F ′).
● (Keeping the estimate for each family of auxiliary functions) If Q ∈ {Q ∈
D ∶ Q ⊆ F} is such that Q ⊆ F ′ for no F ′ ∈ chFA

(F )⋃ chFB
(F ), then, by

maximality, Q satisfies neither the condition A nor the condition B.

Now, by the reduction (Lemma 4.1), Theorem 1.7 follows from using the stopping
conditions of Table 1, tailored for each assumption:

i) Assume the Hardy–Littlewood property: Use the stopping condition and
the auxiliary family A together with the stopping condition D. (That is,
the stopping children chF(F ) of F is defined as the collection of all the
maximal dyadic cubes F ′ ∈ {F ′ ∈ Q ∶ F ′ ⊆ F} that satisfy the stopping
condition A or the stopping condition D. The auxiliary collection F is the
collection defined by chF . The auxiliary family {fF }F ∈F is the family A.)

ii) Assume that the measure is doubling: Use the stopping condition and the
auxiliary family B together with the stopping condition D.

iii) Assume the Lt testing condition: Use the stopping condition and the aux-
iliary family C together with the stopping condition D.
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Table 1. Let E be a Banach lattice, µ a locally finite Borel mea-
sure, and f ∶ Rd → E+ a positive, locally integrable function.
Let F ∈ D. The stopping children chF(F ) of F determined by
a stopping condition is defined as the collection of all the max-
imal F ′ ∈ {F ′ ∈ D ∶ F ′ ⊆ F} that satisfy the stopping condi-
tion. The family {Q ∈ D ∶ πF(Q) = F} is the collection of all
Q ∈ {Q ∈ D ∶ Q ⊆ F} such that Q ⊆ F ′ for no F ′ ∈ chF(F ). In
particular, πF(Q) = F implies that Q does not satisfy the stopping
condition. The properties listed in the table are proven in Lemma
3.1, Lemma 4.2, and Lemma 4.3.

A
Stopping condition ∣supQ∈D∶

Q⊇F ′
⟨f⟩µQ∣E > 4⟨∣M̄

µf ∣E⟩µF .

Auxiliary function fF ∶= sup Q∈D∶
πF (Q)=F

⟨f⟩µ
Q
1Q.

Estimate ∥fF ∥L∞
E
(µ) ≤ 4⟨∣M̄µf ∣E⟩µF .

A’
Stopping condition ∣sup Q∈D∶

F⊇Q⊇F ′
⟨f⟩µ

Q
∣E ≥ 4∥M̄µ∥

L1

E
(µ)→L

1,∞
E

(µ)
⟨∣f ∣E⟩µF

Auxiliary function fF ∶= sup Q∈D∶
πF (Q)=F

⟨f⟩µ
Q
1Q.

Estimate ∥fF ∥L∞
E
≤ 4∥M̄µ∥

L1

E
(µ)→L

1,∞
E

(µ)
⟨∣f ∣E⟩µF

B

Stopping condition ⟨∣f ∣E⟩µF ′ > 4⟨∣f ∣E⟩
µ

F
.

Auxiliary function fF ∶= ∑F ′∈chF (F )
⟨f⟩µ

F ′
1F ′ + f1E(F )

Estimate ∥fF ∥L∞
E
≤ 4( supF ′∈chF (F )

µ(F̂ ′)

µ(F ′)
)⟨∣f ∣E⟩µF ,

where F̂ ′ denotes the dyadic parent of F ′.

C

Stopping condition ⟨∣f ∣E⟩µF ′ > 4⟨∣f ∣E⟩
µ

F
.

Auxiliary function fF ∶= ∑F ′∈chF (F ) ∫F ′ f dµ
1 ˆF ′

µ(F̂ ′)
+ f1E(F ),

where F̂ ′ denotes the dyadic parent of F ′.

Estimate ∥fF ∥Lt ≲t ⟨∣f ∣E⟩µFµ(F )
1/t.

D
Stopping condition ∣∑Q∈D∶

Q⊇F ′
λQ ∫Q f dµ∣E > 4⟨∣Tλ(fµ)∣E⟩F .

Auxiliary function fF ∶= ∑ Q∈D∶
πF (Q)=F

λQ ∫Q f dµ1Q.

Estimate ∥fF ∥L∞
E
(µ) ≤ 4⟨∣Tλ(fµ)∣E⟩F .

In the cases A, B, and C, the auxiliary function fF satisfies the replacement rule:

∫
Q
f dµ ≤ ∫

Q
fF dµ whenever πF(Q) = F.

The stopping children chF(F ) determined by each stopping condition satiesfies the mea-
sure condition (sparseness):

∑
F ′∈chF (F )

µ(F ′) ≤ 1

4
µ(F ).
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Lemma 4.2 (Particular stopping family). Let µ be a locally finite Borel measure.
Let E be a Banach lattice. Let D be a finite collection of dyadic cubes. Let
f ∶ Rd → E be a non-negative, locally integrable function.

For each F ∈ D, the stopping children ch(F ) of F is defined as the collection of
all the maximal F ′ ∈ {F ′ ∈ D ∶ F ′ ⊆ F} that satisfy the stopping condition

(4.5) ∣ ∑
Q∈D∶
Q⊇F ′

λQ ∫
Q
f dµ∣E > 4⟨∣∑

Q∈D

λQ ∫
Q
f dµ1Q∣E⟩F .

Recall that {Q ∈ D ∶ πF(Q) = F} denotes the collection of all Q ∈ {Q ∈ D ∶ Q ⊆ F}
such that Q ⊆ F ′ for no F ′ ∈ chF(F ).

Then,

(4.6) ∑
F ′∈chF(F )

µ(F ′) ≤ 1

4
µ(F ),

and

(4.7) ∥ ∑
Q∈D∶

πF(Q)=F

λQ ∫
Q
f dµ1Q∥L∞

E
≤ 4⟨∣∑

Q∈D

λQ ∫
Q
f dµ1Q∣E⟩F .

Proof. First, we check (4.6). By the stopping condition (4.5),

⟨∣∑
Q∈D

λQ ∫
Q
f dµ1Q∣E⟩F ≥ ∑

F ′∈chF (F )

µ(F ′)
µ(F ) ∣ ∑Q∈D∶

Q⊇F ′

λQ ∫
Q
f dµ∣E

≥ ∑
F ′∈chF (F )

µ(F ′)
µ(F ) 4⟨∣∑Q∈D λQ ∫

Q
f dµ1Q∣E⟩F .

Dividing out the factor ⟨∣∑Q∈D λQ ∫Q f dµ1Q∣E⟩F yields ∑F ′ µ(F ′) ≤ 1
4
µ(F ).

Finally, we check (4.7). Fix x ∈ ⋃Q∈D∶πF(Q)=F . Let Qx ∈ D be the minimal
dyadic cube (which exists because, by assumption, the collection D is finite) such
that πF(Q) = F and Q ∋ x. Note that πF(Q) = F implies that Q does not satisfy
thestopping condition (4.5). Therefore,

∣ ∑
Q∈D∶

πF(Q)=F

λQ ∫
Q
f dµ1Q(x)∣E ≤ ∣ ∑

Q∈D∶
Q⊇Qx

λQ ∫
Q
f dµ∣ ≤ 4⟨∣∑

Q∈D

λQ ∫
Q
f dµ1Q∣E⟩F .

�

A collection D of dyadic cubes is a truncated dyadic system if

D = {Q ∶ Q ⊆ Q0, ℓ(Q) ≥ 2−N ℓ(Q0)}
for some dyadic cube Q0 and some non-negative integer N . Let D∗ denote the
collection of all the minimal dyadic cubes in a collection D of dyadic cubes. Define
the finest averaging by

E
µ
D∗

f ∶= ∑
Q∈D∗

⟨f⟩µQ1Q.
Lemma 4.3 (Properties of the Muckenhoupt–Wheeden principal cubes). Let E be
a Banach lattice. Let µ be a locally finite Borel measure. Let D be a truncated
dyadic system. Let f ∶ Rd → E+ be a locally integrable, non-negative function.
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For each dyadic cube F ∈ D, the stopping children chF(F ) of F is defined as the
collection of all the maximal dyadic cubes F ′ ∈ {F ′ ∈ D ∶ F ′ ⊆ F} that satisfy the
stopping condition

(4.8) ⟨∣f ∣E⟩µF ′ > 2⟨∣f ∣E⟩µF .
Recall that {Q ∈ D ∶ πF(Q) = F} denotes the collection of all Q ∈ {Q ∈ D ∶ Q ⊆ F}
such that Q ⊆ F ′ for no F ′ ∈ chF(F ). Then,

a) The stopping children are sparse:

∑
F ′∈chF(F )

µ(F ′) ≤ 1

2
µ(F ).

b) The terms of the auxiliary functions satisfy the norm estimates:

∥Eµ
D∗

f1EF(F )∥L∞E ≲ ⟨∣f ∣E⟩µF(4.9a)

∥ ∑
F ′∈chF (F )

⟨f⟩µF ′1F ′∥L∞E ≲ ( sup
F ′∈chF (F )

µ(F̂ ′)
µ(F ′))⟨∣f ∣E⟩µF(4.9b)

∥ ∑
F ′∈chF(F )

∫
F ′

f dµ
1
F̂ ′

µ(F̂ ′)∥Lt
E
≲t ⟨∣f ∣E⟩µFµ(F )1/t,(4.9c)

where F̂ ′ denotes the dyadic parent of F ′.
c) The auxiliary functions satisfy the replacement rules:

(4.10) ∫
Q
f dµ ≤ ∫

Q
fF dµ whenever πF(Q) = F ,

for the auxiliary function

fF ∶= ∑
F ′∈chF (F )

⟨f⟩µF ′1F ′ + f1EF(F ),
and for the auxiliary function

fF ∶= ∑
F ′∈chF (F )

∫
F ′

f dµ
1
F̂ ′

µ(F̂ ′) + f1EF(F ).
Proof. First, we check the inequality (4.9a). By maximality, if Q ⊆ F satisfies⟨∣f ∣E⟩µQ > 2⟨∣f ∣E⟩µF , then Q ⊆ F ′ for some F ′ ∈ chF(F ). By contraposition, if Q ⊆ F
and there is no F ′ ∈ ch(F ) such that Q ⊆ F ′, then Q satisfies ⟨∣f ∣E⟩µQ ≤ 2⟨∣f ∣E⟩µF .
Note that

EF(F ) = ⋃
Q∈D∗∶Q⊆F but

Q ⊆ F
′ for no F

′ ∈ chF (F )

Q.

Therefore,

∣Eµ
D∗

f ∣E1EF(F ) ≤ ∑
Q∈D∗∶Q⊆F but

Q ⊆ F ′ for no F ′ ∈ chF (F )

⟨∣f ∣E⟩µQ1Q ≤ 2⟨∣f ∣E⟩µF .

Next, we check the inequality (4.9b). On the one hand, ⟨∣f ∣E⟩µF ′ ≤ µ(F̂ ′)
µ(F ′)

⟨∣f ∣E⟩µ
F̂ ′
,

and, on the other hand, by the stopping condition, ⟨∣f ∣E⟩µ
F̂ ′
≤ 2⟨∣f ∣E⟩µF ; combining

these estimates yields the inequality (4.9b).
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Next, we note that the inequality (4.9c) follows from Lemma 4.4 together with
the stopping condition:

∥ ∑
F ′∈chF (F )

∫
F ′

f dµ
1
F̂ ′

µ(F̂ ′)∥Lt
E
(µ) ≲t ( sup

F ′∈chF (F )

⟨∣f ∣E⟩µ
F̂ ′
)1/t′(∫

⋃F ′ F
′
∣f ∣E dµ)1/t

≤ 21/t′⟨∣f ∣E⟩µFµ(F )1/t.
Finally, we check the replacement rule (4.10). Assume that πF(Q) = F . We

write

∫
Q
f dµ = ∑

F ′∈chF (F )
∫
Q
f1F ′ dµ + ∫

Q
1EF(F )f dµ.

Assume that Q and F ′ are such that F ′∩Q ≠ ∅. Then, by dyadic nestedness, either
F ′ ⊊ Q or Q ⊆ F ′, the latter of which is excluded by the condition πF(Q) = F .

Therefore, F ′ ⊊ Q (and, hence, F̂ ′ ⊆ Q). Now,

∫
Q
f1F ′ dµ = ∫

F ′
f dµ = ∫

Q
⟨f⟩µF ′1F ′ dµ,

and

∫
Q
f1F ′ dµ = ∫

Q
(∫

F ′
f dµ) 1

F̂ ′

µ(F̂ ′) dµ.
�

Remark. We note that if the collection D is such that it contains cubes Q ∈ D
shrinking to almost every point x ∈ EF(F ), then, by the Lebesgue differentiation
theorem,

∣f ∣E1EF(F ) = lim
N→∞

∣Eµ

{Q∈D∶ℓ(Q)≥2−N}
f ∣E1EF(F ) ≤ 2⟨∣f ∣E⟩µF .

The finest averaging operator Eµ
D∗

appears in the lemma because we assume that

the collection D is finite (and, therefore, has no shrinking cubes).
This appearance is harmless when we are considering quantities that only take

into account the finest averaging: For example, ∥Eµ
D∗

f∥Lp

E
(µ) ≤ ∥f∥Lp

E
(µ), and, when-

ever D is a truncated dyadic system,

M̄
µ
Df = M̄µ

D(Eµ
D∗

f), and TD(fµ) = TD((Eµ
D∗

f)µ).
Observe that, in the definition TD(fµ) ∶= ∑Q∈D λQ ∫Q f dµ1Q, we may assume that

D is a truncated dyadic system (by including some zero coefficients λQ, if necessary).

Lemma 4.4 (Lemma 3.3 in [13], by López-Sánchez, Martell, and Parcet). Let
1 ≤ p < ∞. Let µ be a locally finite Borel measure. Let h be a non-negative real-
valued function. Let {R} be a collection of pairwise disjoint dyadic cubes. Then

∥∑
R
∫
R
hdµ

1
R̂

µ(R̂)∥Lp(µ) ≲p ( sup
R

⟨h⟩µ
R̂
)1/p′(∫

⋃R R
hdµ)1/p.

5. Corollaries

In this section, we state some corollaries of the characterization of the bounded-
ness of the operator Tλ( ⋅µ) ∶ Lp

C(µ) → L
p
D(µ) by the dual pairing testing condition

(1.12), or, equivalently, by the endpoint testing condition (1.17a).
First, Theorem 1.5 provides an alternative proof for the following well-known

John–Nirenberg-type inequality:
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Corollary 5.1 (John–Nirenberg-type inequality). Let µ be a locally finite Borel
measure. Let {λQ}Q∈D be non-negative real numbers. Then, for each 1 < p <∞, we
have

sup
R∈D

1

µ(R)∥ ∑Q∈D∶
Q⊆R

λQ1Q∥L1(µ) ≂p sup
R∈D

1

µ(R)1/p ∥ ∑Q∈D∶
Q⊆R

λQ1Q∥Lp(µ).

Proof. The equivalence follows from observing that the left-hand side of the in-
equality is the end-point direct L∞ testing constant (1.17a) and the right-hand side
is the direct L∞ testing constant (1.7a) for the operator T ( ⋅µ) ∶ Lp(µ) → Lp(µ)
defined by T (fµ) ∶= ∑Q∈D λQ⟨f⟩µQ1Q. �

The next embedding theorem was proven by Nazarov, Treil, and Volberg [16]
by using the Bellman function method; an alternative proof for this theorem is
provided by Theorem 1.5.

Corollary 5.2 (Embedding theorem, Theorem 3.1 in [16]). Let µ be a locally finite
Borel measure. Let {βQ} be non-negative real numbers. Let T ( ⋅µ) be defined by
T (fµ) ∶= {⟨f⟩µQ1Q}Q∈D, so that

∣T (fµ)∣ℓs(D,β) ∶= ( ∑
Q∈D

βQ(⟨f⟩µQ1Q)s)1/s.
Then, the following assertions are equivalent:

i) T ( ⋅µ) ∶ Lp(µ)→ L
p

ℓs(D,β)
(µ) is bounded for all 1 < p, s <∞.

ii) T ( ⋅µ) ∶ Lp0(µ)→ L
p0

ℓs0(D,β)
(µ) is bounded for some 1 < p0, s0 <∞.

iii) The direct testing constant

Tp0

s0
∶= sup

R∈D

∥TR(1µ)∥Lp0
ℓs0(D,β)

µ(R)1/p0

is finite for some 1 < p0, s0 <∞.
iv) The Carleson constant

C ∶= sup
R∈D

1

µ(R) ∑Q∈D∶
Q⊆R

βQµ(Q)

is finite.

Quantitatively, we have:

∥T ( ⋅µ)∥sLp(µ)→L
p

ℓs(D,β)
(µ) ≲p,s C ≲s0 (Tp0

s0
)s0 ≤ ∥T ( ⋅µ)∥s0

Ls0(µ)→L
s0
ℓs0(D,β)

(µ)
.

Proof. We observe that Ts
s = C1/s for every s ∈ (1,∞). First, we prove that iii)

implies iv) via the dual pairing testing. By Hölder’s inequality, the direct testing
condition implies the dual pairing testing condition:

Ps0 ∶= sup
R∈D

sup
f∈L∞(R,µ),

g∈L∞

ℓ
s′
0 (D,β)

(R,µ),

∣∫ gTR(fµ)dµ∣∥g∥L∞
ℓ
s′
0(D,β)

(R,µ)∥f∥L∞(R,µ)µ(R)

≤ sup
R∈D

∥TR(1R µ)∥Lp0
ℓs0 (D,β)

µ(R)1/p0

=∶ Tp0

s0
.
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Hence, by Theorem 1.5, we have ∥T ( ⋅µ)∥Lp(µ)→L
p

ℓs0(D,β)
(µ) ≲p,s0 Tp0

s0
for every p ∈

(1,∞), which in particular (for p = s0) implies that

C1/s0 = Ts0
s0
≤ ∥T ( ⋅µ)∥Ls0(µ)→L

s0
ℓs0(D,β)

(µ) ≲s0 Tp0

s0
.

Next, we prove that iv) implies i) via the dual pairing testing condition. Again,

by Hölder’s inequality, for every s ∈ (1,∞), we have Ps ≤ Ts
s = C1/s. Hence, by

Theorem 1.5, ∥T ( ⋅µ)∥Lp(µ)→L
p

ℓs(D,β)
(µ) ≲p,s C

1/s for every p, s ∈ (1,∞).
�

Finally, Theorem 1.5 provides an extension of the dyadic Carleson embedding
theorem for the class of matrices whose all entries are non-negative:

Corollary 5.3 (L∞ version of the Carleson embedding theorem for matrices with
non-negative entries). Let µ be a locally finite Borel measure. Let {λQ}Q∈D be such
that each λQ ∶ ℓ

2 → ℓ2 is a symmetric (infinite dimensional) matrix whose all entries
are non-negative. Then

(5.1) sup
f∈L2

ℓ2
(µ)

∑Q∈D(⟨f⟩µQ)tλQ⟨f⟩µQ∥f∥2
L2

ℓ2
(µ)

≂ sup
R∈D

sup
f∈L∞

ℓ2
(R,µ)

∑Q∈D∶Q⊆R(⟨f⟩µQ)tλQ⟨f⟩µQ∥f∥2
L∞

ℓ2
(R,µ)

µ(R) .

Proof. A well-known trick of depolarisation can be phrased as follows: Let (V, ∥ ⋅ ∥V )
be a normed vector space, and let B( ⋅ , ⋅ ) ∶ V ×V → R be a symmetric bilinear form.
Assume thatB(v, v) ≲ ∥v∥2V for all v ∈ V . Then B(v, v′) ≲ ∥v∥V ∥v′∥V for all v, v′ ∈ V .
From this trick, it follows that

(5.2) sup
R∈D

sup
f∈L∞

ℓ2
(R,µ),g∈L∞

ℓ2
(R,µ)

∑Q∈D∶Q⊆R(⟨f⟩µQ)tλµ
Q
⟨g⟩Q

∥f∥L∞
ℓ2
(R,µ)∥g∥L∞

ℓ2
(R,µ)µ(R) ≲ R.H.S(5.1).

The left-hand side of the equation (5.2) is the dual pairing testing constant for the
dual norm inequality ∑Q∈D λQ(⟨f⟩µQ)tλQ⟨g⟩µQ ≲ ∥f∥L2

ℓ2
(µ)∥g∥L2

ℓ2
(µ). �

6. Questions about the borderline of the vector-valued testing

conditions

The questions are posed in the unweighted case since the answers are unknown
even in this case. The first question is about weakening the type of the testing
condition in the characterization. The operator T ( ⋅µ) ∶ Lp

E(µ) → L
p
E(µ) satisfies

the constant function testing condition if

(6.1) ∥TR(e1Rµ)∥Lp

E
(µ) ≤S∣e∣Eµ(R)1/p

for every R ∈ D, and every e ∈ E. This testing condition is weaker than the direct
L∞ testing conditions (1.7) in that S ≤ T. Note that, in the real-valued case,
this testing condition and the L∞ testing condition both coincide with the Sawyer
testing condition (1.8).

Question 6.1 (Borderline case: Can we use the testing condition (6.1) in Theorem
1.3 in place of the L∞ testing condition (1.7)?). In particular, contrasting with
Theorem 1.3, is it true that there exists a constant C such that

sup
f∈L2

ℓ2

∥∑Q∈D λQ⟨f⟩Q1Q∥L2

ℓ2∥f∥L2

ℓ2

≤ C sup
R∈D

sup
a∈ℓ2

∥(∑Q∈D∶Q⊆R λQ1Q)a∥L2

ℓ2∣a∣ℓ2 ∣R∣1/2
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for all {λQ}Q∈D such that each λQ ∶ ℓ
2 → ℓ2 is a symmetric matrix whose all entries

are non-negative? Or, contrasting with Theorem 1.5, is it true that there exists a
constant C such that

(6.2) sup
f∈L2

ℓ2

∑Q∈D⟨f⟩tQλQ⟨f⟩Q
∥f∥2

L2

ℓ2

≤ C sup
R∈D

∥∑Q∈D∶Q⊆R λQ∥ℓ2→ℓ2

∣R∣
for all {λQ}Q∈D such that each λQ ∶ ℓ

2 → ℓ2 is a symmetric matrix whose all entries
are non-negative?

Remark. We note that Nazarov, Treil, and Volberg [18] proved that the estimate
(6.2) fails for a different class of matrices: the class of positive-semi-definite matri-
ces. Recall that a symmetric matrix M is positive-semi-definite if xtMx ≥ 0 for all
column vectors x.

In our characterizations, the assumption that the Banach space has the Hardy–
Littlewood property can be replaced by assuming that the measure is doubling, or
by strenghtening the testing condition (see Theorem 1.7). The second question is
about omitting every additional assumption.

Question 6.2 (Borderline case: Can we omit every additional assumptions in
Theorem 1.7?). Let p ∈ (1,∞). Let (E, ∣ ⋅ ∣E ,≤) be a Banach lattice. Let µ be a locally
finite Borel measure. Then, is is true that the operator Tλ( ⋅ ) ∶ Lp

E(µ) → L
p
E(µ) is

bounded if and only if it satisfies the direct L∞ testing condition (1.7a)?

Appendix A. On the dyadic lattice Hardy–Littlewood maximal

operator

A.1. Dyadic and the centered lattice maximal function are comparable.

The dyadic Hardy–Littlewood maximal function M̄Df is defined by

M̄Df(x) ∶= sup
Q∈D∶Q∋x

⟨f⟩Q,
where D is a collection of dyadic cubes, and the centered lattice Hardy–Littlewood
maximal function M̄J is defined by

M̄Jf(x) ∶= sup
r∈J

⟨f⟩B(x,r),
where J is a finite set of radii. For the Lebesgue measure, these maximal functions
are pointwise comparable in the lattice order: For each finite collection D of dyadic
cubes, there exists a finite set J of radii such that M̄Df(x) ≤ M̄JDf(x) for every
x ∈ R

d. Conversely, for each finite set J of radii, there exist collections Dα
J of

(shifted) dyadic cubes such that M̄Jf(x) ≤ ∑α M̄Dα
J
f(x) for every x ∈ Rd.

This comparision follows from the following well-known observation: For each
dyadic cube Q ∈ D, there exists a ball B such that Q ⊆ B and ∣Q∣ ≂ ∣B∣. Conversely,
for each ball B, there exists a dyadic cube Q in some shifted dyadic system Dα such
that B ⊆ Q and ∣B∣ ≂ ∣Q∣. For a proof, see, for example, [8, Lemma 2.5]. Recall
that, for each α ∈ {0, 1

3
}d, the shifted dyadic system Dα on R

d is defined by

D
α ∶= {2−k([0,1)d + (−1)kα + j) ∶ k ∈ Z, j ∈ Zd}.
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A.2. Universal norm bound. The universal bound for the lattice maximal op-
erator,

∥M̄µ∥Lp

E
(Rd,µ)→L

p

E
(Rd,µ) ≲p ∥M̄∥Lp

E
(Rd)→L

p

E
(Rd),

follows from either of the following techniques:

● The boundedness of the dyadic real-valued maximal function is charac-
terized by means of the existence of a Bellman function, by Nazarov and
Treil [17, Section 1]. This characterization works also for the dyadic lattice
maximal function.
● In the spirit of Burkolder’s [2] characterization of the boundedness of the
martingale transform, the boundedness of the martingale Rademacher max-
imal function is characterized by means of the existence of an auxiliary func-
tion with certain boundedness and concavity properties, by Kemppainen [9,
Section 7]. This characterization works also for the dyadic lattice maximal
function, once the Rademacher bound is replaced by the lattice supremum.
This together with an unpublished manuscript containing the proof was
communicated to the author by Kemppainen.

For reader’s convenience, we represent a proof for the universal bound. The uni-
versal bound follows from Proposition A.1 and Proposition A.2 together with the
observation that

∥M̄∥Lp

E
(R)→L

p

E
(R) ≤ ∥M̄∥Lp

E
(Rd)→L

p

E
(Rd).

These propositions follow from Nazarov and Treil’s [17, Section 1] Bellman function
technique.

Proposition A.1 (Boundedness implies the existence of a Bellman function, [17]).
Let (E, ∣ ⋅ ∣,≤) be a Banach lattice. Assume that there exists a constant B such that

∥M̄D∥Lp

E
(R)→L

p

E
(R) ≤B

for all finite collections D of dyadic intervals. Then, there exists a Bellman function
B(f,F,L) ∶ E+ ×R+ ×E+ → R+ that has the following properties:

i) (Boundedness from below) ∣L∣PE ≤ B(f,F,L) whenever 0 < ∣f ∣pE ≤ F , or f = 0
and F = 0.

ii) (Boundedness from above) B(f,F,L) ≲p Bp(F + ∣L∣pE).
ii) (Invariance) B(f,F,L) = B(f,F, sup{L,f}).
iv) (Concavity) For each L ∈ E, the function (f,F ) ↦ B(f,F,L) is midpoint

concave.

Remark. Since every midpoint concave function that is locally bounded from below
is concave (for a proof, see, for example, [9, Section 7]), the function (f,F ) ↦
B(f,F,L) is in fact concave.

Proof from [17]. For each I ∈ D, the function BI(f,F,L) ∶ E+ × R+ × E+ → R+ is
defined by

BI(f,F,L) ∶= sup{ 1

∣I ∣ ∫I ∣sup{ sup
J ∶J⊆I

ℓ(J)≥2−Nℓ(I)

⟨φ⟩J1J , L}∣pE dx ∶

∶ φI ∶ R
d
→ E+ is locally integrable and satisfies

⟨φI⟩I = f and ⟨∣φI ∣pE⟩I = F, N ∈ N}.
(A.1)
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By self-similarity of the dyadic intervals, the function BI does not depend on the
interval I and can be denoted by B. This Bellman function is introduced by Nazarov
and Treil [17, Section 1]. In the real-valued case (that is, E = R), it is explicitly
computed by Melas [14, Theorem 1].

Next, we check the properties for the Bellman function B. The boundedness
from below holds because for each f ∈ E+ and F ∈ R+ such that 0 < ∣f ∣pE ≤ F there

exists φ ∶ Rd → E+ such that ⟨φ⟩I = f and ⟨∣φ∣pE⟩ = F . The boundedness from above
follows from the assumed norm estimate. The invariance follows from observing
that, under the constraint ⟨φ⟩I = f , both the vector f and the vector L belong to
the set {⟨φ⟩J1J , L} J ∶J⊆I,

ℓ(J)≥2−N
ℓ(I)

of which the lattice supremum is taken.

Finally, we check the midpoint concavity. Let I− and I+ be the dyadic children of
I. Let φI− be such that ⟨φI− ⟩I− = f− and ⟨∣φI− ∣pE⟩I− = F−, and, similarly, φI+ be such
that ⟨φI+⟩I+ = f+ and ⟨∣φI+ ∣pE⟩I+ = F+. Now, the function φI ∶= φI− + φI+ satisfies

f ∶= ⟨φI⟩I = 1
2
(⟨φI−⟩I− + ⟨φI+ ⟩I+) = 1

2
(f− + f+), and F ∶= ⟨∣φI ∣pE⟩I = 1

2
(⟨∣φI− ∣pE⟩I− +⟨∣φI+ ∣pE⟩I+) = 1

2
(F− + F+). We estimate

1

2

1

∣I−∣ ∫I− ∣sup{ sup
J ∶J⊆I−

ℓ(J)≥2−Nℓ(I−)

⟨φI−⟩J1J , L}∣pE dx

+
1

2

1

∣I+∣ ∫I+ ∣sup{ sup
J ′ ∶J ′⊆I+

ℓ(J ′)≥2−N
′
ℓ(I+)

⟨φI+⟩J1J , L}∣pE dx

= 1

∣I ∣ ∫I ∣sup{ sup
J,J

′∶J⊆I−,J
′⊆I+

ℓ(J)≥2−Nℓ(I−),ℓ(J)≥2
−N ′ℓ(I+)

⟨φI⟩J1J , L}∣pE dx

≤ 1

∣I ∣ ∫I ∣sup{ sup
J ∶J⊆I,

ℓ(J)≥2−(max{N,N ′}+1)ℓ(I)

⟨φI⟩J1J , L}∣pE dx

≤ B(f,F,L),
from which the midpoint concavity follows by taking the suprema. �

Remark. An alternative Bellman function can be defined as follows. For each I ∈ D,
the function B̃I(f,F,A) ∶ E+ ×R+ × {A ⊆ E+ ∶ A finite}→ R+ is defined by

B̃I(f,F,A) ∶= sup{ 1

∣I ∣ ∫I ∣sup (A ∪ {⟨φ⟩J1J} J ∶J⊆I
ℓ(J)≥2−Nℓ(I)

)∣pE dx ∶

∶ φI ∶ R
d
→ E+ is locally integrable and satisfies

⟨φI⟩I = f and ⟨∣φI ∣pE⟩I = F, N ∈ N}.
(A.2)

Again, by self-similarity of the dyadic intervals, the function B̃I does not depend
on the dyadic interval I. Hence, it can be denoted by B̃. The function B̃(f,F,A)
has the following properties:

i’) (Boundedness from below) ∣supA∣PE ≤ B̃(f,F,L) whenever 0 < ∣f ∣pE ≤ F , or
f = 0 and F = 0.

ii’) (Boundedness from above) B̃(f,F,A) ≲p Bp(F + ∣supA∣pE)
iii’) (Invariance) B̃(f,F,A) = B̃(f,F,A ∪ {f})
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iv’) (Concavity) For each finite A ⊆ E+, the function (f,F ) ↦ B̃(f,F,A) is
midpoint concave,

By considering the Rademacher bound R(A) in place of the lattice supremum

supA, the Bellman function B̃(f,F,A) can be viewed as a variant of the auxiliary
function that was introduced by Kemppainen [9, Proposition 7.1] to characterize
the boundedness of the Rademacher maximal function RQ∈D⟨f⟩Q1Q.

We remark that, in the case of the lattice supremum, the function B̃(f,F,A)
defined in (A.2) reduces to the Bellman function B(f,F,L) defined in (A.1) by using

the identity B̃(f,F,A) = B(f,F, supA), whereas, in the case of the Rademacher
bound, there is no such a reduction. This is because the reduction is based on the
identity sup{A∪B} = sup{supA, supB} for the lattice supremum, whereas there is
no analogous identity for the Rademacher bound.

Proposition A.2 (Existence of a Bellman function implies the boundedness, [17]).

Let (E, ∣ ⋅ ∣E ,≤) be a Banach lattice. Assume that B̃(f,F,A) ∶ E+ ×R+ × {A ⊆ E+ ∶
A finite}→ R+ is a function having the above-mentioned properties. Then

∥M̄µ
D∥Lp

E
(Rd,µ)→L

p

E
(Rd,µ) ≲p B

for all finite collections D of dyadic intervals and all locally finite Borel measures
µ.

Proof by a slight adaptation of [17] in the spirit of [9]. Let µ be a locally finite Borel
measure. Let Q be a dyadic cube and let Q′ ∈ chD(Q) be its dyadic children. Let
f ∶ Rd → E+ be a locally integrable function. Note that

⟨f⟩µ
Q
= ∑

Q′∈chD(Q)

µ(Q′)
µ(Q) ⟨f⟩µQ′ , and ⟨∣f ∣p

E
⟩µ
Q
= ∑

Q′∈chD(Q)

µ(Q′)
µ(Q) ⟨∣f ∣pE⟩µQ′ .

Since every every mid-point concave function that is locally bounded from below
is in fact concave, the function (f,F ) ↦ B̃(f,F,A) is in fact concave. From the
properties of the Bellman function, it follows that

∑
Q′∈chD(Q)

µ(Q′)B̃(⟨f⟩µQ′ , ⟨∣f ∣pE⟩µQ′ ,{⟨f⟩µR}R∶R⊇Q′)
(iii′)= ∑

Q′∈chD(Q)

µ(Q′)B̃(⟨f⟩µQ′ , ⟨∣f ∣pE⟩µQ′ ,{⟨f⟩µR}R∶R⊇Q)
(iv′)≤ µ(Q)B̃(⟨f⟩µQ, ⟨∣f ∣pE⟩µQ,{⟨f⟩µR}R∶R⊇Q).

(A.3)
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Fix a dyadic cube Q0 and a non-negative integer N . Iterating the inequality (A.3)
and using the properties of the Bellman function yields

∫ ∣ sup
R∶R⊆Q0,ℓ(R)≥2−N ℓ(Q0)

⟨f⟩µR1R∣dµ
= ∑

Q∶Q⊆Q0,

ℓ(Q)=2−N ℓ(Q0)

µ(Q)∣ sup
R∶Q0⊇R⊇Q

⟨f⟩µR∣pE
(i′)≤ ∑

Q∶Q⊆Q0,

ℓ(Q)=2−Nℓ(Q0)

µ(Q)B̃(⟨f⟩µQ, ⟨∣f ∣pE⟩µQ,{⟨f⟩µR}R∶Q0⊇R⊇Q)
(A.3)≤ ∑

Q∶Q⊆Q0,

ℓ(Q)=2−(N−1)ℓ(Q0)

µ(Q)B̃(⟨f⟩µQ, ⟨∣f ∣pE⟩µQ,{⟨f⟩µR}R∶Q0⊇R⊇Q)

≤⋯ ≤ µ(Q0)B̃(⟨f⟩µQ0
, ⟨∣f ∣pE⟩µQ0

,{⟨f⟩µQ0
})

(ii′)

≲p Bµ(Q0)⟨∣f ∣pE⟩µQ0
+ ∣⟨f⟩µQ0

∣pE ≤ 2B∫
Q0

∣f ∣pE dµ.

�

A.3. Endpoint L∞ testing condition. A collection D of dyadic cubes is a trun-
cated dyadic system if

D = {Q ∶ Q ⊆ Q0, ℓ(Q) ≥ 2−N ℓ(Q0)} =∶ DQ0

N

for some dyadic cube Q0 and some positive integer N . For each R ∈ D, the localized
dyadic lattice Hardy–Littlewood operator M̄D,R is defined by

M̄D,Rf ∶= sup
Q∈D∶
Q⊆R

⟨f⟩Q1Q.

Theorem A.3 (Boundedness of the dyadic lattice maximal operator is character-
ized by the endpoint direct L∞ testing condition, [4]). Let 1 < p < ∞. Let D be a
truncated dyadic system on R

d. Then

∥M̄D∥Lp

E
→L

p

E
≂p,d M,

where the endpoint L∞ testing constant M is the least constant such that

(A.4) ∥M̄D,Rf∥L1

E
≤M∥f∥L∞

E
(R)∣R∣

for every R ∈ D, and every f ∈ L∞E (R).
This theorem was proven Garćıa-Cuerva, Maćıas, and Torrea [4] by applying

the theory of vector-valued singular integrals to a smooth, linearized version of the
lattice maximal function. Here, we give an alternative proof by using stopping
cubes.

Alternative proof by stopping cubes. Let F be the stopping family defined by the
following stopping children: For each F ∈ F , the children chF(F ) are the maximal
dyadic cubes F ′ ⊆ F such that

(A.5) ∣ sup
Q∈D∶Q⊇F ′

⟨f⟩Q∣E ≥ 4⟨∣M̄Df ∣E⟩F
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or

(A.6) ⟨∣f ∣E⟩F ′ > 4⟨∣f ∣E⟩F .
The stopping collection F is sparse because

∑
F ′
∣F ′∣ ≤ ∑

F ′ chosen by
the first condition

∣F ′∣ + ∑
F ′ chosen by

the second condition

∣F ′∣ ≤ (1
4
+
1

4
)∣F ∣ = 1

2
∣F ∣.

By arranging the dyadic cubes according to the stopping parents, using the Lp

variant of Pythagoras’ theorem (Lemma 2.4), and pulling out the L∞E norm,

∥M̄Df∥Lp

E
= ∥sup

F ∈F

sup
Q∈D∶

πF(Q)=F

⟨f⟩Q1Q∥Lp

E

≤ ∥∑
F ∈F

sup
Q∈D∶

πF (Q)=F

⟨f⟩Q1Q∥Lp

E

≲p ( ∑
F ∈F

∥ sup
Q∈D∶

πF(Q)=F

⟨f⟩Q1Q∥pLp

E

)1/p

≤ ( ∑
F ∈F

∥ sup
Q∈D∶

πF (Q)=F

⟨f⟩Q1Q∥p−1L∞
E

∥ sup
Q∈D∶

πF (Q)=F

⟨f⟩Q1Q∥L1

E
)1/p.

From the stopping condition (A.5), it follows (see Table 1) that

∥ sup
Q∈D∶

πF(Q)=F

⟨f⟩Q1Q∥L∞
E
≤ 2⟨∣M̄Df ∣E⟩F .

From the stopping condition (A.6), it follows (again, see Table 1) that

⟨f⟩Q = ⟨fF ⟩Q whenever πF(Q) = F,
where the auxiliary function fF is defined by fF ∶= f1EF(F ) +∑F ′∈ch(F )⟨f⟩F ′1F ′
and satisfies

∥fF ∥L∞
E
≲ 2d⟨∣f ∣E⟩F .

Therefore, from the testing condition (A.4), Hölder’s inequality together with the
identity (p− 1)p′ = p, and the dyadic Carleson embedding theorem (Lemma 2.3), it
follows that

( ∑
F ∈F

∥ sup
Q∈D∶

πF(Q)=F

⟨f⟩Q1Q∥p−1L∞
E

∥ sup
Q∈D∶

πF(Q)=F

⟨f⟩Q1Q∥L1

E
)1/p

= ( ∑
F ∈F

∥ sup
Q∈D∶

πF(Q)=F

⟨f⟩Q1Q∥p−1L∞
E
∥ sup

Q∈D∶
πF(Q)=F

⟨fF ⟩Q1Q∥L1

E
)1/p

≲M1/p( ∑
F ∈F

⟨∣M̄Df ∣E⟩(p−1)F µ(F )1/p′⟨∥f∥E⟩Fµ(F )1/p)1/p

≤M1/p(( ∑
F ∈F

⟨∣M̄Df ∣E⟩(p−1)p′F µ(F ))1/p′( ∑
F ∈F

⟨∥f∥E⟩pFµ(F ))1/p)
1/p

≲p M
1/p∥M̄Df∥1/p′L

p

E

∥f∥1/p
L

p

E

.
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Altogether,

∥M̄Df∥Lp

E
≲p ∥M̄Df∥1/p′L

p

E

(M∥f∥Lp

E
)1/p,

from which the norm estimate follows, by dividing out the factor ∥M̄Df∥1/p′L
p

E

. �

Question A.4 (Borderline: Can we omit the assumption that the measure is
doubling?). For each (in particular, for non-doubling) locally finite Borel measure
µ, is the boundedness of the dyadic lattice maximal operator M̄

µ
D ∶ L

p
E(µ) → LP

E(µ)
characterized by the endpoint direct L∞(µ) testing condition?
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