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MULTI-PARAMETER ESTIMATES VIA OPERATOR-VALUED SHIFTS

TUOMAS HYTÖNEN, HENRI MARTIKAINEN, AND EMIL VUORINEN

ABSTRACT. We prove new results for multi-parameter singular integrals. For
example, we prove that bi-parameter singular integrals in Rn+m satisfying natu-
ral T 1 type conditions map Lq(Rn;Lp(Rm;E)) to Lq(Rn;Lp(Rm;E)) for all p, q ∈
(1,∞) and UMD function lattices E. This result is shown to hold even in the R-
boundedness sense for all suitable families of bi-parameter singular integrals. On
the technique side we demonstrate how many dyadic multi-parameter operators
can be bounded by using, and further developing, the theory of operator-valued
dyadic shifts. Even in the scalar-valued case this is an efficient way to bound the
various so called partial paraproducts, which are key operators appearing in the
multi-parameter representation theorems. Our proofs also entail verifying the
R-boundedness of various families of multi-parameter paraproducts.
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1. INTRODUCTION

Representation theorems show the exact dyadic structure behind Calderón–
Zygmund operators by representing them using simple dyadic operators, namely
some cancellative dyadic shifts and various paraproducts. In the linear case Pe-
termichl [28] first represented the Hilbert transform in this way, and later one of
us [13] proved a representation theorem for all linear Calderón–Zygmund oper-
ators. These are important theorems as they can be used to reduce questions to
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dyadic model operators. Such theorems are proved using dyadic–probabilistic
methods, which were first pioneered by Nazarov–Treil–Volberg (see e.g. [25]).

Dyadic–probabilistic methods of harmonic analysis have recently really shown
their power in the multi-parameter setting. For example, a representation theo-
rem holds also in the bi-parameter setting as shown by one of us [23]. The multi-
parameter extension of this is by Y. Ou [26]. In the bi-parameter context the rep-
resentation theorem has proved to be extremely useful e.g. in connection with
bi-parameter commutators and weighted analysis, see Holmes–Petermichl–Wick
[12] and Ou–Petermichl–Strouse [27], and sparse domination, see Barron–Pipher
[2].

The multi-parameter harmonic analysis has a very rich and renowned history.
For example, we mention the famous covering theorem of Journé [19], and the
deep product BMO, Hardy space and multi-parameter singular integral theory
by Chang and Fefferman [4], [5], Fefferman [7], Fefferman and Stein [9] and
Journé [20]. Some more recent references include Ferguson–Lacey [10], Pipher–
Ward [29] and Treil [32]. The importance of dyadic techniques is already very
apparent from these references. Our methods are most clearly tied to the state of
the art dyadic–probabilistic developments and representation theorems.

In this paper we consider the most complicated dyadic model operators of
modern dyadic multi-parameter representation theorems, and prove new bounds
for them via operator-valued dyadic shifts. The use of operator-valued dyadic
shifts in this context is a new and useful viewpoint even if we would be just
considering scalar-valued theory. However, we can even work with E-valued
functions, where E is a UMD function lattice (or sometimes even a general UMD
space satisfying Pisier’s property (α)). The proved bounds for the model opera-
tors translate into new results for multi-parameter singular integrals. For exam-
ple, we prove the following theorem.

1.1. Theorem. Let E be a UMD function lattice, and p, q ∈ (1,∞). Let T be a bi-
parameter singular integral satisfying T1 type assumptions as in [23]. Then we have

‖T‖Lq(Rn;Lp(Rm;E))→Lq(Rn;Lp(Rm;E)) <∞.

In fact, we show this in the so called R-boundedness sense for all suitable
families of bi-parameter singular integrals. This extends the T1 type corollary
of [23] already in three ways: we can consider UMD function lattices (instead
of R or C), we get Lq(Lp) boundedness for all p, q ∈ (1,∞) instead of just L2

boundedness, and we get R-boundedness results for families of bi-parameter
singular integrals.

Multiparameter singular integrals have previously been studied in the UMD-
valued setting only in “paraproduct free” situations (this means that both the
full and partial paraproducts disappear). For example, Hytönen and Portal [18]
consider convolution-type (and hence paraproduct free) singular integrals. Di
Plinio and Ou [6] have also studied T1 theorems in paraproduct free situations.
For the first time, we do not have such limitations.
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In the bi-parameter setting the paper [23] identifies various types of paraprod-
ucts: two different full paraproducts and many partial paraproducts. These are
very different in nature; the full paraproducts are related to the so-called product
BMO space, while the partial paraproducts have, in a sense, a paraproduct com-
ponent only in one of the parameters. However, when we increase the amount
of parameters, the full paraproducts of the previous generations start to appear
in the new partial paraproducts. For example, in the tri-parameter case we en-
counter partial paraproducts, which contain full bi-parameter paraproducts in
a complicated way. Therefore, it is really the partial paraproducts which are at
the heart of the multi-parameter representation theorems: to deal with them, you
need to deal with the full paraproducts.

The L2 theory of partial paraproducts is not terribly complicated – for the bi-
parameter case see [23]. The bi-parameter Lp estimates are established at least
in [12] using shifted square functions as the tool. Here we offer a new approach
via operator-valued shifts. It allows to deal with more complicated and abstract
vector-valued operators, gives Lp(Lq) type bounds in a natural way, and is rela-
tively explicit in the way it can handle arbitrary parameters. After the abstract
theory, the application to partial paraproducts only requires the verification of the
R-boundedness of some families of full multi-parameter paraproducts. These re-
sults are of independent interest.

The abstract results are proved using operator-valued dyadic shifts as the main
tool (in the applications we have some paraproduct-valued shifts). The bound-
edness of operator-valued shifts was shown by Hänninen–Hytönen [14] in the
one-parameter case. We start by a small extension of this result by showing the
R-boundedness of families of operator-valued shifts. This is extremely useful
as it, for example, allows us to extend this result to the bi-parameter situation
by using shift-valued shifts. However, we also further develop the theory of
operator-valued shifts in other subtle ways, which is crucial for us when we con-
sider some mixed-norm estimates appearing in the applications. For clarity, three
parameters is the highest degree of parameters that we tackle explicitly.

Acknowledgements. T. Hytönen was supported by the Finnish Centre of Excel-
lence in Analysis and Dynamics Research. H. Martikainen is supported by the
Academy of Finland through the grants 294840 and 306901, and is a member of
the Finnish Centre of Excellence in Analysis and Dynamics Research. E. Vuori-
nen is supported by the Academy of Finland through the grant 306901 and by
the Finnish Centre of Excellence in Analysis and Dynamics Research.

2. DEFINITIONS AND PRELIMINARIES

2.1. Vinogradov notation. We denote A . B if A ≤ CB for some absolute con-
stant C. The constant C can at least depend on the dimensions of the appear-
ing Euclidean spaces, on integration exponents and on Banach space constants
(UMD and Pisier’s (α)). We denote A ∼ B if B . A . B.
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2.2. Dyadic notation. If Q is a cube:

• ℓ(Q) is the side-length of Q;
• ch(Q) denotes the dyadic children of Q;
• If Q is in a dyadic grid, then Q(k) denotes the unique dyadic cube S in the

same grid so that Q ⊂ S and ℓ(S) = 2kℓ(Q);
• If D is a dyadic grid, then Di = {Q ∈ D : ℓ(Q) = 2−i}.

In this paper we denote a dyadic grid in Rn by Dn. We are at most working in
the tri-parameter setting, and then we will have three dyadic grids Dn, Dm, Dk in
Rn, Rm and Rk respectively. Using the above notation Dn

i denotes those I ∈ Dn

for which ℓ(I) = 2−i. The measure of a cube I is simply denoted by |I| no matter
in what dimension we are in.

When I ∈ Dn we denote by hI a cancellative L2 normalised Haar function. This
means the following. Writing I = I1 × · · · × In we can define the Haar function
hηI , η = (η1, . . . , ηn) ∈ {0, 1}n, by setting

hηI = hη1I1 ⊗ · · · ⊗ hηnIn ,

where h0Ii = |Ii|
−1/21Ii and h1Ii = |Ii|

−1/2(1Ii,l − 1Ii,r) for every i = 1, . . . , n. Here
Ii,l and Ii,r are the left and right halves of the interval Ii respectively. If η 6= 0 the
Haar function is cancellative:

´

hηI = 0. We usually suppress the presence of η
and simply write hI for some hηI , η 6= 0.

For I ∈ Dn and a locally integrable function f : Rn → E, where E is a Banach
space, we define the martingale difference

∆If =
∑

I′∈ch(I)

[〈

f
〉

I′
−
〈

f
〉

I

]

1I′ .

Here
〈

f
〉

I
= 1

|I|

´

I
f (where the integral is the usual E-valued Bochner integral).

Then ∆If =
∑

η 6=0〈f, h
η
I〉h

η
I , or suppressing the η summation, ∆If = 〈f, hI〉hI .

Here 〈f, hI〉 =
´

fhI . In this paper the brackets 〈·, ·〉 try to always refer to some
kind of integral pairing, while {·, ·}E is used for the dual pairing of a Banach
space E.

A martingale block is defined by

∆i
Kf =

∑

I∈Dn

I(i)=K

∆If, K ∈ Dn.

2.3. Multi-parameter notation. We work either in the bi-parameter setting in the
product space Rn+m or in the tri-parameter setting in the product space Rn+m+k.
In such a context x (or y) is always a tuple, for example if x ∈ Rn+m+k, then
x = (x1, x2, x3) with x1 ∈ Rn, x2 ∈ Rm and x3 ∈ Rk.

We often need to take integral pairings with respect to one or two of the vari-
ables only. For example, if f : Rn+m+k → E, where E is a Banach space, then
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〈f, hI〉1 : R
m+k → E is defined by

〈f, hI〉1(x2, x3) =

ˆ

Rn

f(y1, x2, x3)hI(y1) dy1,

and 〈f, hI ⊗ hJ〉1,2 : R
k → E is defined by

〈f, hI ⊗ hJ〉1,2(x3) =

ˆ

Rm

ˆ

Rn

f(y1, y2, x3)hI(y1)hJ(y2) dy1 dy2.

Moreover, an identification of the following kind is used all the time: a function
f : Rn+m → E satisfying

(

ˆ

Rn

(

ˆ

Rm

|f(x1, x2)|
p
E dx2

)q/p

dx1

)1/q

<∞

is identified with the function φf ∈ Lq(Rn;Lp(Rm;E)), φf(x1) = f(x1, ·).
We next define bi-parameter martingale differences. Let f : Rn × Rm → E be

locally integrable. Let I ∈ Dn and J ∈ Dm. We define the martingale difference

∆1
If : R

n+m → E,∆1
If(x) := ∆I(f(·, x2))(x1).

(The reader should not confuse this with the martingale block notation of a one-
parameter function from above). Define ∆2

Jf analogously. Then we set

∆I×Jf : R
n+m → E,∆I×Jf(x) = ∆1

I(∆
2
Jf)(x) = ∆2

J (∆
1
If)(x).

Notice that ∆1
If = hI⊗〈f, hI〉1, ∆2

Jf = 〈f, hJ〉2⊗hJ and ∆I×Jf = 〈f, hI⊗hJ〉hI⊗hJ
(suppressing the finite η summations).

Martingale blocks are defined in the natural way

∆i,j
K×V f =

∑

I : I(i)=K

∑

J : J(j)=V

∆I×Jf = ∆1
K,i(∆

2
V,jf) = ∆2

V,j(∆
1
K,if).

2.4. BMO spaces. We say that b ∈ L1
loc(R

n) belongs to the dyadic BMO space
BMODn(Rn) = BMODn if

‖b‖BMODn := sup
I∈Dn

1

|I|

ˆ

I

|b− 〈b〉I | <∞.

The ordinary space BMO(Rn) is defined by taking the supremum over all cubes.

Bi-parameter product BMO. Here we define the (dyadic) bi-parameter product
BMO space BMODn,Dm

prod (Rn × Rm) = BMODn,Dm

prod . For a sequence λ = (λI,J) we
set

‖λ‖
BMODn,Dm

prod
:= sup

Ω

( 1

|Ω|

∑

I∈Dn,J∈Dm

I×J⊂Ω

|λI,J |
2
)1/2

,

where the supremum is taken over those sets Ω ⊂ Rn+m such that |Ω| < ∞ and
such that for every x ∈ Ω there exists I ∈ Dn, J ∈ Dm so that x ∈ I × J ⊂ Ω.
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We say that b ∈ L1
loc(R

n+m) belongs to the space BMODn,Dm

prod if

‖b‖
BMODn,Dm

prod
:= ‖(〈b, hI ⊗ hJ〉)I,J‖BMODn,Dm

prod
<∞.

The (non-dyadic) product BMO space BMOprod(R
n+m) can be defined via the

norm defined by the supremum of the above dyadic norms.
For two sequences λ = (λI,J), A = (AI,J) we have the key estimate

∑

I∈Dn,J∈Dm

|λI,J ||AIJ | . ‖λ‖
BMODn,Dm

prod
‖SDn,Dm(A)‖L1(Rn+m),

where

SDn,Dm(A) :=
(

∑

I∈Dn,J∈Dm

|AIJ |
2 1I×J

|I × J |

)1/2

.

For a simple proof see e.g. Proposition 4.1 of [24]. This inequality is the key
property of the product BMO for us. Of course, an analogous estimate holds in
the one-parameter situation.

2.5. Paraproducts. Let E be a Banach space. A function b ∈ L1
loc(R

n) defines the
dyadic paraproduct by the formula

πDn,bf =
∑

I∈Dn

〈f〉I∆Ib, f ∈ L1
loc(R

n;E).

Bi-parameter full paraproducts. While our main object of study in this paper are
the so called partial paraproducts, we will also need to consider the so called
full bi-parameter paraproducts. For example, they appear in some of the partial
tri-parameter paraproducts.

There are two types of full bi-parameter paraproducts: the standard ones and
the mixed ones: for b ∈ L1

loc(R
n+m) we set

ΠDn,Dm,bf =
∑

I∈Dn

J∈Dm

〈b, hI ⊗ hJ〉〈f〉I×JhI ⊗ hJ ;

Πmixed
Dn,Dm,bf =

∑

I∈Dn

J∈Dm

〈b, hI ⊗ hJ〉
〈

f, hI ⊗
1J
|J |

〉 1I
|I|

⊗ hJ , f ∈ L1
loc(R

n+m;E).

2.6. UMD and Pisier’s property (α). A Banach space E is said to be a UMD
space if

∥

∥

∥

N
∑

i=1

ǫidi

∥

∥

∥

Lp(Ω;E)
.

∥

∥

∥

N
∑

i=1

di

∥

∥

∥

Lp(Ω;E)

for allE-valuedLp-martingale difference sequences (di)Ni=1 (defined on some prob-
ability space Ω), and for all signs ǫi ∈ {−1+1}. The UMD property is independent
of the choice of the exponent p ∈ (1,∞). If E is UMD then so is E∗ and Lp(Rn;E).
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A Banach space E has Pisier’s property (α) if for all N , all αi,j in the complex
unit disc and all ei,j ∈ E, 1 ≤ i, j ≤ N , there holds

(

EE′
∣

∣

∣

∑

1≤i,j≤N

ǫiǫ
′
jαi,jei,j

∣

∣

∣

2

E

)1/2

.
(

EE′
∣

∣

∣

∑

1≤i,j≤N

ǫiǫ
′
jei,j

∣

∣

∣

2

E

)1/2

.

Here (ǫi) and (ǫ′j) are sequences of independent random signs. If E has Pisier’s
property (α) then so does Lp(Rn;E).

The Kahane–Khintchine inequality says that

(

E
∣

∣

∣

N
∑

i=1

ǫiei

∣

∣

∣

q

E

)1/q

∼q

(

E
∣

∣

∣

N
∑

i=1

ǫiei

∣

∣

∣

2

E

)1/2

for all 1 ≤ q < ∞ and Banach spaces E. By a few applications of the Kahane–
Khintchine inequality we see that we can use whatever exponent in the definition
of property (α).

2.7. R-boundedness. If E and F are Banach spaces, we denote the space of
bounded linear operators from E to F by L(E, F ). If E = F we simply write
L(E). A family of operators T ⊂ L(E, F ) is said to be R-bounded if for all N ,
T1, . . . , TN ∈ T and e1, . . . , eN ∈ E we have

(

E
∣

∣

∣

N
∑

i=1

ǫiTiei

∣

∣

∣

2

F

)1/2

≤ C
(

E
∣

∣

∣

N
∑

i=1

ǫiei

∣

∣

∣

2

E

)1/2

.

The best constant C is denoted by R(T ). The Kahane–Khintchine inequality
shows that one can replace in the definition the exponent 2 with any q ∈ [1,∞).

2.8. Random sums and duality. For the definition of type and cotype of a Ba-
nach space the reader can e.g. consult the section 7 of the book [17]. However,
for the following lemma a reader not familiar with the notion of type needs only
to know that UMD spaces have non-trivial type (as all spaces of interest in this
paper will be UMD). See Section 7.4.f in [17] for a proof.

2.1. Lemma. Let E be a Banach space with non-trivial type and let F ⊂ E∗ be a closed
subspace of E∗ which is norming for E. Let p ∈ (1,∞). Then for all finite sequences
e1, . . . , eN ∈ E we have

(

E
∣

∣

∣

N
∑

i=1

ǫiei

∣

∣

∣

p

E

)1/p

. sup
{
∣

∣

∣

N
∑

i=1

{ei, e
∗
i }E

∣

∣

∣

}

,

where the supremum is taken over all choices (e∗i )
N
i=1 in F such that

(

E
∣

∣

∣

N
∑

i=1

ǫie
∗
i

∣

∣

∣

p′

E∗

)1/p′

≤ 1.

The converse inequality trivially holds with a constant 1.
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2.9. Operator-valued shifts. Here we give the definition of ordinary (i.e. one-
parameter) operator-valued shifts as given by Hänninen–Hytönen [14]. Let E be
a UMD space and i1, i2 ≥ 0 be two indices. An operator-valued shift Si1,i2

Dn in Rn

(defined using a fixed dyadic grid Dn) is an operator of the form

Si1,i2
Dn f =

∑

K∈Dn

∆i2
KAK∆

i1
Kf, f ∈ L1

loc(R
n;E),

where AKf : R
n → E is an averaging operator with an operator-valued kernel

aK : Rn × Rn → L(E), that is,

AKf(x) =
1K(x)

|K|

ˆ

K

aK(x, y)f(y) dy.

Provided that the family of kernels is R-bounded, i.e.,

R({aK(x, y) ∈ L(E) : K ∈ Dn, x, y ∈ K}) ≤ Ca,

Hänninen–Hytönen [14] proved that for all 1 < q <∞ we have

‖Si1,i2
Dn f‖Lq(Rn;E) . (max(i1, i2) + 1)Ca‖f‖Lq(Rn;E).

The implicit constant depends on the UMD-constant of E and on q. The result
actually holds with min(i1, i2) in place of max(i1, i2). In this paper we need to
prove the R-boundedness of shifts (under the assumption thatE also has Pisier’s
property (α)), and we do this with min in place of max (see Lemma 3.3).

Operator-valued bi-parameter shifts. Let E be a UMD space satisfying the property
(α) of Pisier. An operator-valued bi-parameter dyadic shift in Rn+m with param-
eters i1, i2, j1 and j2 is an operator of the form

Si1,i2,j1,j2
Dn,Dm f =

∑

K∈Dn

V ∈Dm

∆i2,j2
K×VAK,V∆

i1,j1
K×V f, f ∈ L1

loc(R
n+m;E).

Here each AK,V is an integral operator related to a kernel

aK,V : Rn+m × Rn+m → L(E)

by

AK,V f(x) =
1K×V

|K||V |

¨

K×V

aK,V (x, y)f(y) dy.

The family of kernels is assumed to be R-bounded in the sense that

R
(

{aK,V (x, y) : K ∈ Dn, V ∈ Dm, x, y ∈ K × V }
)

≤ Ca.

We will (among other things) prove in Section 3 that for all p, q ∈ (1,∞) we have

‖Si1,i2,j1,j2
Dn,Dm f‖Lq(Rn;Lp(Rm;E)) . (min(i1, i2) + 1)(min(j1, j2) + 1)Ca‖f‖Lq(Rn;Lp(Rm;E)).
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2.10. Function lattices. An easy to read reference for this section is [22] (see also
[21] and [1]). A normed space E is a Banach function space (or a function lattice)
if the following four conditions hold. Let (Ω,A, µ) be a σ-finite measure space.

(1) Every f ∈ E is a measurable function f : Ω → R (an equivalence class).
(2) If f : Ω → R is measurable, g ∈ E and |f(ω)| ≤ |g(ω)| for µ-a.e. ω ∈ Ω, then

f ∈ E and |f |E ≤ |g|E.
(3) There is an element f ∈ E so that f > 0 (i.e. f(ω) > 0 for µ-a.e. ω ∈ Ω).
(4) If fi, f are non-negative, fi ∈ E, fi ≤ fi+1, fi(ω) → f(ω) for µ-a.e. ω ∈ Ω

and supi |fi|E <∞, we have f ∈ E and |fi|E → |f |E = supi |fi|E.

2.2. Remark. The definition of a function lattice seems to vary a little bit in the
literature, and sometimes it is left quite vague what is the exact definition used.
Here we use the definition from [1] and [22].

Such a space is automatically a Banach space, and in fact a Banach lattice (for
the definition and basic theory of Banach lattices see e.g. [21]). If g : Ω → R is a
measurable function such that fg ∈ L1(µ) for all f ∈ E, we define

e∗g : E → R, e∗g(f) =

ˆ

Ω

f(ω)g(ω) dµ(ω).

In this case e∗g ∈ E∗. We defineE ′ ⊂ E∗ to consist of those element of E∗ that have
the form e∗g for some g like above (and we freely identify e∗g with g). The space E ′

– the Köthe dual of E – is a Banach function space, and a norming subspace of
E∗.

There is a condition called order continuity (the precise definition does not
interest us here) of E which is equivalent with the fact that E ′ = E∗. So the
dual of an order continuous Banach function space is a Banach function space (as
E ′ is always a Banach function space). We will be working with UMD Banach
function spaces – which we also call UMD function lattices. Such spaces are
always reflexive, and reflexive Banach lattices are order continuous. So in cases
of interest to us E ′ = E∗. In this case E automatically also satisfies the property
(α) of Pisier. This is because a Banach lattice satisfies Pisier’s property (α) if and
only if it has finite cotype (see e.g. Theorem 7.5.20 in the book [17]). A UMD
space certainly has finite cotype (see e.g. [17]).

This generality covers most of the naturally arising examples of UMD spaces
satisfying the property (α) of Pisier. The only place where we really need that E
is a function space (and not just a general UMD space satisfying Pisier’s property
(α)) is Section 5, where we prove R-boundedness results for various families of
paraproducts. That is to say, if one can generalise the results of Section 5, then
this restriction can be lifted in other key results.

A key reason why we use function lattices instead of Banach lattices is because
we want to use maximal function estimates by Bourgain [3] and Rubio de Francia
[30]. Function lattices are certainly more convenient to use in other aspects too,
but it could be the case that most other estimates could be performed in Banach
lattices.
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2.11. Estimates for martingales. We collect in this subsection a plethora of vari-
ous estimates, many of them of standard nature. The main aim is Corollary 2.9.
The results are stated in the bi-parameter case. For clarity we give some proofs.

2.3. Lemma. Let E be a UMD space. Then for all p, q ∈ (1,∞) and fixed signs ǫI , ǫJ
we have

‖f‖Lq(Rn;Lp(Rm;E)) ∼
∥

∥

∥

∑

I∈Dn

ǫI∆
1
If
∥

∥

∥

Lq(Rn;Lp(Rm;E))
∼

∥

∥

∥

∑

J∈Dm

ǫJ∆
2
Jf

∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Proof. The first one is seen by using the fact that F := Lp(Rm;E) is a UMD space
and expanding the function f : Rn → F . The second one is seen by expanding
f(x1, ·) : R

m → E for each fixed x1 ∈ Rn. �

2.4. Lemma. Let E be a UMD space satisfying Pisier’s property (α). Then for all p, q ∈
(1,∞) and fixed signs ǫI,J we have

‖f‖Lq(Rn;Lp(Rm;E)) ∼
∥

∥

∥

∑

I∈Dn

J∈Dm

ǫI,J∆I×Jf
∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Proof. Using Lemma 2.3 twice and taking expectations we get

(2.5) ‖f‖Lq(Rn;Lp(Rm;E)) ∼ EE′
∥

∥

∥

∑

I∈Dn

∑

J∈Dm

ǫIǫ
′
J∆I×Jf

∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Using the fact that Lq(Rn;Lp(Rm;E)) satisfies Pisier’s property (α) we get

EE′
∥

∥

∥

∑

I∈Dn

∑

J∈Dm

ǫIǫ
′
J∆I×Jf

∥

∥

∥

Lq(Rn;Lp(Rm;E))

∼ EE′
∥

∥

∥

∑

I∈Dn

∑

J∈Dm

ǫIǫ
′
JǫI,J∆I×Jf

∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Applying the identity (2.5) to the function F =
∑

I∈Dn

∑

J∈Dm ǫI,J∆I×Jf we get
the claim. �

2.6. Lemma. Let E be a UMD space satisfying Pisier’s property (α). Then for all p, q ∈
(1,∞) we have

E
∥

∥

∥

∑

j

ǫjfj

∥

∥

∥

Lq(Rn;Lp(Rm;E))
∼ E

∥

∥

∥

∑

j

∑

I∈Dn

J∈Dm

ǫj,I,J∆I×Jfj

∥

∥

∥

Lq(Rn;Lp(Rm;E))

∼ E
∥

∥

∥

∑

j

∑

I∈Dn

ǫj,I∆
1
Ifj

∥

∥

∥

Lq(Rn;Lp(Rm;E))

∼ E
∥

∥

∥

∑

j

∑

J∈Dm

ǫj,J∆
2
Jfj

∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Proof. We only prove the first estimate – the others are proved in the same way
(just use Lemma 2.3 instead of Lemma 2.4). Using Lemma 2.4 to the function



MULTI-PARAMETER ESTIMATES VIA OPERATOR-VALUED SHIFTS 11

∑

j ǫjfj and taking expectations we get that

E
∥

∥

∥

∑

j

ǫjfj

∥

∥

∥

Lq(Rn;Lp(Rm;E))
∼ EE′

∥

∥

∥

∑

j

∑

I∈Dn

J∈Dm

ǫjǫ
′
I,J∆I×Jfj

∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Using the fact that Lq(Rn;Lp(Rm;E)) satisfies Pisier’s property (α) we get

EE′
∥

∥

∥

∑

j

∑

I∈Dn

J∈Dm

ǫjǫ
′
I,J∆I×Jfj

∥

∥

∥

Lq(Rn;Lp(Rm;E))

∼ EE′E′′
∥

∥

∥

∑

j

∑

I∈Dn

J∈Dm

ǫjǫ
′
I,Jǫ

′′
j,I,J∆I×Jfj

∥

∥

∥

Lq(Rn;Lp(Rm;E))

= E′′
∥

∥

∥

∑

j

∑

I∈Dn

J∈Dm

ǫ′′j,I,J∆I×Jfj

∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

�

In the case that E is a UMD function lattice (notice that in this case |e| ∈ E
and |e|α ∈ E are defined in the natural pointwise way for every e ∈ E) we prefer
square function bounds. The previous estimates are translated to them using
the following lemma. The important thing for us is that it holds with all UMD
function lattices.

2.7. Lemma. Let E be a Banach function space with finite cotype. For all q ∈ (1,∞) we
have

∥

∥

∥

(

∑

j

|fj|
2
)1/2∥

∥

∥

Lq(Rn;E)
∼ E

∥

∥

∥

∑

j

ǫjfj

∥

∥

∥

Lq(Rn;E)
.

Proof. Applying Kahane–Khintchine inequality multiple times we see that

E
∥

∥

∥

∑

j

ǫjfj

∥

∥

∥

Lq(Rn;E)
∼

∥

∥

∥

(

E
∣

∣

∣

∑

j

ǫjfj

∣

∣

∣

2

E

)1/2∥
∥

∥

Lq(Rn;E)
.

So things boil down to the equivalence

(2.8)
(

E
∣

∣

∣

∑

j

ǫjej

∣

∣

∣

2

E

)1/2

∼
∣

∣

∣

(

∑

j

|ej |
2
)1/2∣

∣

∣

E

for all ej ∈ E. But (2.8) holds in all Banach lattices with finite cotype – this is a
theorem of Khintchine–Maurey. For a proof see Theorem 7.2.13 in [17]. �
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2.9. Corollary. Let E be a UMD function lattice. For all p, q ∈ (1,∞) we have
∥

∥

∥

(

∑

j

|fj |
2
)1/2∥

∥

∥

Lq(Rn;Lp(Rm;E))
∼

∥

∥

∥

(

∑

j

∑

I∈Dn

J∈Dm

|∆I×Jfj|
2
)1/2∥

∥

∥

Lq(Rn;Lp(Rm;E))

∼
∥

∥

∥

(

∑

j

∑

I∈Dn

|∆1
Ifj|

2
)1/2∥

∥

∥

Lq(Rn;Lp(Rm;E))

∼
∥

∥

∥

(

∑

j

∑

J∈Dm

|∆2
Jfj |

2
)1/2∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

2.12. Estimates for maximal functions. We introduce the lattice maximal func-
tion theory of Bourgain [3] and Rubio de Francia [30]. Let E be a Banach func-
tion space. For each (simple) locally integrable function f : Rn → E we define
MDn,Ef : R

n → E by setting

MDn,Ef(x, ω) = sup
I∈Dn

x∈I

1

|I|

ˆ

I

|f(y, ω)| dy.

The following definitions are in line with our usual notational conventions.
If f : Rn+m → E we define M1

Dn,Ef : R
n+m → E by setting M1

Dn,Ef(x1, x2) =

MDn,E(f(·, x2))(x1). The operator M2
Dm,E is defined similarly.

The bi-parameter strong maximal function MDn,Dm,E is defined for f : Rn+m →
E by setting

MDn,Dm,Ef(x1, x2, ω) = sup
I∈Dn

J∈Dm

1I(x1)1J(x2)

|I||J |

¨

I×J

|f(y1, y2, ω)| dy1 dy2.

If E is the scalar field we simply write MDn etc.
The following proposition is due to Bourgain [3] and Rubio de Francia [30] in

the case of the torus. A weighted version of this in Rn is proved in [11]. See also
[1] and [22]. Again, the point made in Remark 2.2 applies here.

2.10. Proposition. Let E be a UMD function lattice. Then for all q ∈ (1,∞) we have

‖MDn,Ef‖Lq(Rn;E) . ‖f‖Lq(Rn;E), f ∈ Lq(Rn;E).

2.11. Remark. If E is a UMD function lattice, then so is E∗ = E ′. Therefore, we
also have for each q ∈ (1,∞) that

‖MDn,E∗g‖Lq(Rn;E∗) . ‖g‖Lq(Rn;E∗), g ∈ Lq(Rn;E∗).

Proposition 2.10 extends for instance to the case where the function lattice E
is replaced with the function lattice Lp(Rm; lr(E)), where p, r ∈ (1,∞). Let q ∈
(1,∞). A function f ∈ Lq(Rn;Lp(Rm; ℓr(E))) can be viewed as f = {fj}j∈Z, where
each fj is an E-valued function on Rn+m, and

‖f‖Lq(Rn;Lp(Rm;ℓr(E))) =
∥

∥

∥

(

∑

j

|fj|
r
)1/r∥

∥

∥

Lq(Rn;Lp(Rm;E))
.
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The maximal function MDn,Lp(Rm;ℓr(E)) acting on f gives

MDn,Lp(Rm;ℓr(E))f = {M1
Dn,Efj}j .

Thus, the extension of Proposition 2.10 gives the following corollary:

2.12. Corollary. Let E be a UMD function lattice. For all p, q, r ∈ (1,∞) we have
∥

∥

∥

(

∑

j

|M1
Dn,Efj |

r
)1/r∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

∥

∥

∥

(

∑

j

|fj |
r
)1/r∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Corollary 2.12 in turn directly leads to Corollary 2.13:

2.13. Corollary. Let E be a UMD function lattice. For all p, q, r ∈ (1,∞) we have
∥

∥

∥

(

∑

j

|MDn,Dm,Efj |
r
)1/r∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

∥

∥

∥

(

∑

j∈J

|fj |
r
)1/r∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Proof. We first apply the inequality MDn,Dm,Efj ≤ M2
Dm,EM

1
Dn,Efj . In the inner

integral over Rm we use Proposition 2.10 with E replaced by ℓr(E) to obtain
∥

∥

∥

(

∑

j

|MDn,Dm,Efj|
r
)1/r∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

∥

∥

∥

(

∑

j

|M1
Dn,Efj |

r
)1/r∥

∥

∥

Lq(Rn;Lp(Rm;E))
.

Corollary 2.12 then readily gives the result. �

3. VARIOUS ESTIMATES FOR OPERATOR-VALUED SHIFTS

3.1. R-boundedness results for operator-valued shifts. For various reasons we
need the following lemma on the R-boundedness of one-parameter dyadic shifts.
This actually also reproves the boundedness of operator-valued dyadic shifts
from Hänninen–Hytönen [14] with a bit better dependence on the pair of indices
(j1, j2). The proof is similar, though. However, Lemma 3.10 offers a more inter-
esting variant, which will also be of key importance to us.

Let us first introduce some definitions related to the so called decoupling es-
timate. Let V ∈ Dm. Denote by YV the measure space (V,Lebm(V ), νV ). Here
Lebm(V ) is the collection of Lebesgue measurable subset of V and νV = dx⌊V/|V |,
where dx⌊V is the m-dimensional Lebesgue measure restricted to V . With these
we define the product probability space

(Y m,Am, νm) :=
∏

V ∈Dm

YV .

If y ∈ Y m and V ∈ Dm, we denote by yV the coordinate related to YV .
Suppose i ∈ {0, 1, . . . } and j ∈ {0, . . . , i}. Let Dm

i,j be the collection

(3.1) Dm
i,j := {V ∈ Dm : ℓ(V ) = 2k(i+1)+j for some k ∈ Z}.

We have for all p ∈ (1,∞) and f ∈ Lp(Rm;E), where E is a UMD space, that

(3.2)
ˆ

Rm

∣

∣

∣

∑

V ∈Dm
i,j

∆i
V f

∣

∣

∣

p

E
dx ∼p E

ˆ

Y m

ˆ

Rm

∣

∣

∣

∑

V ∈Dm
i,j

1V (x)∆
i
V f(yV )

∣

∣

∣

p

E
dx dνm(y),
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where the implicit constant is independent of i and j. This is a special case of
Theorem 3.1 in [14]. See also [14] for the details and the history of this estimate.
The reason why the collections Dm

i,j are used is to guarantee that ∆i
V f is constant

on V ′ if V, V ′ ∈ Dm
i,j and V ′ ( V . This is a technical detail needed to apply the

underlying abstract decoupling principle behind (3.2).

3.3. Lemma. Let E be a UMD space with Pisier’s property (α). Fix two parameters

j1, j2 ≥ 0. Suppose {Sj1,j2
Dm,k}k∈K is a family of operator-valued dyadic shifts. For every

k ∈ K let {aV,k}V ∈Dm be the family of kernels related to the shift Sj1,j2
Dm,k.

Assume that there exists a constant Ca so that

(3.4) R({aV,k(x, y) ∈ L(E) : k ∈ K, V ∈ Dm, x, y ∈ V }) ≤ Ca.

Then, for every q ∈ (1,∞),

R
(

{Sj1,j2
Dm,k ∈ L(Lq(Rm;E)) : k ∈ K}) . (min(j1, j2) + 1)Ca.

Proof. Fix some q ∈ (1,∞). Let I ⊂ K be a finite subset, and suppose that for
every k ∈ I we have a function fk ∈ Lq(Rm;E). The UMD property of E implies
that

E
∥

∥

∥

∑

k∈I

ǫkS
j1,j2
Dm,kfk

∥

∥

∥

Lq(Rm;E)
= E

∥

∥

∥

∑

V ∈Dm

∆j2
V

∑

k∈I

ǫkAV,k∆
j1
V fk

∥

∥

∥

Lq(Rm;E)

∼ EE′
∥

∥

∥

∑

V ∈Dm

ǫ′V∆
j2
V

∑

k∈I

ǫkAV,k∆
j1
V fk

∥

∥

∥

Lq(Rm;E)

. EE′
∥

∥

∥

∑

V ∈Dm

ǫ′V
∑

k∈I

ǫkAV,k∆
j1
V fk

∥

∥

∥

Lq(Rm;E)

∼
(

EE′
∥

∥

∥

∑

k∈I

∑

V ∈Dm

ǫkǫ
′
VAV,k∆

j1
V fk

∥

∥

∥

q

Lq(Rm;E)

)1/q

,

(3.5)

where we applied Stein’s inequality in the second to last step, and the Kahane-
Khintchine inequality in the last. The UMD-valued version of Stein’s inequality
is by Bourgain, for a proof see e.g. Theorem 4.2.23 in the book [16].

Let V ∈ Dm and k ∈ I. Applying the probability space Y m, which was intro-
duced in the beginning of this section, we can write

AV,k∆
j1
V fk(x) =

1V (x)

|V |

ˆ

V

aV,k(x, y)∆
j1
V fk(y) dy

=

ˆ

YV

1V (x)aV,k(x, yV )∆
j1
V fk(yV ) dνV (yV )

=

ˆ

Y m

1V (x)aV,k(x, yV )∆
j1
V fk(yV ) dνm(y).
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Applying this in the right hand side of (3.5), and using Hölder’s inequality re-
lated to the appearing Y m integral, we see that the RHS of (3.5) is bounded by

(

EE′

ˆ

Rm

ˆ

Y m

∣

∣

∣

∑

k∈I

∑

V ∈Dm

ǫkǫ
′
V 1V (x)aV,k(x, yV )∆

j1
V fk(yV )

∣

∣

∣

q

E
dνm(y) dx

)1/q

.

Fix for the moment two points x ∈ Rm and y ∈ Y m. The R-boundedness
assumption (3.4) together with Pisier’s property (α) show that

EE′
∣

∣

∣

∑

k∈I

∑

V ∈Dm

ǫkǫ
′
V 1V (x)aV,k(x, yV )∆

j1
V fk(yV )

∣

∣

∣

q

E

. E′′
∣

∣

∣

∑

k∈I

∑

V ∈Dm

ǫ′′V,k1V (x)aV,k(x, yV )∆
j1
V fk(yV )

∣

∣

∣

q

E

. Cq
aE

′′
∣

∣

∣

∑

k∈I

∑

V ∈Dm

ǫ′′V,k1V (x)∆
j1
V fk(yV )

∣

∣

∣

q

E
.

We have shown that

E
∥

∥

∥

∑

k∈I

ǫkS
j1,j2
Dm,kfk

∥

∥

∥

Lq(Rm;E)

. Ca

(

E′′

ˆ

Rm

ˆ

Y m

∣

∣

∣

∑

k∈I

∑

V ∈Dm

ǫ′′V,k1V (x)∆
j1
V fk(yV )

∣

∣

∣

q

E
dνm(y) dx

)1/q

. Ca

(

EE′

ˆ

Rm

ˆ

Y m

∣

∣

∣

∑

k∈I

∑

V ∈Dm

ǫkǫ
′
V 1V (x)∆

j1
V fk(yV )

∣

∣

∣

q

E
dνm(y) dx

)1/q

,

(3.6)

where in the last step we again applied the property (α). Let k ∈ {0, . . . j1} and let
Dm

j1,k
⊂ Dm be the related collection as defined in (3.1). The decoupling estimate

(3.2) gives that

E′

ˆ

Rm

ˆ

Y m

∣

∣

∣

∑

k∈I

∑

V ∈Dm
j1,k

ǫkǫ
′
V 1V (x)∆

j1
V fk(yV )

∣

∣

∣

q

E
dνm(y) dx

= E′

ˆ

Rm

ˆ

Y m

∣

∣

∣

∑

V ∈Dm
j1,k

ǫ′V 1V (x)∆
j1
V

(

∑

k∈I

ǫkfk

)

(yV )
∣

∣

∣

q

E
dνm(y) dx

∼

ˆ

Rm

∣

∣

∣

∑

V ∈Dm
j1,k

∆j1
V

(

∑

k∈I

ǫkfk

)
∣

∣

∣

q

E
dx .

ˆ

Rm

∣

∣

∣

∑

k∈I

ǫkfk

∣

∣

∣

q

E
dx.

(3.7)

This combined with (3.6) shows that

E
∥

∥

∥

∑

k∈I

ǫkS
j1,j2
Dm,kfk

∥

∥

∥

Lq(Rm;E)
. (j1 + 1)Ca

(

E
∥

∥

∥

∑

k∈I

ǫkfk

∥

∥

∥

q

Lq(Rm;E)

)1/q

∼ (j1 + 1)CaE
∥

∥

∥

∑

k∈I

ǫkfk

∥

∥

∥

Lq(Rm;E)
.
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So far we have proved the claim with the constant (j1 + 1). The constant
(min(j1, j2) + 1) is achieved via duality. Consider some shift Sj1,j2

Dm,k. Its adjoint
(Sj1,j2

Dm,k)
∗ is the operator acting on functions g ∈ Lq′(Rm;E∗) by

(Sj1,j2
Dm,k)

∗g =
∑

V ∈Dm

∆j1
V A

∗
V,k∆

j2
V g,

where each A∗
V,k is an integral operator

A∗
V,kϕ(y) =

1V (y)

|V |

ˆ

V

aV,k(x, y)
∗ϕ(x) dx, ϕ ∈ L1

loc(R
m;E∗).

Since E is a UMD space, we know that if T ⊂ L(E) is an R-bounded operator
family, then the family T ∗ := {T ∗ ∈ L(E∗) : T ∈ T } is also R-bounded and
R(T ∗) . R(T ). This can be seen using Lemma 2.1. Thus,

R({aV,k(x, y)
∗ ∈ L(E∗) : k ∈ K, V ∈ Dm, x, y ∈ V }) . Ca.(3.8)

Also, because E is a UMD space, Pisier’s property (α) of E implies that also E∗

has the property (α) with comparable constants. See Proposition 7.5.15 in the
book [17].

Hence, we see that {(Sj1,j2
Dm,k)

∗}k∈K is a family of dyadic shifts with parameters
(j2, j1), and the related family of kernels satisfies the R-boundedness condition
(3.8). The above proof shows that

R
(

{(Sj1,j2
Dm,k)

∗ ∈ L(Lq′(Rm;E∗)) : k ∈ K}) . (j2 + 1)Ca.

Using Lemma 2.1 again we have

R
(

{Sj1,j2
Dm,k ∈ L(Lq(Rm;E)) : k ∈ K}) . (j2 + 1)Ca.

This concludes the proof. �

Next, we investigate shifts Si1,i2
Dn related to families of kernels aK : Rn × Rn →

Lp(Rm;E), whereE is a UMD space with the property (α) of Pisier and p ∈ (1,∞)
is fixed. This time we are interested in estimates of the form

‖Si1,i2
Dn f‖Lp(Rm;Lq(Rn;E)) . ‖f‖Lp(Rm;Lq(Rn;E))

for a given q ∈ (1,∞). Notice that if we had the norm of Lq(Rn;Lp(Rm;E)) in-
stead, we could apply Lemma 3.3.

Let Y n be the probability space related to decoupling in Rn, and suppose T ∈
L(Lp(Rm;E)). If f : Rn × Rm × Y n → E is a finite sum

(3.9) f(x1, x2, y) =
∑

i

1Ai
(x2)1Bi

(x1, y)ei,

where Ai ⊂ Rm, Bi ⊂ Rn × Y n are sets of finite measure and ei ∈ E, then we
define

Tf(x1, x2, y) :=
∑

i

T (1Ai
ei)(x2)1Bi

(x1, y)ei.
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The function Tf is well defined i.e. independent of the representation of f . We
say that T can be extended to an operator in L(Lp(Rm;Lq(Rn × Y n;E))) if there
exists T̃ ∈ L(Lp(Rm;Lq(Rn × Y n;E))) so that T̃ f = Tf for all f of the form
(3.9). This extension, if it exists, is unique since functions as in (3.9) are dense in
Lp(Rm;Lq(Rn × Y n;E)).

3.10. Lemma. Suppose E is a UMD space with Pisier’s property (α). Let p, q ∈ (1,∞)
and i1, i2 ∈ {0, 1, . . .} be fixed. Assume that {aK,k}K∈Dn,k∈K is a family of kernels

aK,k : R
n × Rn → L(Lp(Rm;E)),

so that each aK,k(x1, y1) ∈ L(Lp(Rm;E)) can be extended to an operator in

L(Lp(Rm;Lq(Rn × Y n;E))).

In addition, it is assumed that the kernels are of the form

(3.11) aK,k(x1, y1) =
∑

l∈JK,k

aK,k,l1SK,k,l
(x1, y1),

where (SK,k,l)l∈JK,k
is a finite partition of K × K and aK,k,l ∈ L(Lp(Rm;E)) Suppose

that there exists a constant Ca so that

R({aK,k(x1, y1) ∈ L(Lp(Rm;Lq(Rn × Y n;E))) : k ∈ K, K ∈ Dn, x1, y1 ∈ K}) ≤ Ca.

For every k ∈ K, let Si1,i2
Dn,k be the operator-valued dyadic shift related to the family

{aK,k}K∈Dn. Then, every Si1,i2
Dn,k can be extended to an operator in L(Lp(Rm;Lq(Rn;E))),

and
R({Si1,i2

Dn,k ∈ L(Lp(Rm;Lq(Rn;E))) : k ∈ K}) . Ca(min(i1, i2) + 1).

3.12. Remark. The assumptions are stronger than in Lemma 3.3 in the sense that
they imply that

R({aK,k(x1, y1) ∈ L(Lp(Rm;E)) : k ∈ K, K ∈ Dn, x1, y1 ∈ K}) ≤ Ca.

Therefore, we have by Lemma 3.3 that for all s ∈ (1,∞) there holds

R({Si1,i2
Dn,k ∈ L(Ls(Rn;Lp(Rm;E))) : k ∈ K}) . Ca(min(i1, i2) + 1).

The assumption (3.11) is satisfied in all the applications of this lemma below.

Proof of Lemma 3.10. Let {fk}k∈I , where I ⊂ K is finite, be a sequence of functions
fk : R

n × Rm → E of the form

(3.13) fk(x1, x2) =
∑

i

1Ak,i
(x1)1Bk,i

(x2)ek,i,

where the sum is finite, Ak,i ⊂ Rn and Bk,i ⊂ Rm are sets of finite measure, and
ek,i ∈ E. By the Remark 3.12, Si1,i2

Dn,kfk is well defined for every k. We will show
that

E
∥

∥

∥

∑

k∈I

εkS
i1,i2
Dn,kfk

∥

∥

∥

Lp(Rm;Lq(Rn;E))
. Ca(i1 + 1)E

∥

∥

∑

k∈I

εkfk
∥

∥

Lp(Rm;Lq(Rn;E))
,
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which proves Lemma 3.10 (the minimum can be attained using duality as before).
Below we view the functions fk as functions in Lq(Rn;Lp(Rm;E)), so that the

martingale differences ∆i1
Kfk have the usual meaning as Lp(Rm;E)-valued func-

tions. Begin by estimating (operate in Lq(Rn;E) with a fixed x2 ∈ Rm to introduce
random signs and to get rid of the martingales, and use Kahane–Khintchine):

E
∥

∥

∥

∑

k∈I

ǫkS
i1,i2
Dn,kfk

∥

∥

∥

Lp(Rm;Lq(Rn;E))

= E
∥

∥

∥

∑

K∈Dn

∆i2
K

∑

k∈I

ǫkAK,k∆
i1
Kfk

∥

∥

∥

Lp(Rm;Lq(Rn;E))

. EE′
∥

∥

∥

∑

K∈Dn

∑

k∈I

ǫ′KǫkAK,k∆
i1
Kfk

∥

∥

∥

Lp(Rm;Lq(Rn;E))

∼ E
∥

∥

∥

∑

K∈Dn

∑

k∈I

ǫK,kAK,k∆
i1
Kfk

∥

∥

∥

Lp(Rm;Lq(Rn;E))
.

(3.14)

The last step applied the property (α) of Lp(Rm;Lq(Rn;E)).
As in Lemma 3.3, we write

AK,k∆
i1
Kfk(x1) =

1K(x1)

|K|

ˆ

K

aK(x1, y1)∆
i1
Kfk(y1) dy1

=

ˆ

Y n

1K(x1)aK,k(x1, yK)∆
i1
Kfk(yK) dνn(y).

The interpretation here is that ∆i1
Kfk(yK) ∈ Lp(Rm;E), to which aK,k(x1, yK) ∈

L(Lp(Rm;E)) hits giving aK,k(x1, yK)∆
i1
Kfk(yK) ∈ Lp(Rm;E). This can further be

evaluated at x2 ∈ Rm to get an element of E. This will simply be written as
aK,k(x1, yK)∆

i1
Kfk(yK)(x2) ∈ E.

We can assume that the kernels AK,k are supported in K × K, and so we can
stop writing the indicator 1K(x1). Thus, the right hand side of (3.14) is dominated
by

(3.15) E
∥

∥

∥

∑

K∈Dn

∑

k∈I

ǫK,kaK,k(x1, yK)∆
i1
Kfk(yK)(x2)

∥

∥

∥

Lp( dx2;Lq( dx1×νn(y);E))
.

To proceed, we aim to apply the fact that the kernels aK,k are of the form (3.11).
Kahane–Khintchine inequality implies that (3.15) is equivalent with

∥

∥

∥

(

ˆ

Rn

ˆ

Y n

E
∣

∣

∣

∑

K∈Dn

∑

k∈I

ǫK,kaK,k(x1, yK)∆
i1
Kfk(yK)(x2)

∣

∣

∣

q

E
dνn(y) dx1

)1/q∥
∥

∥

Lp( dx2)
.

Fix x1 ∈ Rn and y ∈ Y n. Let

{ǫK,k,l : K ∈ Dn, k ∈ K, l ∈ JK,k}

be another independent sequence of random signs. By the identical distribution
of

{ǫK,k : K ∈ Dn, k ∈ K, x1 ∈ K}
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and
{ǫK,k,l : K ∈ Dn, k ∈ K, l ∈ JK,k s.t. (x1, yK) ∈ SK,k,l}

we have

E
∣

∣

∣

∑

K∈Dn

∑

k∈I

ǫK,kaK,k(x1, yK)∆
i1
Kf(yK)(x2)

∣

∣

∣

q

E

= E
∣

∣

∣

∑

k∈I

∑

K∈Dn

ǫK,k

∑

l∈JK,k

1SK,k,l
(x1, yK)aK,k,l∆

i1
Kfk(yK)(x2)

∣

∣

∣

q

E

= E
∣

∣

∣

∑

k∈I

∑

K∈Dn

∑

l∈JK,k

ǫK,k,l1SK,k,l
(x1, yK)aK,k,l∆

i1
Kfk(yK)(x2)

∣

∣

∣

q

E
.

(3.16)

Using (3.16) and applying the Kahane–Khintchine inequality again we have
shown that (3.15) is equivalent with

(3.17) E
∥

∥

∥

∑

k∈I

∑

K∈Dn

∑

l∈JK,k

ǫK,k,l1SK,k,l
(x1, yK)aK,k,l∆

i1
Kfk(yK)(x2)

∥

∥

∥
,

where the norm ‖ · ‖ refers to ‖ · ‖Lp( dx2;Lq( dx1×νn(y);E)). Define for every (K, k, l)
the function

1SK,k,l
(x1, yK)∆

i1
Kfk(yK)(x2) =: FK,k,l(x1, x2, y).

Using the fact that f is of the form (3.13) we see that

1SK,k,l
(x1, yK)aK,k,l∆

i1
Kfk(yK)(x2) = aK,k,lFK,k,l(x1, x2, y),

where in the right hand side we interpreted aK,k,l as the extended operator in
L(Lp(Rm;Lq(Rn × Y n;E))). Now, the assumed R-boundedness gives that

(3.17) = E
∥

∥

∥

∑

k∈I

∑

K∈Dn

∑

l∈JK,k

ǫK,k,laK,k,lFK,k,l(x1, x2, y)
∥

∥

∥

. CaE
∥

∥

∥

∑

k∈I

∑

K∈Dn

∑

l∈JK,k

ǫK,k,l1SK,k,l
(x1, yK)∆

i1
Kfk(yK)(x2)

∥

∥

∥

∼ CaE
∥

∥

∥

∑

k∈I

∑

K∈Dn

ǫK,k1K(x1)∆
i1
Kfk(yK)(x2)

∥

∥

∥
,

where in the last step we converted back to the random signs ǫK,k as in (3.16).
Finally, using the property (α) of Lp( dx2;L

q( dx1 × νn(y);E)) and then decou-
pling similarly as in (3.7) it is seen that

E
∥

∥

∥

∑

k∈I

∑

K∈Dn

ǫK,k1K(x1)∆
i1
Kfk(yK)(x2)

∥

∥

∥

Lp( dx2;Lq( dx1×νn(y);E))

∼ EE′
∥

∥

∥

∑

K∈Dn

ǫ′K1K(x1)∆
i1
K

(

∑

k∈I

ǫkfk

)

(yK)(x2)
∥

∥

∥

Lp( dx2;Lq( dx1×νn(y);E))

. (i1 + 1)E
∥

∥

∥

∑

k∈I

ǫkfk

∥

∥

∥

Lp(Rm;Lq(Rn;E))
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This concludes the proof.
�

3.2. Bi-parameter operator-valued shifts. We turn to show that operator-valued
bi-parameter shifts are bounded (even R-bounded as a family).

3.18. Proposition. Let E be a UMD space satisfying the property (α) of Pisier, and let

i1, i2, j1, j2 ≥ 0 be fixed parameters. Suppose {Si1,i2,j1,j2
Dn,Dm,k }k∈K is a family of operator-

valued bi-parameter dyadic shifts as in Section 2.9. For every k ∈ K let

{aK,V,k : K ∈ Dn, V ∈ Dm}

be the family of kernels related to the shift Si1,i2,j1,j2
Dn,Dm,k . Assume that there exists a constant

Ca so that

R
(

{aK,V,k(x, y) : k ∈ K, K ∈ Dn, V ∈ Dm, x, y ∈ K × V }
)

≤ Ca.

Then for all p, q ∈ (1,∞) we have

R
(

{Si1,i2,j1,j2
Dn,Dm,k ∈ L(Lq(Rn;Lp(Rm;E))) : k ∈ K})

. (min(i1, i2) + 1)(min(j1, j2) + 1)Ca.

Proof. For each fixed k ∈ K, K ∈ Dn and x1, y1 ∈ K we define the one-parameter
operator-valued dyadic shift in Rm by the formula

Sj1,j2
Dm,k,K,x1,y1

ϕ :=
∑

V ∈Dm

∆j2
V A

K,x1,y1
V,k ∆j1

V ϕ, ϕ ∈ L1
loc(R

m;E),

where

AK,x1,y1
V,k ϕ(x2) :=

1V (x2)

|V |

ˆ

V

aK,V,k(x1, x2, y1, y2)ϕ(y2) dy2.

The assumptions and Lemma 3.3 show that for all p ∈ (1,∞) we have

R
(

{Sj1,j2
Dm,k,K,x1,y1

∈L(Lp(Rm;E)) : k ∈ K, K ∈ Dm, x1, y1 ∈ K})

. (min(j1, j2) + 1)Ca.
(3.19)

Next, fix p ∈ (1,∞), and for each k ∈ K define the one-parameter operator-
valued dyadic shift in Rn by the formula

Si1,i2
Dn,kψ :=

∑

K∈Dn

∆i2
KAK,k∆

i1
Kψ, ψ ∈ L1

loc(R
n;Lp(Rm;E)),

where

AK,kψ(x1) =
1K(x1)

|K|

ˆ

K

aK,k(x1, y1)ψ(y1) dy1

and
aK,k(x1, y1) = Sj1,j2

Dm,k,K,x1,y1
.

Recall that Lp(Rm;E) is a UMD space with the property (α) of Pisier. Using (3.19)
and Lemma 3.3 we see that for all q ∈ (1,∞) there holds

R
(

{Si1,i2
Dn,k ∈L(L

q(Rn;Lp(Rm;E))) : k ∈ K}) . (min(i1, i2) + 1)(min(j1, j2) + 1)Ca.
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To conclude the proof, we only need to check that

Si1,i2
Dn,kf = Si1,i2,j1,j2

Dn,Dm,k f.

For this identity we consider k ∈ K fixed, and suppress it from the notation.
A straightforward, however tedious, way is to expand both sides using Haar
functions. Clearly, Si1,i2,j1,j2

Dn,Dm f equals

∑

K∈Dn

V ∈Dm

1

|K||V |

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

∑

J1,J2∈Dm

J
(j1)
1 =J

(j2)
2 =V

(

¨

I1×J1

¨

I2×J2

(hI1 ⊗ hJ1)(y)(hI2 ⊗ hJ2)(z)

× aK,V (z, y)〈f, hI1 ⊗ hJ1〉 dz dy
)

hI2 ⊗ hJ2 .

We now check that also Si1,i2
Dn f equals this. Since

∆i1
Kf(y1) =

∑

I1∈Dn

I
(i1)
1 =K

hI1(y1)〈f, hI1〉1,

we have

AK∆
i1
Kf(z1) =

1K(z1)

|K|

∑

I1∈Dn

I
(i1)
1 =K

ˆ

I1

hI1(y1)S
j1,j2
Dm,K,z1,y1

〈f, hI1〉1 dy1

and

∆i2
KAK∆

i1
Kf(x1) =

1

|K|

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI2(x1)
(

ˆ

I1

ˆ

I2

hI1(y1)hI2(z1)

× Sj1,j2
Dm,K,z1,y1

〈f, hI1〉1 dz1 dy1
)

.

Since

∆j1
V 〈f, hI1〉1(y2) =

∑

J1∈Dm

J
(j1)
1 =V

〈f, hI1 ⊗ hJ1〉hJ1(y2),

we have

AK,z1,y1
V ∆j1

V 〈f, hI1〉1(z2) =
1V (z2)

|V |

∑

J1∈Dm

J
(j1)
1 =V

ˆ

J1

hJ1(y2)

× aK,V (z1, z2, y1, y2)〈f, hI1 ⊗ hJ1〉 dy2



22 TUOMAS HYTÖNEN, HENRI MARTIKAINEN, AND EMIL VUORINEN

and

∆j2
V A

K,z1,y1
V ∆j1

V 〈f, hI1〉1(x2) =
1

|V |

∑

J1,J2∈Dm

J
(j1)
1 =J

(j2)
2 =V

(

ˆ

J1

ˆ

J2

hJ1(y2)hJ2(z2)

× aK,V (z1, z2, y1, y2)〈f, hI1 ⊗ hJ1〉 dz2 dy2
)

hJ2(x2).

Combining, we readily see that Si1,i2
Dn f has the same Haar expansion as Si1,i2,j1,j2

Dn,Dm f ,
and the proof is complete. �

4. MODEL OPERATORS

Fix a UMD space F . Suppose that for every K, I1, I2 ∈ Dn we are given an
operator BK,I1,I2 ∈ L(F ). Fix two indices i1, i2 ≥ 0, and define the model operator

P i1,i2
Dn f(x) =

∑

K∈Dn

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI2(x)BK,I1,I2(〈f, hI1〉),

where x ∈ Rn and f : Rn → F is locally integrable. The next proposition consid-
ers a family of these operators P i1,i2

Dn,b, where b ∈ B and B is some index set.

4.1. Proposition. Let F be a UMD space with the property (α) of Pisier. Suppose that

R
({ |K|

|I1|1/2|I2|1/2
BK,I1,I2,b ∈ L(F ) : K, I1, I2 ∈ Dn, b ∈ B

})

≤ C0.

Let P i1,i2
Dn,b be a model operator associated with the operators BK,I1,I2,b. Then for all q ∈

(1,∞) we have

R({P i1,i2
Dn,b ∈ L(Lq(Rn;F )) : b ∈ B}) . (min(i1, i2) + 1)C0.

Proof. This is essentially just an estimate for operator-valued shifts in a form
which is a priori slightly different. To see the simple connection define the operator-
valued kernels

ai1,i2K,b : Rn × Rn → L(F )

by setting

ai1,i2K,b (x, y) = |K|
∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI1(y)hI2(x)BK,I1,I2,b.

We then define the averaging operator Ai1,i2
K,b , mapping locally integrable func-

tions f : Rn → F to Ai1,i2
K,b f : R

n → F , by the formula

Ai1,i2
K,b f(x) =

1

|K|

ˆ

Rn

ai1,i2K,b (x, y)f(y) dy.
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Define the operator-valued shift

Si1,i2
Dn,bf :=

∑

K∈Dn

Ai1,i2
K,b f =

∑

K∈Dn

∆i2
KA

i1,i2
K,b ∆

i1
Kf.

By Lemma 3.3 we have for all q ∈ (1,∞) that

R({Si1,i2
Dn,b ∈ L(Lq(Rn;F )) : b ∈ B}) . (min(i1, i2) + 1)R,

where
R := R({ai1,i2K,b (x, y) ∈ L(F ) : b ∈ B, K ∈ Dn, x, y ∈ K}).

Consider a fixed tuple (b,K, x, y) so that ai1,i2K,b (x, y) 6= 0. Then there are unique

I1, I2 ∈ Dn (depending on (K, x, y)) so that I(i1)1 = I
(i2)
2 = K, y ∈ I1 and x ∈ I2.

Now, we have

ai1,i2K,b (x, y) = |K|hI1(y)hI2(x)BK,I1,I2,b = ±
|K|

|I1|1/2|I2|1/2
BK,I1,I2,b.

Thus, we have R ≤ C0. It remains only to notice that Si1,i2
Dn,bf = P i1,i2

Dn,bf , which
follows from the fact that

Ai1,i2
K,b f(x) =

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI2(x)BK,I1,I2,b

(

ˆ

I1

f(y)hI1(y) dy
)

.

�

Let us now consider the special case of model operators, where F = Lp(Rm;E)
for some fixed p ∈ (1,∞) and UMD space E. We formulate a condition for
verifying the boundedness of P i1,i2

Dn from Lp(Rm;Lq(Rn;E)) to Lp(Rm;Lq(Rn;E)).
Notice that the previous proposition only allows to conclude that under certain
conditions P i1,i2

Dn is bounded from Lq(Rn;Lp(Rm;E)) → Lq(Rn;Lp(Rm;E)) for all
q ∈ (1,∞). The condition will now depend both on p and q. These assumptions
are stronger than above (i.e. they also imply the conclusion of Proposition 4.1),
see Remark 3.12.

When we talk about extensions, we always mean tensor extensions as in Sec-
tion 3.

4.2. Proposition. Let E be a UMD space with the property (α) of Pisier, p, q ∈ (1,∞)
and F = Lp(Rm;E). Suppose we are given operators BK,I1,I2,b ∈ L(F ) that can be
extended to operators in L(Lp(Rm;Lq(Rn × Y n;E))), and that

R
({ |K|

|I1|1/2|I2|1/2
BK,I1,I2,b ∈ L(Lp(Rm;Lq(Rn × Y n;E))) :

K, I1, I2 ∈ Dn, b ∈ B
})

≤ C0.

Let P i1,i2
Dn,b be a model operator associated with the operators BK,I1,I2,b. Then we have

R({P i1,i2
Dn,b ∈ L(Lp(Rm;Lq(Rn;E))) : b ∈ B}) . (min(i1, i2) + 1)C0.
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Proof. As in the proof of Proposition 4.1 we have that P i1,i2
Dn,b = Si1,i2

Dn,b for a certain
operator-valued shift. Using Lemma 3.10 we get the claim exactly as before. �

For the purposes of tri-parameter theory let us still go one step further. So sup-
pose now that F = Lp(Rm;Lr(Rk;E)). Notice that if we now consider bounded-
ness in Lq(Rn;F ) we can use Proposition 4.1. On the other hand, if we consider
boundedness in Lp(Rm;Lq(Rn;Lr(Rk;E))) we need to use Proposition 4.2. The
case Lp(Rm;Lr(Rk;Lq(Rn;E))) requires a new proposition.

4.3. Proposition. LetE be a UMD space with the property (α) of Pisier, p, q, r ∈ (1,∞)
and F = Lp(Rm;Lr(Rk;E)). Suppose we are given operators BK,I1,I2,b ∈ L(F ) that can
be extended to operators in L(Lp(Rm;Lr(Rk;Lq(Rn × Y n;E)))), and that

R
({ |K|

|I1|1/2|I2|1/2
BK,I1,I2,b ∈ L(Lp(Rm;Lr(Rk;Lq(Rn × Y n;E)))) :

K, I1, I2 ∈ Dn, b ∈ B
})

≤ C0.

Let P i1,i2
Dn,b be a model operator associated with the operators BK,I1,I2,b. Then we have

R({P i1,i2
Dn,b ∈ L(Lp(Rm;Lr(Rk;Lq(Rn;E)))) : b ∈ B}) . (min(i1, i2) + 1)C0.

Proof. As in the proof of Proposition 4.1 we have that P i1,i2
Dn,b = Si1,i2

Dn,b for a cer-
tain operator-valued shift. Using an obvious variant of Lemma 3.10 (the proof is
essentially the same) we get the claim. �

5. R-BOUNDEDNESS RESULTS FOR PARAPRODUCTS

5.1. R-boundedness of one-parameter paraproducts. We begin by giving a nice
and elementary argument showing the R-boundedness of paraproducts πDm,bi ∈
L(Lp(Rm)) when ‖bi‖BMODm ≤ 1. This proof may be of independent interest.
However, it is not needed as, using other techniques, we prove a more general
result right after.

In this more general result we study R-boundedness in Lp(Rm;E) for a UMD
function lattice E. Recall that UMD-valued paraproducts are bounded in Lp.
Therefore, it seems reasonable to suspect that Proposition 5.4 is true in the gener-
ality that E is a UMD space satisfying Pisier’s property (α). However, showing
that would certainly require different methods.

5.1. Proposition. Suppose that ‖bi‖BMODm ≤ 1, i ∈ I, and p ∈ (1,∞). Then

R({πDm,bi ∈ L(Lp(Rm)) : i ∈ I}) . 1.

Proof. This proof has the benefit that we can work with the L1 definition of BMO
directly, and we even don’t need to use the John–Nirenberg inequality.

We start with simple stopping time preliminaries. Consider first a single func-
tion b for which ‖b‖BMODm ≤ 1, and a fixed J0 ∈ Dm. We set F0

b (J0) = {J0}, and
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let F1
b (J0) consist of the maximal J ∈ Dm, J ⊂ J0, for which |〈b〉J − 〈b〉J0| > 4.

Notice that for all J ∈ F1
b (J0) we have

4 < |〈b〉J − 〈b〉J0| ≤
1

|J |

ˆ

J

|b− 〈b〉J0 |,

so that
∣

∣

∣

⋃

J∈F1
b
(J0)

J
∣

∣

∣
≤

1

4

ˆ

J0

|b− 〈b〉J0 | ≤
|J0|

4
.

Iterating this scheme we get the sparse family of stopping cubes defined by
Fb(J0) =

⋃∞
j=0F

j
b (J0). A family of cubes is sparse if for each cube Q in the family

there is a subset EQ ⊂ Q so that |EQ| & |Q| and so that the sets EQ are pairwise
disjoint.

For every dyadic Q ⊂ J0 we let πFb(J0)Q denote the minimal J ∈ Fb(J0) so that
Q ⊂ J . The following estimate for martingale blocks is key to us:

∥

∥

∥

∑

Q∈Dm

πFb(J0)
Q=J

∆Qb
∥

∥

∥

L∞(Rm)
. 1, J ∈ Fb(J0).

Another stopping time we use is the standard principal cubes of a function
f ∈ L1

loc(R
m). This means that S0

f (J0) = {J0}, and we let S1
f (J0) consist of the

maximal J ∈ Dm, J ⊂ J0, for which 〈|f |〉J > 4〈|f |〉J0. This time it is perhaps even
more trivial that

∣

∣

∣

⋃

J∈S1
f
(J0)

J
∣

∣

∣
≤

|J0|

4
.

Iterating this we get the sparse family of stopping cubes defined by Sf (J0).
Our final stopping time is established by combining these two in the following

sense. Let F0
b,f(J0) = {J0} and let F1

b,f(J0) be the maximal cubes of F1
b (J0)∪S

1
f (J0).

The final sparse collection, established by iterating this, is denoted by Fb,f(J0) =
⋃∞

j=0F
j
b,f(J0).

After these preliminaries we give the actual proof. We need to show that given
a finite J ⊂ I and fj ∈ Lp(Rm) we have

∥

∥

∥

(

∑

j∈J

|πbjfj |
2
)1/2∥

∥

∥

Lp(Rm)
.

∥

∥

∥

(

∑

j∈J

|fj |
2
)1/2∥

∥

∥

Lp(Rm)
,

where we abbreviated πbj = πDm,bj .
Using calculations as in Section 2.11 it is clear that the following one-parameter

analog of the results of that section holds:

(5.2)
∥

∥

∥

(

∑

j∈J

|fj|
2
)1/2∥

∥

∥

Lp(Rm)
∼

∥

∥

∥

(

∑

j∈J

∑

Q∈Dm

|∆Qfj |
2
)1/2∥

∥

∥

Lp(Rm)
.
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This is also stated in Lemma 2.1 of [33]. Using this we have

∥

∥

∥

(

∑

j∈J

|πbjfj|
2
)1/2∥

∥

∥

Lp(Rm)
∼

∥

∥

∥

(

∑

j∈J

∑

Q∈Dm

|〈fj〉Q∆Qbj |
2
)1/2∥

∥

∥

Lp(Rm)
.

Therefore, it is enough to fix an arbitrary J0 ∈ Dm and prove the estimate

∥

∥

∥

(

∑

j∈J

∑

Q∈Dm

Q⊂J0

|〈fj〉Q∆Qbj |
2
)1/2∥

∥

∥

Lp(Rm)
.

∥

∥

∥

(

∑

j∈J

|fj |
2
)1/2∥

∥

∥

Lp(Rm)
.

For every j ∈ J we set Fj := Fbj ,fj(J0). Then, we estimate

∥

∥

∥

(

∑

j∈J

∑

Q∈Dm

Q⊂J0

|〈fj〉Q∆Qbj |
2
)1/2∥

∥

∥

Lp(Rm)

.
∥

∥

∥

(

∑

j∈J

∑

J∈Fj

〈|fj|〉
2
J

∑

Q∈Dm

πFj
Q=J

|∆Qbj |
2
)1/2∥

∥

∥

Lp(Rm)

∼
∥

∥

∥

(

∑

j∈J

∑

J∈Fj

〈|fj|〉
2
J

∣

∣

∣

∑

Q∈Dm

πFj
Q=J

∆Qbj

∣

∣

∣

2)1/2∥
∥

∥

Lp(Rm)
.

(5.3)

The last step applied (5.2) again. Since for every j ∈ J and J ∈ Fj we have
∣

∣

∣

∑

Q∈Dm

πFj
Q=J

∆Qbj

∣

∣

∣
. 1J ,

the right hand side of (5.3) is further bounded by

∥

∥

∥

(

∑

j∈J

∑

J∈Fj

〈|fj|〉
2
J1J

)1/2∥
∥

∥

Lp(Rm)
.

∥

∥

∥

(

∑

j∈J

|fj|
2
)1/2∥

∥

∥

Lp(Rm)
.

The last step used a version of the Carleson embedding theorem stated at least in
Lemma 2.2 of [33]. �

With a different proof we can manage the generality that E is a UMD func-
tion lattice. The method is very similar to those that we use with bi-parameter
paraproducts below.

5.4. Proposition. Suppose that ‖bi‖BMODm ≤ 1, i ∈ I, E is a UMD function lattice
and p ∈ (1,∞). Then

R({πDm,bi ∈ L(Lp(Rm;E)) : i ∈ I}) . 1.
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Proof. Denote πbi = πDm,bi . For all finite subsets J ⊂ I and fj ∈ Lp(Rm;E),
gj ∈ Lp′(Rm;E∗) (recall that E∗ = E ′) we will show that

∣

∣

∣

∑

j∈J

ˆ

Rm

{πbjfj(x), gj(x)}E dx
∣

∣

∣

.
∥

∥

∥

(

∑

j∈J

|fj|
2
)1/2∥

∥

∥

Lp(Rm;E)

∥

∥

∥

(

∑

j∈J

|gj|
2
)1/2∥

∥

∥

Lp′(Rm;E∗)
.

This is enough as can be seen by using Lemma 2.1 and Lemma 2.7. As gj(x) ∈
E∗ = E ′ the pairings {·, ·}E are just integrals (over some space Ω appearing in the
definition of function lattices, see Section 2.10). This is convenient for checking
the validity of some of the manipulations below.

Recalling that

πbjfj(x) =
∑

J∈Dm

〈bj, hJ〉〈fj〉JhJ(x), x ∈ Rm,

we get

∣

∣

∣

∑

j∈J

ˆ

Rm

{πbjfj(x), gj(x)}E dx
∣

∣

∣
=

∣

∣

∣

∑

j∈J

∑

J∈Dm

〈bj , hJ〉{〈fj〉J , 〈gj, hJ〉}E

∣

∣

∣

≤
∑

j∈J

∑

J∈Dm

|〈bj , hJ〉||{〈fj〉J , 〈gj, hJ〉}E|

.
∑

j∈J

ˆ

Rm

(

∑

J∈Dm

|{〈fj〉J , 〈gj, hJ〉}E|
21J(y)

|J |

)1/2

dy,

where for each j we used ‖bj‖BMODm ≤ 1 via the following inequality

∑

J∈Dm

|〈bj, hJ〉||aJ | .

ˆ

Rm

(

∑

J∈Dm

|aJ |
21J(y)

|J |

)1/2

dy.

Here (aJ)J∈Dm can be an arbitrary sequence of scalars (see Section 2.4).
For a fixed y ∈ Rm we have (by using ℓ2 duality) that

(

∑

J∈Dm

|{〈fj〉J , 〈gj,hJ〉}E|
21J(y)

|J |

)1/2

≤
{

MDm,Efj(y),
(

∑

J∈Dm

|〈gj, hJ〉|
21J(y)

|J |

)1/2}

E
.
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Therefore, we have
∣

∣

∣

∑

j∈J

ˆ

Rm

{πbjfj(x), gj(x)}E dx
∣

∣

∣

.

ˆ

Rm

∑

j∈J

{

MDm,Efj(y),
(

∑

J∈Dm

|〈gj, hJ〉|
21J(y)

|J |

)1/2}

E
dy

≤

ˆ

Rm

{(

∑

j∈J

|MDm,Efj(y)|
2
)1/2

,
(

∑

j∈J

∑

J∈Dm

|〈gj, hJ〉|
21J(y)

|J |

)1/2}

E
dy

≤
∥

∥

∥

(

∑

j∈J

|MDm,Efj|
2
)1/2∥

∥

∥

Lp(Rm;E)

∥

∥

∥

(

∑

j∈J

∑

J∈Dm

|〈gj, hJ〉|
2 1J
|J |

)1/2∥
∥

∥

Lp′ (Rm;E∗)
.

That
∥

∥

∥

(

∑

j∈J

|MDm,Efj|
2
)1/2∥

∥

∥

Lp(Rm;E)
.

∥

∥

∥

(

∑

j∈J

|fj|
2
)1/2∥

∥

∥

Lp(Rm;E)

holds follows from Proposition 2.10 (see also the discussion below the propo-
sition). The next estimate follows from the one-parameter version of Corollary
2.9:

∥

∥

∥

(

∑

j∈J

∑

J∈Dm

|〈gj, hJ〉|
2 1J
|J |

)1/2∥
∥

∥

Lp′ (Rm;E∗)
.

∥

∥

∥

(

∑

j∈J

|gj|
2
)1/2∥

∥

∥

Lp′ (Rm;E∗)
.

�

5.2. R-boundedness of bi-parameter paraproducts.

5.5. Proposition. Suppose that ‖bi‖BMODm,Dk

prod

≤ 1, i ∈ I, E is a UMD function lattice

and p, r ∈ (1,∞). Then

R({ΠDm,Dk,bi ∈ L(Lp(Rm;Lr(Rk;E))) : i ∈ I}) . 1.

Proof. Denote Πbi := ΠDm,Dk,bi . We will show that given a finite J ⊂ I, fj ∈

Lp(Rm;Lr(Rk;E)) and gj ∈ Lp′(Rm;Lr′(Rk;E∗)) we have
∣

∣

∣

∑

j∈J

¨

Rm+k

{

Πbjfj(x1, x2), gj(x1, x2)
}

E
dx1 dx2

∣

∣

∣

.
∥

∥

∥

(

∑

j∈J

|fj|
2
)1/2∥

∥

∥

Lp(Rm;Lr(Rk;E))

∥

∥

∥

(

∑

j∈J

|gj|
2
)1/2∥

∥

∥

Lp′ (Rm;Lr′(Rk ;E∗))
.

That this is enough is justified like in Proposition 5.4.
Recall that

Πbjfj(x1, x2) =
∑

V ∈Dm

U∈Dk

λjV,U
〈

fj
〉

V×U
hV (x1)hU(x2),
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where the scalars λjV,U satisfy for all j and all scalars AV,U that

∑

V ∈Dm

U∈Dk

|λjV,U ||AV,U | .

¨

Rm+k

(

∑

V ∈Dm

U∈Dk

|AV,U |
21V ⊗ 1U
|V ||U |

)1/2

.

This gives
∣

∣

∣

∑

j∈J

¨

Rm+k

{

Πbjfj , gj
}

E

∣

∣

∣

≤
∑

j∈J

∑

V ∈Dm

U∈Dk

∣

∣λjV,U ||
{〈

fj
〉

V×U
,
〈

gj , hV ⊗ hU
〉}

E

∣

∣

.
∑

j∈J

¨

Rm+k

(

∑

V ∈Dm

U∈Dk

{

MDm,Dk,Efj ,
∣

∣

〈

gj , hV ⊗ hU
〉
∣

∣

}2

E

1V ⊗ 1U
|V ||U |

)1/2

,

which is further bounded by
¨

Rm+k

∑

j∈J

{

MDm,Dk,Efj ,
(

∑

V ∈Dm

U∈Dk

∣

∣

〈

gj , hV ⊗ hU
〉
∣

∣

21V ⊗ 1U
|V ||U |

)1/2}

E

≤
∥

∥

∥

(

∑

j∈J

|MDm,Dk,Efj|
2
)1/2∥

∥

∥

Lp(Rm;Lr(Rk;E))

×
∥

∥

∥

(

∑

j∈J

∑

V ∈Dm

U∈Dk

∣

∣

〈

gj, hV ⊗ hU
〉
∣

∣

2 1V ⊗ 1U
|V ||U |

)1/2∥
∥

∥

Lp′(Rm;Lr′(Rk;E∗))
.

The proof is finished by applying Corollary 2.13 and Corollary 2.9. �

5.6. Proposition. Suppose ‖bi‖BMODm,Dk

prod

≤ 1, i ∈ I, E is a UMD function lattice and

p, r ∈ (1,∞). Then

R({Πmixed
Dm,Dk,bi

∈ L(Lp(Rm;Lr(Rk;E))) : i ∈ I}) . 1.

Proof. Denote Πmixed
bi

= Πmixed
Dm,Dk,bi

. We will show that given a finite J ⊂ I, fj ∈

Lp(Rm;Lr(Rk;E)) and gj ∈ Lp′(Rm;Lr′(Rk;E∗)) we have
∣

∣

∣

∑

j∈J

¨

Rm+k

{

Πmixed
bj

fj(x1, x2), gj(x1, x2)
}

E
dx1 dx2

∣

∣

∣

.
∥

∥

∥

(

∑

j∈J

|fj|
2
)1/2∥

∥

∥

Lp(Rm;Lr(Rk;E))

∥

∥

∥

(

∑

j∈J

|gj|
2
)1/2∥

∥

∥

Lp′ (Rm;Lr′(Rk ;E∗))
.

That this is enough is justified like in Proposition 5.4.
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Estimating as in the previous proposition we get
∣

∣

∣

∑

j∈J

¨

Rm+k

{

Πmixed
bj

fj , gj
}

E

∣

∣

∣

.
∑

j∈J

¨

Rm+k

(

∑

V ∈Dm

U∈Dk

∣

∣

∣

{〈

fj , hV ⊗
1U
|U |

〉

,
〈

gj ,
1V
|V |

⊗ hU
〉}

E

∣

∣

∣

21V ⊗ 1U
|V ||U |

)1/2

≤
∑

j∈J

¨

Rm+k

(

∑

V ∈Dm

U∈Dk

{

MDk,E

〈

fj , hV
〉

1
,MDm,E∗

〈

gj, hU
〉

2

}2

E

1V ⊗ 1U
|V ||U |

)1/2

.

Notice that
(

∑

V ∈Dm

U∈Dk

{

MDk,E

〈

fj, hV
〉

1
,MDm,E∗

〈

gj, hU
〉

2

}2

E

1V ⊗ 1U
|V ||U |

)1/2

≤
(

∑

V ∈Dm

{ 1V
|V |1/2

⊗MDk,E

〈

fj , hV
〉

1
,
(

∑

U∈Dk

[

MDm,E∗

〈

gj , hU
〉

2

]2
⊗

1U
|U |

)1/2}2

E

)1/2

≤
{(

∑

V ∈Dm

1V
|V |

⊗
[

MDk,E

〈

fj, hV
〉

1

]2
)1/2

,
(

∑

U∈Dk

[

MDm,E∗

〈

gj , hU
〉

2

]2
⊗

1U
|U |

)1/2}

E
,

so that
∣

∣

∣

∑

j∈J

¨

Rm+k

{

Πmixed
bj

fj(x1, x2), gj(x1, x2)
}

E
dx1 dx2

∣

∣

∣

.
∥

∥

∥

(

∑

j∈J

∑

V ∈Dm

1V
|V |

⊗
[

MDk,E

〈

fj, hV
〉

1

]2
)1/2∥

∥

∥

Lp(Rm;Lr(Rk;E))

×
∥

∥

∥

(

∑

j∈J

∑

U∈Dk

[

MDm,E∗

〈

gj, hU
〉

2

]2
⊗

1U
|U |

)1/2∥
∥

∥

Lp′(Rm;Lr′(Rk;E∗))
.

There holds
∥

∥

∥

(

∑

j∈J

∑

V ∈Dm

1V
|V |

⊗
[

MDk,E

〈

fj , hV
〉

1

]2
)1/2∥

∥

∥

Lp(Rm;Lr(Rk ;E))

.
∥

∥

∥

(

∑

j∈J

∑

V ∈Dm

1V
|V |

⊗
[〈

fj , hV
〉

1

]2
)1/2∥

∥

∥

Lp(Rm;Lr(Rk ;E))

.
∥

∥

∥

(

∑

j∈J

|fj |
2
)1/2∥

∥

∥

Lp(Rm;Lr(Rk ;E))
.

In the first step we used Proposition 2.10 (see again also the discussion after the
proposition) in the inner integral over Rk. The second step was an application
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of Corollary 2.9. The term related to the sequence {gj} is handled with a corre-
sponding argument, except that the first step is now an application of Corollary
2.12. �

5.7. Remark. The estimate in Lr(Rk;Lp(Rm;E)) follows with the same proof.

6. BI-PARAMETER PARTIAL PARAPRODUCTS

A bi-parameter partial paraproduct is an operator of the form

P i1,i2
Dn,Dmf =

∑

K∈Dn

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI2 ⊗ πDm,bK,I1,I2
(〈f, hI1〉1), f ∈ L1

loc(R
n+m;E),

whereE is a UMD space with the property (α) of Pisier and πDm,bK,I1,I2
is a dyadic

(one-parameter) paraproduct for some function

bK,I1,I2 : R
m → R

satisfying

‖bK,I1,I2‖BMODm ≤
|I1|

1/2|I2|
1/2

|K|
.

With E = R (or C) this is the exact form in which these operators appear in the
bi-parameter representation theorem [23]. Of course, such operators appear also
in the form that contains the dual paraproducts π∗

Dm,bK,I1,I2
, and in the form that

the paraproduct component is in Rn.

6.1. Theorem. Let E be a UMD function lattice, p, q ∈ (1,∞) and i1, i2 ≥ 0. Suppose
that for each k ∈ K we are given a partial paraproduct

P i1,i2
Dn,Dm,kf =

∑

K∈Dn

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI2 ⊗ πDm,bK,I1,I2,k
(〈f, hI1〉1), f ∈ L1

loc(R
n+m;E),

where

‖bK,I1,I2,k‖BMODm ≤
|I1|

1/2|I2|
1/2

|K|
.

Then we have

R({P i1,i2
Dn,Dm,k ∈ L(Lq(Rn;Lp(Rm;E))) : k ∈ K}) . min(i1, i2) + 1

and
R({P i1,i2

Dn,Dm,k ∈ L(Lp(Rm;Lq(Rn;E))) : k ∈ K}) . min(i1, i2) + 1.

Proof. Fix p ∈ (1,∞). We can see the partial paraproduct P i1,i2
Dn,Dm,k, k ∈ K, as a

model operator when it acts on locally integrable functions f : Rn → F , where
F = Lp(Rm;E). Proposition 4.1 says that for all q ∈ (1,∞) we have

R({P i1,i2
Dn,Dm,k ∈ L(Lq(Rn;Lp(Rm;E))) : k ∈ K}) . (min(i1, i2) + 1)Rp(E),
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where

Rp(E) := R
({ |K|

|I1|1/2|I2|1/2
πDm,bK,I1,I2,k

∈ L(Lp(Rm;E)) : k ∈ K, K, I1, I2 ∈ Dn
})

.

Proposition 5.4 says that Rp(E) . 1, as E is a UMD function lattice.
On the other hand, Proposition 4.2 says that for all p, q ∈ (1,∞) we have

R({P i1,i2
Dn,Dm,k ∈ L(Lp(Rm;Lq(Rn;E))) : k ∈ K}) . (min(i1, i2) + 1)Rp,q(E),

where

Rp,q(E) = R
({ |K|

|I1|1/2|I2|1/2
πDm,bK,I1,I2,k

∈ L(Lp(Rm;Lq(Rn × Y n;E))) :

k ∈ K, K, I1, I2 ∈ Dn
})

.

Since E is a UMD function lattice, we can apply Proposition 5.4 with Lq(Rn ×
Y n;E). This gives that Rp,q(E) . 1. �

6.2. Remark. We wrote the proof like we did to illustrate the following point. No-
tice that even if we would be interested only in the case E = R, the second part
of the proof would require applying Proposition 5.4 to the UMD function lattice
Lq(Rn × Y n). That is, we would need the R-boundedness of ordinary paraprod-
ucts in some vector-valued setting anyway! Of course, in the p = q case we could
just use the easier proof i.e. the first part of the proof.

7. APPLICATION TO BI-PARAMETER SINGULAR INTEGRALS

The definition of a bi-parameter singular integral T is somewhat lengthy. We
only give a brief idea here, for the full details see [23].

The definition involves first of all the structural assumption that T should have
a full kernel representation i.e. 〈Tf, g〉 can be written as as integral operator with
a kernel K : (Rn+m × Rn+m) \ {(x, y) ∈ Rn+m × Rn+m : x1 = y1 or x2 = y2} → R,
when f = f1⊗f2 and g = g1⊗g2 are of tensor product form with spt f1∩spt g1 = ∅
and spt f2 ∩ spt g2 = ∅. The kernel K needs to satisfy various estimates: the
size estimate, Hölder estimates, and mixed Hölder and size estimates. Some
Calderón–Zygmund structure on Rn and Rm is also demanded separately. This
entails having regular enough kernel representations when only spt f1∩ spt g1 =
∅ or spt f2 ∩ spt g2 = ∅.

Next, we demand various boundedness and cancellation assumptions: the
weak boundedness assumption, some diagonal BMO conditions, and finally that
T1, T ∗1, T1(1) and T ∗

1 (1) belong to BMOprod(R
n+m). Here T1 is the first partial

adjoint of T i.e. 〈T1(f1 ⊗ f2), g1 ⊗ g2〉 = 〈T (g1 ⊗ f2), f1 ⊗ g2〉.
With such assumptions it was shown in [23] that a specific dyadic represen-

tation of bi-parameter singular integrals holds. For all bounded and compactly



MULTI-PARAMETER ESTIMATES VIA OPERATOR-VALUED SHIFTS 33

supported f, g : Rn+m → R, we have

〈Tf, g〉 = CTEwn
Ewm

∑

(i1,i2)∈Z2
+

(j1,j2)∈Z2
+

αi1,i2,j1,j2

∑

u

〈Si1,i2,j1,j2
Dn,Dm,u f, g〉,

where αi1,i2,j1,j2 = 2−max(i1,i2)δ/22−max(j1,j2)δ/2 (the δ appears on the Hölder esti-
mates of the kernels) and u runs over some finitely many integers. Here Si1,i2,j1,j2

Dn,Dm,u

is a bi-parameter shift if (i1, i2) 6= (0, 0) and (j1, j2) 6= (0, 0). More specifically,
we mean a cancellative bi-parameter shift (such as we have defined in this paper
even in the operator-valued setting) with the scalar-valued kernels being uni-
formly bounded by 1. In the other remaining cases Si1,i2,j1,j2

Dn,Dm,u can either be a bi-
parameter shift, some partial paraproduct with the paraproduct component in Rn

or Rm (BMO bounds normalised like ≤ (|I1|
1/2|I2|

1/2)/|K| or (|J1|1/2|J2|1/2)/|V |)),
or a full bi-parameter paraproduct, either of standard type or of mixed type, asso-
ciated with a product BMO function of norm at most 1. We have one full standard
paraproduct, one adjoint of such, one mixed paraproduct and an adjoint of such,
and these appear in the case (i1, i2, j1, j2) = (0, 0, 0, 0). Moreover, the average is
taken over all random dyadic grids Dn = Dn(wn) and Dm = Dm(wm).

If E is a UMD space with the property (α) of Pisier, we can apply this to
simple functions f =

∑A
a=1 faea and g =

∑B
b=1 gbe

∗
b , where fa : Rn+m → R and

gb : R
n+m → R are bounded and compactly supported, ea ∈ E and e∗b ∈ E∗. This

gives that
¨

Rn+m

{Tf(x), g(x)}E dx

= CTEwn
Ewm

∑

(i1,i2)∈Z2
+

(j1,j2)∈Z2
+

αi1,i2,j1,j2

∑

u

¨

Rn+m

{Si1,i2,j1,j2
Dn,Dm,u f(x), g(x)}E dx.

Here the interpretation is clear: Tf(x1, x2) =
∑A

a=1 Tfa(x1, x2)ea (and the same
with the shifts).

7.1. Theorem. Suppose I is a index set, and that for each i ∈ I we are given a bi-
parameter SIO as in [23]. Suppose that the Hölder exponents of the kernels of these
operators are uniformly bounded from below, and that all the other constants in the as-
sumptions are uniformly bounded from above. Let E be a UMD function lattice, and
p, q ∈ (1,∞). Then we have

R({Ti ∈ L(Lq(Rn;Lp(Rm;E))) : i ∈ I}) . 1.

Proof. Fix a finite K ⊂ I and simple functions fk : Rn+m → E, k ∈ K. We need to
prove that

(

E
∥

∥

∥

∑

k∈K

ǫkTkfk

∥

∥

∥

2

Lq(Rn;Lp(Rm;E))

)1/2

.
(

E
∥

∥

∥

∑

k∈K

ǫkfk

∥

∥

∥

2

Lq(Rn;Lp(Rm;E))

)1/2

.
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Lemma 2.1 says that the right hand side is dominated by

sup
∣

∣

∣

∑

k∈K

¨

Rn+m

{Tkfk(x), gk(x)}E dx
∣

∣

∣
,

where the supremum is taken over those simple gk : Rn+m → E∗ for which
(

E
∥

∥

∥

∑

k∈K

ǫkgk

∥

∥

∥

2

Lq′ (Rn;Lp′(Rm;E∗))

)1/2

≤ 1.

With any fixed such sequence (gk)k∈K we write
∣

∣

∣

∑

k∈K

¨

Rn+m

{Tkfk(x), gk(x)}E dx
∣

∣

∣

=
∣

∣

∣

∑

k∈K

CEwn
Ewm

∑

(i1,i2)∈Z2
+

(j1,j2)∈Z2
+

αi1,i2,j1,j2

∑

u

¨

Rn+m

{Si1,i2,j1,j2
Dn,Dm,k,ufk(x), gk(x)}E dx

∣

∣

∣

≤ CEwn
Ewm

∑

(i1,i2)∈Z2
+

(j1,j2)∈Z2
+

αi1,i2,j1,j2

∑

u

∣

∣

∣

∑

k∈K

¨

Rn+m

{Si1,i2,j1,j2
Dn,Dm,k,ufk(x), gk(x)}E dx

∣

∣

∣
.

We have
∣

∣

∣

∑

k∈K

¨

Rn+m

{Si1,i2,j1,j2
Dn,Dm,k,ufk(x), gk(x)}E dx

∣

∣

∣

=
∣

∣

∣
E

¨

Rn+m

{

∑

k∈K

ǫkS
i1,i2,j1,j2
Dn,Dm,k,ufk(x),

∑

k′∈K

ǫk′gk′(x)
}

E
dx

∣

∣

∣

≤
(

E
∥

∥

∥

∑

k∈K

ǫkS
i1,i2,j1,j2
Dn,Dm,k,ufk

∥

∥

∥

2

Lq(Rn;Lp(Rm;E))

)1/2

.

If for the fixed i1, i2, j1, j2 and u the appearing operators Si1,i2,j1,j2
Dn,Dm,k,u, k ∈ K, are

bi-parameter shifts, Proposition 3.18 (a special case where the kernels are scalar-
valued and pointwise uniformly bounded by 1) gives

(

E
∥

∥

∥

∑

k∈K

ǫkS
i1,i2,j1,j2
Dn,Dm,k,ufk

∥

∥

∥

2

Lq(Rn;Lp(Rm;E))

)1/2

. (min(i1, i2) + 1)(min(j1, j2) + 1)
(

E
∥

∥

∥

∑

k∈K

ǫkfk

∥

∥

∥

2

Lq(Rn;Lp(Rm;E))

)1/2

.

If they are partial paraproducts, then Theorem 6.1 gives the same bound. No-
tice that even if we have here arbitrarily chosen the symmetry Lq(Rn;Lp(Rm;E))
(and not Lp(Rm;Lq(Rn;E))), we always also need the second inequality of The-
orem 6.1 here (to handle the case S0,0,j1,j2

Dn,Dm,k,u where the paraproduct component
is Rn). Finally, Propositions 5.5 and 5.6 give the same bound in the case that the
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operators S0,0,0,0
Dn,Dm,k,u, k ∈ K, are full paraproducts of the same type. The proof is

complete. �

8. TRI-PARAMETER PARTIAL PARAPRODUCTS

We conclude the paper by studying boundedness properties of tri-parameter
partial paraproducts. They come in essentially two different forms, here called
type 1 and type 2. The proved estimates are a key step in proving that T1 type as-
sumptions for tri-parameter singular integrals directly imply that tri-parameter
singular integrals are Lq(Rn;Lp(Rm;Lr(Rk;E))) bounded for all p, q, r ∈ (1,∞)
and UMD function lattices E, that is, for proving the analog of Theorem 7.1
for tri-parameter singular integrals. In addition to these partial paraproducts
one would also need to consider the full tri-parameter paraproducts of different
flavours and tri-parameter shifts. The shifts would be straightforward to handle,
and we believe that the full paraproducts should not pose problems either.

8.1. Tri-parameter partial paraproducts of type 1. A tri-parameter partial para-
product of type 1 is an operator of the form

P i1,i2
Dn,Dm,Dkf =

∑

K∈Dn

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI2 ⊗ BDm,Dk,K,I1,I2(〈f, hI1〉1),

where f ∈ L1
loc(R

n+m+k;E), E is a UMD space satisfying Pisier’s property (α),
andBDm,Dk,K,I1,I2 is a standard full bi-parameter paraproduct ΠDm,Dk,bK,I1,I2

for all
K, I1, I2, or a mixed full bi-parameter paraproduct Πmixed

Dm,Dk,bK,I1,I2
for all K, I1, I2.

The functions
bK,I1,I2 : R

m+k → R

satisfy

‖bK,I1,I2‖BMODm,Dk

prod

≤
|I1|

1/2|I2|
1/2

|K|
.

8.1. Proposition. Let E be a UMD function lattice, p, q, r ∈ (1,∞) and i1, i2 ≥ 0.
Suppose that for each s ∈ S we are given a tri-parameter partial paraproduct of type 1

P i1,i2
Dn,Dm,Dk,s

f =
∑

K∈Dn

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI2 ⊗ BDm,Dk,K,I1,I2,s(〈f, hI1〉1),

where either BDm,Dk,K,I1,I2,s = ΠDm,Dk,bK,I1,I2,s
for all s ∈ S and K, I1, I2 ∈ Dn or

BDm,Dk,K,I1,I2,s = Πmixed
Dm,Dk,bK,I1,I2,s

for all s ∈ S and K, I1, I2 ∈ Dn. Moreover, assume

that

‖bK,I1,I2,s‖BMODm,Dk

prod

≤
|I1|

1/2|I2|
1/2

|K|
.
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Then we have

R({P i1,i2
Dn,Dm,Dk,s

∈ L(Lq(Rn;Lp(Rm;Lr(Rk;E)))) : s ∈ S}) . min(i1, i2) + 1,

and the same is true with all the other permutations of Lq, Lp and Lr.

Proof. We view P i1,i2
Dn,Dm,Dk,s

as a model operator acting on locally integrable func-
tions f : Rn → F , where F = Lp(Rm;Lr(Rk;E)). Proposition 4.1 says that

R({P i1,i2
Dn,Dm,Dk,s

∈ L(Lq(Rn;Lp(Rm;Lr(Rk;E)))) : s ∈ S})

. (min(i1, i2) + 1)Rp,r(E),

where Rp,r(E) is the constant

R
({ |K|

|I1|1/2|I2|1/2
BDm,Dk,K,I1,I2,s ∈ L(Lp(Rm;Lr(Rk;E))) : s ∈ S, K, I1, I2 ∈ Dn

})

.

Propositions 5.5 and 5.6 say that Rp,r(E) . 1.
Proposition 4.2 says that

R({P i1,i2
Dn,Dm,Dk,s

∈ L(Lp(Rm;Lq(Rn;Lr(Rk;E)))) : s ∈ S})

. (min(i1, i2) + 1)R1
p,q,r(E),

where R1
p,q,r(E) is the constant

R
({ |K|

|I1|1/2|I2|1/2
BDm,Dk,K,I1,I2,s ∈ L(Lp(Rm;Lq(Rn×Y n;Lr(Rk;E))))

: s ∈ S, K, I1, I2 ∈ Dn
})

.

To bound this constant we need a bit strange versions of Propositions 5.5 and
5.6. So we need to check the R-boundedness of the extensions of these full bi-
parameter paraproducts in a space of the form Lp(Rm;Lq(X ;Lr(Rk;E))), where
X is some measure space. Let fj =

∑

a∈Aj
1Xj,a

Fj,a, where Fj,a : R
m+k → E and

Xj,a ⊂ X , and gj =
∑

c∈Cj
1X̃j,c

Gj,c, where Gj,c : R
m+k → E∗ and X̃j,c ⊂ X .

Following the proofs of the said propositions one ends up with the need to show
that

∥

∥

∥

(

∑

j

[

M1,3
Dm,Dk,E

fj
]2
)1/2∥

∥

∥

Lp(Rm;Lq(X;Lr(Rk ;E)))

and
∥

∥

∥

(

∑

j

∑

V ∈Dm

U∈Dk

∣

∣

〈

gj, hV ⊗ hU
〉

1,3

∣

∣

21V ⊗ 1U
|V ||U |

)1/2∥
∥

∥

Lp′ (Rm;Lq′(X;Lr′(Rk ;E∗)))

are bounded by
∥

∥

∥

(

∑

j

|fj |
2
)1/2∥

∥

∥

Lp(Rm;Lq(X;Lr(Rk;E)))
and

∥

∥

∥

(

∑

j

|gj|
2
)1/2∥

∥

∥

Lp′ (Rm;Lq′(X;Lr′(Rk ;E∗)))
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respectively, and the same with
∥

∥

∥

(

∑

j

∑

V ∈Dm

[

M3
Dk,E

( 1V
|V |1/2

⊗
〈

fj , hV
〉

1

)]2)1/2∥
∥

∥

Lp(Rm;Lq(X;Lr(Rk ;E)))

and
∥

∥

∥

(

∑

j

∑

U∈Dk

[

M1
Dm,E∗

(

〈

gj , hU
〉

3
⊗

1U
|U |1/2

)]2)1/2∥
∥

∥

Lp′ (Rm;Lq′(X;Lr′ (Rk;E∗)))
.

But these are all bounded essentially in the same way as in the original proposi-
tions. Therefore, we have R1

p,q,r(E) . 1.
Proposition 4.3 says that

R({P i1,i2
Dn,Dm,Dk,s

∈ L(Lp(Rm;Lr(Rk;Lq(Rn;E)))) : s ∈ S})

. (min(i1, i2) + 1)R2
p,q,r(E),

where R2
p,q,r(E) is the constant

R
({ |K|

|I1|1/2|I2|1/2
BDm,Dk,K,I1,I2,s ∈ L(Lp(Rm;Lr(Rk;Lp(Rn × Y n;E))))

: s ∈ S, K, I1, I2 ∈ Dn
})

.

That R2
p,q,r(E) . 1 follows from Propositions 5.5 and 5.6 applied with E replaced

by Lq(Rn × Y n;E).
We can do all of the above but just starting with F = Lr(Rk;Lp(Rm;E)), so all

of the symmetries follow. �

8.2. Tri-parameter partial paraproducts of type 2. A tri-parameter partial para-
product of type 2 is an operator of the form

P i1,i2,j1,j2
Dn,Dm,Dkf

=
∑

K∈Dn

∑

V ∈Dm

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

∑

J1,J2∈Dm

J
(j1)
1 =J

(j2)
2 =V

hI2 ⊗ hJ2 ⊗ πDk,bK,V,I1,I2,J1,J2
(〈f, hI1 ⊗ hJ1〉1,2),

where f ∈ L1
loc(R

n+m+k;E), E is a UMD space satisfying Pisier’s property (α),
and πDk,bK,V,I1,I2,J1,J2

is a dyadic paraproduct for some function

bK,V,I1,I2,J1,J2 : R
k → R

satisfying

‖bK,V,I1,I2,J1,J2‖BMO
Dk

≤
|I1|

1/2|I2|
1/2

|K|

|J1|
1/2|J2|

1/2

|V |
.
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8.2. Proposition. Let E be a UMD function lattice, p, q, r ∈ (1,∞) and i1, i2, j1, j2 ≥
0. Suppose that for each s ∈ S we are given a tri-parameter partial paraproduct of type 2

P i1,i2,j1,j2
Dn,Dm,Dk,s

f

=
∑

K∈Dn

∑

V ∈Dm

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

∑

J1,J2∈Dm

J
(j1)
1 =J

(j2)
2 =V

hI2 ⊗ hJ2 ⊗ πDk,bK,V,I1,I2,J1,J2,s
(〈f, hI1 ⊗ hJ1〉1,2),

where

‖bK,V,I1,I2,J1,J2,s‖BMO
Dk

≤
|I1|

1/2|I2|
1/2

|K|

|J1|
1/2|J2|

1/2

|V |
.

Then we have

R({P i1,i2,j1,j2
Dn,Dm,Dk,s

∈ L(Lq(Rn;Lp(Rm;Lr(Rk;E)))) : s ∈ S})

. (min(i1, i2) + 1)(min(j1, j2) + 1),

and the same is true with all the other permutations of Lq, Lp and Lr.

Proof. Define for eachK, I1, I2 ∈ Dn and s ∈ S the bi-parameter partial paraprod-
uct

P j1,j2
Dm,Dk,K,I1,I2,s

g :=
∑

V ∈Dm

∑

J1,J2∈Dm

J
(j1)
1 =J

(j2)
2 =V

hJ2 ⊗ πDk,bK,V,I1,I2,J1,J2,s
(〈g, hJ1〉1),

where g ∈ L1
loc(R

m+k;E). We have by Theorem 6.1 that

R
({ |K|

|I1|1/2|I2|1/2
P j1,j2
Dm,Dk,K,I1,I2,s

∈ L(Lp(Rm;Lr(Rk;E))) : s ∈ S, K, I1, I2 ∈ Dn
})

. min(j1, j2) + 1

and

R
({ |K|

|I1|1/2|I2|1/2
P j1,j2
Dm,Dk,K,I1,I2,s

∈ L(Lr(Rk;Lp(Rm;E))) : s ∈ S, K, I1, I2 ∈ Dn
})

. min(j1, j2) + 1.

Our original operators

P i1,i2,j1,j2
Dn,Dm,Dk,s

f =
∑

K∈Dn

∑

I1,I2∈Dn

I
(i1)
1 =I

(i2)
2 =K

hI2 ⊗ P j1,j2
Dm,Dk,K,I1,I2,s

(〈f, hI1〉1),

where f ∈ L1
loc(R

n+m+k;E), are model operators of the above form. It follows
from Proposition 4.1 that

R({P i1,i2,j1,j2
Dn,Dm,Dk,s

∈ L(Lq(Rn;Lp(Rm;Lr(Rk;E)))) : s ∈ S})

. (min(i1, i2) + 1)(min(j1, j2) + 1)
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and

R({P i1,i2,j1,j2
Dn,Dm,Dk,s

∈ L(Lq(Rn;Lr(Rk;Lp(Rm;E)))) : s ∈ S})

. (min(i1, i2) + 1)(min(j1, j2) + 1).

Proposition 4.2 gives

R({P i1,i2,j1,j2
Dn,Dm,Dk,s

∈ L(Lr(Rk;Lq(Rn;Lp(Rm;E)))) : s ∈ S})

. (min(i1, i2) + 1)R
({ |K|

|I1|1/2|I2|1/2
P j1,j2
Dm,Dk,K,I1,I2,s

∈ L(Lr(Rk;Lq(Rn × Y n;Lp(Rm;E)))) : s ∈ S, K, I1, I2 ∈ Dn
})

.

Viewing πDk,bK,V,I1,I2,J1,J2,s
as a bounded operator in F = Lr(Rk;Lq(Rn × Y n;E))

and P j1,j2
Dm,Dk,K,I1,I2,s

as a model operator in Rm composed of the paraproduct oper-
ators πDk,bK,V,I1,I2,J1,J2,s

, we see using Proposition 4.3 that the RHS is further dom-
inated by (min(i1, i2) + 1)(min(j1, j2) + 1) multiplied with

R
({ |K|

|I1|1/2|I2|1/2
|V |

|J1|1/2|J2|1/2
πDk,bK,V,I1,I2,J1,J2,s

∈ L(Lr(Rk;Lq(Rn × Y n;Lp(Rm × Y m;E)))) :

s ∈ S, K, I1, I2 ∈ Dn, V, J1, J2 ∈ Dm
})

.

This constant is bounded by Proposition 5.4.
We can run the argument by decomposing in the symmetric way so that the

partial paraproducts are formed in Rn+k. This gives that we can change Rn and
Rm above, which yields all the symmetries. �
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