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data
Zenith Purisha∗, Sakari S. Karhula, Juuso H. Ketola, Juho Rimpeläinen,
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Abstract—X-ray tomography is a reliable tool for determining
the inner structure of 3D object with penetrating X-rays. How-
ever, traditional reconstruction methods such as FDK require
dense angular sampling in the data acquisition phase leading to
long measurement times, especially in X-ray micro-tomography
to obtain high resolution scans. Acquiring less data using greater
angular steps is an obvious way for speeding up the process and
avoiding the need to save huge data sets. However, computing 3D
reconstruction from such a sparsely sampled dataset is difficult
because the measurement data is usually contaminated by errors
and linear measurement models do not contain sufficient informa-
tion to solve the problem in practice. An automatic regularization
method is proposed for robust reconstruction, based on enforcing
sparsity in the three-dimensional shearlet transform domain. The
inputs of the algorithm are the projection data and a priori known
expected degree of sparsity, denoted 0 < Cpr ≤ 1. The number
Cpr can be calibrated from a few dense-angle reconstructions
and fixed. Human subchondral bone samples were tested and
morphometric parameters of the bone reconstructions were then
analyzed using standard metrics. The proposed method is shown
to outperform the baseline algorithm (FDK) in the case of
sparsely collected data. The number of X-ray projections can be
reduced up to 10% of the total amount 300 projections over 180
degrees with uniform angular step while retaining the quality of
the reconstruction images and of the morphometric parameters.

I. INTRODUCTION

X-ray micro-tomography (µCT) is an important tool in
biomedical imaging and in industrial computed tomography.
The principle of X-ray µCT is to reveal the inner structure
of an unknown object without destroying it by propagating
X-rays through the object. X-ray µCT will image an inter-
nal three-dimensional (3D) structure of the object at a high
resolution.

In µCT a set of projection images is collected from many
directions. A mathematical reconstruction algorithm is used
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for revealing the 3D structure inside the sample. Conven-
tional reconstruction methods such as Feldkamp-Davis-Kress
type (FDK) [1] require densely sampled datasets to achieve
sufficient reconstruction quality. More precisely, denote the
projection angles by θ, 2θ, . . . , Nθ = 180, with a fixed angular
step θ > 0. The FDK algorithm typically needs at least 300
projections (N = 300) in order to deliver a high enough
reconstruction quality. This often leads to the impractically of
saving big data sets and long measurement times. In practice,
quite often only a few X-ray µCT machines are available while
the demand to get the acquisition data is high.

A simple way to speed up the acquisition process is to
collect less data by decreasing N and enlarging the angular
step θ accordingly so that the 180 degree half-circle is still
sampled. However, the task of computing a 3D reconstruction
from such a sparsely sampled dataset becomes extremely
sensitive to the data contaminated by errors and tomographic
measurement model which does not have complete informa-
tion. In mathematical terms, it is an ill-posed inverse problem
[2] that needs to be regularized by making use of a priori
information about the sample structure.

The shearlet transform is a tool for orientation-aware mul-
tiscale signal processing [3], [4]. Shearlets provide efficient
representations for a variety of signals, see for example [5].
We implement a 3D tomographic reconstruction algorithm
regularized by promoting the sparsity of the bone structure
in the shearlet transform domain. We use an iterative soft
thresholding algorithm, the so-called Primal Dual Fixed Point
(PDFP) as outlined in [6]. The method was earlier introduced
in [7]. Implementation of this method using wavelet transform
as the penalty term has been successfully studied in [8].

We introduce a novel technique to make the regularized
reconstruction process fully automatic. Namely, the PDFP
method involves a thresholding parameter µ > 0. All shearlet
coefficients smaller than µ

2 in absolute value are set to zero in
each iteration. How can a suitable value for µ be chosen?

If µ is large, then many coefficients vanish and the recon-
struction is very sparse in the shearlet domain. If µ is small,
then almost all shearlet coefficients of the final reconstruction
will be nonzero. We propose determining the typical ratio
0 < Cpr ≤ 1 of nonzero shearlet coefficients from a few dense-
angle 3D reconstructions of both healthy and osteoarthritic
bone samples. We let µ = µj change in each iteration and
apply a simple control algorithm so that µj converges to a limit
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value producing a reconstruction having the a priori known
sparsity Cpr. The integral controller, part of proportional-
integral-derivative controller (PID controller), is implemented
in this approach [9].

Shearlet-based methods for X-ray tomography have been
studied before, starting with [10] concentrating on inversion
from noisy, densely sampled 2D sinograms. Total variation
regularization and shearlet sparsity have been successfully
combined for 2D tomographic data in [11], [12], including
sparse data with a minimum of 128 angles. Shearlets have
been shown to be useful for 2D region-of-interest tomography
in [13] and for limited-angle tomography in [14]. For 3D
X-ray tomography case, 3D-shearlet has been implemented
in [15]. Regarding 3D tomography, the only shearlet study
showing the optimality for representing tomographic data in
terms of shearlets seems to be [16]. Research in shearlet-based
regularization in sparse dynamic tomography has been studied
in [15].

In this work, we investigate the reliability of a modern
sparsity-promoting 3D reconstruction algorithm, controlled
shearlet domain sparsity (CSDS), that promotes an a priori
known level of sparsity and an adaptive method for choosing
regularization parameter to reconstruct a standard phantom
and human trabecular bone (healthy and OA) using sparse
X-ray tomographic data. Particularly, we are accessing the
thicknesses of the plates in the standard phantom [17]. For
the bone sample, we quantify morphometric parameters of
human trabecular bone calculated from 3D reconstructions (e.g
the percentage of bone volume (BV/TV), trabecular thickness
(Tb.Th) and trabecular separation (Tb.Sp)).These parameters
are used for validation. They are important parameters to see
the changes in the 3D structure of bone caused by osteoarthritis
(OA), such as subchondral bone sclerosis [18], [19], [20], [21].
Also studies of osteoporotic bone have been done in [22], [23].
We use Computed Tomography Analyzer (CTAn) software
to calculate the morphometric parameters from the trabecular
bone. The parameters are defined for binary (bone/not-bone)
3D reconstructions; we use the Otsu algorithm in CTAn
for segmentation [24]. A study to recover bone structure in
2D from sparse microtomography data using a tomographic
method called the discrete algebraic reconstruction technique
(DART) was introduced in [25], [26]. A bone study in live-
animal micro-CT imaging using DART has also been per-
formed [27]. However, the method proposed here is based
on different assumptions about a priori knowledge. DART
needs rather accurate attenuation value estimates as input and
assumes that the target consists of a small number of possible
materials. The proposed algorithm does not need assumptions
on how many materials are presents.

Reconstructions using 3D shearlet-sparsity regularization
have been shown to outperform FDK in the case of
sparsely collected data. With the shearlet-sparsity reconstruc-
tion method, the number of X-ray projections can be reduced
to 10% of the 300 projections over 180 degrees while retaining
the quality of morphometric analysis.

II. MATERIALS AND METHODS

A. 3D Tomographic Setup

The goal of X-ray tomography is to recover the density
function of an unknown object from measured projection data.
In this paper, the object is three-dimensional, and cone-beam
geometry is used for modelling the measurement.

Consider a physical domain Ω ⊂ R3 and a non-negative
X-ray attenuation function f : Ω → R. The X-rays travel
through Ω along straight lines L ⊂ Ω. After calibration, each
pixel value in the collection of digital radiographs yields a line
integral

∫
L
f(x)ds.

For computational reasons, a discrete model is required. Let
us represent the attenuation values by a vector f = [fijk] ∈
RN×N×T . Here fijk denotes the average of the values of the
function f over the voxel with indices (i, j, k).

The line integral can be approximated by∫
L

f(x)ds ≈
N∑
i=1

N∑
j=1

T∑
k=1

aijkfijk, (1)

where aijk is a distance that the line L travels in the voxel
with indices (i, j, k). Then the practical three-dimensional
tomographic X-ray data is modelled by

m = Af + ε, (2)

with a matrix A containing one row for each pixel in the set
of measurements and an additive noise ε.

We use the normalized measurement matrix A
‖A‖ and mea-

surement data m
‖A‖ . Note that the norm of A equals

√
λ, where

λ is the largest eigenvalue of the symmetric matrix ATA.
The power method can be used to compute λ in a matrix-free
fashion [28]. Multiplication by the matrices A and AT can
be implemented by using the SPOT operator [29].

B. The Shearlet Transform

Shearlets form a directional representation system for multi-
dimensional data [30], [31]. They can overcome limitations of
traditional systems like wavelets that only provide optimally
sparse representations for functions of one variable. In the
3D case, shearlets offer optimal approximation of piecewise
smooth functions with jumps appearing only along smooth
surfaces.

Shearlets are parameterized by scale, shearing and transla-
tion indices organized in the set

Λ = N0 × {d−2j/2e, . . . , d2j/2e} × Z3.

It has been shown in [3] that, under suitable assumptions, the
collection ψγ = ψ(l,m,n) ∈ L2(R3), where γ = (l,m, n) ∈ Λ,
forms a frame for L2(R3) functions. The shearlet transform is
defined as the following vector of coefficients:

S(f) = (〈f , ψγ〉)γ∈Λ. (3)

We use the ShearLab implementation [4].
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C. Sparsity-promoting regularization
In this work, we are interested in finding the vector f that

minimizes the variational regularization functional

‖Af −m‖22 + µ
∑
γ

|〈f , ψγ〉|. (4)

The parameter µ in (4) describes a trade-off between empha-
sizing either the data fidelity term or the regularizing penalty
term.

We introduce a regularization method based on enforcing
sparsity in the shearlet transform domain. In their seminal
paper [6], Peijun Chen, Jianguo Huang, and Xiaoqun Zhang
show that the minimizer of (4) can be computed using the
primal-dual fixed point (PDFP) algorithm:

y(i+1) = PC
(
f (i) − τ∇g(f (i))− λSTv(i)

)
v(i+1) =

(
I − Tµ

)(
Sy(i+1) + v(i)

)
f (i+1) = PC

(
f (i) − τ∇g(f (i))− λSTv(i+1)

) (5)

where τ and λ are positive parameters, g(f) = 1
2‖Af −m‖22,

the matrix S is a digital implementation of the shearlet
transform and T is the soft-thresholding operator defined by

Tµ(c) =


c+ µ

2 if x ≤ −µ2
0 if |x| < µ

2

c− µ
2 if x ≥ −µ2 .

(6)

Here µ > 0 represents the thresholding parameter, while τ and
λ are parameters that need to be suitably chosen to guarantee
convergence. In detail, 0 < λ < 1/λmax(SST ), where λmax

denotes the maximum eigenvalue, and 0 < τ < 2/τlip, being
τlip the Lipschitz constant for g(f). Furthermore, in (5) the
non-negative “quadrant” is denoted by C = RN2

+ and PC is the
Euclidian projection. In other words, PC replaces any negative
elements in the input vector by zero.

D. Automatic Selection of the Threshold Parameter µ
Assuming that we know a priori the expected degree of

sparsity in the reconstruction, denoted as Cpr, it is a positive
value with the maximum value 1. We use a simple feedback
control system for finding such a value of µ that the iteration
(5) produces a result with Cpr ·100% of its shearlet coefficients
nonzero.

In our proposed method, µ = µ(i) is allowed to vary during
the iteration. Furthermore, it is automatically tuned in every
iteration to:

µ(i+1) := µ(i) + βe(i+1),

where e(i+1) = C(i) − Cpr and 0 ≤ C(i) ≤ 1 is the sparsity
level of the current iterate f (i). If β > 0 is too large, the
controller induces oscillations in the regularization parameter
and if it is too small convergence is slow. To avoid this, we
choose a large initial value for beta, but decrease it each time
the sparsity level crosesses the desired level of sparsity:

β = β(1− |e(i+1) − e(i)|).

This approach can avoid unwanted oscillation in the values of
µ(i).

E. Determining the A Priori Degree of Sparsity

Denote fκ as the best κ−term shearlet approximation using
the κ largest coefficients in the shearlets expansion [32].
We compute the best κ−term approximations of the baseline
(FDK reconstruction from full projection images) image using
different values of κ. Once we computed the images {fκ}:

1) the morphometric parameters of trabecular bone (BV/TV,
Tb.Th and Tb.Sp) for each images are computed using
3D analysis morphometry in CTAn software (see details
in II-G) and

2) the plate thickness value for the standard phantom for
each images are computed using 3D analysis morphom-
etry as well.

At particular level, as the sparsity level κ decreases, the
morphometric parameters and the plate thickness value start
to deteriorate. The prior sparsity level, Cpr is chosen at the
stage before at least one of the parameters in 1) and 2) for
{fκ} start to deteriorate.

F. Pseudo-algorithm

A step-by-step description of the proposed CSDS algorithm
is summarized in Algorithm 1. As an addition, given µ ≥ 0,
for a vector s ∈ RN2×T×K , where K is the number of 3D
shearlets, we define the number of elements larger than µ in
absolute value as follows:

#µs := #{ i |1 ≤ i ≤ N2 × T ×K, |si| > µ}. (7)

Algorithm 1 Shearlet sparsity-promoting tomographic re-
construction algorithm with the automatic parameter choice
method. Inputs: measurement data vector m, system matrix A,
parameters τ, λ > 0 to ensure convergence, a priori degree of
sparsity Cpr, initial thresholding parameter µ(0), the maximum
number of iterations Imax > 0, tolerances ε1, ε2 > 0 for the
stopping rule and control stepsize β > 0.

1: Inputs: measurement data vector m, system matrix A,
parameters τ, λ > 0 to ensure convergence, a priori
degree of sparsity Cpr, initial thresholding parameter µ(0),
the maximum number of iterations Imax > 0, tolerances
ε1, ε2 > 0 for the stopping rule and control stepsize β > 0.

2: f (0) = 0, i = 0, e = 1, and C(0) = 1
3: while i < Imax and |e| ≥ ε1 or d ≥ ε2 do
4: e = C(i) − Cpr
5: if sign(e(i+1)) 6= sign(e(i)) then
6: β = β(1− |e(i+1) − e(i)|)
7: µ(i+1) = max{0, µ(i) + βe}
8: y(i+1) = max{0, f (i) − γ∇g1(f (i))− λSTv(i)}
9: v(i+1) = (I − Tµ(i))(Sy(i+1) + v(i))

10: f (i+1) = max{0, f (i)−γ∇g(f (i))−λSTv(i+1)}
11: C(i+1) = #µ(i+1)(Sf (i+1))/N2TK

12: d = ‖f (i+1) − f (i)‖2/‖f (i+1)‖2
13: i := i+ 1
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G. Trabecular bone morphometric parameters

We study human trabecular bone samples. The recom-
mended parameters for studying the 3D structure of bone [18],
[33], [34], [35] include:

1) Percentage of bone volume (BV/TV). BV refers to vol-
ume of the region segmented as bone and BV/TV refers
to the ratio of the segmented bone volume to the total
volume of the volume of interest (VOI);

2) Trabecular thickness (Tb.Th): the volume-based average
of the maximum sphere thicknesses fitting in the struc-
ture (µm);

3) Trabecular separation (Tb.Sp): the thickness of the
spaces as defined by binarization within the VOI (µm).

To calculate the basic bone morphometric parameters,
standard Computed Tomography Analyzer (CTAn) software
provided by the manufacturer (Bruker microCT, Kontich,
Belgium) was used. The reconstructed images were converted
to 8-bit images. Because the samples were drilled from bone,
physical artifacts such as bone dust or cracks were left from
the preparation. Therefore, a volume of interest (VOI) inside
the sample was selected so that the edge artifacts would not
affect the analysis. The VOI for the trabecular bone was
2.65 × 2.65 × 2.5 mm3 of the trabecular part in a square
shape. Once the VOI of the images selected, images were
then segmented into binary images using Otsu algorithm for
morphometric analysis in CTAn. Pixels representing bone
tissues were segmented as solid with gray-level values between
104 and 255. Despeckles algorithm (available in the software
CTAn) is applied as well to remove speckles from the images.

We also tested the same steps to the phantom plates (see
details in II-H1). In this case, each plate image was chosen
separately as its VOI and Otsu algorithm used on each VOI
to apply the segmentation. Pixels representing plates were
segmented as solid with gray-level values between 184 and
255. Once the thresholding process is applied, the plate
thickness is calculated in each VOI with CTAn as well [17].

H. Experimental setup

1) Phantom plates: X-ray measured data from a phantom
which contains four different thickness of plates made of
Aluminium placed in vertical positions. The thickness of the
plates are 20, 50, 125 and 250 µm. The X-ray tomography was
acquired with a SkyScan1272 high-resolution µCT scanner
(Bruker microCT, Kontich, Belgium). The defaults of the rota-
tion step are 0.8◦, 0.4◦or 0.2◦ (which correspond to 225, 450
and 900 projections over 180 degrees rotation, respectively.
The scanning space: 75 mm in diameter and 70 mm in length.

The isotropic voxel size length for projection 22 is µm/pixel
and the number of frames averaged is 2 per projection.
The projection images are collected as TIFF files and their
dimensions are 1008×672. In the computation, a full binning
was applied to the data. We collected 300 projection images
acquired over a full 180 degree rotation with uniform angular
step of 0.6 degrees between projections. Each projection image
was composed of 1500 ms exposures. The X-ray tube accel-
eration voltage was 50 kV and the tube current 200 µA. The
full polychromatic beam was used for image acquisition. The

(a) (b)
Fig. 1. 3D reconstructions of healthy (a) and osteoarthritis (b) human
trabecular bone using FDK method from 300 projections.

additional filtration was 0.5 mm of Aluminium. We used 300
complete projections for baseline reconstructions. For sparse
x-ray reconstruction, we picked 30 and 50 projections from the
measurement data (10% and 17% from the 300 projections)
with uniform angular sampling from different total opening
angle of each projection image.

2) Human trabecular bone: X-ray data from two osteo-
chondral samples were acquired. One healthy (bone-pathology
free) bone sample (diameter = 4 mm, height = 5 mm) and one
osteoarthritis (OA) bone sample (diameter = 4 mm, height =
4 mm) were harvested from the weight bearing area of tibial
plateus from two cadavers under the approval of The Research
Ethics Committee of the Northern Savo Hospital District,
Kuopio, Finland (approval no 134/2015). Details of the data
acquisition are set same as in II-H1, except the TIFF files
(without binning process) are the input to compute the FDK
and CSDS algorithms and their dimensions are 1008 × 672.
We used 300 complete projections for baseline reconstructions.
We picked two subsets of projections (30 and 50) from the
measured data with uniform angular sampling from different
total opening angles of each projection image.

I. Morphometrics Parameters Values using Different Sparsity
Levels

The baseline fpr was computed using the FDK method with
complete projections.

A collection of κ−term approximation images, fκpr were
computed using the strategy discussed in Subsection II-E.
The thresholded parameters κ were selected from 95% to
5%. This was done for the phantom plates as it is shown
in Figure 2(a) and the bone samples (healthy and OA b) in
Figure 1. The trabecular morphometrics parameters and plate
thickness parameter of the phantom were calculated for each
κ.

The plate thickness of the plates phantom starts to deteri-
orate for κ ≤ 45%, while for κ ≤ 35%, BV/TV parameter of
the trabecular bone starts to deteriorate (see Fig. S1 and S2
in Supplementary). Based on these results, we choose the a
priori degree of the sparsity level to be more than 35% for
the human bone samples and more than 45% for the plates
phantom. We denote the a priori degree of the sparsity level
as Cpr.
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J. Image reconstruction

The same size of reconstruction images were set for FDK
and CSDS algorithms using a different number of projec-
tion images. The reconstruction images for plates phantom
120 × 120 × 100 pixels (=2.64 × 2.64 × 2.2 mm) and for
both trabecular samples have a size of 240×240×180 pixels
(5.28× 5.28× 3.96 mm).

For CSDS algorithm, the details are as follows: we used
Cpr = 50% for plates phantom and Cpr = 37.5% for trabecular
samples as it is explained in Subsection II-I. The initial value
for the thresholding parameter µ0 was calculated from the
absolute mean of (1 − Cpr) of the shearlet coefficients from
the backprojection reconstruction. The maximum number of
iteration I0 = 1000 (which is never attained in the results
reported in section III) is set for additional termination criteria.
However, in the computation, the number of iteration never
reached the I0.

We set the control step size β = 10µ0, ε1 = 5 × 10−3

and ε2 = 1 × 10−3 as the stopping rule. All the algorithms
were implemented in Matlab 8.5. For FDK reconstructions,
the experiments were performed on Intel(R) Xeon(R) CPU
E5-1650 v3 at 3.7GHz RAM 32 and GPU 4GB memory.
The CSDS method computation was performed on CPU at
supercluster taito.csc.fi. The ASTRA Toolbox (iMinds-Vision
Lab, University of Antwerp, Belgium) and Spot operator were
implemented in reconstructions [29], [36], [37]. All of the
computations were set up using a cone beam geometry.

The reconstructed images were converted to 8-bit images
and then segmented into binary images for morphometric
analysis in CTAn, Version 1.13.5.1 64-bit, SkyScan-Bruker
microCT.

III. RESULTS

In this section, reconstruction images and calculation of
trabecular morphometric parameters are presented.

A. Plates phantom

In Figure 2(a) shows the FDK reconstruction from complete
(300) projections. The shearlet-based reconstruction is shown
in Figure 2(c). The VOI of the reconstruction images were
chosen for each plates from the top to the bottom of the
plates reconstruction and segmented by applying the steps in
Subsection II-G. For comparison, FDK reconstruction of plate
phantom using 30 projections was computed as well as shown
in Figure 2(b). Table I shows the thicknesses of each plates
in the plate phantom. We only report the three thickest plates
because the resolution is 22 µm and the thinnest plate is only
20 µm and the threshold value used for the binarization of
the reconstructed images did not allow segmentation of the
thinnest plate due to their high grey value [17]. The sparsity
level for each iteration is presented in Figure 3.

B. Human trabecular bone

The shearlet-based reconstructions are shown in Figure 5.
The sparsity level for each iteration is presented in Figure 6.

TABLE I
THE THICKNESS PARAMETERS (Tb.Th) CALCULATION FOR THE PLATES

PHANTOM RECONSTRUCTIONS FROM 30 PROJECTION IMAGES.

Method Number of Plate 1 Plate 2 Plate 3
projections (µm) (µm) (µm)

Baseline 300 250 125 50
FDK 30 443 267 142

CSDS 30 320 171 88

(a) (b) (c)
Fig. 2. Axial micro-CT cross-section images of the plates phantom recon-
structions. The baseline image (FDK reconstruction from 300 projections) is
given in (a), FDK reconstruction from 30 projections is shown in (b), CSDS
reconstruction from 30 projections is shown in (c).

For comparison, FDK reconstruction of healthy and OA tra-
becular bone were computed as well as can be seen in Figure 5.

The VOI of the reconstruction images were chosen and
segmented by applying the steps in Subsection II-G. The
segmented images are shown in Figure 7. In addition, the
trabecular bone morphometrics parameters for FDK and CSDS
reconstructions were calculated and given in Table II.

IV. DISCUSSION AND CONCLUSION

The use of limited data is beneficial in reducing the often
long scan times and avoiding massive amounts of data. It
has also another advantage that is to avoid moving artifacts.
While traditional methods such as FDK require dense pro-
jection images to produce good reconstructions, we propose
the controlled shearlet domain sparsity method with automati-
cally chosen regularization parameter for robust reconstruction
for the incompletely sampled datasets. When the number of
projection images was reduced, the significant streak artifacts
overwhelm the FDK reconstruction images while the CSDS
reconstructions contain less streak artifacts. The non-negativity
constraint and the enforcement of the penalty term `1-norm
combined with the sparsity transform which acts as a denoising

Fig. 3. The ratio of nonzero shearlet coefficients of reconstructing plates
phantom using 30 projections as the iteration progresses (thick line). The
dashed line is the Cpr . The iterations number is 267 and the computation
time is 33 637 seconds.
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(a) (b)
Fig. 4. (a) and (b) Axial micro-CT cross-section images of thresholded
images or binary images of the three thickest plates phantom reconstructions
correspond to Figure 2(b) and 2(c), respectively.

TABLE II
THE TRABECULAR BONE MORPHOMETRIC PARAMETERS CALCULATION

FOR THE HEALTHY AND OA SAMPLES RECONSTRUCTION FROM
DIFFERENT NUMBER OF PROJECTION IMAGES.

O
A

H
E

A
LT

H
Y

Method Number of BV/TV Tb.Th Tb.Sp
projections (µm) (µm)

Baseline 300 32.33% 340 710
FDK 50 30.50% 280 640

30 32.17% 240 510
CSDS 50 33.77% 360 700

30 34.29% 330 630
Baseline 300 51.30% 370 350

FDK 50 50.60% 300 290
30 48.57% 210 210

CSDS 50 53.69% 360 310
30 52.79% 370 330

process in the CSDS method give significant contribution to
produce better reconstructions as is shown in Figure 2 and 5.

Figure 3 and 6 presents the behaviors of the sparsity levels
for each datasets. In the initial iterations, short oscillations
appear due to the large value of the tuning parameter β. They
soon disappear as the ‘crossing’ checking process decreases
the parameter, as discussed in Section II-D and eventually the
ratio of nonzero coefficients, Ci converges to Cpr. This is one
of the benefits of the CSDS proposed method, as the manual
tuning could be avoided.

TABLE III
COMPUTATION TIMES OF 3D RECONSTRUCTION USING FDK METHOD (IN

SECONDS)

Number of projections FDK for healthy and OA samples
50 5.0
30 3.0

TABLE IV
COMPUTATION TIMES OF 3D RECONSTRUCTION USING SHEARLET-BASED

METHOD FOR HEALTHY AND OA SAMPLES (IN SECONDS)

Number of shearlet-based method shearlet -based method
projections images for healthy bone for OA bone

50 64 001 60 768
(256 iterations) (292 iterations)

30 46 642 47 715
(183 iterations) (190 iterations)

Besides the visual inspection, in this particular problem, we
also measured the quality of the reconstructions quantitatively.
We computed the morphometric parameters of the reconstruc-
tions, and compare them to the parameters from the baseline
images.

The CSDS reconstruction shows that the three thickest
plates are sharper than the FDK reconstruction. The compu-
tations of morphometric parameters were done by using the
standard steps in II-G. The plates thickness of the phantom
from CSDS reconstruction yield less deviation against the tar-
get thickness: 28%−76% compared to the FDK reconstruction
for which the deviation was 77.2%− 184%. It could be seen
in Figure 4 that binarised images of the plates using CSDS
algorithm are better than using FDK.

In the FDK reconstruction from undersampled data, the
quality of the binary images were relatively poor since many
speckles induced by the noise randomly appeared in the
binary images. It can be seen in Figure 7 that many of
trabeculae were also broken. As a result, trabecular bone
morphometric parameters progressively showed considerable
differences when fewer projection images was used compared
to the baseline (full projection images). For instance, for both
samples, the FDK reconstructions using 50 projections had
differences in the Tb.Sp parameter of 5.5%−17.1%, while for
30 projections it was 25.5%− 40%. Other parameters such as
Tb.Th was affected significantly as well for the two different
numbers of projections. The Tb.Th decreased by up to 43.2%
of its baseline value (from 370 µm to 210 µm or from 340
µm to 240 µm). In addition, since threshold values of the
phantom plates and trabecular bone indicated in II-G are quite
different, it seems to affect the measured thickness parameters
in an opposite trend to both plates and the bone (the Tb.Th of
the plates increases with sparser number of projections and it
decreases in the bone sample as shown in Table I and II).

The preliminary results from the CSDS algorithm show that
the differences in the parameters are relatively smaller than
those of the FDK method. For instance Tb.Sp increased by up
to 14.6% difference of its baseline value for 50 projections and
5.7% − 10.9% for 30 projections. This is due to the absence
of noise speckles in the binary images shown in Figure 7. It is
reported as well that Tb.Th for 50 projections increased only
up to 5.88%, and 2.94% decreased for 30 projections.

The BV/TV increased by a relatively small amount: from
CSDS method it increased up to 4.7%, not significant differ-
ence compared to the FDK method for which the deviation
was up to 5.3%.

Finally, reduction of the number of projections had less
significant effects on the binary images of the CSDS method.
The appearance of the speckles noise was insignificant even
for a small number of projection images. Therefore, better
results in the thresholded images were obtained. As we can
see in Table II, the trabecular bone morphometric parameters
calculation (BV/TV, Tb.Th, and Tb.Sp) for healthy and OA
samples using sparser projection images is relatively closer
to the values of the baseline parameters. Some works related
to subchondral bone 3D microarchitecture in human has been
studied in [38], and for OA bone it has been done in [39]. In
this work, the BV/TV and Tb.Sp values for OA sample are in
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Fig. 5. Axial micro-CT cross-section images of the trabecular bone reconstructions. The baseline images (FDK reconstruction from 300 projections) are given
in (a) and (f), FDK reconstructions from 50 projections are shown in (b) and (g), FDK reconstructions from 30 projections are shown in (c) and (h), CSDS
reconstructions from 50 projections are shown in (d) and (i) and CSDS reconstructions from 30 projections are shown in (e) and (j). FDK reconstructions
are overwhelmed by streak artifacts. The artifacts in CSDS reconstructions are less dominant but the edges seem to smooth out.

(d)

(c)

(b)

(a)

Fig. 6. The ratio of nonzero shearlet coefficients as the iteration progresses
(thick line). The dashed line is the Cpr (a) and (b): the healthy sample using
30 and 50 projections. (c) and (d): the OA sample using 30 and 50 projections

the average of statistical data reported in [39], and the Tb.Th
is at around the maximum values in the statistical data.

The results show that implementing the CSDS approach to
reconstruct the inner structure of the samples using consid-
erably sparse projection images outperforms the conventional
FDK approach. The CSDS reconstructions seem to be smooth-
ing out the edges as shown in Figure 5, however by increasing
the scale parameter in the shearlet transform, we should be
able to capture more details of the image.

Despite its success, the computational burden of the CSDS
method is relatively high (up to 17.7 hours). It is also heavier
than DART algorithm which only took less than 10 minutes.
However, the computation time could be sped-up by imple-
menting parallelized GPU code. Another acceleration strategy
is to compute the shearlet decomposition in a serialized man-
ner so that one does not need to keep all shearlet coefficients
in memory at the same time. The computation times of the
FDK and the shearlet based method using different number of
projection images are shown in Tables IV and III.

In this study, there is no statistical comparisons because
in fact collecting in vitro samples from patients is relatively
hard and time consuming. Also the size of the samples is
limited. Therefore, the results presented here were reported as
a preliminary study. However, for the future work, statistical
analysis in comparing the morphometric variables for each
samples might be also considered. The range of a priori
sparsity level Cpr from more data could also be computed.
Applying the method in vivo would be also interesting to do
as a future research as high ionizing radiation doses in µCT in
in vivo experiment could be reduced. It has been discussed that
high radiation could increase the risk of cancer, birth defects
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Fig. 7. Axial cross-section images of thresholded images or binary images of the volume of interest which correspond to Figure 5.

or heritable mutations [40], [41].
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