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Abstract 35 

 36 

Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by 37 

stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery 38 

of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth’s 39 

surface, on-going changes in climate are increasingly exposing plants and animals to novel 40 

combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A and visible 41 

radiation, water availability, temperature and elevated carbon dioxide). Climate change is also 42 

shifting vegetation cover, geographic ranges of species, and seasonal timing of development, which 43 

further modifies exposure to UV-B radiation. Since our last assessment, there is increased 44 

understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting 45 

changes in growth, development and tolerances of abiotic and biotic factors. However, major 46 

questions remain on how UV-B radiation is interacting with other climate change factors to modify 47 

the production and quality of crops, as well as important ecosystem processes such as plant and 48 

animal competition, pest-pathogen interactions, and the decomposition of dead plant matter 49 

(litter).  In addition, stratospheric ozone depletion is directly contributing to climate change in the 50 

southern hemisphere, such that terrestrial ecosystems in this region are being exposed to altered 51 

patterns of precipitation, temperature and fire regimes as well as UV-B radiation.  These ozone-52 

driven changes in climate have been implicated in both increases and reductions in the growth, 53 

survival and reproduction of plants and animals in Antarctica, South America and New Zealand.  In 54 

this assessment, we summarise advances in our knowledge of these and other linkages and effects, 55 

and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological 56 

consequences of these environmental changes on terrestrial ecosystems.    57 
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3.1  Introduction and overview 58 

 59 

The structure, function and diversity of terrestrial ecosystems are being modifed by ongoing 60 

changes in the Earth’s climate, and these complex changes are becoming increasingly evident with 61 

time.1-3 An assessment of the effects of depletion and recovery of stratospheric ozone and 62 

associated changes in ultraviolet-B radiation (UV-B, 280-315 nm) on the terrestrial biota must, 63 

therefore, consider the role of climate change in the response of these organisms and ecosystems. 64 

In some regions, stratospheric ozone depletion is itself contributing to climate change with the result 65 

that ecosystems are being affected by the consequent ozone-driven changes in temperature and 66 

precipitation.4, 5 Prior assessments have considered the effects of stratospheric ozone depletion in 67 

the context of climate change and have reported on some of the ways in which climate change can 68 

potentially interact with ozone depletion and UV-B radiation to modify terrestrial ecosystem function 69 

and composition.6-8 In this assessment, we report on progress made since the last one8 and 70 

examine and further explore recent findings that document interactive effects of ozone depletion, 71 

UV-B radiation and climate change on terrestrial organisms and ecosystems, including cultivated 72 

species and highly managed ecosystems (e.g., agroecosystems). We emphasise effects that have, 73 

at least to some degree, been demonstrated to occur in nature, but also identify areas where 74 

potential effects on terrestrial ecosystems could occur in the future. Where possible, areas of 75 

uncertainty are addressed, and the significance of findings is placed in a context relevant to policy 76 

makers. 77 

 78 

Ecologically significant linkages between stratospheric ozone depletion, climate change and UV 79 

radiation are diverse, sometimes bi-directional, and, in certain cases, exhibit important feedbacks to 80 

the climate system (Fig. 1). However, climate change is increasingly contributing to changes in the 81 

timing and duration of UV-B radiation exposure, independent of ozone dynamics. These changes 82 

can occur in a number of ways (see section 3.7). One avenue involves climate change-driven shifts 83 

in cloud cover, which is increasing in some regions (usually wetter areas), while decreasing in 84 

others (usually drier regions).1, 4 Similarly, climate change-driven effects on vegetation (e.g., forest 85 

die-back or shrub invasions) can increase or decrease the UV exposure conditions of understory 86 

plants and animals. As a result of warmer growth conditions and altered timing of seasons, many 87 

plants are initiating growth and flowering earlier in the year,9, 10 while certain animals are adjusting 88 

their timing of breeding and migration.11, 12  As UV-B radiation varies seasonally (Fig. 8), a change in 89 

the timing of important life-cycle events can easily affect their exposure to UV-B radiation. In 90 

addition, the geographic ranges of many plants and animals, including wild and domesticated 91 

species, are shifting to higher elevations and latitudes in response to climate change.1, 2, 13-92 

15  Because of existing natural altitudinal and latitudinal gradients in solar UV radiation,4, 16-18 these 93 

changes in geographic ranges can potentially increase (at high elevations) or decrease (at high 94 
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latitudes) the amount of UV-B radiation received by organisms. Unlike ozone depletion, all of the 95 

above climate change-driven effects are modifying organisms’ exposure to the full solar radiation 96 

spectrum at the Earth’s surface, including UV-B as well as UV-A (315-400 nm) and visible (400-700 97 

nm) radiation. At the same time, plants and animals are being exposed to novel combinations of UV 98 

radiation with other abiotic (e.g., changing day length, and fluctuating temperatures) and biotic 99 

factors (e.g., competitors, pests, and pollinators).  Because of these complexities, it is necessary to 100 

consider how organism and ecosystem responses to UV-B radiation are modified by concomitant 101 

changes in other regions of the solar spectrum (i.e., UV-A and visible radiation) as well as 102 

simultaneous changes in a diverse range of abiotic and biotic factors.  103 

 104 

Solar UV radiation (UV-B and UV-A) is known to affect the growth and performance of terrestrial 105 

plants and animals (see sections 3.3 and 3.4). The shorter wavelengths of UV radiation (mostly in 106 

the UV-B range) may cause cellular damage, and this can lead to changes in an organism’s  107 

morphology, physiology, and biochemistry. Concurrent exposure to longer wavelengths (e.g., UV-A 108 

and/or visible radiation), however, can often reduce the negative effects of UV-B radiation.19  In 109 

addition, both UV-B and UV-A radiation are important sources of information for plants and animals. 110 

This radiation is perceived by specific photoreceptors, which trigger a range of responses. Many 111 

animals sense UV radiation and avoid exposure to prolonged periods of high UV-B radiation.20, 21 112 

These behavioural responses together with physiological mechanisms can mitigate some of the 113 

negative outcomes of high UV-B radiation. In some animal species (e.g., insects and birds), UV 114 

radiation is used as a visual cue that enhances foraging, mate selection or other behavioural 115 

activities.21 By comparison, land plants are sessile (rooted to their growth medium) and require 116 

sunlight for photosynthesis and growth. Their primary response to changing UV radiation conditions 117 

typically involves acclimating or adapting to these changes using biochemical and physiological 118 

mechanisms. However, like animals, plants can sense UV radiation in their surroundings, which has 119 

adaptive value.22  120 

 121 

Many initial studies following the discovery of the Antarctic ozone hole (as reviewed by Aphalo, et al. 122 

23, Björn 24, Barnes 25) emphasised the direct, detrimental effects of increased UV-B radiation on 123 

plants, especially important food crops. However, most evidence to date indicates that, under 124 

realistic exposures, the direct, damaging effects of high UV-B radiation on photosynthesis, plant 125 

productivity and crop yield, are relatively minor.7, 26-30   More recent studies have focused on 126 

understanding how plants a) respond to UV radiation against the backdrop of a rapidly changing 127 

climate in conjunction with current and projected stratospheric ozone dynamics; and b) perceive the 128 

UV-B radiation and what role this radiation plays in regulating growth and development.31-34 At 129 

present, it is widely accepted that UV-B radiation can have beneficial as well as unfavourable effects 130 

on plants.27, 35-37 In some cases, reduced exposure to UV-B radiation can even have negative 131 
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consequences for plant performance, pest defence,38 and food quality.39 Thus, projected recovery of 132 

stratospheric ozone to levels that may exceed those in the recent past (i.e., 1970’s;4, 40), means that 133 

there is a need to fully evaluate how organisms and ecosystems will respond to the increases and 134 

decreases in solar UV-B radiation that occur in conjunction with a rapidly changing climate.  135 

 136 

Climate change alters regional weather patterns, including temperature and precipitation, and these 137 

changes can directly affect plants and ecosystems by altering moisture availability and critical 138 

thermal conditions for growth, reproduction and survival. Of interest in this assessment, however, is 139 

how climate change-driven plant responses are modified by UV radiation (see section 140 

3.3).  Exposure to UV-B radiation can enhance plant tolerance to some abiotic factors (e.g., water 141 

and temperature stress) 41, while other factors may alter the sensitivity of plants to UV radiation. 142 

However, these effects are complex and often dependent upon specific growth 143 

conditions.42  Understanding how plants respond to changes in UV radiation against this backdrop of 144 

changes in multiple environmental variables is thus challenging but necessary in the context of 145 

future environments (e.g., Virjamo, et al. 43). These UV-climate change interactions are particularly 146 

relevant for agroecosystems, where crop yield, food quality, pest and disease resistance and overall 147 

vulnerability to climate change can have significant impacts on food security (see section 3.5).   148 

  149 

The effects of changes in incident solar UV radiation (UV-B and UV-A) on ecological communities 150 

and ecosystems are largely a consequence of impacts on primary producers (i.e, plants).44-46 These 151 

higher-level ecological effects include changes in plant-plant interactions (competition), herbivory, 152 

pest-pathogen interactions and the decomposition of dead plant matter (litter) (see section 3.6). 153 

Although initially minor, some of these community and ecosystem effects may accumulate over time 154 

(e.g.,Robson, et al. 47) or be amplified by processes such as competition.48  For certain crop species, 155 

exposure to UV radiation can elicit changes in pest/pathogen defence that may have positive 156 

consequences for the productivity and sustainability of agroecosystems.38, 45, 46  157 
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 158 

 159 

Fig. 1.  Conceptual diagram illustrating known linkages between stratospheric ozone depletion, UV radiation 160 
and climate change on terrestrial organisms and ecosystems. Stratospheric ozone depletion alters UV 161 
radiation (primarily UV-B; arrow 1), which in turn directly affects plants and other organisms (arrow 2). The 162 
effects on organisms can then alter the function and structure of ecosystems (arrow 3). Ozone depletion can 163 
alter the climate, and climate change can affect ozone depletion via several avenues (arrow 4). Certain ozone-164 
depleting substances (e.g., hydrofluorocarbons (HFCs) and others) are potent greenhouse gases that can 165 
enhance global warming. Stratospheric ozone depletion in the southern hemisphere is directly altering climate 166 
via changes in the Southern Annular Mode (SAM) in addition to other climate changes. Resultant shifts in 167 
climate zones alter regional rainfall and drought and thereby change cloud cover; in turn, the changing cloud 168 
cover can increase or decrease exposures of organisms to UV radiation (arrow 5).  Climate-related changes in 169 
weather patterns (arrow 6) alter temperature and precipitation patterns, which can directly modify plant growth 170 
and development, and the way in which plants respond to UV-B radiation (arrow 7). Climate change (including 171 
altered UV-B exposure) is also changing the seasonal timing of development (e.g., phenology of flowering or 172 
bud break; arrow 8), such that wild plants and crops develop at times of the year when UV radiation can be 173 
either greater or less than prior to current rapid climate change (arrow 9). These phenological changes further 174 
expose plants to novel combinations of UV radiation and other abiotic and biotic factors (arrow 10). In 175 
response to climate change many organisms are shifting their ranges to higher elevations and latitudes (arrow 176 
11). As with phenological shifts, these changes in geographic ranges can potentially increase (elevation) or 177 
decrease (latitude) exposures to UV radiation (arrow 12), as well as subjecting organisms to new 178 
combinations of UV radiation and other abiotic factors (arrow 13). As species migrate to different 179 
environments they also encounter new combinations of competitors, pests and pollinators that may alter 180 
important ecosystem processes such as herbivory and competition (arrow 14). Alterations in certain 181 
ecosystem processes, such as decomposition, can modify soil carbon storage and emissions of carbon 182 
dioxide and other greenhouse gases to the atmosphere (arrow 15). Image of stratospheric ozone shows total 183 
ozone over Antarctica (October 2017, Source: https://ozonewatch.gsfc.nasa.gov/). Climate change map 184 
indicates surface temperature anomalies for February 2017 compared to the base-period of 1951-1980 185 
(Source:  https://data.giss.nasa.gov/). Sonoran desert ecosystem photograph by P.W. Barnes.  186 

 187 

https://data.giss.nasa.gov/
https://data.giss.nasa.gov/
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One important ecoystem-level effect of changes in UV radiation and climate is the altered 188 

decomposition of plant litter, which can result in a positive feedback to the climate system, thereby 189 

contributing to climate change. Photodegradation is the process whereby UV radiation, together with 190 

shorter wavelengths of visible radiation, drives the photochemical break-down of plant litter, and this 191 

results in the release of carbon dioxide and other gases to the atmosphere (Fig. 7).49-51  192 

Photodegradation can also modify the chemical make-up of litter, thereby promoting or facilitating 193 

the activities of microbial decomposers (bacteria and fungi; i.e., photo-facilitation). This results in 194 

increased microbial and soil respiration, and contributes additional carbon dioxide to the 195 

atmosphere.52-54 At present, considerable uncertainty remains regarding the quantitative significance 196 

of photodegradation of terrestrial plant litter, and its effects on soil carbon storage and atmospheric 197 

carbon dioxide concentrations. However, it is clear that this process is an important driver of 198 

decomposition in many ecosystems, especially drylands (grasslands, deserts, and savannas).54, 55  199 

In some of these dryland ecosystems, the relative importance of UV-driven photodegradation may 200 

increase with climate change as precipitation decreases and temperature increases.56  Changes in 201 

climate and land-use may also affect photodegradation and litter decomposition indirectly via 202 

changes in the structure and species composition of vegetation, and occurrence of fire and soil 203 

erosion (see section 3.6.3 and Sulzberger, et al. 51). 204 

 205 

There are several linkages between ozone depletion and climate change that are ecologically 206 

important but which do not directly involve changes in UV radiation. On the one hand, climate 207 

change can modify stratospheric ozone depletion by perturbing temperature dynamics between the 208 

stratosphere and troposphere.57 Conversely, it is now apparent that ozone depletion in the southern 209 

hemisphere is directly contributing to climate change (Fig. 2).4 Specifically, ozone depletion appears 210 

to be changing regional atmospheric circulation patterns in the southern hemisphere which, in turn, 211 

affect weather conditions, sea surface temperatures, and frequency of wildfires.58-62 These changes 212 

together with changes in UV-B radiation can have several consequences for terrestrial ecosystems 213 

(see section 3.2, Fig. 3, and Table 1).5  While ozone depletion in the northern hemisphere may be 214 

associated with similar, but smaller, climate shifts4, to our knowledge there are no reports linking this 215 

to ecological impacts. 216 

 217 

Finally, a better understanding of how terrestrial organisms and ecosystems might respond to 218 

changes in UV radiation in the context of modern climate change is coming from studies examining 219 

how plants and animals have adapted to changing UV radiation and climate conditions in the past.  220 

These historical studies, however, require some knowledge of how UV radiation has changed over 221 

geological time periods. In the absence of satellite or ground-based measurements of UV radiation, 222 

some investigators have attempted to reconstruct past UV radiation climates using biological 223 
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indicators as proxies for ground-level UV radiation. Section 3.8 evaluates progress made in the 224 

development of pollen grains and spores as bioindicators of past UV conditions.  225 

 226 

 227 

3.2 Ecological impacts of ozone depletion-driven changes in climate in the 228 

southern hemisphere 229 

 230 

Stratospheric ozone depletion has led to large changes in southern hemisphere climate (as detailed 231 

in Bais, et al. 4, Robinson and Erickson III 5, Bornman, et al. 8). These are manifested in a mode of 232 

atmospheric variability, the Southern Annular Mode (SAM or Antarctic oscillation), which describes 233 

the difference in pressure between 60° and 45° S. The SAM describes the strength and latitudinal 234 

position of the westerly wind belt (i.e., jet stream) around Antarctica (see also, Robinson and 235 

Erickson III 5, Bornman, et al. 8). Ozone depletion is linked to a highly positive phase of the SAM,63, 64  236 

corresponding to an increased pressure difference between mid- and high latitudes and a 237 

contraction of the westerly wind belt towards Antarctica (Fig. 2). The effects of this change in 238 

atmospheric circulation, which extend across the southern hemisphere, are summarised in the 239 

following sections. The sections emphasise how these changes in climate link to stratospheric 240 

ozone depletion (see also Bais, et al. 4), affect abiotic drivers (e.g., wildfires) and the contingent 241 

responses of southern hemisphere ecosystems. The implications of these climate shifts for marine 242 

and aquatic ecosystems are described in Williamson, et al. 65 243 
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 244 

 245 
Fig. 2 The Antarctic ozone hole (inset) and its impact on southern hemisphere atmospheric circulation. 246 
Stratospheric ozone depletion and resultant cooling over Antarctica has caused the tropopause to lift, allowing 247 
the Hadley Cell (dark red arrow) and the westerly jet stream to tighten and shift towards the South (blue 248 
arrow). The speed of the jet has also increased (see Robinson and Erickson III 5 for details). The polar shift in 249 
the jet and its increased strength changes atmospheric and oceanic circulation throughout the southern 250 
hemisphere consistent with a more positive phase of the Southern Annular Mode (SAM; see text for 251 
explanation). Over the past century, increasing greenhouse gases and then ozone depletion over Antarctica 252 
have both pushed the SAM towards a more positive phase, and the SAM index is now at its highest level for at 253 
least 1000 years.63 As a result, high latitude precipitation has increased and the mid-latitude dry zone has 254 
moved south (orange arrow). As the ozone layer recovers, increased greenhouse gas forcing will likely take 255 
over and the position of the jet is thus predicted to remain in this more southerly location. Figure adapted from 256 
Robinson and Erickson III 5 and Perlwitz 66, with ozone ‘hole' over Antarctica, 17th September 2006, 257 
reproduced from NASA Ozone Watch.67  258 

 259 

Changing concentrations of stratospheric ozone have been linked to changing surface 260 

temperatures, altered wind and ocean circulation patterns and changing precipitation patterns, 261 

causing increased rainfall or drought, the latter leading to increased risk of wildfires. As presented in 262 

our last assessment, terrestrial8 and aquatic ecosystems5 including biogeochemical cycling68 have 263 

been affected by these changes across the southern hemisphere. Sections 3.2.1 and 3.2.2 give a 264 
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brief summary of the climate changes ascribed to ozone depletion and then address the implications 265 

of these changes for ecosystems in the southern hemisphere.  266 

 267 

The UNEP Science Assessment Pane (SAP)69 notes that since their last assessment,70 further 268 

research has confirmed the impact of changes in stratospheric ozone on the tropospheric and 269 

surface climate of the southern hemisphere and has, in some cases, allowed better quantification 270 

and attribution of the changes. Stratospheric ozone depletion is assessed to have been the 271 

dominant driver of changes in atmospheric circulation across the southern hemisphere from the mid-272 

latitudes to the tropics during austral summer (December-February) over the period 1960 to 2000 273 

when stratospheric ozone was decreasing; while in other seasons, greenhouse gas emissions play 274 

a comparable role to stratospheric ozone depletion. As stratospheric ozone recovers, its effect on 275 

circulation should diminish; however, climate change is predicted to increasingly contribute to 276 

changes in atmospheric circulation.4, 71, 72  277 

 278 

The major changes in mid-latitude and tropical circulations driven by stratospheric ozone depletion 279 

include the poleward shift of the mid-latitude jet (Fig. 2), the shift to an increasingly positive phase of 280 

the Southern Annular Mode (SAM) and the poleward shift of the sub-tropical Hadley Cell (Fig. 2).39, 281 

69, 73  Between 1980 and 2000, the westerly jet shifted south during summer by approximately one 282 

degree of latitude. Since 2000, the jet has shifted north in summer, although this reverse trend is not 283 

statistically significant.69,74 A meta-analysis75 supports stratospheric ozone depletion as the 284 

dominant driver of the Hadley Cell summertime expansion over the period 1979 to late 1990s. 285 

 286 

3.2.1 Changes to southern hemisphere regional rainfall related to stratospheric ozone 287 

depletion, and ecosystem responses to fluctuating water availability: extreme rain, drought 288 

and fires 289 

 290 

Changes in both extratropical and sub-tropical austral summer rainfall have previously been linked 291 

to the position of the mid-latitude jet and thus to stratospheric ozone depletion (Figs 2, 3).4, 5, 8, 70, 76, 77  292 

South-East South America (northern Argentina, Uruguay, southern Brazil and Paraguay) has 293 

experienced one of the largest increases in rainfall worldwide (Fig. 3; Table 1A)78 with a 30% 294 

increase in summer rainfall over the past 50 to 100 years. While this increased rainfall appears to be 295 

the result of anthropogenic emissions of greenhouse gases,79, 80 the relative contributions from 296 

greenhouse gases and ozone depletion to these changes have not yet been resolved (see also, Wu 297 

and Polvani 81, Zhang, et al. 82). 298 

 299 

The SAM has been identified as the leading cause of changes in summer rainfall, surface 300 

temperature, and the diurnal temperature range in East Africa83, 84, and these authors highlighted the 301 
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effects of stratospheric ozone depletion. Over the period 1961-1996, the position for the South 302 

Pacific Convergence Zone (a region of abundant precipitation, stretching from New Guinea towards 303 

southern hemisphere mid-latitudes) has changed, with increasing rainfall on the northern edge and 304 

decreases to the south.85 This shift in precipitation appears related to stratospheric ozone 305 

concentrations, with models that isolate the impacts of ozone recovery suggesting a reversal of 306 

these effects as stratospheric ozone recovers. These shifts in rainfall patterns can have negative 307 

and positive effects on ecosystems, populations and individual species.  308 

 309 

 310 
Fig. 3   Map of the southern hemisphere showing how stratospheric ozone depletion affects the climate and 311 
environment, and the effects of these abiotic changes on terrestrial ecosystems and populations. Symbols 312 
show types of organism, ecosystem or entity affected (see legend), with numbers referring to Table 1C, which 313 
provide species and location details. Arrows indicate direction of effects on biodiversity, up = positive, down = 314 
negative effects, two-way arrows indicate changed biodiversity.   315 
  316 
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Table 1 Summary of how stratospheric ozone depletion affects the climate and environment (A) likely 317 
consequences, (B) the effects of these abiotic changes on terrestrial ecosystems, and (C) populations across 318 
the southern hemisphere. Regions affected and references are provided. Numbers (C) refer to locations in 319 
Fig. 3.  320 
 321 
 322 
 323 

A.  

Changes in southern 
hemisphere climate driven 
by stratospheric ozone 
depletion 

Regional examples References 

Changing regional 
precipitation 

 4, 71, 86 

Wetter South East South America (Northern Argentina, 
Uruguay, southern Brazil and Paraguay) 

78, 87 

Wetter/Drier New Guinea, southern hemisphere mid-latitudes 
wetter in the north and drier to the south 

Hydroclimatic variability over the Amazon Basin 

85, 88 

Drier Chile, declining stream flows, consequences for 
ecosystem health and hydroelectric power 

 89 

More extreme precipitation South-eastern South America extreme Summer 
rainfall 
Heavy rain events in Madagascar 

78, 81, 90-92 

Changing ocean and 
atmospheric circulation 

 4, 71 

Shifting location of wet and dry 
zones 

Shifts in summer rainfall patterns, 
Australian summer - increased rainfall on 

mainland south east coast and decreased 
rainfall in western Tasmania. 

Sub-tropical dry zone also shifted towards the 
South Pole  

83 93 73, 91, 94-96 

Increasing surface wind-stress  Southern Ocean  
Leads to year-round stronger surface ocean 

warming  
Could enhance loss of Antarctic sea ice but see 

Bais, et al. 4  
Alters mixed layer depth affecting nutrients  

65, 97-99 

Temperature  4, 71 

Lower temperatures Decrease in summer temperatures over East 
Antarctica, southeast and south-central 
Australia and inland areas of the tip of 
southern Africa.  

Eastern Tropical Pacific cooler  

60, 96 

Warmer temperatures Much of Southern Africa warmer 
Warmer surface temperature and changed 

diurnal temperature range in East Africa 
Summer extreme temperatures, Australia, South 

America, Southern Africa 

83, 96  
 

 324 

B.  

Likely indirect 
consequences of changes in 
southern hemisphere 
climate 

Resulting from References 

Changing cloud patterns Latitudinal shifts in the Hadley and Polar Cells 94. See Bais, et al. 4 for 
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mean that cloud cover has also shifted 
southward with ozone depletion 

implications for exposure 
to UV radiation  

Fire Changes in precipitation can alter fire regimes; 
e.g., central and southern Chile 

51, 62, 100, 101  

Dissolved organic matter 
(DOM) 

Changes in precipitation affect run off and 
quantity of DOM in water bodies 

See Williamson, et al. 65 
for details 

Breakdown of litter Changes in precipitation and temperature 
influence breakdown rates of litter 

See Sulzberger, et al. 51 
for details 

Air quality Weather [temperature, wind (transporting 
pollutants), rain and cloudiness] affects air 
quality with consequences for health of 
humans, other animals and plants 

See Wilson, et al. 102 for 
details 

Weathering of materials Increased ambient temperature shortens the life 
of plastics and wood exposed to UV 
radiation, and their outdoor service lifetimes. 
Changing moisture also affects these 
processes 

See Andrady, et al. 103 for 
modes of action 

 

 325 

C.   
Drivers of change 
for terrestrial 
plants and 
ecosystems 
(number of marker 
on Fig. 3) 

Biological effects Location References 

Decreased water 
availability 

   

1 Less precipitation associated with 
decreasing growth of trees and restricted 
forest distribution 

West New 
Zealand, 
South West S. 
America 

104, 105 

2 
 
 
 
3 

East Antarctic drying. Moss beds exhibit 
changing species composition. Reduced 
growth, more plant stress and death.   
 Lakes are becoming more saline 
leading to biodiversity changes 

Windmill 
Islands, East 
Antarctica 

106-108  

4 Drying caused more than 80% dieback 
of cushion plant and moss fellfield 
communities  

Macquarie 
Island 

109 

Increased water 
availability 

   

5 Less salinity causes changes in lake 
fauna 

Eastern side 
of the Andes 

110 

6 More precipitation associated with 
increasing growth of trees 

East New 
Zealand, 
Eastern South 
America 

104 

7 Expansion of agricultural zones with 
more precipitation 

South East S. 
America 

111 78 

8 Moss beds and other biodiversity more 
productive due to warmer wetter 
conditions and more land  

Antarctic 
Peninsula 

112-114 

Increased wind 
speeds  

   

9 Risk of increased dust and potential 
propagule inputs into Antarctica 
(negative if introduces non-native 
species) 

West 
Antarctic, 
Antarctic 
Peninsula 

115-118 
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 326 

Ecosystem responses to fluctuating water availability. Shifting atmospheric circulation cells 327 

(Hadley, Ferrel and Polar cells, see Fig. 2) alter regional precipitation across the southern 328 

hemisphere, causing some areas to receive more moisture and others to become drier. In 329 

Patagonia, declines in tree growth have been linked to reduced water availability (Fig. 3; Table 330 

1B).104 In the extreme south of South America extending into Antarctica, lichens are an increasingly-331 

dominant component of the terrestrial biota.119 Lichens are extremely tolerant of desiccation, but 332 

nevertheless the combination of high wind speeds and high irradiance, including increased UV-B 333 

radiation due to ozone depletion, have been shown to affect their colonisation on trees in 334 

Patagonia.120 However, lichens grow very slowly,121 so responses to specific climatic changes can 335 

take a long time to detect. Less seasonal precipitation and a reduced diurnal temperature range 336 

were the dominant factors driving aridity and limiting the distribution of high-elevation woodlands of 337 

Polylepis tarapacana (a rose family tree species of high conservation value, found in the South 338 

American Altiplano).  Models predict that by the end of this century almost half of the potential 339 

habitat of this species will be lost due to increased aridity.105  340 

 341 

Decreased precipitation in this region of South America has led to reduced stream flows in Chile, 342 

with adverse effects on aquatic and terrestrial ecosystems as well as the production of hydroelectric 343 

power.89  Since the 1960s, warming and associated drying at mid- and high-latitudes to the west of 344 

the Andes have resulted in increased forest fires (measured from fire scars in tree ring records).62 345 

During the 2016–2017 fire season, more than 500,000 hectares burned in central and southern 346 

Chile (between ∼29°S and 40°S), driven by a long-lasting drought linked to the positive SAM that 347 

was amplified by El Niño–Southern Oscillation (ENSO) conditions. Given that the positive phase of 348 

SAM is predicted to continue, it is likely that increased wildfire activity in southern South America will 349 

continue throughout the 21st century.62  350 

 351 

Several other regions of the southern hemisphere have experienced wetter summers4, leading to 352 

increased tree growth in eastern New Zealand104 and expansion of agriculture in south-eastern 353 

South America (Fig. 3; Table 1B).78 The eastern side of the Andes has experienced wetter 354 

conditions with associated biodiversity changes. For example, changes in fauna (ostracods and 355 

chironomids) from lake sediments in El Toro Lake (40˚S, 70˚W) indicate that the lake has become 356 

fresher (less salty) as a result of increased precipitation since the middle of the 20th century, 357 

associated with the positive phase of SAM.110 358 

 359 

Increasing extremes of precipitation have also been linked to SAM-related changes. Rainfall 360 

patterns in the southern Amazon Basin have been reconstructed from tree rings of Centrolobium 361 
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microchaete88 and the findings suggest that the fluctuations between drought and extremely wet 362 

seasons seen from 1950 to the present day may be unmatched since 1799.  363 

 364 

3.2.2  Changes in surface temperatures as a consequence of stratospheric ozone depletion 365 

and implications for terrestrial ecosystems 366 

 367 

Recent studies122, 123 suggest that warming of West Antarctica and the Antarctic Peninsula may fall 368 

within the range of natural climate variability.124 This warming had previously been linked to 369 

anthropogenic emissions of greenhouse gases and stratospheric ozone depletion.5, 8 Stratospheric 370 

ozone depletion could account for between a quarter and one third of summer and autumn cooling 371 

over the rest of the Antarctic continent (see Robinson and Erickson III 5). However, our confidence in 372 

any attribution or projections of climate warming over this region is limited by the large biases 373 

inherent in the models used. Depletion of Antarctic stratospheric ozone over Antarctica has possibly 374 

offset a substantial portion of the summer warming that would otherwise have occurred (due to 375 

increasing greenhouse gases) in eastern Australia, southern Africa and South America (Fig. 3).96  376 

These changes in temperature are likely to have affected (positively and negatively) life cycles of 377 

plants and animals, potentially leading to mismatches between plants and their pollinators (see 378 

section 3.7.3). Cooler temperatures over East Antarctica have likely slowed the melting of ice 379 

sheets. As stratospheric ozone concentrations recover, the extent of this amelioration may be 380 

reduced with potential implications for the climate and populations of these regions as well as further 381 

afield.  382 

 383 

In western Antarctica, along the Antarctic Peninsula and on nearby islands, increasing 384 

temperatures60 were associated with increased productivity of terrestrial ecosystems (microbial 385 

productivity, plant growth rates and carbon accumulation in moss beds) from the 1950s to the turn of 386 

the century.114 There is some evidence that the direction of these changes has reversed since 2000, 387 

consistent with recent cooling in this region.114,125,126 However, as noted above, the relative 388 

contributions of stratospheric ozone depletion vs increasing greenhouse gases to temperature 389 

changes is still unresolved because recent studies suggest they are not beyond the range of natural 390 

variability (see above and Bais, et al. 4).  391 

 392 

On the opposite side of the continent, in the Windmill Islands of East Antarctica, decreased water 393 

availability since the 1960s, linked to decreasing temperatures and increasing wind,107 has resulted 394 

in changes in biodiversity in both Antarctic moss beds106 and lakes,108 with species composition 395 

changing to reflect the newly drier moss beds and more saline lakes. In addition, these East 396 

Antarctic plant communities are becoming more stressed as a result of drying, resulting in 397 

increasingly moribund moss.106, 127, 128  This is one of the first studies106 to document ecosystem-level 398 
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changes in Antarctic terrestrial plant communities, which are correlated with the SAM and potentially 399 

linked to stratospheric ozone depletion and climate change. Further north, widespread (>80%) 400 

dieback of cushion plants (Azorella macquariensis) and mosses, on sub-Antarctic, Macquarie 401 

Island, was primarily attributed to reduced water availability as a result of higher wind speeds, more 402 

sunshine hours and therefore higher evapotranspiration since the 1970s. The authors estimate that 403 

from 1992 to 2008 these plant communities suffered accumulated water deficit for 17 years.109 This 404 

dieback of Antarctic and sub-Antarctic vegetation is similar to the “Arctic browning” observed in the 405 

Arctic in response to extreme climate events.129, 130   406 

 407 

Interannual variability. Two studies have linked interannual variability of springtime Antarctic 408 

ozone to summer changes in surface temperature and rainfall in the southern hemisphere.96, 131 The 409 

SAP 2018 report69 concludes that interannual variability in springtime ozone at both Poles may be 410 

important for surface climate, but the extent of this connection is not fully understood.   411 

 412 

Stratospheric ozone-driven climate change has widespread and far-reaching effects on terrestrial 413 

and marine ecosystems (see Williamson, et al. 65) across the southern hemisphere. A better 414 

understanding is needed of the relative contributions of stratospheric ozone, greenhouse gases and 415 

interannual variability in order to determine the ecological or biological change attributable to 416 

stratospheric ozone depletion vs that due to these other climate factors.  Nevertheless, we have 417 

only included studies in this section where a strong signal of ozone depletion or summer SAM has 418 

been associated with an ecological effect.  419 

 420 

3.3 Plant response to UV radiation and interactions with climate change 421 

factors  422 

 423 

There is now a basic understanding of UV-sensing and UV-signaling in plants, as well as the 424 

consequences for gene-expression, physiology, biochemistry, plant growth, fitness and nutritional 425 

quality. Potentially, UV-B radiation can damage plants through effects on DNA, the photosynthetic 426 

machinery, and other cellular targets. However, UV-B-induced plant defence responses, including 427 

up-regulation of photorepair processes, antioxidant capacity, and UV-screening, are thought to be 428 

effective in the prevention of damage to plants by UV-B radiation under most natural conditions. 429 

Nevertheless, effective prevention and repair do not imply that UV radiation has no effect on plants. 430 

Acclimation to UV radiation and climate change factors can modify plant growth and development, 431 

which, in turn, has consequences for ecosystem functioning (section 3.6), nutritional quality and 432 

food security (section 3.5). Thus, understanding plant response to UV radiation and some of the 433 

interactive effects of climate, is of fundamental importance for evaluating effects of UV-B radiation 434 

on terrestrial ecosystems.  435 
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 436 

3.3.1 Limitations to current studies investigating interactive effects 437 

 438 

Much of our understanding of plant responses to UV radiation began with single-factor experiments 439 

in laboratories, greenhouses, and controlled environment chambers that did not account for 440 

interactive effects from multiple climate factors. Overall there is evidence that conditions in artificial 441 

environments may unrealistically accentuate the negative effects of UV-B radiation on plant growth. 442 

For instance, such studies are often conducted in growth chambers or greenhouses where lamps 443 

are used as the principle source of UV-B radiation and the ratio of UV-B radiation to 444 

photosynthetically active radiation (PAR, 400-700 nm) is far above that generally found in field 445 

conditions. We illustrate these limitations for some recent controlled-environment studies (Fig. 4). 446 

Note that only 16 of the 49 studies surveyed provided sufficient UV and PAR data to be represented 447 

as data points in the figure.  448 

 449 

It is important to use the knowledge from these studies to design experiments for testing the results 450 

at more expansive scales of space and time. Laboratory results may be scaled up by progressively 451 

moving to more realistic conditions in controlled environments and then to field experiments (e.g., 452 

Flint and Caldwell 132). Another scaling approach is to design experiments moving from our common 453 

organism-centered methodology to a community or ecosystem perspective, where interactions, 454 

feedbacks, and their relative magnitudes under realistic conditions are examined.133 Some recent 455 

studies have investigated the effects of UV-B radiation in combination with other climate change 456 

factors, such as drought, temperature, carbon dioxide, and tropospheric ozone (e.g., Martinez-457 

Luscher, et al. 134, Wijewardana, et al. 135, Mao, et al. 136). For this assessment we evaluated the 458 

experimental studies and methodological protocols,137 resulting in the exclusion of some studies in 459 

our summary findings. 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 
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 473 

Fig. 4  Studies conducted in growth chambers (blue) are still using unrealistic ratios of photosynthetically 474 
active radiation (PAR, 400-700 nm) to biologically effective UV-B radiation (UV-BBE; data were reported using 475 
the generalized plant action spectrum of Caldwell 138 (more commonly used in these studies than the action 476 
spectrum of Flint and Caldwell 139)  compared with natural sunlight (yellow). Growth chamber experiments are 477 
represented by black circles within the blue shading. Solar irradiances within the yellow shading represent the 478 
summer solstice (red triangles) and spring equinox (green squares). Ambient PAR is from Ritchie 140 and 479 
ambient UV-BBE was computed with the TUV calculator: 480 
http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV/. Latitudinal locations are indicated by numerals: 1. 481 
Equator (0°), 2. Tropic of Cancer (23°N), and 3. 55°N. A total of 49 peer-reviewed papers on growth chamber 482 
studies from the years 2011-2017 were surveyed; 16 are represented as data points in this figure and 33 483 
could not be represented, because they either lacked radiation data or it was not measured in a manner 484 
comparable to the other studies. 485 

 486 

3.3.2  The UV-B photoreceptor and signaling pathways 487 

 488 

The existence and nature of a specific UV-B photoreceptor in plants, the protein, UVR8, initially 489 

came to light in 2011.141 Since this discovery, a basic understanding of UV-sensing, signaling and 490 

function has emerged that has improved our knowledge of the molecular mechanisms underlying 491 

UV defence and acclimation in plants.22, 34, 141   492 

 493 

UVR8-mediated perception of UV-B radiation contributes to up-regulation of the expression of genes 494 

that encode components of the phenylpropanoid biosynthesis pathway, photorepair of DNA 495 

damage, and enhanced antioxidant capacity.22 Penetration of UV-B radiation into leaves depends 496 

on the concentration of flavonoids and other phenolics in the epidermis, as well as plant anatomical 497 

and morphological characteristics that vary among species. Most of the UV-B radiation is strongly 498 

attenuated as it passes through the epidermis, although it has been measured in some herbaceous 499 

plant species in deeper-lying tissues (mesophyll layers), with 18-41% epidermal transmittance.142, 143 500 

Given that the UVR8 protein has been detected in most plant tissues investigated, including roots, it 501 

is currently difficult to pinpoint in which plant tissues perception of UV-B radiation takes place in 502 

plants growing in sunlight. Tissue-specific analysis of UVR8 activity has revealed that the UV-B-503 

induced UVR8 signalling pathway in epidermal and mesophyll cells is involved in hypocotyl 504 

elongation, while UVR8 expression in the epidermis contributes to cotyledon expansion.144 Thus, the 505 

UV-B-induced response appears to be partly mediated by tissue-autonomous signaling, although 506 

inter-tissue signaling may also be involved.144 The role of UVR8 is not simply limited to protection 507 

from UV-B radiation. There is now strong evidence that UVR8-mediated signaling extends to 508 

processes such as stomatal function, de-etiolation (greening response of plants), entrainment 509 

(alignment with) the circadian clock, phototropism, and defence against pathogens.34  These 510 

findings, mainly on the model plant, Arabidopsis thaliana (a type of cress), provide a frame of 511 

reference for the study of the multifaceted role of UV-B perception through photoreceptor(s) in the 512 

regulation of plant growth and development in the much more complex natural environment. This 513 
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frame of reference can also be used for other plant species that are likely to follow a variety of 514 

strategies to acclimate and adapt to their habitats.   515 

 516 

While much attention has been given to elucidating UVR8-mediated processes, UVR8 is not the 517 

only UV-B sensing mechanism in plants. There are also UVR8-independent signaling pathways,145 518 

for example, arising from oxidative stress and via UV-B-mediated DNA damage,146 including 519 

generation of cyclobutane pyrimidine dimers (CPD, one of the main types of DNA damage). 520 

However, CPD photolyase, which repairs the damage, is predominantly regulated in a UVR8-521 

dependent manner in plants exposed to UV-B radiation. There is evidence that the UVR8-mediated 522 

signaling pathway regulates the scavenging capacity of reactive oxygen species (ROS),147 and the 523 

production of nitric oxide in response to UV-B-induced stress.148 These latter molecules may 524 

themselves play a role in signaling.148  525 

 526 

Thus, plant responses to UV-B radiation likely involve multiple UV signaling pathways. Moreover, 527 

components of these UV-mediated signaling pathways interact with other stress-induced signaling 528 

pathways, such as those activated by other wavelengths of light, exposure to drought, extreme 529 

temperatures, and other factors associated with climate change.  530 

 531 

3.3.3  UV-B-mediated signaling, crosstalk and cross-tolerance 532 

 533 

There is still a lack of information and understanding concerning the effects of UV-B radiation in a 534 

complex environment where plants are simultaneously or sequentially exposed to multiple 535 

environmental factors that can modify plant growth and development. 536 

 537 

In principle, the simultaneous application of treatments involving changes in two environmental 538 

factors can lead to additive, synergistic, antagonistic or no effect. It is particularly relevant from an 539 

agronomic perspective that acclimation responses induced by changes in one environmental factor 540 

can confer cross-tolerance (including priming responses) or cross-sensitivity to another factor. 541 

Exchange of information between distinct plant-signalling pathways can broaden the spectrum of 542 

responses to one particular environmental factor. For example, high levels of PAR and UV-B 543 

radiation generally increase the accumulation of flavonoids, with synergistic effects occurring in 544 

some cases when plants are exposed to a combination of both variables.149, 150 Such increases of 545 

protective pigments with antioxidant activity potentially enhance the tolerance of a plant to a variety 546 

of unfavourable conditions.  547 

 548 

Cross-talk also occurs when UV-B-mediated signalling cascades interact with signalling pathways 549 

induced by biotic variables, e.g., bacteria. This cross-talk can sometimes lead to a shift in other plant 550 
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defences at the expense of the UV-induction of protective mechanisms, such as the accumulation of 551 

flavonoids.151 In this case, the UV-B-induced genes of the flavonoid pathway are suppressed by the 552 

bacterial elicitor, flg22 (a peptide), which in turn drives the immune response against the 553 

bacterium152 by stimulating pathogen-protective compounds called phytoalexins. In other cases, UV-554 

B radiation can increase plant resistance against pathogens and pests, by increasing the 555 

accumulation of metabolites involved in plant defence against multiple stress factors (reviewed in 556 

Ballaré153). Other examples of cross-talk where UV-B radiation is implicated in plant stress 557 

responses include changes in some plant hormones, such as auxin, cytokinin, gibberellic acid, 558 

brassinosteroids and jasmonic acid.154-156  UV-cross-talk involving the hormone abscisic acid can 559 

result in increased plant tolerance to water stress, extreme temperatures, or salinity. Some of these 560 

aspects are evaluated in the next section. 561 

 562 

The interactions between UV-signalling and other signalling pathways imply that subtle molecular 563 

effects of UV-B radiation may potentially extend to many aspects of growth and development, with 564 

implications for ecosystems including agricultural systems under conditions of current and future 565 

climate change. 566 

 567 

3.3.4  Plant and ecosystem response to potential interactive effects of UV-B radiation and 568 

climate change factors  569 

 570 

Exposure to changing environmental conditions can directly affect plant growth and may also drive 571 

changes in phenology (section 3.7.3) and shifts in the distribution ranges of species (section 3.7.1). 572 

Here we will specifically explore interactions between UV-B radiation and certain key abiotic climate 573 

variables. In comparison to studies on interactive effects of UV-B radiation and drought and/or 574 

temperature, far less is known about interactive effects of UV-B radiation and elevated CO2 on 575 

plants. 576 

 577 

UV radiation and drought. The potential for plant responses to UV radiation and drought to be 578 

complementary has been the subject of research because seasonal droughts are usually coincident 579 

with, or follow, periods of prolonged sunny weather, implying high exposure to UV radiation. An 580 

example of such synergies comes from an experiment with silver birch (Betula pendula L.) seedlings 581 

subjected to treatments combining solar UV-B radiation and water stress outdoors in southern 582 

Finland. In this investigation, leaf and whole plant water potential responded to the combination of 583 

ambient UV-B radiation, conferring resistance to drought, which was visible through reduced wilting 584 

and lower mortality beyond that of UV-B radiation or water stress alone.41 Plant responses to the 585 

combinations of UV-B radiation and drought should be considered when selecting  agricultural 586 

crops, as plant responses to these factors can have consequences for crop quality.157  587 
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 588 

Additional research provides evidence for synergies in response to drought and UV-B radiation.158, 589 

159 However, both the mechanisms and outcome of response to combinations of water stress and 590 

UV-B radiation are often inconsistent. To some extent, the seemingly contradictory results reflect 591 

differences among studies in the timing and levels of drought and UV-B radiation applied to the 592 

plants. Sequential exposure to two environmental variables can allow the first to elicit a response 593 

that primes the plant for the second, resulting in cross-protection. In contrast, simultaneous 594 

exposure may weaken plant defences.160 In this context, it should be noted that few, if any existing 595 

studies have adequately reproduced natural combinations of exposure to UV-B radiation and 596 

drought as well as their relative timing, and therefore results from these studies need to be carefully 597 

evaluated for their relevance (see Fig. 4).  598 

 599 

Reduced cloudiness is expected to lead to increases in UV-B radiation and future seasonal droughts 600 

in Mediterranean ecosystems.161, 162 A study, where solar UV radiation was filtered in a 601 

Mediterranean ecosystem under normal and reduced rainfall, showed plants to be tolerant of UV-B 602 

radiation independently of the rainfall regime and seasonal climatic conditions. In this case, the 603 

species tested were evergreen Mediterranean shrubs with tough thick leaves high in phenolics.163 604 

Thus, life history, together with exposure protocols, choice of species and dose-dependency will all 605 

determine the outcome of the interactive effects of drought and UV-B radiation.  606 

 607 

Perhaps the most important complication in attempting to understand the interactive effects of 608 

drought and UV-B radiation, is that both variables alone induce complex responses, and any 609 

simultaneous exposure to both variables will result in an amplification of that complexity. Cross-610 

protection is multifaceted and likely to involve decreases in leaf area and possibly stomatal gas 611 

exchange, increases in leaf and cuticle thickness, as well as enhanced concentrations of 612 

antioxidants, flavonoids and potentially a range of other secondary metabolites such as proline and 613 

volatile terpenes.164 Osmotic stress-induced upregulation of the UVR8 transcript and protein levels 614 

might also contribute to interactive effects of drought and UV-B radiation.165 This complexity can 615 

also be observed in a study where, only in the presence of ambient UV radiation did drought 616 

increase canopy temperature and result in decreased accumulation of above-ground biomass in a 617 

grassland ecosystem..166 Thus, interactive effects of drought and UV-B radiation need to be 618 

considered in the context of prevailing and future conditions, particularly warming temperatures.  619 

 620 

UV radiation and temperature. On balance, rising average air temperatures associated with 621 

climate change are expected to affect the growth and survival of many plant and animal species, 622 

and perturb many ecosystem processes. In addition to changes in average temperatures, extremes 623 

in temperature have increased in frequency and magnitude,167 which can have severe local and 624 
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regional consequences. Changes in seasonal weather patterns and sky conditions are bringing 625 

periods of high temperatures, which are often accompanied by high solar radiation including UV-B 626 

radiation to many regions. However, extreme cold temperatures can also be accompanied by high 627 

UV-B radiation, particularly at high elevations and latitudes in springtime where UV-B radiation 628 

reflected by the snowpack168 often supplements the irradiance received by organisms exposed to 629 

the sun.169 The combinations of UV-B radiation and temperature can affect plant acclimation 630 

processes (see below), which are important in terms of understanding the response of ecosystems 631 

to climate change, how future agroecosystems will be managed, as well as how vegetation itself 632 

affects air quality and climate.102  633 

 634 

Exposure to high UV-B radiation and elevated temperatures elicits a variety of chemical responses 635 

in plants. For example, UV-B radiation can induce production of volatile hydrocarbons, such as the 636 

isoprenes,170 and this has been associated with heat tolerance mediated by membrane stabilisation. 637 

Typically, isoprene emission occurs in woody plants, contributing to air pollution and global carbon. 638 

Global annual emissions of isoprene are estimated to be equivalent to 300 Tg carbon yr−1 (=300 x 639 

1012 g C yr-1) with changes depending on climate change and land-use.171 Isoprenes, as well as 640 

other plant-produced biogenic volatile organic compounds such as monoterpenes, have an 641 

important effect on atmospheric composition, and ultimately climate. Exposure to elevated 642 

temperature combined with UV-B radiation can cause more isoprenes to be emitted than under 643 

elevated temperature alone, as was found for European aspen.172 UV-induced isoprene production 644 

is synergistically enhanced in response to higher temperatures, and this has significant implications 645 

for both plant thermotolerance and plant-herbivore interactions.173  646 

 647 

An outdoor field experiment in Finland found that UV-B radiation enhanced accumulation of 648 

condensed tannins in aspen, but this increase was negated by 2°C above ambient temperature 649 

treatment in the spring and summer.174 This process may directly impinge on herbivory, given that 650 

tannins act as defence compounds that inhibit digestion (also see section 3.6). In willow, the same 651 

combination of UV-B radiation and temperature produced a similar pattern of effects on the 652 

accumulation of phenolic compounds.175 653 

 654 

It is well known that both the total content and composition of flavonoid compounds in plant leaves 655 

can be modified by a number of environmental factors including UV radiation, and high and low 656 

temperatures.176-180  For example, kale (Brassica oleracea var. sabellica) exposed to a low 657 

temperature of 5˚C accumulates almost twice as much of the polyphenol, kaempferol-3-O-658 

sophoroside-7-O-glucoside, as plants at 15˚C. Such stimulatory effects may also completely mask 659 

UV-B-induced accumulation of flavonoids, as was seen in an outdoor study where plants under low 660 

temperatures accumulated high concentrations of UV-screening pigments, and this response was 661 
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unaffected by the UV-exposure regime.180 However, the profile (or composition) of the polyphenols 662 

is also modified, whereby kale plants at 15˚C accumulate ca 25% more kaempferol-3-O-caffeoyl-663 

sophoroside-7-O-glucoside but 30% less kaempferol-3-O-sophoroside-7-O-glucoside.178 At present, 664 

the function of these changes in phenolic profiles are not clear, although some of the compositional 665 

changes result in compounds with higher antioxidant activity. Since flavonoids are considered 666 

desirable by the food and nutrition industries (see also sections 3.5.2 and 3.5.3), an understanding 667 

is needed of changing phenolic profiles under different environmental conditions. 668 

 669 

3.4 Perception of and response to UV radiation in animals  670 

 671 

UV-B radiation has the potential to damage tissues in animals, but many animals, like humans,181 672 

have mechanisms that protect against the potentially deleterious effects of UV-B radiation. 673 

Nonetheless, there are reported cases of UV-induced injury in animals (see section 3.4.1; and 674 

Bornman, et al. 8). Apart from UV damage, many animals perceive UV radiation and can use these 675 

cues to lessen exposure to intense UV radiation. Also, some animals use UV radiation as a source 676 

of information for mate selection, foraging, predator avoidance, and other behaviours.  Traditionally, 677 

an anthropocentric or human-centric perspective has resulted in a narrow definition of “visible light,” 678 

appropriate only for human vision. However, it has long been known that many species have vision 679 

that encompasses different wavelengths of the spectrum, sometimes including the UV region. 680 

Animals known to have UV vision include species of insects, amphibians, reptiles, birds and 681 

mammals.21 While advances have been made in understanding the mechanism of UV vision in 682 

animals, it is unclear how changes in the UV environment, as a consequence of changes in 683 

stratospheric ozone and climate change, might alter the UV sensory responses of these organisms 684 

(section 3.4.2).  685 

 686 

3.4.1  UV radiation damage to animals 687 

 688 

Ultraviolet-B radiation is known to be potentially deleterious to a wide variety of terrestrial animals. 689 

Under controlled conditions, it has been shown that UV-A and UV-B radiation can damage the skin 690 

and eyes of various amphibian species (e.g., newts, frogs, bullfrogs, treefrogs), with the potential to 691 

negatively affect their foraging ability and fitness (reviewed by Blaustein and Kats 182, Bancroft, et al. 692 

183). For example, in South America there are indications that land-use and climate change may lead 693 

to increased exposure to UV radiation in the habitats of frog species, e.g., Hypsiboas curupi and 694 

Hypsiboas pulchellus.184-186 However, while UV radiation may impair vision and cause DNA damage 695 

to frogs, it is not considered at present to be among the most important environmental factors 696 

contributing to the reduced fitness and abundance of several frog species in this region.187  697 

 698 
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3.4.2 UV vision in animals and ecological implications in changing environments 699 

 700 

The eyes of insects and mites have specific rhodopsin photoreceptors that perceive UV radiation,188 701 

which may be important in avoiding excessive UV radiation.20 In other insects, such as damselflies, 702 

UV-reflecting wings appear to play a direct role in mate recognition by creating visual signals of sex 703 

and age.189  704 

 705 

Birds have UV-A vision and photoreceptor UVS-cones (sensitive to wavelengths longer than 355 706 

nm), which may assist in foraging and mate choice.21 For instance, woodpeckers use visual cues in 707 

the UV-A region to forage on decaying wood, which differs in UV-absorption according to the extent 708 

of its fungal colonisation. Changes in the amount of UV radiation in the environment (e.g., due to 709 

changing weather patterns or forest cover) may affect visibility of these fungi and hence alter the 710 

behaviour of woodpeckers foraging for them. Changes in mutualisms of this sort have broad 711 

consequences for ecosystem function.190 In other birds, UV-absorbing melanin in their feathers has 712 

been linked with sexual selection but also UV-protection and thermoregulation, and UV protection 713 

over wide geographic gradients.191 Many bird species display strong sexual differentiation 714 

(dichromatism), creating specific patterns through both melanin accumulation and UV-reflectance of 715 

feathers.192 UV patterning193, including UV-absorbance and reflectance, are not limited to feathers 716 

and their putative role in mate selection, but are also used in a much broader range of visual 717 

recognition processes. For example, UV-reflection of bird eggs attracts aerial predators.193, 194  718 

Conversely, UV-absorbing melanin in egg shells may protect eggs from UV-B radiation directly and 719 

reduce their visibility to predators, although the dark pigmented colour may cause overheating in 720 

some environments. Across a variety of species, including a palmate newt (Lissotriton helveticus), 721 

the expression of SWS1 opsin, a UV-photoreceptor in the eyes of animals, is UV-dependent195, 196; 722 

furthermore, plasticity in expression of the photoreceptor depends on the habitat of population 723 

origin. This suggests that changes in the amount of UV radiation in the environment during the 724 

development of these newts could affect visual sensitivity in the UV region.197, 198  725 

 726 

The role of UV-B radiation has been relatively well-studied in the case of lizards. Lizards kept in 727 

captivity are routinely exposed to low background levels of UV-B radiation to enhance vitamin D 728 

synthesis and their overall health.199 UV-reflectance of lateral blue spots in male lizards has a clear 729 

role in male-male interactions, including the processes of mutual assessment.200  If two males have 730 

an equal signal from their UV-reflecting throat patch, their behaviour towards each other is more 731 

aggressive.201  732 

 733 

At present, evidence for an ecological role of UV vision in animals is steadily increasing, but detailed 734 

information of the functional role of UV-absorbing or reflecting tissues often remains a matter of 735 
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speculation. There is also a lack of information on the dose-response of UV-visual recognition 736 

processes. Thus, it is not known how changes in stratospheric ozone and climate change-driven 737 

alterations in exposures to UV radiation will influence visual cues in animals or whether altitudinal or 738 

latitudinal gradients in UV radiation might affect migration or range shifts in these animals. 739 

Nevertheless, understanding of UV vision in animals is of direct relevance in the context of food 740 

security and specifically plant-pest and plant-pollinator interactions.  741 

 742 

3.5 Food security and agricultural ecosystems  743 

 744 

At mid-latitudes and the tropics, there are indications of recovery of ozone in the upper stratosphere. 745 

However, the total ozone column, which is the metric of greatest relevance for terrestrial 746 

ecosystems, has not yet started to recover. Because of increasing concentrations of greenhouse 747 

gases, the total ozone column over mid-latitudes will be larger by the second half of the 21st century 748 

compared to the time prior to the release of the ozone depleting substances into the atmosphere. 749 

Changes in total ozone over the tropics will be relatively small and will depend on emission 750 

scenarios and climate change-related phenomena.4, 39 Nevertheless, the relatively high levels of UV 751 

radiation that occur in the tropics and at high elevations, together with ozone-independent, location-752 

specific factors such as decreasing concentrations of aerosols, less cloud cover and changes in 753 

land-use,4 mean that crops may still be subject to significant changes in exposure to UV radiation. 754 

Some areas will also receive less UV radiation where pollution levels continue to be high, including 755 

increasing frequencies of smoke from forest fires.65 These levels of complexity can affect 756 

agroecosystems with respect to growth, development and survival. It is in this context that crop plant 757 

and agricultural responses to UV radiation and climate change will be assessed here. Particular 758 

attention is given to plant defence mechanisms, implications of genotype, and crop quality mediated 759 

through changes in plant biochemistry.  760 

 761 

3.5.1  Linking UV radiation and climate effects to food security 762 

 763 

The interactive effects of UV radiation, climate change, and changes in land-use and management 764 

practices, are likely to have consequences for agriculture and food security. For example, these 765 

factors can modify crop yield and quality, pest and disease resistance and overall vulnerability or 766 

adaptation to the environmental changes (Fig. 5). From the human intervention perspective, clearing 767 

of land for increased agricultural production to cope with growing populations, leads not only to 768 

increased exposure of agroecosystems to UV radiation, but also to poorer quality soils and soil 769 

erosion. In areas receiving increased UV radiation, plants may more readily express acclimative 770 

mechanisms against disease, herbivores, and other environmental stresses. Farmers and growers 771 
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are also becoming increasingly interested in the advantage of UV-induced stimulation of desirable 772 

secondary metabolites, such as the polyphenolics, in order to achieve improved crop response to 773 

stress conditions, including drought, pests and diseases.45, 202-206   774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

3.5.2   Effect of genotype and environment on crop yield and quality 796 

 797 

The degree of plant acclimation to stress conditions is often dependent on cultivar or genotype,177, 798 

207, 208 as well as location and growth conditions.177, 209-211 Environmental conditions and genotype 799 

have been shown to be key factors that determine crop plant response and yield, and are indicative 800 

of the general phenotypic plasticity of plants (changes in morphological, physiological and metabolic 801 

attributes). The roles of both the environment and genotype are especially important when 802 

assessing current and future plant acclimation to stressful environments, including locations 803 

exposed to high levels of UV-B radiation, low rainfall and extremes of temperature (e.g., Andean 804 

Altiplano and Tibetan Plateaux). Thus, research investigating the ‘environment x genotype’ 805 

response of crop plants is important for selection of genotypes suitable to particular environments 806 

and levels of UV-B radiation. The composition, concentration and antioxidant activity of 807 

polyphenolics change according to plant exposure to elevated UV-B radiation and vary strongly with 808 

Fig. 5   Examples of current and evolving drivers of change on food security, showing the effects of 
linkages between changes in stratospheric ozone and climate.   
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plant genotype.177, 212 The selection of responsive genotypes or cultivars can be used to improve the 809 

nutritional status of a crop, because of the potential benefits of antioxidants (conferring free radical 810 

scavenging capability) and other plant components.213 These benefits may include the potential for 811 

reducing the risk of health-related diseases such as cardiovascular disease and Type 2 diabetes.214-812 

216 813 

 814 

3.5.3  Importance of secondary metabolites in agro-ecosystems  815 

 816 

Ultraviolet-B radiation regulates the accumulation of numerous secondary metabolites, including 817 

flavonoids and other compounds derived from the phenylpropanoid pathway. These metabolites are 818 

important for plant growth and development, as antioxidants, UV-screening pigments, herbivore and 819 

pathogen deterrents, as well as serving as pollinator attractants and improving nutritional quality,217, 820 

218 flavour, visual appeal and desirability of many foods.8,45,219 and references therein,220-224 However, 821 

exposure to UV-B radiation may cause both desirable and less desirable changes in nutritive 822 

properties. For example, UV-B radiation can decrease protein content in some crops or increase 823 

essential fatty acids not synthesised by humans and other animals (i.e., polyunsaturated linoleic and 824 

linolenic acids), while decreasing other beneficial fatty acids, such as the monounsaturated oleic 825 

acid, as was found in a study on soybean seeds.225  826 

 827 

The UV-B-induced regulation of phenolic compounds can occur under low levels of UV-B radiation 828 

in many plant species, including in a range of economically important crops in which these 829 

metabolites contribute to food quality and/or value. For instance, UV-B radiation mediates increased 830 

accumulation of the potentially nutritionally-valuable flavonoid compounds, quercetin and 831 

kaempferol, in grape berry skins.226 The phenolic composition of grape berry skins can also change 832 

along latitudinal gradients. This was shown in a study where these flavonoid compounds were 833 

favoured in the south compared with the north (from 36.7°N Jerez, Spain to 50°N Geisenheim, 834 

Germany), a change which positively correlated with overall solar radiation across multiple 835 

European sites.227 This finding suggests that field manipulation of the exposure of grapes to UV-B 836 

radiation and other fruit crops could be exploited to enhance desirable characteristics. Such field 837 

manipulations are already in development.45, 228-230    838 

 839 

Although UV-B radiation can affect food quality, this does not only involve phenolics, but a much 840 

broader range of metabolite classes including UV-regulated terpenoids, aromatic esters and 841 

others.231 In peaches exposed to UV-B radiation, levels of the flavour-related monoterpene, linalool, 842 

decrease, while concentrations of sesquiterpene (E,E)-α-farnesene increase.170  Volatile isoprenes 843 

have also been associated with thermotolerance (see section 3.3.4). Specific glucosinolate 844 

compounds may also accumulate in plants exposed to UV-B radiation,232 and may lead to the 845 
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production of certain defence compounds against herbivory, creating another link with observations 846 

of reduced herbivory in plants exposed to UV-B radiation (see section 3.6.2), although the degree of 847 

resistance to herbivory under UV-B radiation may also be dependent on the type of herbivore.(173; 848 

and section 3.5.4)   849 

  850 

 851 

Decreases in UV-B radiation in southern South America and Australasia as the stratospheric ozone 852 

layer recovers4, may have negative effects for plants and agricultural crops in some cases. For 853 

example, as noted above, since UV radiation generally enhances production of plant secondary 854 

metabolites that deter many plant herbivores173, a decreased induction of these polyphenolics may 855 

result in increased herbivory and plant disease. It follows that from an environmental and food safety 856 

perspective, reduced cross-protection against herbivores, resulting from decreased UV-induced 857 

accumulation of phenolic compounds in crop plants under projected lower future UV-B radiation 858 

exposures, may result in increased pesticide use.38 There is also evidence that UV radiation can 859 

promote the breakdown of certain pesticides (e.g., fenitrothion233, triazophos234, 235). 860 

 861 

3.5.4  Potential effect of UV radiation on the visibility of crops to insect pests and pollinators 862 

 863 

As well as being herbivores, insect pests are the main carriers of plant viruses, which are a major 864 

cause of plant disease and restrict yields through decreased plant vigour.236 In agricultural and 865 

horticultural environments, reductions in UV radiation, whether through climate change (e.g., 866 

cloudiness, aerosols, forest fires) or deliberate intervention (e.g., the use of UV-attenuating screens, 867 

plastic films or nets), can reduce visibility of crops for some insect pests. However, certain pests, 868 

such as whitefly, aphids and thrips may be more damaging to crops in environments with UV 869 

radiation compared with environments where UV radiation has been attenuated or reflected,236, 237, 870 

although exceptions have been reported.7, 238  On the other hand, some beneficial insects such as 871 

pollinators, are more effective in environments containing UV radiation, allowing them to use floral 872 

cues such as UV-absorbing/reflecting nectar guides (reviewed by Llorens, et al. 239). The floral 873 

patterns produced by nectar guides can be species-specific as found in the genus Potentilla where 874 

flowers of species from different regions of its distribution appear similar in the visible spectrum but 875 

differ in their UV nectar guides, presumably as an adaptation to attract different pollinators (Fig. 6).  876 

 877 
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 878 

 879 

 880 

 881 

 882 

 883 

 884 

These effects of UV radiation on insects have implications for crop yields and the use of 885 

agrochemicals to control pests. However, in controlled environments growers must balance the 886 

benefits of UV radiation for plants providing higher food quality240, 241 against any potential costs in 887 

terms of the visibility of the plants to pests such as fruit flies (Drosophila suzukii235) thrips and 888 

aphids.206, 242 889 

 890 

Thus, the interplay of changing levels of UV-B radiation and increased frequency of extreme 891 

weather events is likely to add to the current and projected vulnerability of agriculture with 892 

consequences for food security (Fig. 5). The key climate drivers together with UV-B radiation that 893 

modify plant development and yield are usually temperature and water availability.243-245 894 

Fig. 6   The three Potentilla species with different origins growing together in Helsinki Finland:  Potentilla 
atrosanguinea var. argyrophylla (Himalayan cinquefoil) originates at high elevations; Potentilla megalanthea 
is from Japan; and Potentilla aurea is European. While looking similar in the visible spectrum their flowers 
have very different UV-absorbing and reflecting nectar guides that are visible to insect pollinators. UV 
photographs were taken with a filter blocking visible radiation but transmitting in the UV-A as far as 325 nm. 
Photographs by T.M. Robson and P.J. Aphalo. 
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Consequently, the capacity of plant acclimative mechanisms to adjust to the rapidly changing 895 

conditions will become increasingly important.  896 

 897 

3.6  Ecosystem functioning 898 

 899 

Terrestrial ecosystems can be modified in several ways by the interactive effects of ozone depletion, 900 

UV radiation and climate change. Below, we consider recent findings that address the impacts of 901 

these interactions between plants (plant-plant), plant-herbivore, pest-pathogen, and litter 902 

decomposition. Some of these processes, particularly litter decomposition, are important in 903 

biogeochemical cycles. The consequences of alterations in these ecosystem processes for nutrient 904 

cycling and climate change are addressed more fully by Sulzberger, et al. 51. 905 

 906 

3.6.1  Plant-plant interactions 907 

 908 

Plants interact with one another in positive (facilitation) and negative (competition) ways and these 909 

interactions can ultimately change the composition of plant communities and their development 910 

following disturbance (succession). Competition between crops and weeds is also an important 911 

process affecting agricultural productivity and can require considerable labour and economic 912 

investment in weed control. Past studies have shown that enhanced UV-B radiation can shift the 913 

balance of competition between crop and weed species, and that these changes are linked to 914 

differential effects of UV-B radiation on plant morphology, which then alters competition for light 915 

within plant canopies (reviewed in Barnes, et al. 48).  Similarly, exposure to ambient UV-B radiation 916 

has been shown to change species composition in alpine plant communities, and these changes 917 

were also associated with differential effects of UV-B radiation on plant height and leaf area.246  918 

Modelling studies confirm that these differential effects of UV-B radiation on plant growth and 919 

morphology can lead to shifts in competitive relationships among species.247 At least some 920 

modifications to shoot morphology are likely mediated by the UV-B photoreceptor, UVR8.22, 141 921 

Plants appear to use UVR8, along with other photoreceptor proteins (e.g., phytochromes), to sense 922 

changes in the light environment caused by the proximity of other plants.248, 249 Low light conditions 923 

(shade) inactivate UVR8, which then results in plant resources being redirected from defence to 924 

rapid growth.249 However, while this strategy helps the plant to compete for light with its neighbours, 925 

it also makes it more vulnerable to the attack of pathogens and pests (reviewed in Ballaré 153, Ballaré 926 

and Pierik 250; see section 3.6.2 below).  927 

 928 

3.6.2  Herbivory and plant-pathogen interactions  929 

 930 
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Plant responses to UV-B radiation have consequences for organisms at various trophic levels or 931 

positions along the ecological food chain from producer to consumer. Solar UV-B radiation-induced 932 

reductions in herbivory have been well-documented in the field, and when this occurs, may be 933 

proportionally much larger than the effects of UV-B radiation on inhibiting plant growth (reviewed in 934 

Ballaré, et al. 7). However, there are also instances where herbivory increases with UV-B radiation 935 

(see section 3.5.4). Herbivorous insects can perceive solar UV-B radiation,251 although many of the 936 

inhibitory effects of UV-B radiation on insect herbivory and pathogens are thought to be indirect (i.e., 937 

mediated by changes in host-plant chemistry; reviewed in Ballaré153). More limited evidence 938 

indicates that solar UV-B radiation can reduce infection by some plant pathogens. This increased 939 

pathogen resistance was shown in experiments where plants were pretreated with different amounts 940 

of UV-B radiation before inoculation with a pathogen.252  941 

 942 

Shade-intolerant plants often down-regulate or decrease their defences against pathogens and 943 

pests in those leaves that are exposed to shade or shade signals (such as a low red to far-red ratio, 944 

R:FR),253-256 presumably allowing for resources to be redirected into growth responses to avoid 945 

shade. According to this interpretation, plants growing in patchy canopies use solar UV-B radiation 946 

as a “gap” signal to adaptively regulate their growth and defence phenotypes. The interplay between 947 

shade signals (such as low R:FR perceived by phytochromes) and gap signals (such as high levels 948 

of UV-B radiation) may optimise the allocation of resources between growth and defence (see 949 

Demkura, et al. 257 and reviews of Ballaré 153, and Mazza and Ballaré 249). 950 

 951 

Some of the changes in plant chemistry elicited by natural levels of solar UV-B radiation involve 952 

compounds known to be important for plant interactions with other organisms (reviewed in Escobar-953 

Bravo, et al. 173, and Williamson, et al. 258). Known defence-related compounds regulated by UV-B 954 

radiation include phenylpropanoid compounds,259 isoflavonoids,260, 261 conjugated polyamines,257 955 

cuticular waxes,262 proteinase inhibitors,263, 264 and jasmonates,265 among others. These effects of 956 

solar UV-B radiation on defensive chemistry can be considered as specific, presumably mediated by 957 

specific UV-B photoreceptors. However, the role of UVR8 in mediating effects of UV-B radiation on 958 

secondary compounds has so far been demonstrated only for flavonoids and other soluble phenolic 959 

compounds.252, 266   960 

 961 

In spite of the effects of UV-B radiation on plant defence against several herbivores and certain 962 

pathogens, the connections between UV-B radiation and the key hormonal pathways that regulate 963 

plant defence (i.e., the salicylic acid (SA) and jasmonic acid (JA) pathways), require further 964 

research. Early reports of effects of UV radiation on SA and expression of SA marker genes should 965 

be interpreted cautiously, as many of those experiments used doses or wavelengths of UV radiation 966 

not present in the terrestrial environment (such as UV-C, <280 nm), or unbalanced UV-B radiation 967 
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treatments (high UV-B radiation delivered against low PAR; see Fig. 4). Similar limitations apply to 968 

early studies of effects of UV radiation on JA activity (reviewed in Ballaré 153). 969 

 970 

Some well-characterised effects of UV-B radiation on plant defence come from experiments that 971 

tested plant resistance to herbivorous insects, and necrotrophic pathogens (pathogens that kill their 972 

host cells). This has led to follow-up work focusing on interactions with JA signaling. A few studies 973 

have shown that genetic perturbations impairing JA synthesis can effectively cancel out some anti-974 

herbivore effects of solar UV-B radiation, leading to the suggestion that JA signaling is required for 975 

those effects of solar UV-B radiation that increase plant resistance to herbivory.257, 267, 268 However, 976 

UV-B radiation can also affect plant defence against herbivores and pathogens via mechanisms that 977 

are not mediated by JA.252 The positive effects of UV-B radiation on JA signaling have been 978 

attributed to increased JA biosynthesis265 or sensitivity,257 but the molecular mechanisms linking 979 

perception of UV-B radiation and JA signaling remain to be elucidated. 980 

 981 

3.6.3  Litter decomposition 982 

 983 

The decomposition of dead plant material (i.e., litter) drives the rate at which nutrients are recycled 984 

and is a strong determinant of carbon storage and soil fertility in terrestrial ecosystems. In general, 985 

the overall rate of decomposition is dependent on the temperature and moisture availability, which 986 

affects the activity of decomposing micro-organisms (bacteria and fungi), as well as the type of plant 987 

litter inputs (e.g., leaf vs woody tissue; evergreen vs deciduous leaves).  Substantial evidence now 988 

indicates that solar radiation (UV and short wavelength visible radiation) can also drive litter 989 

decomposition via several mechanisms, with the net effect of these processes either accelerating or 990 

retarding decomposition, depending on litter quality and environmental conditions. Climate change 991 

will likely alter the importance that UV radiation plays in decomposition and regulating carbon 992 

cycling in a number of terrestrial ecosystems.  993 

 994 

Solar radiation in the UV and short-wavelength visible regions (blue and green light) can directly 995 

break down the biochemical components of plant tissue, including relatively stable compounds, such 996 

as lignin, which absorb UV radiation, through a process called photochemical mineralisation (Fig. 7; 997 

46, 269, 270.  These light-driven modifications in litter chemistry can, in turn, increase the ease with 998 

which microbes can decompose litter.52, 54 This latter process is often called photo-facilitation or 999 

photopriming. However, solar UV radiation, especially shorter wavelength UV-B radiation, may also 1000 

inhibit the activity of microbes and change the composition of the microbial community, which then 1001 

works in opposition to photo-facilitation.270, 271 The net effect of these mechanisms is modified by 1002 
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environmental conditions (e.g., moisture availability) and the spectral quality of sunlight, which 1003 

varies depending on ozone depletion, cloud cover, pollution, and plant canopy cover.   1004 

 1005 

Recent studies have shown that photodegradation (photochemical mineralisation plus photo-1006 

facilitation) occurs in a variety of environments,54 but the mechanisms and quantitative importance 1007 

of this process in driving the overall decomposition of litter remains unclear in many cases. Since 1008 

UV radiation can also inhibit microbial activity, a shift in spectral composition (i.e., UV-B:PAR ratios) 1009 

would likely change the balance between photo-facilitation and microbial inhibition. This may be one 1010 

reason why some experimental and modelling studies fail to detect a relationship between 1011 

photodegradation and lignin content of litter.55, 271 Long-term studies indicate that increased rates of 1012 

decomposition due to photodegradation become evident only in later stages of decomposition, as 1013 

was found after 4 months for savanna litter in a controlled experiment,272 and after 12 months in a 1014 

semi-arid ecosystem.273 This suggests that the availability of substrates to microbes is only 1015 

noticeably increased by photo-facilitation once readily-available substrates in fresh litter have been 1016 

depleted. A diel time period (i.e., 24 h) appears to allow microbes to benefit from daytime photo-1017 

facilitation, possibly recovering during darkness, as well as utilising the extra humidity at night.272, 274   1018 

 1019 

 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 
 1032 
Fig. 7  Conceptual model of the effects of solar radiation on litter degradation and microbial decomposition in 1033 
terrestrial ecosystems. UV radiation and blue-green light cause the direct breakdown of lignin, cellulose and 1034 
other plant cell wall components (CWCs), forming non-volatile and volatile compounds, such as carbon dioxide 1035 
(CO2), the latter being released to the atmosphere. This abiotic process is often referred to as 1036 
photomineralisation. The changes in litter substrate resulting from photodegradation enhance the microbial 1037 
breakdown of litter through a process called photo-facilitation. UV photons in sunlight may also directly inhibit 1038 
the activity of decomposing microbes. Figure adapted from Ballaré and Austin 46.   1039 

 1040 

 1041 
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Field studies continue to show that photodegradation contributes most to the acceleration of litter 1042 

decomposition in hyper-arid (annual precipitation <150 mm), arid, and semi-arid eco-systems.275, 276 1043 

In two contrasting locations on the Mediterranean steppe, UV radiation increased the decomposition 1044 

rate of grass and shrub litter in a continental climate, but not in a high rainfall maritime climate.274, 277 1045 

These findings suggest that in drylands photochemical mineralisation dominates under the driest 1046 

conditions, whereas photo-facilitation tends to dominate under slightly moister conditions. The 1047 

acceleration of decomposition attributable to photo-facilitation can even be detected in sub-tropical 1048 

and temperate environments in both litter and coarse woody debris.278 However, when moisture 1049 

levels are favourable enough to support high microbial activity, UV radiation can have negative 1050 

effects on decomposition, presumably because of direct inhibitory effects of solar radiation on the 1051 

microbial populations.279  1052 

 1053 

The majority of field photodegradation studies to date have been conducted in ecosystems 1054 

occurring in dry (arid and semi-arid) rather than moist (mesic) climates.270  However, the interaction 1055 

of moisture and photodegradation has recently been garnering attention.274, 276, 280  In moist, forested 1056 

ecosystems, the amount of solar radiation reaching litter through the canopy can alter 1057 

decomposition rates.281 Different types and densities of canopy affect both the amount of radiation 1058 

reaching ground level and its spectral composition.282  This implies that shifts in vegetation type 1059 

occurring because of changes in land-use and climate are likely to affect decomposition rates 1060 

through photodegradation interacting with concomitant changes in temperature and moisture.283-285  1061 

Typically, the encroachment of woody plants leading to conversion of grasslands to shrublands 1062 

driven by climate change and/or land abandonment, will alter litter composition and chemistry. This 1063 

will shift litter C:N ratios, affecting not only microbial activity but also photo-facilitation of litter and 1064 

direct photodegradation.283, 286, 287 In addition to shifts in vegetation type, the exposure of litter to 1065 

solar radiation will be determined by plant form and functional strategy. In habitats where standing 1066 

dead litter remains on the plant, this will present a greater surface area exposed to sunlight than 1067 

situations where litter falls to the ground becoming easily mixed with soil which then reduces 1068 

photodegradation.273, 276, 288-290  1069 

 1070 

The structure and biochemical composition of litter produced by different plant forms plays a 1071 

significant role in determining the underlying rate of decomposition. Hence litter with high lignin 1072 

content may decompose slowly and be most affected by direct photochemical degradation.68, 291 1073 

However, variations in photodegradation among species independently of their lignin content,269 1074 

suggest that other litter traits are also important (see Bais, et al. 39 for additional discussion). The UV 1075 

radiation received by plants during growth can affect leaf morphology and the amount and 1076 

composition of phenolic compounds that accumulate in the leaf epidermis,8 as well as affecting the 1077 

rate at which leaves will break down. These traits may continue to modify leaf optical properties and 1078 
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hence the extent to which solar radiation penetrates the leaf during the early stages of 1079 

decomposition.292 Likewise, the depth and density of litter, its physical movement (e.g., by wind, 1080 

rain) and the degree to which litter mixes with soil, will determine the surface area exposed to 1081 

sunlight, factors that are likely to be highly important for photodegradation.269, 270 1082 

 1083 

The insight that recent research brings into the role of both UV radiation and short-wavelength 1084 

visible light in photodegradation in humid temperate as well as arid biomes,56, 293 means that 1085 

photodegradation has the potential to modify ecosystem processes (e.g., carbon cycling) across 1086 

many biomes. This broader relevance compared with our past knowledge of photodegradation 1087 

extends its scope to affect the biogeochemistry of terrestrial ecosystems under climate change and 1088 

with future stratospheric ozone recovery.51  1089 

 1090 

3.7  Climate change is altering the exposure of organisms to UV radiation 1091 

 1092 

Previous assessments have focused on the effects of ozone-driven changes in UV-B radiation.8 1093 

However, climate change is increasingly exerting a stronger control on UV-B and UV-A radiation 1094 

received by organisms as a result of changing cloud cover, vegetative cover, shifting of geographic 1095 

ranges of species, changing of seasonal timing of growth and reproduction, and migration. Some of 1096 

the potential implications of these climate-driven changes in exposure to UV radiation for terrestrial 1097 

organisms and ecosystems are addressed below. 1098 

 1099 

3.7.1  Species migration, UV radiation and climate change 1100 

 1101 

Plants and animals are shifting their ranges to higher latitudes and elevations in response to climate 1102 

change and additional changes in distributions are expected to occur in the future.1, 2, 294  However, 1103 

species vary in their potential rates of migration. For plants, short-lived, herbaceous species 1104 

(grasses and forbs) generally shift geographic ranges more rapidly than long-lived, woody species 1105 

(trees and shrubs).1 Non-native (i.e., introduced) species of plants also appear to exhibit higher 1106 

migration potentials than native (i.e., indigenous) species.294, 295 These climate change-driven shifts 1107 

in geographic ranges will likely alter the exposure of plants to UV-B radiation, since UV-B 1108 

irradiances generally increase with increasing elevation and decrease with increasing latitude16, 17, 1109 

161. However, these changes in plant exposure to UV-B radiation will not occur in isolation of other 1110 

environmental factors, since a number of abiotic (e.g., temperature and moisture) and biotic (e.g., 1111 

associated pests, pathogens and competitors) factors change with the migration of organisms to 1112 

higher latitude and elevation.1, 296  Consequently, these shifts in geographical range will likely 1113 

expose organisms to unique combinations of UV radiation and co-occurring environmental factors. 1114 

To what extent UV radiation plays a role in influencing migration patterns and how plants and 1115 
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animals respond to different conditions of UV radiation in the context of these other environmental 1116 

changes as they migrate, has received little attention to date (but see section 3.3). However, certain 1117 

insights into these effects can be gleaned from studies comparing plant populations or ecotypes 1118 

whose distribution naturally spans a range of latitudes or elevations.  1119 

 1120 

Plants that are adapted to grow in high elevation environments (i.e., alpine) often accumulate more 1121 

UV-screening compounds (e.g., flavonoids) and have other UV-protective mechanisms compared 1122 

with those plants occurring at lower elevations.297-301 These differences are likely the result of the 1123 

combined effects of elevational changes in UV radiation, temperature and other factors.302 As 1124 

discussed in section 3.3.4, low temperatures induce the production and accumulation of flavonoids. 1125 

This may then increase levels of UV-screening and protection against oxidative stress.303-305 High- 1126 

and low-elevation plant populations may also differ their abilities to acclimate to changes in UV 1127 

radiation.306  In wild potatoes (Solanum kurtzianum), populations grown at low elevation have 1128 

relatively low constitutive (base-line) levels of leaf flavonoids but a high capacity for induction of 1129 

flavonoids when UV radiation increases. In contrast, plants at high elevations have high constitutive 1130 

flavonoid levels, but do not necessarily increase their UV-screening in response to supplemental 1131 

UV-B radiation in experimental studies.307 Differential sensitivity to UV radiation of high vs low-1132 

elevation populations may also be due, in part, to population differences in DNA damage and repair, 1133 

as has been shown for Arabidopsis.306   1134 

 1135 

Whether there are differences in tolerance to UV radiation between native vs introduced species is 1136 

unclear at present. For example, introduced populations of Chinese tallow tree (Triadaca sebifera), 1137 

taken from south-eastern USA where the species was introduced in the 1700’s, were shown to be 1138 

more sensitive to UV-B radiation than native Chinese populations.308  By comparison, no differences 1139 

were found in the sensitivity of seed germination to UV-B radiation in native vs introduced 1140 

populations of Verbascum and Echium in New Zealand.309  Similarly, native and non-native species 1141 

showed similar levels of UV-screening when growing in a high UV, tropical alpine location.310  1142 

However, UV-screening increased with increasing elevation and UV-B radiation in a non-native 1143 

species (Verbascum thapsus (mullein)) but did not vary with elevation in the native Vaccinium 1144 

reticulatum (`ohelo). In contrast, similar levels of phenotypic plasticity (acclimation potential) 1145 

between native (German) and non-native (New Zealand) populations of Hieracium pilosella with 1146 

respect to morphological and growth response to UV-B radiation under growth chamber conditions 1147 

have been found.311 Thus, while it is generally assumed that non-native species can acclimate more 1148 

readily to environmental change than native species,312 it is unclear whether this generalisation 1149 

applies to tolerance to UV-B radiation. Plants expanding their distribution into higher latitudes, would 1150 

be expected to experience less exposure to UV-B radiation. As already noted, this may then lead to 1151 
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a decline in UV-screening compounds, antioxidants and other metabolites involved in photo-1152 

protection.313  1153 

 1154 

To date, relatively little research has exploited remote sensing to make quantitative assessments of 1155 

plant responses to elevation and climate change. However, the potential to use this approach is 1156 

apparent from remote sensing images of a 1-hectare area (from the Carnegie Airborne Observatory-1157 

2), using a high-fidelity visible-to-shortwave infrared (VSWIR) imaging spectrometer and dual laser 1158 

waveform (LiDAR), which was calibrated against spectrophotometric measurements of leaf 1159 

extracts.314 This allowed a trend to be identified for increased phenolics with elevation (excluding the 1160 

upper-most measurement point) using LiDAR images at the landscape scale in the Peruvian 1161 

Andean rainforest. As this approach becomes more widely adopted, it will enable the resolution of 1162 

large-scale relationships with topography and climate, allowing patterns in response to UV radiation 1163 

and climate change to be mapped using remote sensing of large areas. Unmanned aerial vehicles 1164 

(drones) are also increasingly being used to bridge the gap between satellites and ground 1165 

measurements and to measure spectral reflectance at high resolution and under clouds.127    1166 

 1167 

Ecosystems, and populations of plant species, including native species, have responded over the 1168 

eons to changing environmental conditions. However, the recent rapid rate of climate change, in 1169 

particular increasing temperatures and more frequent extreme weather events, are of concern in 1170 

terms of the conservation of species and habitats.2 Understanding the role of UV radiation in shifting 1171 

distribution patterns and how readily plant populations can adjust physiologically and genetically to 1172 

new UV radiation environments is therefore relevant to the conservation of biodiversity and the 1173 

services that these natural ecosystems provide to humans.  1174 

 1175 

3.7.2  Clouds, canopies and plant response to fluctuating UV radiation conditions  1176 

 1177 

Climate change is altering cloud cover with some regions experiencing increased and other regions 1178 

decreased cloud cover.1, 4 The effect of clouds on UV radiation also depends on the type of clouds 1179 

315 as well as their position relative to the sun.316 These changes in cloud cover alter the long-term 1180 

(days to weeks) exposure of plants to UV radiation and they can also change the short-term 1181 

(seconds to hours) dynamics of UV radiation received by plants. (Fig. 8; 316) Whereas considerable 1182 

attention has been given to understanding plant responses to changes in average UV radiation 1183 

conditions that occur over long time periods (section 3.3; see also Bornman, et al. 8,  and Björn 24 and 1184 

references therein), far less is known about plant responses to rapid fluctuations in solar UV 1185 

radiation. A number of studies have, however, demonstrated that UV-screening levels in mature 1186 

leaves can vary over the growing season317, from one day to the next,318 over the course of an 1187 

individual day,319 and in response to rapid changes in clouds.320 The changes in UV-screening that 1188 
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occur over the day are rapid (within minutes), reversible, and have been shown to be linked to 1189 

changes in the content and composition of UV-absorbing compounds (flavonoids and related 1190 

phenolics).319, 320 At present, the underlying mechanisms responsible for these rapid changes in UV-1191 

radiation protection are unclear, as is the significance of these changes for plant growth and 1192 

function. These findings do, however, indicate that many, but not all, plant species can rapidly adjust 1193 

their UV-screening in response to fluctuations in UV irradiances.321  1194 

 1195 
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 1220 
 1221 
Fig. 8   Variability in ground-level UV-B radiation at several locations over multiple time scales. Panel A shows 1222 
incident daily plant effective UV-B radiation in the Sonoran Desert, USA, over a 3-year period with annual 1223 
summer monsoon (rainy and cloudy weather) indicated. Panel B: daily plant effective UV-B radiation in 1224 
eastern Washington, USA, over an early spring period with heavy cloud cover followed by clear skies during a 1225 
time when the new leaves of many native plant species are emerging. Panel C: diurnal changes in plant 1226 
effective UV-B radiation under summer clear and cloudy skies in the Sonoran Desert. Panel D: changes in 1227 
instantaneous plant effective UV-B radiation in an understory location of a birch (Betula pendula) forest in 1228 
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Oxfordshire, UK, on one windy and one calm day. Fluctuations in UV-B radiation in Panel D are the result of 1229 
wind-driven changes in canopy leaf flutter. Figure from Barnes, et al. 322 with permission. 1230 

 1231 

The disruption of plant canopy structure (e.g., due to fire or drought-induced tree mortality) alters the 1232 

amount and spectral composition of sunlight penetrating canopies (i.e., ratios of UV-B:UV-A:PAR), 1233 

but the specific changes depend on the type of canopy and vertical position (e.g., crown vs 1234 

understorey).323  Recent studies using array spectrometers have captured rapid changes in the sun-1235 

shade environment under canopies by recording multiple spectra every second.324  These 1236 

measurements at high temporal resolution have confirmed findings from earlier studies282, 325, 326 that 1237 

the spectral composition as well as total irradiance differs between sun flecks and understorey 1238 

shade in forests and crop canopies. The importance of this fine-scale temporal and spatial variation 1239 

in UV radiation in understorey environments for plant growth and development is not entirely clear at 1240 

present (but see Krause, et al. 327, Krause, et al. 328). There is evidence, however, that plants use the 1241 

total irradiance received or modulated as cues,329 which can prime them for seasonal or periodic 1242 

changes. This may therefore be an important aspect of UV acclimation in understorey species that 1243 

could lead to better adjustment to conditions of variable UV radiation resulting from modified 1244 

overstorey canopies brought about by climate change. 1245 

 1246 

Light tends to penetrate canopies more effectively under overcast or hazy sky conditions when the 1247 

ratio of diffuse to direct radiation is higher, than under clear sky conditions.330-332 Thus, cloudy 1248 

conditions produce short-term increases in photosynthesis at the whole canopy level.333-335  1249 

However, because leaves that develop in the sun are more efficient in using direct than diffuse 1250 

radiation, and efficiency of leaves that develop in the shade does not differ significantly under 1251 

changing sky conditions336, caution must be exercised in generalising from these results. 1252 

Conclusions that plant productivity will be enhanced by projected increases in diffuse solar radiation 1253 

resulting from manipulating aerosol levels in the atmosphere to reduce climate change (i.e., 1254 

geoengineering)4 must be viewed with a high degree of uncertainty because they will depend on the 1255 

geographic location, on the extent of the reduction in incident irradiance and whether the increased 1256 

canopy light-use efficiency from diffuse radiation is sufficient to offset this and persist in the long 1257 

term.69 1258 

 1259 

Remote sensing of vegetation using satellites is routinely used to measure primary productivity and 1260 

leaf pigments involved in photosynthesis; this technique has been used extensively for the scaling of 1261 

ecosystem processes related to the carbon cycle.337 Most of these ecosystem process models have 1262 

been developed for use in combining leaf-level and remotely-sensed data, but new possibilities to 1263 

better understand canopy reflectance of UV radiation are being made possible by the capacity to 1264 

extend these remotely captured images and spectral data into the UV range of the spectrum.   1265 

 1266 
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Radiative transfer models used to model canopy optical properties and determine the fate of solar 1267 

radiation have not yet been extended into the UV range, e.g., the discrete anisotropic radiative 1268 

transfer model.(DART338) These models can incorporate sub-models for leaf optical properties (e.g., 1269 

PROSPECT-D,339 and Fluspect-CX), which previously have been applied for optical estimation of 1270 

chlorophyll and carotenoids but if extended into the blue light and UV-A regions could include 1271 

estimation of anthocyanins340 and flavonoids. This may be facilitated by the new generation of those 1272 

satellites designed for monitoring vegetation, which include the capacity to detect wavelengths 1273 

spanning into the UV portion of the spectrum (from the European Space Agency, 270-370 nm for 1274 

Sentinel-5 Satellite and Sentinel-5-precusor satellite). An alternative approach is to extend 1275 

atmospheric radiative transfer models, such as libRadtran4, 341 and the tropospheric and visible solar 1276 

UV radiation model (http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV/), to include radiative 1277 

transfer through plant canopies or even greenhouse structures in the same way that DART and 1278 

other radiative transfer models (RTMs) are being applied for the visible spectrum, or even coupling 1279 

these two model types together. At the leaf level, both commercial sensors (e.g., Ocean Optics 1280 

Jaz342) and custom-made devices (e.g., Robberecht and Caldwell 343) have the capacity to measure 1281 

leaf reflectance in the UV range in both broadleaved and needle-leaved plants.   1282 

 1283 

In crop canopies, planting distance and crop species, or even the cultivar or variety planted, will 1284 

dictate the canopy architecture and affect the spectral composition and total irradiance reaching the 1285 

lower leaves. These decisions also have implications for how UV-B radiation affects plant growth 1286 

and defence at the canopy level in agricultural crops (see Ballaré 153 and section 3.5.3). With a better 1287 

understanding of the mechanisms by which plants in canopies respond to UV radiation as a part of 1288 

the incident spectral irradiance over vertical profiles, we can make better-informed management 1289 

decisions on species and cultivar selection for specific locations.  1290 

 1291 

3.7.3  Phenology and UV radiation  1292 

 1293 

The implications of warmer winters for the seasonal timing of development or phenology have been 1294 

extensively studied, with findings consistently showing both the emergence of animals344, 345 and the 1295 

onset of plant growth9,10 to occur earlier in the year there is less sunlight (and by definition less UV-B 1296 

radiation). Although the molecular mechanisms controlling phenology are not fully understood346, it 1297 

is known that organisms often use a variety of environmental cues to safeguard against mis-timing 1298 

of development.347-349 Differences among life forms in their rate of  response to temperature, which 1299 

is usually the predominant cue, create the potential for a disruption of ecosystem processes through 1300 

a mismatch in the timing of phenology among co-existing organisms such as plants and 1301 

pollinators.350,351 It is likely that warmer temperatures will bring overwintering trees out of dormancy 1302 

prematurely. This will produce an earlier spring bud-burst, possibly so early in the year that at high 1303 
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latitudes new leaves receive insufficient sunlight to develop as they normally would do later in the 1304 

year.352, 353 This also implies that those plant defences partially regulated by UV-B radiation would 1305 

be weaker and the benefit of pollinators UV-vision reduced.  1306 

This forward displacement of phenology due to warming may also heighten the role of alternative 1307 

phenological cues (e.g., daylength and spectral quality).354, 355 In particular, more research is 1308 

required to better understand interactions between daylength (photoperiod) and cues related to 1309 

spectral quality (i.e., changes in UV-B, UV-A, blue and red light), both of which are detected by plant 1310 

photoreceptors. Alterations in the timing of spring phenology, particularly at high latitudes, may 1311 

expose understorey plants to new light environments in early spring when freezing temperatures 1312 

may limit their physiological acclimation capacity.  1313 

 1314 

3.8 Tracking changes in past UV radiation over geological timescales using 1315 

the biochemical signatures of plants 1316 

 1317 

The long-term ecological effects of UV-B radiation over geological timescales are studied by 1318 

palaeoecologists interested in retrospectively reconstructing solar UV-B radiation. Identifying a 1319 

reliable proxy for tracking changes in UV-B radiation based on the biochemistry of pollen and 1320 

spores, would help interpretation of the effects of UV-B radiation on terrestrial ecosystems.  1321 

However, even then an additional calibration would be required to separate changes in total solar 1322 

radiation from those of UV-B radiation, and it would be difficult to distinguish whether these changes 1323 

resulted mainly from stratospheric ozone depletion or other environmental or astronomical factors. 1324 

Improvements in analytical techniques have reduced the uncertainty associated with reconstructions 1325 

of solar radiation based on the biochemistry of pollen from ice cores and lake sediments that track 1326 

changes in past UV radiation over geological time scales.356, 357  These reconstructions may provide 1327 

a better understanding of the evolution of the stratospheric ozone layer and its interaction with 1328 

climate change.358, 359  However, the extent to which UV-absorbing compounds in pollen can be 1329 

considered reliable indicators of the past UV-B radiation and reflect changes at high temporal 1330 

resolutions, depends upon the causative temporally-stable relationship between the accumulation of 1331 

these compounds in pollen and exposure to solar UV-B radiation being experimentally verified.360  1332 

 1333 

The preserved outer walls of fossilised spores and pollen grains are made from sporopollenin, which 1334 

is highly resistant to degradation over geological time scales and contains the phenolic compounds, 1335 

para-coumaric acid and ferulic acid. Experiments using supplemental UV-B radiation have found the 1336 

concentrations of these compounds to be proportional to the incident solar UV-B radiation received 1337 

by the pollen.358, 361 Exploiting this relationship, Jardine, et al.359 reconstructed UV irradiance at Lake 1338 

Bosumtwi, in modern-day Ghana, showing that over a 140-thousand-year period fluctuations in the 1339 
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concentration of phenolics from grass pollen contained in sediments corresponded with patterns of 1340 

solar UV irradiance derived from changes in the Earth’s orbit over cycles of 19-21 thousand years. 1341 

The correlation between reconstructed UV-irradiance and phenolic concentration is also evident 1342 

from pine pollen 362 and spores of the ubiquitous clubmoss Lycopodium363 over broad latitudinal 1343 

gradients, although this correlation is more robust across local elevational gradients.360 This is 1344 

because seasonal and environmental variability and differences in UV-B radiation related to weather 1345 

patterns (temperature and cloudiness) and canopy shade can confound the relationship.   1346 

The lack of standardisation and inter-comparability of samples and sampling techniques is one 1347 

impediment to the wider use of the above techniques. Improvements in the two analytical 1348 

approaches used to detect phenolic compounds, i.e., Fourier-Transform (FT) high-throughput infra-1349 

red spectroscopy and thermally-assisted hydrolysis methylation (THM) with pyrolysis–gas 1350 

chromatography mass spectrometry (THM–GC/MS), should allow researchers to obtain more 1351 

detailed information from pollen samples.364-366 In the latter case, precision should also be improved 1352 

by calibration of changes in phenolic compounds against a known concentration of a compound 1353 

added to the sample as a standard or against another compound within the pollen that does not 1354 

respond to changes in solar radiation.365 When used in conjunction with radiative transfer 1355 

modelling,367 these approaches show promise in distinguishing past environmental gradients in UV 1356 

radiation, such as that at the end of the Permian period (ca 250 million years ago),368, 369 from other 1357 

climate changes across geographical gradients and long-time scales. This has the potential to 1358 

improve our knowledge of the causes and consequences of stratospheric ozone depletion. 1359 

 1360 

3.9 Key gaps in knowledge  1361 

 1362 

Current gaps in our knowledge of the linkages between stratospheric ozone, UV radiation and 1363 

climate change and their implications for terrestrial ecosystems are a direct consequence of the 1364 

complexity of systems characterised by interactive loops that link climatology, meteorology and 1365 

biology (Fig. 1). The challenge lies in developing integrated approaches to assess the effects of UV 1366 

radiation against a complex background of rapidly evolving environmental conditions as well as 1367 

human intervention behaviours. The way in which ecosystems respond to the often-interactive 1368 

effects UV radiation and other climate change dynamics can have important consequences for the 1369 

functionality and/or productivity of agricultural and natural ecosystems, but currently leave many 1370 

unknowns. This emphasises the importance of studying combinations of those environmental 1371 

factors that often change with UV radiation and which may modify the response of organisms to UV 1372 

radiation in terms of acclimation and productive growth. Thus far, most research has concentrated 1373 

on potential interactive effects of UV radiation with temperature and/or drought. Since climate 1374 

warming continues to increase, a better understanding is needed of the effects of UV-B radiation 1375 
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and rising carbon dioxide together with other climate variables on natural and agricultural systems. 1376 

This will then facilitate assessments of future outcomes for ecosystem functioning, conservation of 1377 

species, and selection of environmentally suitable agricultural crops. While growth chamber studies 1378 

can make valuable contributions to understanding some of the fundamental mechanisms of plant 1379 

response to UV radiation, there is still a strong need for many growth chamber studies to be 1380 

validated in the field for a realistic perspective of how organisms will actually respond in a more 1381 

natural environment.  1382 

  1383 

The balance between negative impacts and beneficial effects on organisms will determine the 1384 

current and future adaptation and sustainability of terrestrial ecosystems. Changing exposure to UV 1385 

radiation and climate change factors will affect plant resistance to pests and diseases, food quality 1386 

and nutritional quality, as well as potentially modifying the behaviour of terrestrial animals. These 1387 

changes may also affect visual cues contributed by UV radiation for certain animals. However, more 1388 

information is required to evaluate the possible implications in the context of animal response to 1389 

future environments and in plant-pest and plant-pollinator interactions, which will have a bearing on 1390 

food security. 1391 

 1392 

While qualitative analysis of responses to UV radiation and other variables is usually possible, 1393 

quantitative analyses are often lacking due, in part, to the complexity of diverse and constantly 1394 

changing biological systems. For example, it is difficult to quantify the importance of processes such 1395 

as photodegradation and microbial breakdown of terrestrial plant litter for soil carbon storage and 1396 

emissions at regional and global scales, and their potential contribution to global warming and 1397 

nutrient cycling.  1398 

 1399 

Climate change together with changes in land-use will very likely continue to have strong impacts on 1400 

the exposure to UV radiation of ecosystems and terrestrial organisms, including human populations. 1401 

On a global scale, there is currently insufficient information on the relative contribution and 1402 

implications of stratospheric ozone depletion to climate change in the southern hemisphere, and 1403 

how much can be attributed to natural variability. These interactive effects need to be evaluated for 1404 

the way in which they may continue to modify ecosystem response differently in a future with a 1405 

recovering stratospheric ozone layer. In addition, emerging findings from stratospheric ozone 1406 

monitoring need to be taken into account for evaluating the possible implications of any sudden 1407 

change towards the projected path of ozone recovery. This was recently illustrated in a report370 1408 

suggesting that there are unexpected indications that emissions of the banned ozone-depleting 1409 

compound, chlorofluorocarbon-11 (CFC-11), have increased. The magnitude and future significance 1410 

of the responses of terrestrial ecosystems to increasing or decreasing UV radiation, either 1411 
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dependent or independent of stratospheric ozone depletion, and in the context of climate change, 1412 

remain largely unknown. 1413 

 1414 
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