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Abstract: In this note we present a reconstructive algorithm for solving the cross-sectional pipe
area from boundary measurements in a tree network with one inaccessible end. This is equivalent
to reconstructing the first order perturbation to a wave equation on a quantum graph from boundary
measurements at all network ends except one. The method presented here is based on a time reversal
boundary control method originally presented by Sondhi and Gopinath for one dimensional problems
and later by Oksanen to higher dimensional manifolds. The algorithm is local, so is applicable to
complicated networks if we are interested only in a part isomorphic to a tree. Moreover the numerical
implementation requires only one matrix inversion or least squares minimization per discretization
point in the physical network. We present a theoretical solution existence proof, a step-by-step
algorithm, and a numerical implementation applied to two numerical experiments.
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1. Introduction

We present a reconstruction algorithm and its numerical implementation for solving for the pipe
cross-sectional area in a water supply network from boundary measurements. Mathematically this is
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modelled by the frictionless waterhammer equations on a quantum graph, with Kirchhoff’s law and the
law of continuity on junctions. The waterhammer equations on a segment P = (0, `) are given by [1, 2]

∂tH(t, x) = −
a2(x)
gA(x)

∂xQ(t, x), t ∈ R, x ∈ P, (1.1)

∂tQ(t, x) = −gA(x)∂xH(t, x), t ∈ R, x ∈ P, (1.2)

where

• H is the hydraulic pressure (piezometric head) inside the pipe P, with dimensions of length,
• Q is the pipe discharge or flow rate in the direction of increasing x. Its dimension is length3/time,
• a is the wave speed in length/time,
• g is the gravitational acceleration in length/time2,
• A is the pipe’s internal cross-sectional area in length2.

We model the network by a set of segments whose ends have been joined together. The segments
model pipes. In this model we first fix a positive direction of flow on each pipe P j, and set the
coordinates (0, ` j) on it. Then we impose Equations (1.1) and (1.2) on the segments. On the vertices,
which model junctions, we require that H(t, x) has a unique limit no matter which direction the point
x tends to the vertex. Moreover on any vertex V we require that∑

P j connected to V

ν jQ j = 0 (1.3)

where ν j ∈ {+1,−1} gives the direction of the internal normal vector in coordinates x to pipe P j at V ,
and Q j is the boundary flow of pipe P j at vertex V . In other words ν jQ j is the flow into the pipe P j at
the vertex V . Hence the sum of the flows into the pipes at each vertex must be zero. Therefore there are
no sinks or sources at the junctions, and also none in the network in general, except for the ones at the
boundary of the network that are used to create our input flows for the measurements.

The inverse problem we are set to solve is the following one. We assume that the wave speed
a(x) = a is constant. If not, see Section 6. Given a tree network with N + 1 ends x0, x1, . . . , xN , we can
set the flow and measure the pressure on these points except for x = x0. Using this information, can we
deduce A(x) for x inside the network?

The problem of finding pipe areas arise in systems such as water supply networks and pressurized
sewers, due to the formation of blockages during their lifetime [3, 4]. In water supply pipes, blockages
increase energy consumption and increase the potential of water contamination. Blockages in sewer
pipes increase the risk of overflows in waste-water collection systems and impose a risk to public
health and environment. Detection of these anomalies improves the effectiveness of pipe replacement
and maintenance, and hence improves environmental health.

An analogous and important problem is fault detection in electric cables and feed networks. This
problem can be solved in the same way as blockage detection because of the analogy between
waterhammer equations and Telegrapher’s equations [5].

Mathematically the simplest network is a segment joining x1 to x0. In this setting, the problem
formulated as above was solved by [6]. Various other algorithms were developed for solving the one-
segment problem both before and after. See [7] for a review. After a while some mathematicians started
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focusing on the network situation and others into higher dimensional manifolds. Others continued on
tree networks, which are also the setting of this manuscript. For tree networks Belishev’s boundary
control method [8, 9] showed that a tree network can be completely reconstructed after having access
to all boundary points. These results were improved more recently by Avdonin and Kurasov [10]. A
unified approach that uses Carleman estimates and is applicable to various equations on tree networks
was introduced by Baudouin and Yamamoto [11]. Also, [12] implies that it is possible to solve the
problem in the presence of various different boundary conditions when doing the measurements. A
network having loops presents various challenges to solving for the cross-sectional area from boundary
measurements [13]. In [10] the authors furthermore show that all but one boundary vertex is enough
information, and also that if the network topology is known a-priori, then the simpler backscattering
data is enough to solve the inverse problem. This latter data is easier to measure: the pressure needs to
be measured only at the same network end from which the flow pulse is sent.

Our paper has two goals: 1) to solve the inverse problem by a reconstruction algorithm, and 2) to
have a simple and concrete algorithm that is easy to implement on a computer. In other words we focus
on the reconstruction aspect of the problem, given the full necessary data, and show that it is possible
to build an efficient numerical algorithm for reconstruction. From the point of view of implementing
the reconstruction, the papers cited above are of various levels of difficulty, and we admit that this is
partly a question of experience and opinion. We view that apart from [6], all of them focus much on the
important theoretical foundations, but lack in the clarity of algorithmic presentation for non-experts.
Therefore one of the major points of this text is a clearly defined algorithm whose implementation does
not require understanding its theoretical foundations, see Section 4.

Our method is based on the ideas of [6, 14] and is a continuation of our investigation of the single
pipe case [3]. In both of them the main point is to use boundary control to produce a wave that would
induce a constant pressure in a domain of influence at a certain given time. A simple integration by
parts gives then the total volume covered by that domain of influence. Time reversal is the main tool
which allows us to build that wave without knowing a-priori what is inside the pipe network.

A numerical implementation and proof of a working regularization scheme for [14] in one space
dimension was shown in [15]. Earlier, we studied [6] and tested it numerically in the context of
blockage detection in water supply pipes [3] and also experimentally. We also showed that the method
can be further extended to detect other types of faults such as leaks [16]. The one space-dimensional
inversion algorithm can be implemented more simply than in [14, 15], even in the case of networks.
This is the main contribution of this paper. Furthermore we provide a step-by-step numerical
implementation and present numerical experiments. Our reconstruction algorithm is local and
time-optimal. In other words if we are interested in only part of the network, we can do measurements
on only part of the boundary. Furthermore the algorithm uses time-measurements just long enough to
recover the part of interest. Intuitively, to reconstruct the area A(x) at a location x, the wave must
reach the location x and reflects back to the measurement location. Any measurement done on a
shorter time-interval will not be enough to recover it.
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2. Governing equations

2.1. Networks

Denote by G a tree network. Let J be the set of internal junction points and P the set of pipes, or
segments. The boundary ∂G consists of all ends of pipes that are not junctions of two or more pipes.
Each of them belongs to a single pipe unlike junction points which belong to three or more. There are
no junction points that are connected to exactly two pipes: These two pipes are considered as one, and
the point between is just an ordinary internal point.

Each pipe P ∈ P is modelled by a segment (0, `) where ` is the length of the pipe. This defines a
direction of positive flow on the pipe, namely from x = 0 towards x = `. The pipes are connected to
each other by junction points. Write (x, P) ∼ v if v ∈ J, x is the beginning (x = 0) or endpoint (x = `)
of pipe P ∈ P, and the latter is connected to v at the beginning (x = 0) or end (x = `), respectively.

Example 2.1. An example network is depicted in Figure 1. Here J = {D}, ∂G = {A, B,C}, P =

{AD, BD,DC}. Moreover here is a coordinate representation

AD = (0, 400 m), BD = (0, 300 m), DC = (0, 1000 m),
(0, AD) ∼ A, (0, BD) ∼ B, (0,DC) ∼ D,

(400 m, AD) ∼ D, (300 m, BD) ∼ D, (1000 m,DC) ∼ C.

400m

300m

1000m
A

B

C

D

Figure 1. A simple network.

Example 2.2. Example 2.1 can be implemented numerically as follows. In total there are four vertices
and three pipes. If vector indexing starts with 1 we number points as C = 1, A = 2, B = 3, D = 4 and
pipes as AD = 1, BD = 2, DC = 3. The adjacency matrix Adj is defined so as pipe number i goes
from vertex number Adj(i,1) to vertex number Adj(i,2).

1 V = 4; % number of vertices

2 L = [400; 300; 1000]; % length of pipes

3 Adj = [2 4; 3 4; 4 1]; % adjacency matrix

2.2. Equations

Inside pipe P the perturbed pressure head H and cross-sectional discharge Q satisfy

∂tH(t, x) = −
a2

gA(x)
∂xQ(t, x), t ∈ R, x ∈ P, (2.1)

∂tQ(t, x) = −gA(x)∂xH(t, x), t ∈ R, x ∈ P, (2.2)

where a, A, g denote the wave speed, cross-sectional area and gravitational acceleration. The sign of Q
is chosen so that Q > 0 means the flow goes from 0 to `. In Example 2.1 the positive flow goes from A
to D, from B to D and from D to C. The wave speed is assumed constant.
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The pressure is a scalar: If v ∈ J connects two or more pipes (x j, P j) ∼ v, j = 1, 2, . . ., then H has a
unique value at v

lim
x→x j
x∈P j

H(t, x) = lim
x→xk
x∈Pk

H(t, x), t ∈ R, (x j, P j) ∼ v ∼ (xk, Pk). (2.3)

The flow satisfies mass conservation, i.e., a condition analogous to Kirchhoff’s law. The total flow into
a junction must be equal to the total flow out of the junction at any time. To state this as an equation
we define the internal normal vector ν for any pipe end. If the pipe P has coordinate representation
(0, `) then ν(0) = +1 and ν(`) = −1. Recall that Q > 0 mean a positive flow from the direction of 0 to
`. This means that ν(x)Q(t, x) is the flow into the pipe at point x ∈ {0, `}. If it is positive then there is
a net flow of water into P through x. If it is negative then there is a net flow out of P through x. Mass
conservation is then written as ∑

(x,P)∼v

ν(x)Q(t, x) = 0, t ∈ R, v ∈ J. (2.4)

2.3. Initial conditions

The model assumes unperturbed initial conditions

H(t, x) = Q(t, x) = 0, t < 0, x ∈ P (2.5)

for any pipe P ∈ P.

2.4. Direct problem

In this section we define the behaviour of the pressure H and pipe cross-sectional discharge Q in
the network given a boundary flow and network structure. This is the direct problem. Recall that we
have one inaccessible end of the network, x0, whose boundary condition must be an inactive one, i.e.,
must not create waves when there are no incident waves. To make the problem mathematically well
defined we choose for example Equation (2.7). Other options would work too, for example involving
derivatives of H or Q, but it is questionable how physically realistic such an arbitrary boundary
condition is. The main point is that any inactive condition at the inaccessible end is allowed without
risking the reconstruction. This is because the theoretical waves used in the calculations of our
reconstruction algorithm never have to reach this final vertex, and so the boundary condition there
never has a chance to modify reflected waves.

Definition 2.3. We say that H and Q satisfy the network wave model with boundary flow F : R × ∂G \
{x0} → R if F(t, x) = 0 for t < 0 and H,Q satisfy Equations (2.1) and (2.2), the junction conditions of
Equations (2.3) and (2.4) and the initial conditions of Equation (2.5). Furthermore Q must satisfy the
boundary conditions

ν(x)Q(t, x) = F(t, x), x ∈ ∂G, x , x0, t ∈ R (2.6)
A(t)Q(t, x) + B(t)H(t, x) = 0, x = x0, t ∈ R (2.7)

for some given functions or constants A(t), B(t) that we do not need to know.
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Remark. Note that νQ = F implies that F is the flow into the network. If F > 0 fluid enters, and if
F < 0 fluid is coming out.

Let us mention a few words about the unique solvability of the network wave model with a given
boundary flow F. First of all we have not given any precise function spaces where the coefficients of
the equation or the boundary flow would belong to. This means that it is not possible to find an exact
reference for the solvability. On the other hand this is not a problem for linear hyperbolic problems in
general.

The problem is a one-dimensional linear hyperbolic problem on various segments with co-joined
boundary conditions. As the waves propagate locally in time and space, one can start with the solution
to a wave equation on a single segment, as in e.g., Appendix 2 to Chapter V in [17]. Then when the
wavefront approaches a junction, Equations (2.3) and (2.4) determine the transmitted and reflected
waves to each segment joined there. Then the wave propagates again according to [17], and the
boundary conditions are dealt with as in a one segment case. At no point is there any space to make
any “choices”, and thus there is unique solvability. We will not comment on this further, but for more
technical details we refer to [17] for the wave propagation in a segment and the boundary conditions,
and to Section 3 of [8] for the wave propagation through junctions. For an efficient numerical
algorithm to the direct problem, see [18].

2.5. Boundary measurements

The area reconstruction method presented in this paper requires the knowledge of the impulse-
response matrix (IRM) for all boundary points except one, which we denote by x0.

Definition 2.4. We define the impulse-response matrix, or IRM, by K = (Ki j)N
i, j=1. For a given i and j

we assume that H and Q satisfy the network wave model with boundary flow*

ν(x)Q(t, x) =

V0 δ0(t), x = xi

0, x , xi
(2.8)

for t ∈ R and x ∈ ∂G, x , x0. Here V0 is the volume of fluid injected at t = 0. Then we set

Ki j(t) = H(t, x j)/V0 (2.9)

for any t ∈ R.

The index i represents the source and j the receiver. Note also that the IRM gives complete boundary
measurement information: if ν(x)Q(t, xi) = F(t, xi) were another set of injected flows at the boundary,
then the corresponding boundary pressure would be given by

H(t, x j) =
∑
xi∈∂G
xi,x0

∫
Ki j(t − s, xi)F(s, xi)ds (2.10)

by the principle of superposition.

*δ0(t) has dimensions of time−1 because
∫
δ0(t)dt = 1 and dt has dimensions of time.
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3. Area reconstruction algorithm

3.1. Strategy

Once the impulse-response matrix from Equation (2.9) has been measured, we have everything
needed to determine the cross-sectional area in a tree network. As in the one pipe case [3], we will
calculate special “virtual” boundary conditions, which if applied to the pipe system, would make the
pressure constant in a given region at a given time. Exploiting this and the knowledge of the total
volume of water added to the network by these virtual boundary conditions gives the total volume of
the region. Slightly perturbing the given region reveals the cross-sectional area.

Multiply Equation (2.1) by gA/a2 and integrate over a time-interval (0, τ), for a fixed τ > 0, and the
whole network G. This gives∑

x j∈∂G

∫ τ

0
ν(x j)Q(t, x j)dt =

∫
G

H(τ, x)
gA(x)
a2(x)

dx (3.1)

if H(0, x) = 0 and mass conservation from Equation (2.4) applies. Let p ∈ G be a point at which we
would like to recover the cross-sectional area. To it we associate a set Dp ⊂ G which we shall define
precisely later. Let us assume that there are boundary flows Qp(t, x j) so that at time t = τ we have

H(τ, x) =

h0, x ∈ Dp,

0, x < Dp,
(3.2)

for some fixed pressure h0. Then from Equation (3.1) we have∑
x j∈∂G

∫ τ

0
ν(x j)Qp(t, x j)dt =

h0g
a2

∫
Dp

A(x)dx.

Denote the integral on the left by V(Dp). We can calculate its values once we know Qp, hence we know
the value of the integral on the right. By varying the shape of Dp we can then find the area A(p).

3.2. Admissible sets

The only requirement for Dp in the previous section was that Equation (3.2) holds. Boundary
control, e.g., as in [9], implies that there are suitable boundary flows Qp such that the equation holds
for any reasonable set Dp. However it is not easy to calculate the flows given an arbitrary Dp. In this
section we define a class of such sets for which it is very simple to calculate the flows.

Let p ∈ G \ J be a non-junction point in the network at which we wish to solve for the cross-section
area A(p). Since we have a tree network the point p splits G into two networks. Let Dp be the part
that is not connected to the inaccessible boundary point x0. The boundary of Dp consists of let us say
y1, y2, . . . , yk and p, where the points y j are also boundary points of the original network.

For each boundary point y j ∈ ∂Dp, y j , p define the action time

f (y j) = TT(y j, p) (3.3)

where TT gives the travel-time of waves from y j to p calculated along the shortest path in Dp. Then set
f (x j) = 0 for x j ∈ ∂G \ ∂Dp.
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Definition 3.1. We say that Dp is an admissible set associated with p ∈ G \ J and with action time f ,
if Dp and f are defined as above given p.

It turns out that with the choice of admissible sets made above we have

Dp = {x ∈ G | TT(x j, x) < f (x j) for some x j ∈ ∂G}. (3.4)

This is because Dp lies between p and the boundary points x j at which f (x j) , 0. This gives a geometric
interpretation to the set Dp, i.e., that it is the domain of influence of the action times f (x j), x j ∈ ∂G. If we
would have zero boundary flows at first, and then active boundary flows when x j ∈ ∂G, τ− f (x j) < t ≤ τ,
then the transient wave produced would have propagated through the whole set Dp at time t = τ but
not at all into G \ Dp.

3.3. Reconstruction formula for the area

Now that the form of the admissible sets have been fixed, we are ready to prove in detail what
was introduced at the beginning of this section, namely a formula for solving the unknown pipe cross-
sectional area. For simplicity we assume that the wave speed is constant.

Theorem 3.2. Let p ∈ G\ J be a non-junction point and Dp, f the associated admissible set and action
time. Let τ > max f . For a small time-interval ∆t > 0 set

( f + ∆t)(x j) =

 f (x j) + ∆t, x j ∈ ∂Dp \ {p},

0, x j ∈ ∂G \ ∂Dp.

For φ = f or φ = f + ∆t denote

Dφ = {x ∈ G | TT(x, x j) < φ(x j) for some x j ∈ ∂Dp \ {p}} (3.5)

so D f = Dp and D f +∆t is a slight expansion of the former.
Assume that Hφ,Qφ satisfy the network wave model with a boundary flow F which is nonzero only

during the action time φ, namely F(t, x j) = 0 when x j ∈ ∂G, x j , x0 and 0 ≤ t ≤ τ − φ(x j). Finally,
assume that

Hφ(τ, x) =

h0, x ∈ Dφ,

0, x < Dφ,
(3.6)

for some given pressure head h0 > 0 at time t = τ.
Denote by

V(φ, τ) =
a2

h0g

∑
x j∈∂Dp\{p}

ν(x j)
∫ τ

0
Qφ(t, x j)dt

the total volume of fluid injected into the network from the boundary in the time-interval (0, τ) to create
the waves Hφ,Qφ. Then

A(p) = lim
∆t→0

V( f + ∆t, τ) − V( f , τ)
a∆t

(3.7)

gives the cross-sectional area of the pipe at p.
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Proof. The assumption about the boundary flow implies that

Hφ(t, x j) = Qφ(t, x j) = 0 (3.8)

in the same space-time set, i.e., when x j ∈ ∂G, x j , x0 and 0 ≤ t ≤ τ−φ(x j). Consider Equation (2.1) for
Hφ,Qφ where φ = f or φ = f + ∆t is fixed. Multiply the equation by gA/a2 and integrate

∫ τ

0

∫
G
. . . dxdt.

This gives

−

∫ τ

0

∫
G

∂xQφ(t, x)dxdt =

∫ τ

0

∫
G

gA(x)
a2 ∂tHφ(t, x)dxdt.

The right-hand side is equal to

g
a2

∫
G

A(x)
(
Hφ(τ, x) − Hφ(0, x)

)
dx =

gh0

a2

∫
Dφ

A(x)dx

because Hφ(0, x) = 0 by Equation (2.5). We will use the junction conditions of Equation (2.4) to deal
with the left-hand side. But before that let us use a fixed coordinate system of the network G.

Let the pipes of the network be P1, . . . , Pn and model them in coordinates by the segments
(0, `1), . . . , (0, `n), respectively. On pipe Pk, denote by Hφ,k the scalar pressure head, and by Qφ,k the
pipe discharge into the positive direction. Then∫

G

∂xQφ(t, x)dx =

n∑
k=1

∫ `k

0
∂xQφ,k(t, x)dx =

n∑
k=1

(
Qφ,k(t, `k) − Qφ,k(t, 0)

)
.

Note that Qφ,k(t, `k) is simply the discharge out of the pipe Pk at the latter’s endpoint represented by
x = `k at time t. Similarly −Qφ,k(t, 0) is the discharge out from the other endpoint, the one represented
by x = 0. Now Equation (2.4) implies after a few considerations that

−

∫
G

∂xQφ(t, x)dx =
∑

x j∈∂Dp\{p}

ν(x j)Qφ(t, x j).

Namely, previously we saw that the integral is equal to the sum of the total discharge out of every single
pipe. But the discharge out of one pipe must go into another pipe at junctions (there are no internal
sinks or sources). Hence the discharges at the junctions cancel out, and only the ones at the boundary
∂G remain. The boundary values are zero on ∂G \ (∂Dp ∪ {x0}) by the definition of f and f + ∆t. We
also have zero initial values and a non-active boundary condition at x0, hence Qφ(t, x0) = 0 too. Thus
we have shown that ∫

Dφ

A(x)dx =
a2

gh0

∑
x j∈∂Dp\{p}

ν(x j)Qφ(t, x j) = V(φ, τ). (3.9)

Next, we will show that

V( f + ∆t, τ) − V( f , τ) =

∫
D f +∆t \D f

A(x)dx. (3.10)

Recall that p is not a vertex. Hence it is on a unique pipe, let’s say (0, `) and p is represented by xp on
this segment. Furthermore assume that (or change coordinates so that) the point represented by 0 is in

Mathematics in Engineering Volume 1, Issue 4, 849–880.



858

Dp, and the one by ` is not. This implies that the difference of sets D f +∆t \ D f is just a small segment
on (0, `).

Let us look at the effect of ∆t on D f +∆t which is defined in Equation (3.5). We have x ∈ D f +∆t \D f if
and only if TT(x, x j) < f (x j) +∆t for some boundary point x j ∈ ∂Dp, x j , p, but also TT(x, xk) ≥ f (xk)
for all boundary points xk ∈ ∂Dp, xk , p. The former implies that x is at most travel-time ∆t from Dp,
and the latter says that it should not be in Dp. In other words D f +∆t \D f = {x ∈ (0, `) | xp ≤ x < xp+a∆t}

and so

V( f + ∆t, τ) − V( f , τ) =

∫ xp+a∆t

xp

A(x)dx, (3.11)

where we abuse notation and denote the cross-sectional area of the pipe modelled by (0, `) at the
location x also by A(x) without emphasizing that it is the area on this particular model of this particular
pipe.

Equation (3.11) gives the area at p, A(xp), by differentiating. Let B(s) =
∫ xp+s

xp
A(x)dx. Then A(xp) =

∂sB(0) and the right-hand side of Equation (3.11) is equal to B(a∆t). The chain rule for differentiation
gives

A(xp) = ∂sB(s)|s=0 =
1
a
∂∆t(B(a∆t))|∆t=0 =

1
a

lim
∆t→0

V( f + ∆t, τ) − V( f , τ)
∆t

from which the claim follows. �

3.4. Solving for the area

In this section we will show one way in which boundary values of Q can be determined so that the
assumptions of Theorem 3.2 are satisfied. It is previously known that there are boundary flows giving
Equation (3.2), for example by [9] where the authors show the exact L2-controllability of the network
both locally and in a time-optimal way. However there was no simple way of calculating such boundary
flows and the numerical reconstruction algorithm of that paper does not seem computationally efficient
as it uses a Gram–Schmidt orthogonalization process on a number of vectors inversely proportional to
the network’s discretization size. We show that if the flow satisfies a certain boundary integral equation
then this is the right kind of flow. Moreover, in the appendix we give a proof scheme for showing that
the equation has a solution.

More recently various layer-peeling type of methods have appeared [10, 12]. The method we
present here is based on another idea, one whose roots are in the physics of waves, namely time
reversibility. This is in essence a combination of the one pipe case originally considered in [6], and of
a fundamentally similar idea for higher dimensional manifolds introduced in [14]. In the latter the
author considers domains of influence and action times on the boundary, and builds a boundary
integral equation whose solution then reveals the unknown inside the manifold. This will be our guide.

Let us recall the unique continuation principle used for the area reconstruction method for one pipe
in [3, 6]. Consider a pipe of length ` > 0, modelled by the interval (0, `). Let H and Q satisfy the
Waterhammer Equations (2.1) and (2.2) without requiring any initial conditions. Then

Lemma 3.3. If H(t, 0) = 2h0 and Q(t, 0) = 0 for tm < t < tM, then inside the pipe we would have
H(t, x) = 2h0 and Q(t, x) = 0 in the space-time triangle x/a + |t − (tM + tm)/2| < (tM − tm)/2, 0 < x < `.
See Figure 2.
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The lemma was then used to build a virtual solution H,Q satisfying also the initial conditions, and
which would have H(τ, x) = h0 for x < aτ and H(τ, x) = 0 for x > aτ for a given τ > 0. Without
going into detailed proofs, the same unique continuation idea works for a tree network. The reason is
that one can propagate H = 2h0, Q = 0 from one end of a pipe to the other, but by keeping in mind
that the time-interval where these hold shrinks as one goes further into the pipe. Do this first on all the
pipes that touch the boundary. Then use the junction conditions from Equations (2.3) and (2.4) to see
thatH = 2h0, Q = 0 on the next junctions. Then repeat inductively. We have shown

Proposition 3.4. Let p ∈ G \ J and let Dp ⊂ G be admissible associated with p and with action time
f . LetH ,Q satisfy Equations (2.1) and (2.2) and the junction conditions of Equations (2.3) and (2.4).
Let τ ≥ max f and assume that

H(t, x j) = 2h0, Q(t, x j) = 0, x j ∈ ∂G, |t − τ| < f (x j). (3.12)

ThenH(t, x) = 2h0 and Q(t, x) = 0 whenever x ∈ G, 0 < t < 2τ and

TT(x, x j) + |τ − t| < f (x j) (3.13)

for some x j ∈ ∂G.

We can now write an integral equation whose solution gives waves with H(τ, x) = h0 for x ∈ Dp

and H(τ, x) = 0 for x < Dp at time t = τ.

Theorem 3.5. Let Ki j be the impulse-response matrix from Equation (2.9). If A is constant near each
network boundary point we have

Ki j(t) =
a

A(xi)g
δ0(t)δi j + ki j(t)

for some function† ki j = k ji that vanishes near t = 0.
Let p ∈ G \ J be and let Dp ⊂ G be the admissible set associated with p, and with action time f .

Take τ ≥ max f and let Qp(t, x j) satisfy

h0 =
a

A(x j)g
ν(x j)Qp(t, x j)

†ki j might be a distribution if A is not smooth enough.
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+
∑
xi∈∂G
xi,x0

ν(xi)
2

∫ τ

0
Qp(s, xi)

(
ki j(|t − s|) + ki j(2τ − t − s)

)
ds (3.14)

when x j ∈ ∂G, x j , x0, τ − f (x j) < t ≤ τ and

Qp(t, x j) = 0 (3.15)

when x j ∈ ∂G, x j , x0 and 0 ≤ t ≤ τ − f (x j).
Then if H,Q satisfy the network wave model with boundary flow νQp we have

H(τ, x) =

h0, x ∈ Dp,

0, x ∈ G \ Dp.
(3.16)

Remark 3.6. If one sets Qp(2τ − t, x j) = Qp(t, x j), one could instead have

h0 =
a

A(x j)g
ν(x j)Qp(t, x j) +

∑
xi∈∂G
xi,x0

ν(xi)
2

∫ 2τ

0
Qp(s, xi)ki j(|t − s|)ds

with x j ∈ ∂G, |t − τ| < f (x j) and Qp(t, x j) = 0 for |t − τ| ≥ f (x j).

Proof. The claim for the impulse response matrix is standard. See for example Appendix 2 to Chapter
V in [17] for the solution to the one segment setting, and then use mathematical induction and the
junction conditions of Equations (2.3) and (2.4).

Extend Qp symmetrically past τ, i.e., Qp(2τ − t, x j) = Qp(t, x j) for 0 ≤ t ≤ τ and x j ∈ ∂G, x j , x0.
Continue H and Q to 0 < t < 2τ while still having Q = Qp as the boundary condition at x , x0, and
Equation (2.7) when x = x0. Define

H(t, x) = H(t, x) + H(2τ − t, x), Q(t, x) = Q(t, x) − Q(2τ − t, x)

for x ∈ G and 0 < t < 2τ. The symmetry of Qp implies that Q(t, x j) = 0 for x j ∈ ∂G, x j , x0 and
0 < t < 2τ.

For the pressure, recall that the properties of the impulse response matrix from Equation (2.10)
imply that

H(t, x j) =
∑
xi∈∂G
xi,x0

∫ ∞

−∞

Ki j(t − s)ν(xi)Qp(s, xi)ds

for x j ∈ ∂G, x j , x0 and 0 < t < 2τ. It is then easy to calculate that

H(t, x j) =
a

A(x j)g
ν(x j)Qp(t, x j) +

∑
xi∈∂G
xi,x0

∫ t

0
ki j(t − s)ν(xi)Qp(s, xi)ds

because Ki j(t − s) = 0 when s > t and Qp(s, xi) = 0 when s < 0. For H(2τ − t, x j) split the integral to
get ∫ 2τ−t

0
ki j(2τ − t − s)Qp(s, xi)ds
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=

∫ τ

0
ki j(2τ − t − s)Qp(s, xi)ds +

∫ 2τ−t

τ

ki j(2τ − t − s)Qp(s, xi)ds

=

∫ τ

0
ki j(2τ − t − s)Qp(s, xi)ds +

∫ τ

t
ki j(s − t)Qp(s, xi)ds

where we again used the time-symmetry of Qp. Summing all terms and using Qp(2τ− t, x j) = Qp(t, x j)
we see that

H(t, x j) = H(t, x j) + H(2τ − t, x j) = 2
a

A(x j)g
ν(x j)Qp(t, x j)

+
∑
xi∈∂G
xi,x0

ν(xi)
∫ τ

0
Qp(s, xi)

(
ki j(|t − s|) + ki j(2τ − t − s)

)
ds = 2h0

when x j ∈ ∂G and |t − τ| < f (x j). The assumptions of Proposition 3.4 are now satisfied and soH(t, x) =

2h0 and Q(t, x) = 0 when 0 < t < 2τ and TT(x, x j) + |τ − t| < f (x j) for some x j ∈ ∂G. Equation (3.4)
and the finite speed of wave propagation imply Equation (3.16). �

Remark 3.7. Assuming an impulse-response matrix that is measured to infinite precision and without
modelling errors, one can show that Equations (3.14) and (3.15) have a solution. The idea of the proof
is shown in the appendix. The solution is not necessarily unique, but it gives a unique reconstructed
cross-sectional area.

4. Step-by-step algorithm

4.1. Measuring the impulse-response matrix

Recall Equation (2.9): The impulse-response matrix K = (Ki j)N
i, j=1 is defined by Ki j(t) = H(t, x j)/V0

where H,Q solve the Waterhammer Equations (2.1) and (2.2), junction Equations (2.3) and (2.4), zero
initial conditions of Equation (2.5) and a flow impulse of volume V0 at the boundary vertex xi and
zero flow at other accessible vertices, as in Equation (2.8). Here xi, x j with i, j , 0 are the accessible
boundary points, and x0 is the inaccessible one that doesn’t produce surges.

4.2. Solving for the cross-sectional area

In this second part of the step-by-step reconstruction algorithm we assume that the impulse-response
matrix K has been calculated. It can be either measured by closing all accessible ends, or by measuring
the system response in a different setting (i.e., different boundary conditions), then pre-process the
measured signal to obtain the desired matrix K.

Once the impulse-response matrix has been measured as discussed in the previous paragraph, the
following mathematical algorithm can be applied to recover the cross-sectional area inside a chosen
pipe or pipe-segment in the network.

Algorithm 1. This algorithm calculates the cross-sectional area using a discretization and Algorithm 2.

1. Define ki j(t) for i, j , 0 by
ki j(t) = Ki j(t) −

a
A(xi)g

δ0(t)δi j

where δi j is the Kronecker delta.
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2. Choose a point p1 in the network that is not a junction. The algorithm will reconstruct the cross-
sectional area starting from p1 and going towards x0 until it hits the endpoint p2 of the current
pipe.

3. Split the interval between p1 and p2 into pieces of length ∆x.

4. Let p be any point between two pieces above that has not been chosen yet. Calculate the internal
volume V(p) using Algorithm 2.

5. Redo Item 4 for all the points in the discretization of the interval between p1 and p2, and save the
values of V(p) associated with the point p.

6. Denote the discretization by (p(0) = p1, p(1), . . . , p(M) ≈ p2). Then the area at p(k) is
approximately the volume between the points p(k) and p(k + 1) divided by ∆x. In other words

A
(
p(k)

)
≈

V
(
p(k + 1)

)
− V

(
p(k)

)
∆x

.

This would be an equality if ∆x were infinitesimal, or if A(p(k)) would signify the average area
over the interval (p(k), p(k + 1)).

Algorithm 2. This algorithm calculates the internal volume of the piece of network cut off by p:
Namely all points from which you have to pass through p to get to x0.

1. For any boundary point x j , x0 set

f (x j) =

TT(x j, p), if p is between x j and x0,

0, if not,

where TT gives the travel-time between points. It is just the distance in the network divided by
the wave speed.

2. Take τ ≥ max f and fix a pressure head h0 > 0.

3. For any boundary point x j , x0 and time τ − f (x j) < t ≤ τ, using regularization if necessary, let
Qp solve

h0 =
a

A(x j)g
ν(x j)Qp(t, x j) (4.1)

+
∑
xi∈∂G
xi,x0

ν(xi)
2

∫ τ

0
Qp(s, xi)

(
ki j(|t − s|) + ki j(2τ − t − s)

)
ds

and also simultaneously set
Qp(t, xi) = 0

for boundary points xi , x0 and time 0 ≤ t ≤ τ − f (x j). Thus the integral above can be calculated
on τ − f (x j) < s ≤ τ.

4. Set

V(p) =
a2

h0g

∑
x j∈∂G

∫ τ

0
ν(x j)Qp(t, x j)dt. (4.2)

It is the internal volume of the pipe network that is on the other side of p than the inaccessible
end x0.
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5. Numerical experiments

All the programming here was done in GNU Octave [19].

Experiment 1 (Simple network with exact IRM). We will start by solving for the trivial area of
Example 2.1. Consider this a test for the implementation of the area reconstruction algorithm. We
start by calculating the impulse-response matrix of vertices A and B while C is inaccessible. D is the
junction.

Set A(x) = 1 m2 everywhere, the gravitational acceleration g = 9.81 m s−2 and a wave speed of
a = 1000 m s−1.

1 %% Physical parameters
2 maxc = 1000; % maximal wave speed in the network

3 g = 9.81; % standard gravity value (m/sˆ2)

4
5 %% Network a-priori information
6 V = 4; % total number of vertices

7 L = [400; 300; 1000]; % L(j) length of pipe j

8 Adj = [1 4; 2 4; 4 3]; % pipe j goes from vertex Adj(j,1) to vertex Adj(j,2)

9 A0 = [1,1]; % area at accessible pipe ends

10 a0 = [maxc, maxc]; % wave speed at accessible pipe ends

Let us calculate the IRM by hand. If a flow of V0δ0(t) is induced at point A, then it creates a
propagating solution Q = V0δ(ax−t), H = aV0δ(ax−t)/(gA) along AD. If a pressure pulse of magnitude
Mδ0 is incident to D, then it transmits two pulses of magnitude 2Mδ0/3 to BD and DC, and reflects one
pulse of magnitude −Mδ0/3 back to AD. These follow from the junction conditions of Equations (2.3)
and (2.4). Also, if a similar pressure pulse is incident to a boundary point with boundary condition
Q = 0, then a pulse of the same magnitude (no sign change) is reflected. However at that boundary
point the pressure is measured as 2Mδ0. These considerations produce the following impulse-response
matrix

KAA(t) =
a

gA

(
δ0

(
t
)
−

2
3
δ0

(
t − 0.8 s

)
+

8
9
δ0

(
t − 1.4 s

)
+

2
9
δ0

(
t − 1.6 s

)
+ . . .

)
KBB(t) =

a
gA

(
δ0

(
t
)
−

2
3
δ0

(
t − 0.6 s

)
+

2
9
δ0

(
t − 1.2 s

)
+

8
9
δ0

(
t − 1.4 s

)
+ . . .

)
KAB(t) =

a
gA

(4
3
δ0

(
t − 0.7 s

)
−

4
9
δ0

(
t − 1.3 s

)
−

4
9
δ0

(
t − 1.5 s

)
+ . . .

)
KBA(t) = KAB(t)

for time 0 ≤ t ≤ 1.6 s.
We must have 2τ ≤ 1.6 s, and so the algorithm can solve for the area up to points of the network that

are at most aτ = 800 m from each accessible end. Hence we can solve for the area only up to 400 m in
pipe DC from the junction D. The reflections ki j used in Algorithm 1 are

kAA(t) =
a

gA

(
−

2
3
δ0

(
t − 0.8 s

)
+

8
9
δ0

(
t − 1.4 s

)
+

2
9
δ0

(
t − 1.6 s

)
+ . . .

)
kBB(t) =

a
gA

(
−

2
3
δ0

(
t − 0.6 s

)
+

2
9
δ0

(
t − 1.2 s

)
+

8
9
δ0

(
t − 1.4 s

)
+ . . .

)
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kAB(t) =
a

gA

(4
3
δ0

(
t − 0.7 s

)
−

4
9
δ0

(
t − 1.3 s

)
−

4
9
δ0

(
t − 1.5 s

)
+ . . .

)
kBA(t) = kAB(t).

11 %% Measurements
12 dt = 10/maxc; % in one time-step the wave propagates 10m

13 experiment_duration = 1.61; % impulse-response matrix should go from time t=0 to

experiment_duration.

14 t = (0:dt:experiment_duration)';
15 k = cell(2,2); % k is the response matrix

16 % The below is calculated by hand for a network as above.

17 k{1,1} = a0(1)/(A0(1)*g) *(...
18 -2/3*1/dt.*(t >= 0.8-dt/2).*(t < 0.8+dt/2) ...
19 +8/9*1/dt.*(t >= 1.4-dt/2).*(t < 1.4+dt/2) ...
20 +2/9*1/dt.*(t >= 1.6-dt/2).*(t < 1.6+dt/2) ...
21 );

22 k{2,2} = a0(2)/(A0(2)*g) *(...
23 -2/3*1/dt.*(t >= 0.6-dt/2).*(t < 0.6+dt/2)...
24 +2/9*1/dt.*(t >= 1.2-dt/2).*(t < 1.2+dt/2) ...
25 +8/9*1/dt.*(t >= 1.4-dt/2).*(t < 1.4+dt/2) ...
26 );

27 k{1,2} = a0(2)/(A0(2)*g) *(...
28 +4/3*1/dt.*(t >= 0.7-dt/2).*(t < 0.7+dt/2)...
29 -4/9*1/dt.*(t >= 1.3-dt/2).*(t < 1.3+dt/2) ...
30 -4/9*1/dt.*(t >= 1.5-dt/2).*(t < 1.5+dt/2) ...
31 );

32 k{2,1} = k{1,2};

Let us define the action time functions for various points p in the network. If p ∈ AD then the action
time is

f AD
p (x) =


TT (A, p), x = A

0, x = B

0, x = C

and for p ∈ BD

f BD
p (x) =


0, x = A

TT (B, p), x = B

0, x = C

.

The travel-time from A to D is 0.4 s, and from B to D it is 0.3 s. Recall that the IRM has been
measured only for time t ≤ 1.6 s. Hence we can solve for the area up to 400 m into pipe DC. Let the
point p ∈ DC be given by the action time function

f DC
p (x) =


0.4 s + tp, x = A

0.3 s + tp, x = B

0, x = C

where 0 ≤ tp ≤ 400 m/a = 0.4 s is the travel-time from D to p and recalling that we can solve the area
only up to 400 m from D.
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33 %% Set parameters
34 tau = 0.8; % area will be solved up to 2*tau*maxc from accessible point furthest to

inaccessible point x3.

35 assert(2*tau <= experiment_duration , 'Can recover area only up to experiment_duration*
maxc/2.');

36 reguparam = 1e-5; % Tikhonov regularization parameter

37 dx = dt*maxc; % into how big chunks we discretize the pipe

38
39 %% x-discretization
40 maxL = [L(1); L(2); tau*maxc - max(L(1),L(2))];

41 maxL = min(L,maxL); % maximum length of pipes that can be reached from all accessible

vertices in time tau

42 M = floor(maxL/dx); % number of discretized segments of length dx in each pipe

43
44 %% Action times to various points in the network
45 f = cell(length(L),1); % a different action time formula for points on each pipe

46
47 % action times to pipe 1 (AD) points

48 f{1} = nan(M(1),2);

49 f{1}(:,1) = (1:M(1))'*dx./maxc;
50 f{1}(:,2) = zeros(size((1:M(1))'));
51 % action times to pipe 2 (BD) points

52 f{2} = nan(M(2),2);

53 f{2}(:,1) = zeros(size((1:M(2))'));
54 f{2}(:,2) = (1:M(2))'*dx./maxc;
55 % action times to pipe 3 (DC) points

56 f{3} = nan(M(3),2);

57 f{3}(:,1) = (L(1)+(1:M(3))'*dx)./maxc;
58 f{3}(:,2) = (L(2)+(1:M(3))'*dx)./maxc;

Let us apply Algorithm 1 next. The numerical implementation of Algorithm 2, makeHeq1, is in the
appendix.

59 %% Solve for the cross-sectional area
60 % Initialize cells for saving various vectors

61 pipeVolume = cell(length(L),1); % volume of network cut by p

62 pipeArea = cell(length(L),1); % cross-sectional area at p

63 pipeX = cell(length(L),1); % x-coordinates of points p

64
65 for P=1:length(L) % P indexes the pipe number (AD, BD, DC)
66 assert(max(max(f{P})) - tau <= dt/4, 'Travel-times must be at most tau.');
67 V = nan(M(P),1); % volume of the network up to points p

68 for p=1:M(P) % p indexes the point $p$ inside pipe P
69 % use Algorithm 2:

70 Qtau = makeHeq1(t, k, tau, f{P}(p,:), a0, g, A0, reguparam);

71 V(p) = 0;

72 % add to V the volume of water from each accessible end that would have gone INTO

the pipe to make H=1 at t=tau:

73 for ii = 1:length(Qtau)
74 V(p) = sum(Qtau{ii})*dt + V(p)

75 end
76 end
77 pipeVolume{P} = maxcˆ2/g*V;

78 pipeArea{P} = (pipeVolume{P}(2:end)-pipeVolume{P}(1:end-1))/dx;

79 pipeX{P} = (1:M(P)-1)'.*dx;
80 end

A plot of the cross-sectional areas is shown in Figure 3.

Mathematics in Engineering Volume 1, Issue 4, 849–880.



866

0 100 200 300 400
0.85

0.9

0.95

1

1.05

1.1

x (m)

A
(x

) 
(m

2 )

Pipe AD

0 50 100 150 200 250 300
0.85

0.9

0.95

1

1.05

1.1

x (m)

A
(x

) 
(m

2 )

Pipe BD

0 200 400 600 800 1000
0.9

0.95

1

1.05

1.1

1.15

x (m)

A
(x

) 
(m

2 )

Pipe DC

Reference A(x)

Estimated A(x)

Figure 3. Solved cross-sectional areas of Experiment 1.

Experiment 2 (Simulated IRM). In the second experiment we consider a star-shaped network with
four leaves, ending in points A, B,C,D. The internal node is denoted E. Let D be the inaccessible end.
Take the following lengths

AE = (0, 300 m), BE = (0, 400 m), CE = (0, 400 m), ED = (0, 500 m),

as presented in Figure 4.

300m
400m

400m
500m

A
B

CD

E

Figure 4. A more complicated network.

We set a constant wave speed of a = 1000 m s−1 everywhere and an area function that models
blockages at certain locations.

1 %% physical parameters
2 maxc = 1000; % max wave speed

3 g = 9.81; % standard gravity value (m/sˆ2)
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4 %% Network
5 V = 5; % total number of vertices

6 L = [300; 400; 400; 500]; % pipe lengths

7 Adj = [1 5; 2 5; 3 5; 5 4]; % to avoid display problems make arrows point towards

inaccessible node (nbr 4)

8 Afunc1 = @(s)( ones(size(s)) );

9 Afunc2 = @(s)( 2*ones(size(s)) - (s>350).*(s<375).*0.6);

10 Afunc3 = @(s)( ones(size(s)) - (s>210).*(s<250).*0.2);

11 Afunc4 = @(s)( ones(size(s)) - (s>410).*(s<450).*0.4 - (s>150).*(s<250).*0.2);

12
13 afunc1 = @(s)( maxc*ones(size(s)) );

14 afunc2 = @(s)( maxc*ones(size(s)) );

15 afunc3 = @(s)( maxc*ones(size(s)) );

16 afunc4 = @(s)( maxc*ones(size(s)) );

17
18 Afunc = {Afunc1; Afunc2; Afunc3; Afunc4};

19 afunc = {afunc1; afunc2; afunc3; afunc4};

20
21 BVtype = [1; 1; 1; 1; NaN]; % Are inputs pressure (0) or flow (1)

We simulate the IRM by an a finite-difference time domain (FDTD) algorithm with the following
caveats: We use a Courant number smaller than one, simulate using a high resolution, and then
interpolate the IRM to a lower time-resolution and use this as input for the inversion algorithm. This
is to avoid the inverse crime [20] which makes inversion algorithms give unrealistically good results
when applied on data simulated with the same resolution or model as the inversion algorithm uses.

22 %% Measurements
23 % FDTD parameters

24 dx = 5;

25 courant = 0.95;

26 dt = courant*dx/maxc;

27 experiment_duration = 1.9;

28 doPlot = 0; % do we want to observe the FDTD simulation

29
30 % Boundary area and wave speed. Accessible ends are 1, 2 and 3

31 A0 = [Afunc1(0); Afunc2(0); Afunc3(0)];

32 a0 = [afunc1(0); afunc2(0); afunc3(0)];

For numerical reasons instead of sending a unit impulse Q = νδ we send a unit step-function,
and then differentiate the measurements with respect to time. We will not show the implementation of
FDTD and the self-explanatory functions removeInitialPulse, medianSmooth and differentiate
because they are not the focus of this already rather long article. The main point is the inversion
algorithm.

33 t = (0:dt:experiment_duration)';
34 F = bndrySourceOn(t);

35 k = cell(3,3);

36 for ii=1:3
37 % Create input flows: constant flow at ii, otherwise zero

38 Vdata = cell(V,1);

39 for vv = 1:V
40 Vdata{vv} = zeros(size(F));

41 end
42 Vdata{ii} = F;

43
44 % Simulate the measurements with the given F
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45 [Hhist, Qhist, thist] = FDTD(L, V, Adj, BVtype, Vdata, t, ...
46 doPlot, maxc, g, dx, courant, Afunc, afunc);

47 % Remove the initial pulses and differentiate with respect to time

48 for jj=1:3
49 H = Hhist{jj};

50 if(ii==jj)
51 H = removeInitialPulse(H, thist, a0(ii), g, A0(ii));

52 end
53 % Smoothen slightly to make differentiation well behaved

54 H = medianSmooth(H, floor(0.02/(thist(2)-thist(1))));

55 H = differentiate(H, thist);

56 k{ii,jj} = H;

57 end
58 end
59
60 % Avoid the inverse crime by interpolation to a lower resolution

61 dx = 7;

62 dt = dx / maxc;

63 t = (thist(1): dt : experiment_duration)';
64 for ii=1:size(k,1)
65 for jj=1:size(k,2)
66 k{ii,jj} = interp1(thist, k{ii,jj}, t);

67 end
68 end

The simulation gives us the following response matrix, as shown in Figure 5.
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Figure 5. IRM for Experiment 2.

Now solving the inverse problem has the same logic as in Experiment 1. There are two differences,
a large one and a small one. The former is that the action time functions are of course different. This is
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what encodes the network topology for the inversion algorithm. And secondly we must use quite a lot
of regularization when solving for the area of ED. This is because of the “numerical error” introduced
on purpose by the Courant number smaller than one and interpolating the measurements to avoid doing
an inverse crime.

69 %% Set parameters
70 reguparam = [1e-5, 1e-5, 1e-5, 1e0]; % regularization parameter to Tikhonov

regularization in various pipes

71 tau = 0.9;

72
73 %% x-discretization
74 maxL = [L(1); L(2); L(3); tau*maxc - max([L(1) L(2) L(3)])];

75 maxL = min(L,maxL); % maximum length of pipes that can be reached from all accessible

vertices in time tau

76 M = floor(maxL/dx); % Number of discretized segments of length dx in each pipe

77 f = cell(length(L),1);

78
79 %% Action times to various points in the network
80 % action times to pipe 1 (AE) points

81 f{1} = nan(M(1),3);

82 f{1}(:,1) = (1:M(1))'*dx./maxc;
83 f{1}(:,2) = zeros(size((1:M(1))'));
84 f{1}(:,3) = zeros(size((1:M(1))'));
85 % action times to pipe 2 (BE) points

86 f{2} = nan(M(2),3);

87 f{2}(:,1) = zeros(size((1:M(2))'));
88 f{2}(:,2) = (1:M(2))'*dx./maxc;
89 f{2}(:,3) = zeros(size((1:M(2))'));
90 % action times to pipe 3 (CE) points

91 f{3} = nan(M(3),3);

92 f{3}(:,1) = zeros(size((1:M(3))'));
93 f{3}(:,2) = zeros(size((1:M(3))'));
94 f{3}(:,3) = (1:M(3))'*dx./maxc;
95 % action times to pipe 4 (ED) points

96 f{4} = nan(M(4),3);

97 f{4}(:,1) = (L(1)+(1:M(4))'*dx)./maxc;
98 f{4}(:,2) = (L(2)+(1:M(4))'*dx)./maxc;
99 f{4}(:,3) = (L(3)+(1:M(4))'*dx)./maxc;

Then applying Algorithm 1 gives the solution as before.

100 %% Solve for the cross-sectional area
101 % Initialize cells for saving various vectors

102 pipeVolume = cell(length(L),1); % volume of network cut by p

103 pipeArea = cell(length(L),1); % cross-sectional area at p

104 pipeX = cell(length(L),1); % x-coordinate of points p

105
106 for P=1:length(L) % P indexes the pipe number (AE, BE, CE, ED)
107 assert(max(max(f{P})) - tau <= dt/4, 'Travel-times must be at most tau.');
108 V = nan(M(P),1); % volume of the network up to points p

109 for p=1:M(P) % p indexes the point $p$ inside pipe P
110 Qtau = makeHeq1(t, k, tau, f{P}(p,:), a0,g,A0, reguparam(P));

111 V(p) = 0;

112 % add to V the total volume of water from accessible end that would have gone INTO

the pipe to make H=1 at t=tau.

113 for ii = 1:length(Qtau)
114 V(p) = sum(Qtau{ii})*dt + V(p);

115 end
116 end
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117 pipeVolume{P} = maxcˆ2/g*V;

118 pipeArea{P} = (pipeVolume{P}(2:end)-pipeVolume{P}(1:end-1))/dx;

119 pipeX{P} = (1:M(P)-1)'.*dx;
120 end

The solution is displayed in Figure 6. The gray uniform line represents the original cross-sectional
area. The dashed line is the solution to the inverse problem.
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Figure 6. Solved cross-sectional areas of Experiment 2.

6. Discussion and conclusions

We have developed and implemented an algorithm that reconstructs the internal cross-sectional area
of pipes, filled with fluid, in a network arrangement. The region where the area is reconstructed must
form a tree network and the input to our algorithm is the impulse-response measurements on all of
the tree’s ends except for possibly one. The algorithm involves solving a boundary integral equation
which is mathematically solvable in the case of perfect measurements and model (see the appendix).
We wrote a step-by-step reconstruction algorithm and tested it using two numerical examples. The first
one has a perfectly discretized measurement, and the second one has a discretization and numerical
error introduced on purpose. Even with these errors, which are very typical when doing real-world
measurements, Tikhonov regularization allows us to reconstruct the internal cross-sectional area with
good precision. However this is just a first study of this algorithm, and a more in-depth investigation
would be required for a more complete picture of its ability in the case of noise and other errors in the
data. The theory is based on our earlier work [3] on solving for the area of one pipe, and on an iterative
time-reversal boundary control algorithm [14] in the context of multidimensional manifolds.
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We assumed in several places that the wave speed a(x) is a known constant. What if it is not? We
considered this situation for a single pipe in our previous article, [3]. In there, if the area is known and
the speed is unknown, then the algorithm can be slightly modified to determine the wave speed profile
along the pipe. If both the wave speed and the area are unknown then it can determine the hydraulic
impedance Z = a/gA as a function of the travel-time coordinate. However this is not so straightforward
for the network case because of the more complicated geometry. What one should do first is find an
algorithm to solve this problem: the wave speed is constant and known, the area is unknown, the
topology of the network is known, but the pipe lengths are unknown. We leave this problem for future
considerations as this article is already quite long. But it is an important question, because in fact in
some applications the anomaly is the loss in pipe thickness rather than the change in pipe area and this
is often revealed by finding the wave speed along the pipes assuming that the area remains unchanged
[21].

In Experiment 1 we did not use regularization and the solution was perfect, as shown in Figure 3.
However here we had the simplest tree network, the simplest area formula, and perfectly discretized
measurements.

In Experiment 2 we simulated the measurements using a finite difference time domain (FDTD)
method with Courant number smaller than one. Using Tikhonov regularization was essential, and
produced the reconstruction shown in Figure 6. Without regularization one would get a large artifact,
as in Figure 7.
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Figure 7. Solving without regularization.

The reasons for using imperfect measurements are to demonstrate the algorithm’s stability. We
could have calculated the impulse-response matrix using the more exact method of characteristics.
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However in reality, when dealing with data from actual measurement sensors, one would never get
such perfect inputs to the inversion algorithm. First of all there are modelling errors, and secondly,
measurement noise. By using FDTD with a small Courant number and also by inputting measurements
with a rougher discretization than in the direct model we purposefully seek to avoid inverse crimes, as
described in Section 1.2 of [20].

An inverse crime happens when the measurement data is simulated with the same model as the
inversion algorithm assumes. Typically in these cases the numerical reconstruction looks
unrealistically good, even with added measurement noise, and therefore does not reflect the method’s
actual performance in real life, where models are always approximations.

Several directions of investigation still remain open. A more in-depth numerical study should be
concluded, with proper statistical analysis and for example finding the signal to noise ratio that still
gives meaningful reconstructions. There is also the issue of measuring the impulse-response matrix.
It would be very much appreciated if there was no need to actually close almost all the valves in
the network to perform measurements. Hence one could investigate various other types of boundary
measurements and see how to process them to reveal the impulse-response matrix used here. To make
even further savings in assessing the water supply network’s condition, one could also try implementing
the theory from [10] as an algorithm. Their theoretical result only requires the so-called “backscattering
data” from the network: instead of having to measure the full impulse-response matrix (Ki j)N

i, j=1 it would
be enough to measure its diagonal (Kii)N

i=1. This means that the pressure needs to be measured only at
the same pipe end as the flow is injected. So the exact same type of measurement as is done for a single
pipe, as in [3], should be done at each accessible network end. For a network with N + 1 ends this
translates into N measurements compared to the N2 for the full IRM.

Lastly we comment on our algorithm. What is interesting about it, is that there is no need to solve
the area in the whole network at the same time. To save on computational costs one could for example
reconstruct the cross-sectional area only in a small region of interest in a single pipe even when the
network is otherwise quite large. Alternatively one could parallelize the process and solve for the whole
network very fast using multiple computational cores. These would likely be impossible when having
only the backscattering data described above.

The steps in Algorithms 1 and 2 describe the reconstruction process in detail. In essence only a
single matrix inversion (or least squares or other minimization) is required for solving the area at any
given point in the network. The size of this matrix depends on how finely the impulse-response matrix
has been discretized, and how far from the boundary this point is. The rougher the discretization, the
faster this step. However having a poor discretization leads to a larger numerical error, and one might
then need to use a regularization scheme. All the numerical examples in this article were performed
with an office laptop from 2008, and they took a few minutes to calculate including simulating the
measurements. The algorithm is computationally light, simple to implement, and thus suitable for
practical applications.
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Appendix

Existence of a solution

We give a list of the steps involved in proving that the equation in Theorem 3.5 has a solution when
the impulse-response matrix has been measured exactly and there is no modelling errors. Since the
ultimate goal for our work is on assessing the quality of water supply network pipes, in the end there
will be both modelling errors and measurement noise, so we will not give a complete formal proof.
However we give enough details so that any mathematician specialized in the wave equation can fill
the gaps after choosing suitable function space classes and assumptions for the various objects.

1. Given p ∈ G\J which defines the admissible set Dp and action time f according to Definition 3.1,
and with τ > max f and h0 > 0, we want to solve

h0 =
a

A(x j)
ν(x j)Qp(t, x j)

+
∑

xi∈∂G\J

ν(xi)
2

∫ τ

0
Qp(s, xi)

(
ki j(|t − s|) + ki j(2τ − t − s)

)
ds

when τ − f (x j) < t ≤ τ, x j ∈ ∂G \ {x0}, and Qp(s, x j) = 0 when t ≤ τ − f (x j), x j ∈ G \ {x0}.

2. We extend boundary data from the interval (0, τ) to (−∞,+∞) and also absorb the interior
boundary normal, by writing

Qp(t, x j) =


ν(x j)Qp(t, x j), 0 ≤ t ≤ τ,

ν(x j)Qp(2τ − t, x j), τ < t ≤ 2τ,
0, otherwise.

3. Solving

h̃0(t, x j) =
a

A(x j)
Qp(t, x j)
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+
∑

xi∈∂G\J

χ(t, x j)
2

∫ 2τ

0
Qp(s, xi)ki j(|t − s|)ds

in

L2
0 =

{
F ∈ L2(R × ∂G \ {x0})

∣∣∣∣
F(t, x j) = 0 if |t − τ| ≥ f (x j), F(2τ − t, x j) = F(t, x j)

}
where

χ(t, x j) =

1, |t − τ| < f (x j),
0, |t − τ| ≥ f (x j),

h̃0(t, x j) = h0χ(t, x j)

is equivalent to solving the equation of Item 1 in the corresponding L2-based space. We equip L2
0

with the inner product

〈A, B〉 =
∑

x j∈∂G\J

∫ 2τ

0
A(t, x j)B(t, x j)dt

where the complex conjugation can be ignored because all of our numbers are real.

4. The equation in Item 3 can be written as h̃0 = K Qp in L2
0. Here we define the operator K by

K F(t, x j) =
a

A(x j)
F(t, x j)

+
∑

xi∈∂G\J

χ(t, x j)
2

∫ 2τ

0
F(s, xi)ki j(|t − s|)ds

and it is a well-defined operator if ki j is a distribution of order 0 which is the case if the cross-
sectional area function A is piecewise smooth for example. It indeed maps L2

0 → L2
0 satisfying the

support and time-symmetry conditions.

5. We will show that K is a Fredholm operator L2
0 → L2

0 that is positive semidefinite.

6. Recall the travel-time function TT , the action time function f and the admissible set Dp from
Item 1. Define

Ω =
{
(t, x) ∈ R × G

∣∣∣∣
TT (x, x j) + |t − τ| < f (x j) for some x j ∈ ∂G \ {x0}

}
,

t±(x) = τ ± max
x j∈∂G\{x0}

(
f (x j) − TT (x, x j)

)
.

The set Ω coincides with the set where unique continuation from the boundary holds, as in
Proposition 3.4. One can show that

Ω = {(t, x) ∈ R × G | x ∈ Dp, t−(x) < t < t+(x)}.

7. Let F ∈ L2
0 be given and fixed. Let H,Q : R × G → R satisfy the network wave model of

Definition 2.3 with boundary flow F.
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8. We see that H(t, x) = Q(t, x) = 0 when x ∈ Dp and t ≤ t−(x). This follows from the zero initial
conditions, finite speed of wave propagation and the definition of t± and the action time function
f .

9. Define

S =

√
gA
a

H +
µ
√

gA
Q

where µ(x) = +1 if the positive direction of the coordinates at x points towards p, and µ(x) = −1
otherwise. Then one sees that (

∂x −
µ

a∂t
)
(QH) = −

1
2
∂t(S 2)

in t ∈ R, x ∈ G \ J.

10. By Items 6, 8 and 9 we see that

−
1
2

∫
Ω

∂t(S 2)dtdx = −
1
2

∫
Dp

(
S 2(t+(x), x) − S 2(t−(x), x)

)
dx

= −
1
2

∫
Dp

S 2(t+(x), x)dx ≤ 0.

11. By Items 9 and 10 and the divergence theorem we have

0 ≥
∫

Ω

(
∂x −

µ

a∂t
)
(QH)dtdx =

∫
Ω

∇t,x ·
(
−

µ

a QH,QH
)
dtdx

=

∫
∂Ω

νt,x ·
(
−

µ

a , 1
)
QHdσ(t, x)

where νt,x is the external unit normal vector to Ω at (t, x) ∈ ∂Ω.

12. Let us split ∂Ω next. By Item 6 we see that

∂Ω = {(t, x j) | x j ∈ ∂G \ {x0}, |t − τ| ≤ f (x j)}
∪ {(t, x) | x ∈ Dp, t = t+(x)} ∪ {(t, x) | x ∈ Dp, t = t−(x)}
∪ {(τ, p)}.

13. On the first set in Item 12 the external unit normal νt,x j is given by νt,x j = (0,−ν(x j)) because ν
was defined as the internal normal at the pipe ends.

14. Consider the second set in Item 12. On each individual pipe segment P ⊂ Dp the map x 7→ t+(x)
is linear (affine). How does t+ change when we go from x to x + ∆x? Recall that |∆x| = a |∆t|,
and since (t+(x), x) follows the characteristics, so t+(x + ∆x) = t+(x)±∆x/a. Its value decreases if
∆x > 0 and the positive direction of the coordinates x point towards p. Both of these follow from
Item 6 and the definition of the action time function f . By the definition of µ in Item 9 we see that

∆x
t+(x + ∆x) − t+(x)

= −
a
µ
.
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Thus the normal has a slope of µ/a and so

νt,x =
(a, µ)√
a2 + µ2

=
(a, µ)
√

1 + a2
.

15. By Items 7, 8 and 10 to 14 we get

0 ≥ −
1
2

∫
Dp

S 2(t+(x), x)dx =

∫
∂Ω

νt,x ·
(
−

µ

a , 1
)
QHdσ(t, x)

=
∑

x j∈∂G\J

∫ τ+ f (x j)

τ− f (x j)
−F(t, x j)H(t, x j)dt

+

∫
Dp

(a, µ)
√

1 + a2
·
(
−

µ

a , 1
)
(QH)(t+(x), x)dx

+

∫
Dp

νt,x ·
(
−

µ

a , 1
)
(QH)(t−(x), x)dx + 0

which gives ∑
x j∈∂G\J

∫ 2τ

0
F(t, x j)H(t, x j)dt =

1
2

∫
Dp

S 2(t+(x), x)dx ≥ 0

by the support condition of F ∈ L2
0 given in Item 3. In detail we see that the Dp-integrals vanish

because of the following. Firstly we see that (a, µ) · (−µ/a, 1) = 0 making the first integral over
Dp vanish. Secondly, by Item 8, (QH)(t−(x), x) = 0 for x ∈ Dp. The integral over the singleton
(t, s) = (τ, p) is zero because QH is a function since F is too.

16. Recall Equation (2.10) and the splitting of the IRM K into the impulse and response matrices in
Theorem 3.5. Thus

H(t, x j) =
a

A(x j)g
F(t, x j) +

∑
xi∈∂G\{x0}

∫ t

0
F(s, xi)ki j(t − s)ds.

17. Combining Items 15 and 16 and changing the order of integration in double integrals, we arrive
at

〈K F, F〉 =
1
2

∫
Dp

S 2(t+(x), x)dx ≥ 0

for arbitrary F ∈ L2
0 and where S ,H,Q are defined by Items 7 and 9.

18. We cannot show that K F = 0 implies F = 0 unless the network is a single pipe. For a counter
example choose a three-pipe network with constant unit area and wave speed, and each pipe is
of unit length. Then send a pulse from one end and the same with opposite sign from another
end. These pulses meet at the junction at the exact same time and cancel out the pressure there,
so nothing propagates to the third pipe. Then they continue on the original two pipes until they
hit the boundaries. The boundary flow F should be then chosen so that these pulses are absorbed
completely instead of reflecting back. This boundary flow F gives 〈K F, F〉 = 0 by Item 17, but
F , 0.
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19. The existence of a solution follows from the following: that K is self-adjoint and Fredholm, and
that h̃0 ⊥ ker K , so then there is F giving K F = h̃0. We shall show these next.

20. If we assume that A(x) is smooth enough, then the components of the response matrix (ki j)N
i, j=1

have at most a finite number of delta-functions arising from the junctions of G (in the time-
interval (0, 2τ)), and are otherwise a function. Hence K can be split into a multiplication by
nonvanishing functions, a finite number of translations that are also multiplied by such functions,
and a smoothing integral operator which is compact L2

0 → L2
0. The identity and translations

multiplied by non-vanishing functions are Fredholm operators, and the rest is compact. Hence
the whole K is Fredholm. The space L2

0 is Hilbert, and K is easily seen to be symmetric there
because ki j = k ji. It is a bounded operator. Hence it is self-adjoint. Thus K is a self-adjoint
Fredholm operator.

21. Let w(s) =
∫
G

H(s, x) gA
a2 dx where H,Q are given by Item 7. By differentiating with respect to s,

using Equation (2.1), calculating the x-integral, and integrating with respect to s we see that∫
Dp

H(τ, x)
gA
a2 dx = w(τ) =

∑
x j∈∂G\{x0}

∫ τ

0
ν(x j)Q(s, x j)ds

because Q = 0 near the boundary point x0 up to time τ. This is the same as in Equation (3.1).

22. Let F ∈ L2
0 with K F = 0 and H,Q as in Item 7. Set h0 = 0 in Theorem 3.5 to conclude that

H(τ, x) = 0 for x ∈ G. Recall that the equations in that theorem are formulated using K here (see
Item 3).

23. The time-symmetry of F ∈ L2
0 gives the first equality below. Items 21 and 22 give the second and

third equality, respectively. So

〈h̃0, F〉 =
∑

x j∈∂G\{x0}

2h0

∫ τ

0
F(s, x j)ds = 2h0

∫
Dp

H(τ, x)
gA
a2 dx = 0.

Hence h̃0 ⊥ ker K = ker K ∗, the latter because of self-adjointness, so

h̃0 ∈ (ker K ∗)⊥ = ran K = ran K

because the range of a Fredholm operator is closed. In other words there is F ∈ L2
0 such that

K F = h̃0, and thus there is a solution to the equations in Theorem 3.5.

Numerical reconstruction algorithm

We describe here the numerical implementation of Algorithm 2. Its inputs include tHist, K, the
discretized time-variable vector and cell containing the discretized components of the response matrix
k = (ki j)N

i, j=1 and f which is a vector modeling the discretized action time function. Other inputs are a0,
A0, which are vectors containing the wave speed and cross-sectional area at the boundary points of the
network, and tau, g, reguparam are scalars representing τ, the constant of gravity g, and the Tikhonov
regularization parameter used in the inversion of Equation (4.1). Its output, Qtau, is a cell whose
components are discretizations of t 7→ Qp(t, x j) that solved Equation (4.1) for the various boundary
points x j.
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1 function Qtau = makeHeq1(tHist, K, tau, f, a0, g, A0, reguparam)
2
3 dt = tHist(2)-tHist(1);

4 nBndryPts = size(K,1);

We write first the N (=nBndryPts) integral equations containing the N response function
components. This shall be indexed by j (pipe end where pressure measured) and i (pipe end where
pulse sent from). Recall the equation,

h0 =
a

A(x j)g
q(t, x j) +

N∑
i=1

1
2

∫ τ

0
q(t, xi)(ki j(|t − s|) + ki j(2τ − t − s))ds

for j = 1, . . . ,N and τ − f (x j) < t ≤ τ. But recall that we must still set q(t, x j) = 0 when t ≤ τ − f (x j).
Our numerical implementation assumes that h0 = 1.

We will write the equation above as H*q = RHS where q is a block vector where each block is
indexed by i and

qi = [q(dt, xi); q(2 dt, xi); ...; q(M dt, xi)]

with M = bτ/dtc. Each component of RHS is either h0 = 1 or 0. We do a piecewise constant
approximation of all of these functions and equations. We discretize t=l*dt, s=k*dt with
l,k=1,...,M.

5 M = floor(tau/dt); % Number of time-steps of length dt in (0,tau).

6 % Discard unneeded measurements:

7 tHist = tHist(1:2*M);

8 for i = 1:nBndryPts
9 for j = 1:nBndryPts

10 K{i,j} = K{i,j}(1:2*M);

11 end
12 end
13 tVec = (1:M)*dt; lVec = 1:M;

14 sVec = (1:M)*dt; kVec = 1:M;

15 [t,s] = ndgrid(tVec,sVec);

16 [l,k] = ndgrid(lVec,kVec);

Set the tolerance for floating point numbers next. If two numbers are at most tolerance from each other,
then they are considered the same. Without doing this, some numerical errors might happen when
comparing two floating point numbers that are close to each other. This would cause errors of the order
of dx in the area reconstruction. We can now start discretizing the integral equation.

17 tol = dt/4;

18 Mij = nan(M,M); % Block (j,i) of matrix H

19 H = nan(nBndryPts*M, nBndryPts*M); % The linear operator

20 h0j = nan(M,1); % Block of RHS corresponding to j

21 RHS = nan(nBndryPts*M,1); % The RHS vector having 1 ' s or 0 ' s
22 for j = 1:nBndryPts
23 h0j = ones(M,1);

24 h0j((tVec - (tau - f(j)) <= tol)) = 0;

25 RHS( (j-1)*M + (1:M) ) = h0j;

26 for i = 1:nBndryPts
27 % Use 2*M-(l-1)-(k-1)=2*M+2-l-k for the time-reversal.

28 Mij = 0.5 * dt * ( K{i,j}(1+abs(l-k)) + K{i,j}(2*M+2-l-k) );
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Recall that q(s, xi) must be zero when s ≤ τ− f (xi). Hence the columns of the matrix that hit the indices
corresponding to s ≤ τ − f (xi) should be zero. Similarly, when t ≤ τ − f (x j) we want the equation to
give q(t, x j) = 0, so the part coming from the integral must be zeroed. Then add the “identity”-type
part of the integral equation, and save the block into the final matrix.

29 Mij((s - (tau - f(i)) <= tol)) = 0;

30 Mij((t - (tau - f(j)) <= tol)) = 0;

31 if i==j
32 Mij = Mij + a0(j)/(A0(j)*g) .* eye(M);

33 end
34 H( (j-1)*M + (1:M), (i-1)*M + (1:M) ) = Mij;

35 end
36 end

Next, we solve the integral equation for q using Tikhonov regularization. The simplest way would be
to set

q = [H; sqrt(reguparam)*eye(size(H))] \ [RHS; zeros(size(RHS))];

but it is unnecessarily slow. For a faster solution we first remove all the rows and columns which
would look like 0 = 0. The vector nz shows the indices that are not forced to be zero, i.e., those where
τ − f (xi) < s. Then we remove the corresponding rows and columns from H. Then solve the equation.

37 nz = false(nBndryPts*M,1);

38 for i=1:nBndryPts
39 nz( (i-1)*M + (1:M) ) = ((sVec - (tau - f(i))) > tol);

40 end
41 H = H(nz, nz);

42 qnz = [H; sqrt(reguparam)*eye(size(H))] ...
43 \ [RHS(nz); zeros(size(RHS(nz)))];

44 q = zeros(nBndryPts*M,1);

45 q(nz) = qnz;

Finally split the vector q into a cell whose components correspond to the boundary flows at the different
boundary points.

46 Qtau = cell(nBndryPts , 1);

47 for i=1:nBndryPts
48 Qtau{i} = q( (i-1)*M + (1:M) );

49 end
50
51 end
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