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PREFACE

The MaxSAT Evaluations (https://maxsat-evaluations.github.io) are a series of
events focusing on the evaluation of current state-of-the-art systems for solving optimization
problems via the Boolean optimization paradigm of maximum satisfiability (MaxSAT). Or-
ganized yearly starting from 2006, the year 2019 brought on the 14th edition of the MaxSAT
Evaluations. Some of the central motivations for the MaxSAT Evaluation series are to pro-
vide further incentives for further improving the empirical performance of the current state
of the art in MaxSAT solving, to promote MaxSAT as a serious alternative approach to
solving NP-hard optimization problems from the real world, and to provide the community
at large heterogenous benchmark sets for solver development and research purposes. In
the spirit of a true evaluation—rather than a competition, unlike e.g. the SAT Competi-
tion series—no winners are declared, and no awards or medals are handed out to overall
best-performing solvers.

The 2019 instantiation of the evaluation series follows closely the revised arrangements
brought on by the new organization team in 2017.

The 2019 evaluation consisted of a total of three tracks: two for complete solvers (one for
solvers focusing on unweighted and one for solvers focusing on weighted MaxSAT instances)
and a special track for incomplete MaxSAT solvers (using two short per-instance time limits,
60 and 300 seconds, differentiating from the per-instance time limit of 1 hour imposed in
the main complete tracks). As in 2017-2018, no distinction was made between “industrial”
and “crafted” benchmarks, and no track for purely randomly generated MaxSAT instances
was organized.

Adhering to the new rules introduced in 2017, solvers were now required to be open-
source, and the source codes of all participating solvers were made available online on the
evaluation webpages after the evaluation results were presented at the SAT 2019 conference.
Furthermore, a 1-2 page solver description was required for each solver submission, to
provide some details on the search techniques implemented in the solvers. The solvers
descriptions together with descriptions of new benchmarks for 2019 are collected together
in this compilation.

Finally, we would like to thank everyone who contributed to MaxSAT Evaluation 2019 by
submitting their solvers or new benchmarks. We are also grateful for the computational
resources provided by the StarExec initiative which enabled running the 2019 evaluation
smoothly.

Fahiem Bacchus, Matti Järvisalo, & Ruben Martins
MaxSAT Evaluation 2019 Organizers
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Pacose: An Iterative SAT-based MaxSAT Solver
Tobias Paxian, Sven Reimer, Bernd Becker

Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ paxiant | reimer | becker }@informatik.uni-freiburg.de

Abstract—Pacose is a SAT-based MaxSAT solver using a
CNF encoding for Pseudo-Boolean (PB) constraints [1]. It is an
extension of the model guided QMaxSAT1702 [2] solver based on
Glucose 3.0 [3] SAT solver. It uses a simple heuristic to choose
between the Binary Adder [4] encoding of QMaxSAT and the
Dynamic Global Polynomial Watchdog (DGPW) encoding which
is based on [5].

Index Terms—MaxSAT Solver, QMaxSAT, Glucose, Dynamic
Global Polynomial Watchdog

I. TITLE

We use a new constraint encoding for PB-constraints solving
the weighted MaxSAT problem with iterative SAT-based meth-
ods based on the Polynomial Watchdog (PW) CNF encoding
called DGPW. The watchdog of the PW encoding indicates
whether the bound of the PB constraint holds. In our approach,
we lift this static watchdog concept to a dynamic one allowing
an incremental convergence to the optimal result. Conse-
quently, we formulate and implement a SAT-based algorithm
for our new Dynamic Polynomial Watchdog (DPW) encoding
which can be applied for solving the MaxSAT problem.
Furthermore, we introduce three fundamental optimizations of
the PW encoding also suited for the original version leading
to significantly less encoding size.

We integrated this encoding into QMaxSAT (2nd place in
the last MaxSAT Evaluation 2017) and adapt the heuristic of
QMaxSAT to choose between the Binary Adder encoding of
QMaxSAT and our DGPW approach.

REFERENCES

[1] T. Paxian, S. Reimer, and B. Becker, “Dynamic polynomial watchdog
encoding for solving weighted maxsat,” Theory and Applications of
Satisfiability Testing–SAT 2018, 2018.

[2] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A
partial Max-SAT solver system description,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 8, pp. 95–100, 2012.

[3] G. Audemard and L. Simon, “On the glucose sat solver,” International
Journal on Artificial Intelligence Tools, vol. 27, no. 01, p. 1840001, 2018.

[4] J. P. Warners, “A linear-time transformation of linear inequalities into
conjunctive normal form,” Information Processing Letters, vol. 68, no. 2,
pp. 63–69, 1998.

[5] O. Bailleux, Y. Boufkhad, and O. Roussel, “New encodings of pseudo-
boolean constraints into CNF,” in International Conference on Theory
and Applications of Satisfiability Testing. Springer, 2009, pp. 181–194.

This work is partially supported by the DFG project Algebraic Fault Attacks
(funding id PO 1220/7-1, BE 1176 20/1, KR 1907/6-1).

MaxSAT Evaluation 2019: Solver and Benchmark Descriptions, volume B-2019-2 of Department of Computer Science Series of Publications B, University of Helsinki 2019.

9



QMAXSAT in MaxSAT Evaluation 2018
Aolong Zha

Faculty of Information Science and Electrical Engineering
Kyushu University

744 Motooka, Nishi-ku, Fukuoka, Japan
cyouryuuryuu@gmail.com

QMAXSAT is a satisfiability-based solver, which uses CNF
encoding of pseudo-Boolean (PB) constraints [1]. The effi-
ciency of MaxSAT solvers depends on critically on which
SAT solver we use and how we encode the PB constraints. The
QMAXSAT is obtained by adapting a CDCL based SAT solver
GLUCOSE 3.0 [2], [3]. In addition, we introduce a new encod-
ing method, called n-level modulo totalizer encoding in to our
solver. This encoding is a hybrid between Modulo Totalizer
(MTO) [4] and Weighted Totalizer (WTO) [5], incorporating
the idea of mixed radix base [6].

Let φ = {(C1, w1), . . . , (Cm, wm), Cm+1, . . . , Cm+m′} be
a MaxSAT [7] instance where Ci is a soft clause with weight
wi (i = 1, . . . ,m) and Cm+j is a hard clause (j = 1, . . . ,m′).
We added a new blocking variable, bi, to each soft clause
Ci(i = 1, . . . ,m). Solving the MaxSAT problem for φ is
reduced to finding a SAT model of φ′ = {C1 ∨ b1, . . . , Cm ∨
bm, Cm+1, . . . , Cm+m′}, which minimizes

∑m
i=1 wibi.

Such SAT models are obtained using a SAT solver as
follows: Run the SAT solver to get an initial model and
calculate k =

∑
i wibi in it, add PB constraint

∑
i wibi < k,

and run the solver again. If φ′ is unsatisfiable, then φ is also
unsatisfiable as the MaxSAT problem. Otherwise, the process
is repeated with the new smaller solution. The latest model is
a MaxSAT solution of φ. QMAXSAT leaves the manipulation
of the PB constraints to GLUCOSE by encoding them into SAT.

We introduce a hybrid encoding [8] which inherits modular
arithmetic from MTO and distinct combinations of weights
from WTO. The latter is essentially the same as Generalized
Totalizer, which only generate auxiliary variables for each
unique combination of weights. We also enhanced the encod-
ing by multi-level modulo arithmetic based on a mixed radix
numeral system [9]. This encoding method always produces a
polynomial-size CNF in the number of input variables.

It is important to find a suitable mixed radix base with
low time-consumption that reduces the number of auxiliary
variables for our new encoding. We select the integer whose
rate of divisibility is the highest for all weights1 as the suitable
modulus for each digit. Furthermore, we also add other heuris-
tics tailored in our implementation, such as evaluating and
voting for the candidates of modulus, dynamically adjusting
the lower limit of the required rate of divisibility, etc.

1Before selecting the next modulus, we update all the weights to their
quotients of dividing the previous selected modulus.

REFERENCES

[1] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A
Partial Max-SAT Solver,” JSAT, vol. 8, no. 1/2, pp. 95–100, 2012.

[2] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in Mod-
ern SAT Solvers,” in IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–404.

[3] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–
518.

[4] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita, “Modulo
Based CNF Encoding of Cardinality Constraints and Its Application to
MaxSAT Solvers,” in 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, Herndon, VA, USA, November 4-6, 2013.
IEEE Computer Society, 2013, pp. 9–17.

[5] S. Hayata and R. Hasegawa, “Improvement in CNF Encoding of Cardi-
nality Constraints for Weighted Partial MaxSAT,” SIG-FPAI, in Japanese,
vol. 4, no. 04, pp. 85–90, 2015.

[6] M. Codish, Y. Fekete, C. Fuhs, and P. Schneider-Kamp, “Optimal Base
Encodings for Pseudo-Boolean Constraints,” in Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference,
TACAS 2011, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, ser. Lecture Notes in Computer Science,
P. A. Abdulla and K. R. M. Leino, Eds., vol. 6605. Springer, 2011, pp.
189–204.

[7] C. M. Li and F. Manyà, “MaxSAT, Hard and Soft Constraints,” in
Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence and
Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds.
IOS Press, 2009, vol. 185, pp. 613–631.

[8] A. Zha, M. Koshimura, and H. Fujita, “A Hybrid Encoding of Pseudo-
Boolean Constraints into CNF,” in Conference on Technologies and Ap-
plications of Artificial Intelligence, TAAI 2017, Taipei, Taiwan, December
1-3, 2017. IEEE, 2017, pp. 9–12.

[9] A. Zha, N. Uemura, M. Koshimura, and H. Fujita, “Mixed Radix Weight
Totalizer Encoding for Pseudo-Boolean Constraints,” in 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence, Boston,
MA, USA, November 6-8, 2017. IEEE Computer Society, 2017, pp.
868–875.
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UWrMaxSat - a new MiniSat+-based Solver in
MaxSAT Evaluation 2019

Marek Piotrów
Institute of Computer Science, University of Wrocław

Wrocław, Poland
marek.piotrow@uwr.edu.pl

Abstract—UWrMaxSat is a new MiniSat+-based solver parti-
cipating in MaxSAT Evaluation 2019. It has been created recently
at the University of Wrocław. It is a complete solver for partial
weighted MaxSAT instances. It incrementally uses COMiniSatPS
by Chanseok Oh (2016) as an underlying SAT solver, but may
be compiled with other MiniSat-like solvers. It was developed on
the top of our PB-solver (called kp-minisatp) that was presented
at Pragmatics of SAT 2018 and which is an extension of the well-
known MiniSat+ solver. In its main configuration, UWrMaxSat
applies an unsatisfiability-core-based OLL procedure and uses
the kp-minisatp sorter-based pseudo-Boolean constraint encoding
to translate new cardinality constraints into CNF.

Index Terms—MaxSAT-solver, UWrMaxSAT, COMiniSatPS,
sorter-based encoding, core-guided, complete solver

I. INTRODUCTION

At Pragmatics of SAT 2018 workshop, Michał Karpiński
and Marek Piotrów presented a new pseudo-Boolean constraint
solver called kp-minisatp [8] that was created as an extension
of MiniSat+ 1.1 solver by Eén and Sörensson (2012) [6].
In the solver we replaced the encoding based on odd-even
sorting networks by a new one using our construction of
selection networks called 4-Way Merge Selection Networks
[9]. We also optimized mixed radix base searching procedure
and added a few other optimizations based on literature. Our
experiments showed that the solver is competitive to other
state-of-art solvers.

Believing that the encoding can be also used in MaxSAT
solvers, I have implemented such a solver on the top of kp-
minisatp and the result called UWrMaxSat is submitted to
MaxSAT Evaluation 2019.

II. DESCRIPTION

The solver is prepared to be compiled with one of a
few MiniSat-like SAT solvers: COMiniSatPS by Chanseok
Oh (2016), Glucose 4.1 (2016) and 3.0 (2013) by Gilles
Audemard and Laurent Simon [3], and original Minisat 2.2
(2010) by Niklas Eén and Niklas Sörensson [4]. The first
one was selected as the default SAT solver and it is used
incrementally with the help of assumptions [5]. Other MiniSat-
like SAT solvers can be also applied, because the interface
between UWrMaxSAT and a SAT solver is small and defined
by MiniSat.

Three different core-guided searching strategies have been
implemented in the solver: a linear unsat-sat one, a linear
sat-unsat one and a binary search sat-unsat one. The first

one was selected as default and it was optimized much more
than the others. In order to process unsatisfiability cores in
the default strategy we select the OLL procedure [1] and
encode its cardinality constraints by our encoding based on 4-
Way Merge Selection Network. The encoding uses also Direct
Networks for constraints with a small number of literals [2]. A
core is minimized [11] before it is converted into a cardinality
constraint.

In case of weighted instances, several other optimization
techniques are applied:

• A stratification technique: Soft clauses are sorted and
grouped by weights; the groups of relaxed soft clauses
are delivered to the SAT solver gradually, starting from
ones with the largest weights. We use only one relaxation
variable per non-unit soft clause.

• A hardening technique: The algorithm refines both lower
and upper bounds on the weight of a solution. Base on
their values, the heaviest soft clauses can be transformed
into hard ones.

• A BMO technique [10]: Some weighted instances can
encode multi-objective problems and the optimality cri-
terion is lexicographic. Such instances are detected and
the search procedure is optimized accordingly.

• A preprocessing technique: Soft clauses can be prepro-
cess to detect unit cores and at-most-one cores. Such
cores are encoded in a more efficient way (implemented
based on the code of RC2, see [7]).

• A mixed strategy technique: If the linear unsat-sat search-
ing is unsuccessful for a predefined time, it can be
switched to the binary searching without restarting the
SAT solver.

Finally, the solver can deal with unbounded integer weights
when it is compiled with the -D BIG WEIGHTS option.

III. ACKNOWLEDGMENTS

I would like to thank Chankseok Oh for allowing me to use
COMiniSatPS in the MaxSAT Evaluation. I would like also to
thank Niklas Eén and Niklas Sörensson for the development
of MiniSat 2.2 and MiniSat+ 1.1.
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MaxHS in the 2019 MaxSat Evaluation

Fahiem Bacchus
Department of Computer Science

University of Toronto
Ontario, Canada

Email: fbacchus@cs.toronto.edu

1. MaxHS

MaxHS is a MaxSat solver that originated in the PhD
work of Davies [4]. It was the first MaxSat solver to utilize
the Implicit Hitting Set (IHS) approach, and its core com-
ponents are described in [4], [2], [3], [5]. Additional useful
insights into IHS are provided in [7], [8]. IHS solvers utilize
both an integer programming (IP) solver and a SAT solver in
a hybrid approach to MaxSat solving. MaxHS utilizes min-
isat v2.2 as its SAT solver and IBM’s CPLEX v12.8 as its
IP solver. Interestingly experiments with more sophisticated
SAT solvers like Glucose http://www.labri.fr/perso/lsimon/
glucose/ and Lingeling http://fmv.jku.at/lingeling/ yielded
inferior performance. This indicates that the SAT problems
being solved are quite simple, too simple for the more
sophisticated techniques used in these SAT solvers to pay
off. In fact, simpler SAT problems are one of the original
motivations behind MaxHS [2].

The main change in the 2019 version of MaxHS were
changes made to the Minisat assumption mechanism. In par-
ticular, the modifications described in [6] were implemented.

1.0.1. Termination based on Bounding. MaxHS maintains
an upper bound (and best model found so far) and a lower
bound on the cost of an optimal solution (the IP solver
computes valid lower bounds). MaxHS terminates when
the gap between the lower bound and upper bound is low
enough (with integer weights when this gap is less than 1,
the upper bound model is optimal). This means that MaxHS
no longer needs to wait until the IP solver returns an hitting
set whose removal from the set of soft clauses yields SAT;
it can return when the IP solver’s best lower bound is close
enough to show that the best model is optimal.

1.0.2. Early Termination of Cplex. In previous versions
of MaxHS, the IP solver was run to completion forcing it
to find an optimal solution every time it is called. However,
with bounding, optimal solutions are not always needed. In
particular, if the IP solver finds a feasible solution whose
cost is better than the current best model it can return that:
either the IP solution is feasible for the MaxSat problem, in
which case we can lower the upper bound, or it is infeasible
in which case we can obtain additional cores to augment the
IP model (and thus increase the lower bound). Terminating

the IP solver before optimization is complete can yield
significant time savings.

1.0.3. Reduced Cost fixing via the LP-Relaxation. Using
an LP relaxation and the reduced costs associated with the
optimal LP solution, some soft clauses can be hardened or
immediately falsified. See [1] for more details.

1.0.4. Mutually Exclusive Soft Clauses. Sets of soft
clauses of which at most one can be falsified or at most
one can be satisfied are detected. When all of these soft
clauses have the same weight they can all be more compactly
encoded with a single soft clause. This encoding does not
always yield better performance due to some subtle effects.
However, techniques were developed to better exploit such
information, and a fuller description of these techniques is in
preparation. With these techniques performance gains were
achieved.

1.0.5. Other clauses to the IP Solver. Problems with a
small number of variables are given entirely to the IP solver,
so that it directly solves the MaxSat problem. In this case
the SAT solver is used to first compute some additional
clauses and cores, and to find a better initial model for the
IP solver. This additional information from the SAT solver
often makes the IP solver much faster than just running the
IP solver and represents an alternate way of hybridizing SAT
and IP solvers.

1.0.6. Other techniques for finding Cores. MaxHS itera-
tively calls the IP solver to obtain a hitting set of the cores
computed so far. If that hitting set does not yield an optimal
MaxSat solution then more cores must be added to the IP
solver. In some of these iterations very few cores can be
found causing only a slight improvement to the IP solver’s
model. This results in a large number of time consuming
calls to the IP solver. Two method were developed to aid
this situation (a) we ask the IP solver for more solutions and
generate cores from these as hitting sets as well and (b) if
we have a new upper bound model we try to improve this
model by converting it to a minimal correction set (MCS). In
converting the upper bound model to an MCS we either find
a better model (lowering the upper bound) or we compute
additional conflicts that can be added to the IP solver.
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Abstract—Maxino is based on the k-ProcessCore algorithm,
a parametric algorithm generalizing OLL, ONE and PMRES.
Parameter k is dynamically determined for each processed
unsatisfiable core by a function taking into account the size of
the core. Roughly, k is in O(logn), where n is the size of the
core. Satisfiability of propositional theories is checked by means
of a pseudo-boolean solver extending Glucose 4.1 (single thread).

A VERY SHORT DESCRIPTION OF THE SOLVER

The solver MAXINO is build on top of the SAT solver
GLUCOSE [7] (version 4.1). MaxSAT instances are normalized
by replacing non-unary soft clauses with fresh variables, a
process known as relaxation. Specifically, the relaxation of
a soft clause φ is the clause φ ∨ ¬x, where x is a variable
not occurring elsewhere; moreover, the weight associated
with clause φ is associated with the soft literal x. Hence,
the normalized input processed by MAXINO comprises hard
clauses and soft literals, so that the computational problem
amounts to maximize a linear function, which is defined by
the soft literals, subject to a set of constraints, which is the
set of hard clauses.

The algorithm implemented by MAXINO to address such a
computational problem is based on unsatisfiable core analysis,
and in particular takes advantage of the following invariant:
A model of the constraints that satisfies all soft literals is an
optimum model. The algorithm then starts by searching such
a model. On the other hand, if an inconsistency arises, the
unsatisfiable core returned by the SAT solver is analyzed. The
analysis of an unsatisfiable core results into new constraints
and new soft literals, which replace the soft literals involved in
the unsatisfiable core. The new constraints are essentially such
that models satisfying all new soft literals actually satisfy all
but one of the replaced soft literals. Since there is no model
that satisfies all replaced soft literals, it turns out that the
invariant is preserved, and the process can be iterated.

Specifically, the algorithm implemented by MAXINO is K,
based on the k-ProcessCore procedure introduced by Alviano
et al. [2]. It is a parametric algorithm generalizing OLL [3],
ONE [2] and PMRES [8]. Intuitively, for an unsatisfiable core
{x0, x1, x2, x3}, ONE introduces the following constraint:

x0 + x1 + x2 + x3 + ¬y1 + ¬y2 + ¬y3 ≥ 3
y1 → y2 y2 → y3

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3). OLL introduces the following con-
straints (the first immediately, the second if a core containing

y1 is subsequently found, and the third if a core containing y2
is subsequently found):

x0 + x1 + x2 + x3 + ¬y1 ≥ 3
x0 + x1 + x2 + x3 + ¬y2 ≥ 2
x0 + x1 + x2 + x3 + ¬y3 ≥ 1

Concerning PMRES, it introduces the following constraints:

x0 ∨ x1 ∨ ¬y1 z1 ↔ x0 ∧ x1
z1 ∨ x2 ∨ ¬y2 z2 ↔ z1 ∧ x2
z2 ∨ x3 ∨ ¬y3

which are essentially equivalent to the following constraints:

x0 + x1 + ¬z1 + ¬y1 ≥ 2 z1 → y1
z1 + x2 + ¬z2 + ¬y2 ≥ 2 z2 → y2
z2 + x3 + ¬y3 ≥ 1

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3), and z1, z2 are fresh auxiliary variables.

Algorithm K, instead, introduces a set of constraints of
bounded size, where the bound is given by the chosen param-
eter k, and is specifically 2 · (k+1). ONE, which is essentially
a smart encoding of OLL, is the special case for k = ∞,
and PMRES is the special case for k = 1. For the example
unsatisfiable core, another possibility is k = 2, which would
results in the following constraints:

x0 + x1 + x2 + ¬z1 + ¬y1 + ¬y2 ≥ 3 z1 → y1 y1 → y2
z1 + x3 + ¬y3 ≥ 1

In this version of MAXINO, the parameter k is dynamically
determined based on the size of the analyzed unsatisfiable
core: k ∈ O(log n), where n is the size of the core.

The analysis of unsatisfiable core is preceded by a shrink
procedure [1]. Specifically, a reiterated progression search
is performed on the unsatisfiable core returned by the SAT
solver. Such a procedure significantly reduces the size of the
unsatisfiable core, even if it does not necessarily returns an
unsatisfiable core of minimal size. Additionally, satisfiability
checks performed during the shrinking process are subject to
a budget on the number of conflicts, so that the overhead due
to hard checks is limited. Specifically, the budget is set to the
number of conflicts arose in the satisfiability check that lead
to detecting the unsatisfiable core; if such a number is less
than 1000 (one thousand), the budget is raised to 1000. The
budget is divided by 2 every time the progression is reiterated.

Weighted instances are handled by stratification and in-
troducing remainders [4]–[6]. Specifically, soft literals are
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partitioned in strata depending on the associated weight.
Initially, only soft literals of greatest weight are considered,
and soft literals in the next stratum are added only after a
model satisfying all considered soft literals is found. When
an unsatisfiable core is found, the weight of all soft literals
in the core is decreased by the weight associated with last
added stratum. Soft literals whose weight become zero are
not considered soft literals anymore.

Finally, a preprocessing step is performed on unweighted
instances, which essentially iterates on all hard clauses of
the input theory, sorted by length, and checks whether they
already witness some unsatisfiable core. Specifically, an hard
clause witnesses an unsatisfiable core if all literals in the clause
are the complement of a soft literal. If this is the case, the
unsatisfiable core is analyzed immediately. The rationale for
such a preprocessing step is that hard clauses in the input
theory are often small, and the smaller the better for the
unsatisfiable core based algorithms.
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AAAI Press.

16



Open-WBO @ MaxSAT Evaluation 2019
Ruben Martins

rubenm@cs.cmu.edu
CMU, USA

Norbert Manthey
nmanthey@conp-solutions.com

Dresden, Germany

Miguel Terra-Neves, Vasco Manquinho, Inês Lynce
{neves,vmm,ines}@inesc-id.pt

INESC-ID/IST, Portugal

I. INTRODUCTION

Open-WBO [1] is an open source MaxSAT solver that
supports several MaxSAT algorithms [2], [3], [4], [5], [6], [7],
[8] and SAT solvers [9], [10], [11]. Open-WBO is particularly
efficient for unweighted MaxSAT and has been one of the
best solvers in the MaxSAT Evaluations from 2014 to 2017.
Three versions of Open-WBO were submitted to the MaxSAT
Evaluation 2019: open-wbo-g, open-wbo-ms and open-
wbo-ms-pre. The remainder of this document describes the
differences between these versions.

II. SAT SOLVERS

OPEN-WBO is based on the data structures of MIN-
ISAT 2.2 [9], [12]. Therefore, solvers based on MINISAT 2.2
can be used as a potential back-end solvers. For the MaxSAT
Evaluation 2019, we use GLUCOSE 4.1 [10], [13], [14] as
the back-end SAT solver of the open-wbo-g version and
MERGESAT [11] as the back-end SAT solver of the versions
open-wbo-ms and open-wbo-ms-pre.

MERGESAT is a new CDCL solver developed by Norbert
Manthey and it is based on the SAT competition winner of
2018, MAPLELCMDISTCHRONOBT [15], and adds several
known techniques. For restarts, only partial backtracking is
used, learned clause minimization is implemented more ef-
ficiently, and also applies simplification again in case the
first swipe resulted in a simplification. Finally, the time-
based decision heuristic switch is made deterministic by using
solving steps. To support being used inside MaxSAT solvers,
the incremental search feature had to been enabled again.

III. MAXSAT ALGORITHMS

In this section we briefly describe the algorithms used for
the complete and incomplete tracks at the MSE2019.

A. Complete Track

For the complete track, OPEN-WBO uses a variant of
the unsatisfiability-based algorithm MSU3 [3] and the OLL
algorithm [7]. These algorithms work by iteratively refining
a lower bound λ on the number of unsatisfied soft clauses
until an optimum solution is found. Both MSU3 and OLL use
the Totalizer encoding for incremental MaxSAT solving [4].
For unweighted MaxSAT, we extended the incremental MSU3
algorithm [4] with resolution-based partitioning techniques [8].
We represent a MaxSAT formula using a resolution-based
graph representation and iteratively join partitions by using
a proximity measure extracted from the graph representation

of the formula. The algorithm ends when only one partition
remains and the optimal solution is found. Since the parti-
tioning of some MaxSAT formulas may be unfeasible or not
significant, we heuristically choose to run either MSU3 with
partitions or the OLL algorithm. In particular, we do not use
partition-based techniques when one of the following criteria
is met: (i) the formula is too large (> 1,000,000 clauses), (ii)
the ratio between the number of partitions and soft clauses is
too high (> 0.8), (iii) the sparsity of the graph is too small (<
0.04), or (iv) there exist some at-most-one relations between
soft clauses (> 10), i.e. if one soft clause is satisfied it implies
that some other soft clauses will be unsatisfied.

For weighted MaxSAT, we use a variant of the OLL
algorithm [7] without optimizations. Potential avenues for
improvements involve reusing the soft cardinality via as-
sumptions instead of cloning them [16], extending the OLL
algorithm to use lexicographic optimization [17], and perform
core minimization.

B. Incomplete Track

For the unweighted incomplete track, OPEN-WBO uses an
incremental variant of the MSU4 algorithm [18], [19] with
the incremental Totalizer encoding [4]. This is a complete
MaxSAT algorithm that performs a linear search SAT-UNSAT
but lazily expands the soft clauses that can be relaxed, i.e.
unsatisfied. This approach is particularly effective for bench-
marks with thousands of soft clauses [19].

For the weighted complete track, OPEN-WBO uses a vari-
ant of the lexicographical optimization algorithm [17] that
does not guarantee optimality [20], [21]. This algorithm con-
siders n objective functions where n is the number of distinct
weights in the MaxSAT formula. This is done by performing a
sequence of calls to a SAT solver and refining an upper bound
µ on the number of unsatisfied soft clauses. To restrict µ at
each iteration, we need to encode cardinality constraints into
CNF, for which, incremental Totalizer encoding [4] has been
used. Once for a given objective function the upper bound µ
cannot be improved, it is frozen, and the next objective func-
tion in the order is optimized. If an optimal solution is found
when using this algorithm, then it is not necessarily an optimal
solution of the input formula. Once this happens, we change
to a complete algorithm based on linear search SAT-UNSAT
that uses the Adder [22] or Generalized Totalizer encoding
(GTE) [23] to encode pseudo-Boolean constraints. In order to
maintain the lexicographic structure as long as possible, we
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only relax the previous lexicographical restrictions if they are
the reason for unsatisfiability.

IV. PREPROCESSING

We integrated the MaxSAT preprocessor MaxPre [24] with
Open-WBO via MaxPre API into the version open-wbo-ms-
pre. To avoid spending too much time in preprocessing, we
limit the number of tries for each preprocessing technique
with the flag -skiptechnique=100 and the time limit
taken by the preprocessor to 10% of the total time (or 180
seconds if smaller). MaxPre can simplify the formula using
a variety of techniques, such as, blocked clause elimination,
unit propagation, bounded variable elimination, subsumption
elimination, self subsuming resolution, subsumed label elimi-
nation, binary core removal, bounded variable addition, group
subsumed label elimination, equivalence elimination, unhiding
techniques, structure labeling and failed label probing.

In addition to the simplifications performed by MaxPre,
we also perform identification of unit cores and at-most-one
relations between soft clauses by using unit propagation. A
similar technique is done in RC2 [25], the winner of the
MaxSAT Evaluation 2018.

V. AVAILABILITY

The latest release of Open-WBO is available under a MIT
license in GitHub at https://github.com/sat-group/open-wbo.
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I. INTRODUCTION

RC2 is an open-source MaxSAT solver written in Python
and based on the PySAT framework1 [1]. It is designed to
serve as a simple example of how SAT-based problem solving
algorithms can be implemented using PySAT while sacrificing
just a little in terms of performance. In this sense, RC2 can
be seen as a solver prototype and can be made somewhat
more efficient if implemented in a low-level language. RC2
is written from scratch and implements the OLLITI (or RC2,
i.e. relaxable cardinality constraints) MaxSAT algorithm [2],
[3] originally implemented in the MSCG MaxSAT solver [3],
[4]. The RC2 algorithm proved itself efficient in the previous
editions of the MaxSAT Evaluation: namely in 2014, 2015,
and 2016 (see the results of the MSCG solver, which was one
of the best complete MaxSAT solvers in the aforementioned
competitions).

II. DESCRIPTION

RC2 supports incrementally a variety of SAT solvers pro-
vided by PySAT, and its competition version uses Glu-
cose 3.0 [5] as an underlying SAT oracle. Two variants of
the solver were submitted to the MaxSAT Evaluation 2018 in-
cluding RC2-A and RC2-B. Both of these versions implement
the same algorithm [2], [3] and share most of the techniques
used [3]. Their major components and differences are briefly
described below.

III. VARIANTS OF THE SOLVER

The following heuristics are used by both solver vari-
ants submitted to the MaxSAT Evaluation 2018: incremental
SAT solving [6], Boolean lexicographic optimization [7] and
stratification [8] for weighted instances, unsatisfiable core
exhaustion (originally referred to as cover optimization) [8].

Additionally, the following heuristic was used in both vari-
ants of RC2: given a set S of soft clauses, a number of subsets
S′ ⊆ S were identified such that at most one soft clause in
S′ can be satisfied, i.e.

∑
c∈S′ c ≤ 1. Every subset S′ can be

treated as an unsatisfiable core of cost |S′| − 1, which can be
represented as a single clause.

The only difference between the solver variants is the
policy for unsatisfiable core minimization. In contrast to RC2-
A, RC2-B applies heuristic unsatisfiable core minimization
done with a simple deletion-based minimal unsatisfiable subset
(MUS) extraction algorithm [9]. During the core minimization
phase in RC2-B, all SAT calls are dropped after obtaining 1000

1http://pysathq.github.io

conflicts. Note that core minimization in RC2-B is disabled
for large plain MaxSAT formulas, i.e. those having no hard
clauses but more than 100000 soft clauses. The reason is that
having this many soft clauses (and, thus, as many assumption
literals) and no hard clauses is deemed to make SAT calls too
expensive. Although core minimization is disabled in RC2-
A, reducing the size of unsatisfiable cores can be still helpful
for weighted instances due to the nature of the OLLITI/RC2
algorithm, i.e. because of the clause splitting applied to the
clauses of an unsatisfiable core depending on their weight.
Therefore, when dealing with weighted instances RC2-A trims
unsatisfiable cores at most 5 times (e.g. see [3] for details)
aiming at getting rid of unnecessary clauses. Note that core
trimming is disabled in RC2-A for unweighted MaxSAT
instances and it is not used in RC2-B at all.

IV. AVAILABILITY

RC2 is distributed as a part of the PySAT framework, which
is available under an MIT license at https://github.com/
pysathq/pysat. It can also be installed as a Python package
from PyPI:

pip install python-sat

The RC2 solver can be used as a standalone executable
rc2.py and can also integrated into a complex Python-based
problem solving tool, e.g. using the standard import interface
of Python:

from pysat.examples import rc2
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I. INTRODUCTION

The solver was created with the intention to study the effec-
tiveness of local search inspired techniques for maxSAT. This
is a long-term goal where the aim is to develop algorithms that
use techniques similar to those of metaheuristics, in particular
large neighbourhood search, but within a complete algorithmic
setting. Thus, the overall objective would be to improve the
anytime performance of solvers, which is especially important
for large-scale problems where optimality guarantees seem
impractical.

II. THE ALGORITHM

We start with the linear MaxSAT algorithm [1]. It computes
the optimal solution to a maxSAT problem by repeatedly
solving a series of SAT problems, each time adding constraints
that force the new solution to be better than than the previously
computed one. This algorithm, implemented in Open-WBO
[2] with Glucose [3] as the backend solver, was the best
solver for the 60 seconds unweighted incomplete track in the
last maxSAT evaluation 2017. However, it was outperformed
in the same category with 300 seconds and did not provide
competitive solutions for many benchmarks in the weighted
incomplete track. The internal SAT solveris a complete back-
tracking algorithm: it selects a variable, assigns it a truth value,
and then either backtracks if a conflict is found or recursively
repeats the procedure.

Our approach uses the linear MaxSAT algorithm augmented
with two important components: solution-based phase saving
and varying resolution technique, where we start considering
the problem in low resolution and with time increase the
resolution.

A. Solution-Based Phase Saving

The variable selection process partially mimics strategies
used in local search algorithms: it selects a variable that
was frequently involved in recent conflicts (high activity, the
VSIDS scheme [4]). However, the truth value assignment
procedure does not: it is based on phase saving, meaning it
assigns the value used most recently for the variable. While
phase saving is effective for pure SAT problems, solution-
based phase saving has proven to be more efficient for
optimisation [5], where the assignment is based on the best
solution found so far. If the previous search was in a space
where no better solution exists, time is effectively wasted with
standard phase saving. Solution phase saving avoids this by

searching around the best solution found. This is reminiscent
of local search, as the algorithm is directed near the best
solution. It can also be seen as a kind of Large Neighbourhood
Search [6]. Indeed, assigning values to a set of variables based
on the current best soluton and optimising for the remaining
variables is a common strategy in metaheuristic algorithms and
has been used for decades. Such a technique is particularly
relevant for the incomplete track in the maxSAT competition,
where solvers are expected to deliver high quality solution
within tight time budgets.

To boost its performance, we incorporated solution-based
phase saving in the linear algorithm. Solution-based phase
saving is not widely used in MaxSAT solving. It is used by
WPM3 [7] in a core-guided approach. However, we argue
that the technique is more natural for a linear algorithm. As
noted, the basic idea has been used in metaheuristic algorithms
and even in MaxSAT solving [5] [7], but the position of
the linear algorithm with solution-based phase saving among
modern MaxSAT solvers is not clear. Thus, we implemented
solution-based phase saving in Open-WBO [2] and evaluated
its performance using benchmarks from the recent maxSAT
evaluation 2017 and the international timetabling competition
2011. We do not present the results of our study in this short
paper, but we do note that it provided an improvement over the
baseline linear algorithm. In our recent CP paper [8], we stud-
ied solution-based phase saving for constraint programming
solvers and its relation to automated large neighbourhood
search. For CP, it provides substantial improvements. We note
that we have investigated other phase saving variants, but as
of now, the results remain inconclusive.

B. Varying Resolution Approach

While solution-based phase saving does provide improve-
ments, especially for certain classes of problems, it cannot be
used effectively for a large set of the MaxSAT competition
benchmarks. The reason is that the linear algorithm relies
on encoding a single large cardinality constraint, which is
directly dependant of the magnitude of the sum of the weights
of soft clauses. As the sum grows, in the general case, so
does the number of clauses and auxiliary variables that are
needed to encode the cardinality constraint. Thus, the memory
requirements can be significant. This has a direct impact on
the performance of the linear algorithm and it some cases
it completely dominates the solver. We note that this is not
necessarily the case for core-guided approaches, which for a
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large part are uneffected by the magnitude of the weights.
Hence, we developed a simplification strategy where we ini-
tially consider the problem in low resolution where the weights
of the MaxSAT problem are divided by a large value. After the
simplified problem is solved optimally, the resolution of the
problem is increased i.e. the division value is lowered. This
continues iteratively until the full original problem is solved.
Therefore, the technique is theoretically complete, but in
practice for the benchmarks from the last MaxSAT evaluation
and the short time limits, only one or two resolutions are
typically considered. We note that solution-based phase saving
is used during the algorithm, as well as in between resolutions.
With this technique, intuitively, the most important constraints
are dealt with in the beginning and with executation time
other increasing important constraints are added the clause
database, resembling local search style methods. It is related
to the lexicographical optimisation approach for MaxSAT [9].

The main advantage is that the cardinality constraint that
needs to be encoded is orders of magnitude smaller than
from the original problem, offering substantial speed-ups.
However, the varying resolution approach comes at the price
of precision, as an optimum solution for the low-resolution
problem does not necessarily correspond to the optimum for
the higher resolutions and vice versa. Moreover, given two
models for the low-resolution problem and their cost, it is not
possible to determine which one of them is better based on
their cost without consider the complete original problem. The
tendency, heuristically speaking, is that better solutions to the
low-resolution problem correlate with better solutions to the
original problem.

III. CONCLUSION

We presented LinSBPS, the algorithm we submitted for
the MaxSAT Evaluation 2018. It uses a linear MaxSAT
algorithm coupled with solution-based phase saving and a
varying resolution approach. Our experimental results have
shown that significant improvements could be achieved when
compared with maxroster, one of the top performing solvers
from the incomplete track last year. However, more detailed
experimental results, such as those provided by the MaxSAT
competition, are required to draw stronger conclusions.
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∗HIIT, Department of Computer Science, University of Helsinki, Finland

†University of Melbourne, Australia
‡Data61, CSIRO, Australia

F

CORE-GUIDED(F)

LIN-SEARCH(Fw, τ?)

return: τ?

return: τ?

Input

Optimum found

CG-resources out
(Fw, τ

?)

Optimum found or
resources out

Fig. 1: The structure of Loandra.

I. PRELIMINARIES

We briefly overview the Loandra MaxSAT-solver as it
participated in the incomplete track of the 2019 MaxSAT Eval-
uation. A more thorough discussion can be found in [4]. We
assume familiarity with conjunctive normal form (CNF) for-
mulas and weighted partial maximum satisfiability (MaxSAT).
Treating a CNF formula as a set of clauses a MaxSAT instance
F consists of two CNF formulas, the hard clauses Fh and the
soft clauses Fs, as well a weight wc associated with each
C ∈ Fs. A solution to F is an assignment τ that satisfies
Fh. The cost of a solution τ is the sum of weights of the
soft clauses falsified by τ . An optimal solution is one with
minimum cost over all solutions. An unsatisfiable core κ of
F is a subset of soft clauses s.t. Fh ∧ κ is unsatisfiable.

II. CORE-BOOSTED LINEAR SEARCH

Loandra consists of two main components: CORE-GUIDED,
a core-guided reformulation algorithm extended with strati-
fication [1], and LIN-SEARCH, a SAT/UNSAT linear search
algorithm. Both components make extensive use of Boolean
Satisfiability (SAT) solvers. On input F , CORE-GUIDED
searches for an optimal MaxSAT solution by iteratively ex-
tracting unsatisfiable cores with a SAT solver and modifying
a working instance (initialised to F) in order to rule out
them as sources of unsatisfiability. LIN-SEARCH iteratively
queries the SAT solver for a solution of lower cost that the
currently best known one. Both components are complete, i.e.
given enough time and memory, both will compute an optimal
solution. More importantly for the incomplete track, they also
are any-time, i.e. both can output intermediate solutions during

search. Note that stratification allows treating CORE-GUIDED
as an any-time algorithm.

Figure 1 overviews the structure of Loandra. It uses core-
boosting as described in [4] in order to exploit the strengths
and alleviate the weaknesses of its individual components. On
input F Loandra starts in a core-guided phase by invoking
CORE-GUIDED on F . If the optimal solution isn’t found
within the time allocated to the core-guided phase, the execu-
tion switches to a linear phase and LIN-SEARCH is invoked
with τ?, the best solution found by the core-guided phase,
and Fw, the final working instance of CORE-GUIDED. The
linear search runs until either finding the optimal solution or
reaching the time out, at which point the currently best known
solution is returned.

III. IMPLEMENTATION DETAILS

The version of Loandra that entered the 2019 Evaluation
is the same one as was experimented on in [4]. As the
instantiation of CORE-GUIDED we use a reimplementation
of the PMRES [8] MaxSAT algorithm extended with weight
aware core extraction (WCE) [5] and clause hardening. The
core-guided phase runs until no more cores can be found with
the stratification bound set to 1, or 30s has passed.

As the instantiation of LIN-SEARCH we use a reimplemen-
tation of LinSBPS [3], SAT/UNSAT linear search extended
with solution-based phase saving and varying resolution. Fol-
lowing LinSBPS we use the generalized totalizer encoding [6]
to convert the PB constraints needed in linear search to
CNF. All algorithms are implemented on top of the publicly
available Open-WBO system [7] using Glucose 4.1 [2] as the
back-end SAT solver.

IV. COMPILATION AND USAGE

Building and using Loandra resembles building and using
Open-WBO. A statically linked version of Loandra in release
mode can be built by running MAKE RS in the base folder.

After building, Loandra can be invoked from the terminal.
Except for the formula file, Loandra accepts a number of
command line arguments: the flag -pmreslin-cglim sets the
maximum time that the core-guided phase can run for (in
seconds). The rest of the flags resemble the flags accepted
by Open-WBO; invoke ./loandra static –help-verb for more
information.
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I. INTRODUCTION

Open-WBO-Inc [1], [2] is developed on top of Open-
WBO [3], [4], [5] and placed first and second on the weighted
incomplete tracks for 60 and 300 seconds in the MaxSAT
Evaluation 2018, respectively. For many applications that can
be encoded into MaxSAT, it is important to quickly find
solutions even though these may not be optimal. Open-WBO-
Inc is designed to find a good solution1 in a short amount of
time. Since Open-WBO-Inc is based on Open-WBO, it can
use any MiniSAT-like solver [6]. For this evaluation, we use
Glucose 4.1 [7] as our back-end SAT solver.

II. ALGORITHMS

For the MaxSAT Evaluation 2019, we restrict Open-WBO-
Inc to the weighted category where it uses the novel approx-
imation algorithms that have been recently proposed [1], [2].
In particular, we submitted two versions of Open-WBO-Inc:
inc-bmo-complete and inc-bmo-satlike.

Both inc-bmo-complete and inc-bmo-satlike versions are
based on bounded multilevel optimization [8] using a variant
of linear search algorithm SAT-UNSAT [9]. The algorithms
used in these versions consider n objective functions where n
is the number of different weights in the MaxSAT instance.
This is done by performing a sequence of calls to a SAT
solver and refining an upper bound µ on the number of
unsatisfied soft clauses. To restrict µ at each iteration, we
need to encode cardinality constraints into CNF, for which,
incremental Totalizer encoding [4] has been used. Once for
a given objective function the upper bound µ cannot be
improved, it is frozen, and the next objective function in the
order is optimized.

If an optimal solution is found when using this algorithm,
then it is not necessarily an optimal solution of the input
formula. inc-bmo-complete and inc-bmo-satlike versions
different between themselves once this occurs. inc-bmo-
complete keeps the best-known solution and resumes the
search using the LSU algorithm which can potentially find
better solutions and prove optimality. In contrast, inc-bmo-
satlike changes the search algorithm to SATLike [10], a
MaxSAT stochastic algorithm. The best model found by the
first phase is passed to SATLike as its initial starting model.

1By “good solution” we mean that it can be potentially suboptimal but is
not far from the optimal solution.

III. AVAILABILITY

We submit the source of Open-WBO-Inc as part of our
submissions to the MaxSAT Evaluations 2019. inc-bmo-
complete version and the full Open-WBO-Inc framework
is available under a MIT license in GitHub at https://github.
com/sbjoshi/Open-WBO-Inc. The inc-bmo-satlike version is
available in the same repository under the satlike branch.
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Abstract—In this document, we briefly describe the
SATLike3.0-c solver participating in MaxSAT competition 2019.

I. INTRODUCTION

SATLike3.0-c participates in Incomplete Track. It has two
engines, one is local search solver SATLike [1] and another is
LinSBPS solver. The main solver is SATLike, and LinSBPS
is called only when SATLike fails to find a feasible solution
withine 40 seconds, which does not usually happen. Note
that if SATLike finds a feasible solution within 40 seconds,
then it continues to improve the solution and would not call
LinSBPS at all. We use an improved version of SATLike
namely SATLike 3.0.

II. IMPLEMENTATION

SATLike3.0-c can be directly used to solve both PMS and
WPMS. The only difference is the parameters setting.
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1 Introduction

We developed a solver that integrates SAT-based
techniques in a Stochastic Local Search (SLS)
solver for MaxSAT. In our solver, the control of
the solving process changes from SAT-based proce-
dures to stochastic procedures and vice-versa. At
each step, each procedure tries to build upon the in-
formation received from the other, instead of being
independent procedures. The idea is to use the SLS
solver as the main procedure, and occasionally, use
an unsatisfiability-based algorithm to correct the
SLS current (unsatisfiable) assignment into a satis-
fiable one, and use a procedure based on Minimal
Correction Subset (MCS) enumeration to improve
the current solution. We submitted two versions
of the new solver for the unweighted incomplete
MaxSAT track, and two version for the weighted
incomplete MaxSAT track.

2 Using SAT Techniques in
Local Search

One of the shortcomings of SLS algorithms is that
these solvers have difficulties in dealing with highly
constrained formulas. Therefore, it might be the
case that the SLS algorithm is unable to satisfy the
set of hard clauses or gets stuck in some local min-
ima. In these cases, using SAT-based techniques to
find a satisfiable assignment would be beneficial.

2.1 Assignment Correction

Consider the case when the SLS algorithm is un-
able to change from an unsatisfiable assignment ν
into a better assignment. Our solver performs a
correction to ν in order to guide the SLS algorithm
to the feasible region of the search space. First, we
start by building a set of assumption literals cor-
responding to the assignment ν. Next, a SAT call
on the set of hard clauses, φh, is made. Clearly, if
ν is not feasible, then this call returns UNSAT and
returns an unsatisfiable core. The assumption lit-
erals that occur in such an unsatisfiable core are
removed from the set of assumptions, and a new
SAT call is made. The same procedure is repeated
until a satisfiable assignment is found.

A conflict limit is defined for the correction pro-
cedure. If the conflict budget is not enough to find
a satisfiable assignment, then our algorithm applies
a similar procedure with a more aggressive strategy
where at each iteration 50% of the literals in the set
of assumptions are removed. Since the correction
procedure only depends on the hard clauses, there
is no guarantee regarding its quality. As a result,
we also apply a SAT-based improvement procedure.

2.2 Assignment Improvement

Given a MaxSAT instance φ, a set of assumptions
A, a satisfiable assignment ν, and conflict budget,
the goal of this assignment improvement algorithm
is to find a better quality solution for φ through an
MCS enumeration procedure.

The algorithm starts by building a working for-

1
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mula from the set of hard clauses φh and the set of
assumptions A. Next, the algorithm iterates over
all MCSes of φ, constrained to the set of assump-
tions A and returns the best assignment found.
Each time a new MCS is found, a blocking clause
is added to prevent the enumeration of the same
MCS later on. The algorithm returns the best so-
lution found before the conflict budget runs out.
Note that the set of literals A restricts the MCS
enumeration procedure. This results in a localized
MCS enumeration.

Many different improvement procedures can be
devised, including the usage of complete methods.
For example, an alternative is to replace the MCS
enumeration algorithm by a call to a Linear Sat-
Unsat algorithm (LSU). The call to the LSU algo-
rithm is also limited to a number of conflicts, and
all literals in A are forced to be satisfied. Hence,
the LSU call is also restricted to a localized region
of the search space.

3 Incomplete Track

As SATLike [2], an SLS algorithm, was one of the
best performing solvers in the incomplete solver
track in the MaxSAT Evaluation 2018, we used
SATLike in our implementation.

3.1 Unweighted Instances

Two solvers were submitted for the unweighted
incomplete track: sls-mcs and sls-lsu. In
sls-mcs, the SATLike solver1 is extended with the
assignment correction algorithm and the assign-
ment improvement algorithm based on MCS enu-
meration. The difference from sls-mcs to sls-lsu

is on the assignment improvement algorithm. In
sls-lsu, the linear sat-unsat assignment improve-
ment algorithm is used.

Both sls-mcs and sls-lsu use the Glucose SAT
solver (version 4.1) on the assignment correction
procedure. Moreover, the CLD [3] algorithm is
used as the MCS algorithm in sls-mcs. The linear
sat-unsat algorithm used in sls-lsu is an adapted
version of the one available at the open-wbo open
source MaxSAT solver. The conflict limits of the
correction and the improvement algorithms were
set to 105. In both sls-mcs and sls-lsu, the
assignment correction/improvement algorithm is

1The source code of SATLike is publicly available at the
2018 MaxSAT evaluation https://maxsat-evaluations.

github.io/2018/descriptions.html

called when SATlike has reached half of the max-
imum number of iterations without improvement.
In such a case, the correction algorithm is called if
the current assignment ν does not satisfy all hard
clauses, otherwise the improvement algorithm is di-
rectly called with approximately half of the literals
in the current assignment ν as assumptions. These
assumption literals are randomly chosen from ν.

3.2 Weighted Instances

Two versions of the solver were submitted for the
weighted incomplete track: sls-mcs and sls-mcs2.
In both versions, the stratified CLD algorithm [4]
is used as the MCS algorithm. Unlike sls-mcs,
sls-mcs2 does not consider the assumptions A as
hard clauses in the MCS enumeration procedure.
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Abstract—This document is a description of the solver
TT-Open-WBO-Inc, submitted to the weighted incomplete
tracks of MaxSAT Evaluation 2019. We tuned the polar-
ity and variable selection strategies of the underlying SAT
solver in the best-performing MaxSAT solver in the Weighted-
Incomplete-60-Second track of MaxSAT Evaluation 2018 –
Open-WBO-Inc-BMO [6], [7].

I. INTRODUCTION

The main goal of this submission is to experiment with
a new polarity selection heuristic and an enhancement
to the variable decision strategy for SAT-based anytime
Weighted MaxSAT solving in the state-of-the-art algorithm
Open-WBO-Inc-BMO [6], [7]. In principle, our heuristics
can be applied to solving any optimization problem with a
SAT-based anytime algorithm.

We call our polarity selection heuristic
Target-Optimum-Rest-Conservative (TORC)
and the enhancement to the variable selection strategy
Target-Score-Bump (TSB). Our heuristics are detailed
in [9]. We provide a brief (yet precise) description in this
document.

II. PRELIMINARIES

A Weighted MaxSAT instance comprises a set of hard
satisfiable clauses H and a set of weighted soft constraints
T = {tn−1, tn−2, . . . , t0}, where each constraint ti is associ-
ated with a strictly positive integer weight wi. The weight of
a variable assignment µ is unsWt(T, µ) =

∑n−1
i=0 ¬µ(ti) ∗wi,

that is, the overall weight of T ’s bits, falsified by µ. Given
a Weighted MaxSAT instance, a Weighted MaxSAT solver
is expected to return a model having the minimum possible
weight. For the rest of this document, for convenience and
without restricting generality, it is assumed that every soft
constraint is a unit clause (that is, a clause containing one
literal). An arbitrary soft constraint ti, reducible to a set of
clauses F , can be transformed to a unit clause s′, where s′

is a fresh variable, by adding the clause ¬s′ ∨ c to H for
each clause c ∈ F . Thus, T can be thought of as a bit-vector,
where t0 is its Least Significant Bit (LSB) and tn−1 is its
Most Significant Bit (MSB). T is called the target bit-vector,
or, simply, the target and every ti ∈ T is called a target bit.

Recall that modern SAT solvers apply phase saving [11]
as their polarity selection heuristic. In phase saving, once a
variable is picked by the variable decision heuristic, the literal
is chosen according to its latest value, where the values are
normally initialized with 0.

It turned out that overriding phase saving in the context of
anytime SAT-based optimization algorithms, which generate
an improving set of models {µ1, µ2, . . . , µn} over time, is
advantageous. In this context, one can distinguish between the
optimistic and the conservative approaches to polarity selec-
tion. The optimistic approach [3], [5], [10] sets the polarity
of the target bits to 1; it works well when the actual solution
is close to the optimum. The conservative approach [1], [4],
[12] sets the polarity of all the variables (or all the original
variables) to the previous best solution.

III. TARGET-OPTIMUM-REST-CONSERVATIVE (TORC)
POLARITY SELECTION

We propose a new polarity selection heuristic, which we
call Target-Optimum-Rest-Conservative (TORC).

Before the initial SAT invocation, TORC fixes the polarity
of all the target variables to the optimal value. Then, after
each new improving model µi is encountered, the polarity of
all the non-target variables are fixed to their values in µi.

In other words, whenever the variable decision heuristic
chooses:

1) A target variable: TORC sets its polarity to 1 (to be
optimistic).

2) A non-target variable: TORC sets its polarity to its value
in the best model so far (to be conservative; only after
the first SAT invocation is completed)

Note that, after the initial SAT call, TORC sets the polarity
every single time a new decision variables is picked.
TORC has been designed to leverage the best of both the

conservative and the optimistic worlds. On one hand, we are
interested in taking advantage of the conservative heuristic,
which is known to find the next improved model more quickly
than the default heuristic by looking near the previous model.
At the same time, however, we would like to encourage the
values of the target variables to be as close to the optimum as
possible in order to move more quickly towards the optimum.

IV. TARGET SCORE BUMP (TSB)

We would like to experiment with tuning the SAT solver’s
variable selection heuristic for anytime SAT-based optimiza-
tion.

Modern SAT solvers mostly use variants of the VSIDS vari-
able decision heuristic [8]. VSIDS associates a score with ev-
ery variable and picks as the next decision the variable with the
greatest score. Open-WBO-Inc-BMO uses Glucose 4.1 SAT
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solver [2]. Glucose 4.1 has a function varBumpActivity(v,b),
which bumps up the score of variable v by b.

Our proposed heuristic–Target-Score-Bump (TSB)–
bumps up the variable scores of the target bit variables, so
as to improve their chances of being picked early. We would
also like to give some preference to target bits having greater
weight.

We apply TSB prior to the initial SAT invocation as follows.
Let the minimal target-bit weight be min =

min(w0, . . . , wn−1) and the maximal target-bit weight
be max = max(w0, . . . , wn−1). For every variable t of
target bit literal ti of weight wi, we apply the function
varBumpActivity(t,b), where b is

(wi −min)/(max−min) ∗ weightBump+ varBump.
Both weightBump and varBump are user-given parameters.

They regulate the relative importance of the weight in the
scores. The default version of TT-Open-WBO-Inc uses
weightBump = 113 and varBump = 552.
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I. INTRODUCTION

We give a brief description of the benchmark sets use in
MaxSAT Evaluation 2019 and details on how these bench-
marks were selected

II. NEW BENCHMARK DOMAINS

Based on an open call for benchmarks, we obtained a
total of 25,788 new benchmarks encoding instances from six
different problem domains.

• Minimum weight dominating set problem (10 bench-
marks)

• Identification of security-critical cyber-physical compo-
nents in weighted AND/OR graphs (80 benchmarks)

• Consistent query answering (19 benchmarks)
• MaxSAT queries in the design of interpretable rule-based

classifiers (17,135 benchmarks)
• Maximum common sub-graph extraction (8,544 bench-

marks)
• Parametric RBAC maintenance via MaxSAT (882 bench-

marks)

III. OVERVIEW OF MSE19 BENCHMARK SETS

The MaxSAT Evaluation 2019 benchmark sets were con-
structed by selecting instances both from the set of instances
previously obtained and used in previous MaxSAT Evaluations
and from the set of new benchmarks submitted for 2019.

The benchmark selection procedure, detailed in the next
section, resulted in the following benchmark sets for the 2019
evaluation.

Complete track
• Unweighted (599 benchmarks):

– 48 families of benchmarks
– 201 benchmarks were used in MSE18
– 66 benchmarks are new
– 332 benchmarks were previously submitted

• Weighted (583 benchmarks):
– 39 families of benchmarks
– 191 benchmarks were used in MSE18
– 97 benchmarks are new
– 295 benchmarks were previously submitted

Incomplete track
• Unweighted (299 benchmarks):

– 112 benchmarks were used in MSE18
– 60 benchmarks are new
– 127 benchmarks were previously submitted

• Weighted (297 benchmarks):
– 97 benchmarks were used in MSE18
– 37 benchmarks are new
– 163 benchmarks were previously submitted

IV. BENCHMARK SELECTION

This year we implemented a new method for selecting the
evaluation test set. For the evaluations we have collected 7,438
instances from prior competitions as well as the 25,788 new
instances collected this year. These benchmarks are broken up
into 51 different families containing unweighted instances, and
42 different families containing weighted instances.

Given the size of this set, this year we developed a new
scheme for selecting a more randomized and representative set
of benchmarks for the evaluation. Our aim was to select 600
benchmark instances for both the weighted and unweighted
complete tracks along with 300 instances in each of the four
weighted/unweighted, 60/300 second incomplete tracks.

The first step is an attempt to exclude “uninformative” in-
stances. We decided to exclude the following types of instances
before selecting randomly from the remaining instances.

1) In 2017 we decided to remove the random track from
the evaluation due to difficulties in finding interesting
new benchmarks. In reviewing the remaining families
(those previously classified as industrial and crafted)
we found an additional nine families that were in fact
random instances. These included maxcut and maxclique
instances on random graphs, some random maxone SAT
problems, and random set cover problems.

2) We excluded all instances that we had found to have zero
optimum. Such instances do not require optimization as
a SAT solver can find a solution to all of the clauses
(both hard and soft). In fact, during the evaluation we
were able to find three additional instances with a zero
optimum. These instances will be removed from future
evaluations.

3) Some recently submitted instances were very large with
the input files being almost 5GB large. Running these
on some different MaxSat solvers showed that they were
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not solvable within the time and space constraints of the
evaluation. In all 22 instances were excluded as being
too large.

4) We had data on the previous 7,438 benchmarks, includ-
ing run times of three quite different MaxSat solvers
MaxHS, RC-2, and QMaxSat. All instances that could
be solved by all three solvers in less than 10 seconds
were excluded as being too easy.

5) Among the new instances we did not as yet have exten-
sive data. But we did run one MaxSat solver (MaxHS)
on all of these instances (with a low time bound), and
excluded all instances that were solved in less than 0.25
seconds. In future evaluations we should be able to get
data from other solvers on these instances and will be
able to apply the previous test for instances being too
easy.

6) For the incomplete tracks we tried to select instances
that were not solvable by any exact solver within the
time bound of the track. Thus, for the 60 second track
we tried to select instances that took exact solvers more
than 60 seconds, and similarly for the 300 second track.
During the evaluation we did find that some of these
instances could be solved exactly in less time that the
track’s limit. So in future evaluations these instances will
be removed from the incomplete track.

After excluding the above instances, we wanted to select a
representative evaluation suite for each track. Since collecting
new benchmark families requires some effort, we wanted to
highlight such families by selecting more instances from them.
Hence the random selection of instances was performed in
three phases.

First, we tried to make each new family be 5% of the total
evaluation suite. We decided that having more than 5% of the
evaluation suite be from a single family would introduce too
much bias into the evaluation suite, so we set the limit at
5%. We had 4 new weighted and 4 new unweighted families
submitted this year. So, e.g., since the evaluation suite for the
complete unweighted track had a target of 600 instances we
tried to select 30 instances (5% of 600) from each of these new
families. If any of these families contained less than 30 non-
excluded instances we selected all of the them. From each new
family with more than 30 non-excluded instances we selected
30 instances randomly using the scheme described below.

Second, once we had selected as many instances as we
could, up to the 5% limit from the new families, we filled
out the suite with instances from the old benchmark families.
For example, for the unweighted complete track we could only
select 66 instance from the new families. Hence, we had to
select the remaining 534 instances (i.e., 600-66) from the old
families. This was done by first drawing from a multinomial
distribution with equal probabilities. The drawn multinomial
gives the number of instances to select from each family. Con-
tinuing our example, there were 47 old unweighted families.
Hence using the multinomial distribution we select a random
tuple of 47 numbers that sums to 534. These 47 numbers tell
us how many instances to draw from each of the 47 families.

From the properties of the multinomial distribution we expect
a fairly even distribution of number of instances from the
individual families. However, it is very unlikely that we will
select exactly the same number of instances from each family.
This multinomial step adds some randomness to the selected
suite while retaining good representation from the different
families.

There are two slight complications however. First, the
random multinomial tuple might tell us to draw more instances
from a family than exist. For example, the multinomial might
specify drawing 15 instances from a family that contains only
6 non-excluded instances. In this case, we would select all 6
instances from that family. However, this would leave us with
9 fewer instances than we wanted to select. We addressed this
issue by doing repeated rounds of multinomial selection until
we obtained the number of instances we wanted to have in
the suite. In particular, in each round draw a new multinomial
tuple, this time over the non-exhausted families, that sums
to the number of instances we still needed to complete the
evaluation suite. Thus, each round gets us closer to completing
the evaluation suite, and we only needed 2-3 rounds.

The second complication is that some families are actually
broken up into sub-families. We solve this problem by re-
cursively applying the multinomial technique. For example,
suppose we wanted to select 20 instances from family F ,
and F had 3 sub-families. We would then draw a triple of
numbers from the multinomial distribution that sums to 20.
This triple of numbers tells us how many instances to draw
from each sub-family so that a total of 20 instances come
from F . By applying this technique recursively we could also
handle families that had sub-sub-families, although this did
not happen in our case.

Given that the previous stages determined that we needed
to select k instances from family F the final stage determined
how we select them. Selecting from the instances of F
uniformly is not reasonable since the difficulty of the instances
in F is often uniformly distributed. Instead we first partitioned
the instances in F into quintiles based on their size, where the
size of an instance was taken to be the sum of the lengths of
all of its clauses (both hard and soft). To select k instances
from F , we then drew a random 5-tuple from the multinomial
distribution that summed to k. This multinomial tuple tells
us how many instances to draw from each quintile. The final
draw of instances from each quintile was done uniformly at
random without replacement.1

1Using a multinomial to decide how many instances to draw from each
quintile is probably not needed; drawing a equal number from each quintile
would have been sufficient. However, it was easy to do this given the software
we had written to do the previous stages, and the extra randomness might be
useful.
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Abstract—This document contains the brief description about
the Weighted MaxSAT problem instances submitted to the
MaxSAT Evaluation 2019.

I. ORIGINAL PROBLEM DOMAIN

All of the MaxSAT instances submitted for the evaluation
originally come from the problem Consistent Query Answering
(CQA) from relational databases. This problem was first stud-
ied by Arenas, Bertossi, and Chomicki in [1]. The background
on this field of study, the necessary notions, and the formal
description of the problem of CQA can be found in Section
2 of our paper “A SAT-based System for Consistent Query
Answering”, which has been accepted as a long-paper at the
SAT 2019 conference. This paper contains four reductions
from the complement of CQA to Boolean SAT and Weighted
MaxSAT. We do not submit all instances generated during the
experiments from our paper; we submit only 19 of them. This
is due to the limit on the size of an email attachment.

II. PARAMETERS USED TO GENERATE INSTANCES

A. Instances generated from synthetic databases

The Weighted MaxSAT instances from synthetic databases
are generated using Reduction 2 and Algorithm 1 from our
paper. The synthetic data used to produce the submitted
instances were generated using the parameters listed in Table
I. Since Algorithm 1 is iterative and it modifies the Weighted
MaxSAT instance in each iteration, we submit the instances
at the time of the termination of the algorithm (i.e., when the
algorithm has found all variables in the instance which can be
set to true in some satisfying assignment).

TABLE I
PARAMETERS USED TO GENERATE SYNTHETIC DATA

Parameter Value
Number of tuples per relation 500,000

Size of inconsistent key-equal groups 2
Degree of inconsistency 10%

Degree of join 15%

The naming convention used for these instances is
as follows. The name of each .wcnf file is of the form
“synthetic-x.wcnf”, where x is an integer corresponding
to the database query used to generate the instance. For
example, “synthetic-3.wcnf” was generated using the query
q3. The conjunctive queries used to generate these instances

are divided into three categories based on the complexity of
computing their consistent answers, namely, FO-rewritable,
in P but not FO-rewritable, and coNP-complete. The precise
definitions of the queries follow.

FO-rewritable consistent answers:
q2(z, w) := 9x, y, v (R1(x, y, z) ^ R2(y, v, w))
q3(z) := 9x, y, v, u, d (R1(x, y, z) ^ R3(y, v) ^ R2(v, u, d))
q5(z) := 9x, y, v, w (R1(x, y, z) ^ R4(y, v, w))
q6(z) := 9x, y, x0, w, d (R1(x, y, z) ^ R2(x

0, y, w) ^
R5(x, y, d))
q7(z) := 9x, y, w, d (R1(x, y, z) ^R2(y, x, w) ^R5(x, y, d))

In P, but not FO-rewritable, consistent answers:
q8(z, w) := 9x, y (R1(x, y, z) ^ R2(y, x, w))
q10(z, w, d) := 9x, y, u (R1(x, y, z) ^ R2(y, x, w) ^
R4(y, u, d))
q12(v, d) := 9x, y, z, u (R3(x, y) ^ R6(y, z) ^ R1(z, x, d) ^
R4(x, u, v))
q13(v) := 9x, y, z, u (R3(x, y) ^ R6(y, z) ^ R7(z, x) ^
R4(x, u, v))
q14(d) := 9x, y, z, u (R3(x, y) ^ R6(y, z) ^ R1(z, x, d) ^
R7(x, u))

coNP-complete consistent answers:
q15(z) := 9x, y, x0, w (R1(x, y, z) ^ R2(x

0, y, w))
q18(z, w) := 9x, y, x0, u, d (R1(x, y, z) ^ R2(x

0, y, w) ^
R4(y, u, d))
q19(z, w, d) := 9x, y, x0, u (R1(x, y, z) ^ R2(x

0, y, w) ^
R4(y, u, d))
q20(z) := 9x, y, x0, w, u, d, v (R1(x, y, z) ^ R2(x

0, y, w) ^
R4(y, u, d) ^ R3(u, v))
q21(z, w) := 9x, y, x0, u, d, v (R1(x, y, z) ^ R2(x

0, y, w) ^
R4(y, u, d) ^ R3(u, v))

B. Instances generated from the real-world data

The Weighted MaxSAT instances from the real-world
database are generated using Reduction 4 and Algorithm 1
from our paper. The data used for these instances are about the
food and safety inspections of restaurants based in New York
and Chicago, and are taken from [2], [3]. Table II summarizes
the properties of the real-world data.

The naming convention used for these instances is as
follows. The name of each .wcnf file is of the form “real-
x.wcnf”, where x is an integer corresponding to the database

Encoding Consistent Query Answering to MaxSAT
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TABLE II
PROPERTIES OF THE REAL-WORLD DATA

Parameter Value
Number of tuples per relation From 31,100 to 229,000

Size of inconsistent key-equal groups From 2 to 50
Degree of inconsistency From 0% to 25%

Degree of join From 0.5% to 30%

query used to generate the instance. For example, “real-
3.wcnf” was generated using the query Q3. The database
schema and the set of integrity constraints (primary keys and
functional dependencies) are given in Table 4 of our paper.
The definitions of the unions of conjunctive queries used to
generate the instances follow.

Q2(x) := 9y, z, w, v, y0, z0, w0, v0 (NY Rest(x, y, z, w, v) ^ CH Rest(x, y0, z0, w0, v0))

Q3(x) := 9y, z, w, v, y0, z0, w0, v0, q, r, s, t, q0, s0, t0 (NY Rest(x, y, z, w, v) ^ CH Rest(x, y0, z0, w0, v0)

^ NY Insp(y, q, r, s, t) ^ CH Insp(y0, q0, r, s0, t0))

Q5(x) := 9y, z, w, v, q, r, s (CH Rest(x, y, z, w, v) ^ CH Insp(y, q, r, s, ‘Fail’)) [
9y, z, w, v, q, r, s (NY Rest(x, y, z, w, v) ^ NY Insp(y, q, r, s, ‘Fail’))

Q6(x, v) := 9y, z, w, y0, z0, w0, v0, q, r, s (CH Rest(x, y, z, w, v) ^ NY Rest(x, y0, z0, w0, v0)

^ NY Insp(y0, ‘Not Critical’, q, r, s))
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Abstract—This paper presents a MaxSAT benchmark focused
on identifying critical nodes in AND/OR graphs. We use AND/OR
graphs to model Industrial Control Systems (ICS) as they are able
to semantically grasp intricate logical interdependencies among
ICS components. However, identifying critical nodes in AND/OR
graphs is an NP-complete problem. We address this problem by
efficiently transforming the input AND/OR graph-based model
into a weighted logical formula that is then used to build and solve
a Weighted Partial MAX-SAT problem. The benchmark includes
80 cases with AND/OR graphs of different size and composition
as well as the optimal cost and solution for each case.

I. PROBLEM OVERVIEW

Over the last years, Industrial Control Systems (ICS) such
as water treatment plants and energy facilities have become
increasingly exposed to a wide range of cyber-physical threats,
having massive destructive consequences. Our work is focused
on security metrics and techniques that can be used to measure
and improve the security posture of ICS environments [1].
We use AND/OR graphs to model these systems as they
allow more realistic representations of the complex interdepen-
dencies among cyber-physical components that are normally
involved in real-world settings [2], [3]. In that context, we have
designed a security metric, detailed in [1], whose objective is
to identify the set of critical AND/OR nodes (ICS network
components) that must be compromised in order to disrupt the
operation of the system, with minimal cost for the attacker.

From a graph-theoretical perspective, our security metric
looks for a minimal weighted vertex cut in AND/OR graphs.
This is an NP-complete problem as shown in [3], [4], [5].
While well-known algorithms such as Max-flow Min-cut [6]
and variants of it could be used to estimate such metric over
OR graphs in polynomial time, their use for general AND/OR
graphs is not evident nor trivial as they may fail to capture
the underlying logical semantics of the graph. In that context,
we take advantage of state-of-the-art MaxSAT techniques to
address our problem.

This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant No 739551 (KIOS CoE).

II. SIMPLE EXAMPLE

Let us consider a simple ICS network whose operational
dependencies are represented by the AND/OR graph shown in
Figure 1. The graph reads as follows: the actuator c1 depends
on the output of software agent d. Agent d in turn has two
alternatives to work properly; it can use either the readings of
sensor a and the output from agent b together, or the output
from agent b and the readings of sensor c together. In addition,
each cyber-physical component has an associated attack cost
that represents the effort required by an attacker to compromise
that component. Now, considering these costs, the question we
are trying to answer is: which nodes should be compromised
in order to disrupt the operation of actuator c1, with minimal
effort (cost) for the attacker? In other words, what is the least-
effort attack strategy to disable actuator c1?

Fig. 1. AND/OR graph with sensors, software agents and actuators

Our example involves many attack alternatives, however,
only one is minimal. The optimal strategy is to compromise
nodes a and c with a total cost of 4. The compromise of these
sensors will disable both AND nodes and consecutively the
OR node, which in turn will affect node d and finally node c1.
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III. MAX-SAT FORMULATION STRATEGY

Given a target node t, the input graph G can be used
as a map to decode the dependencies that node t relies on.
Therefore, G can be traversed backwards in order to produce
a propositional formula that represents the different ways in
which node t can be fulfilled. We call this transformation
fG(t). In our example, fG(c1) is as follows:

fG(c1) = c1 ∧ (d ∧ ((a ∧ b) ∨ (b ∧ c)))

The goal of the attacker, however, is precisely the opposite,
i.e., to disrupt node c1 somewhere along the graph. There-
fore, we are actually interested in satisfying ¬fG(c1), which
describes the means to disable c1. After applying a few logical
rules, the conjunctive normal form (CNF) of ¬fG(c1) is:

¬fG(c1) = (¬c1 ∨ ¬d ∨ ¬a ∨ ¬b) ∧ (¬c1 ∨ ¬d ∨ ¬b ∨ ¬c)

In practice, we do not use the naive CNF conversion
approach since it might lead to exponential computation times
over large graphs. Instead, we use the Tseitin transforma-
tion [7], which can be done in polynomial time and essentially
produces a new formula in CNF that is not strictly equivalent
to the original formula (because there are new variables) but
is equisatisfiable. This means that, given an assignment of
truth values, the new formula is satisfied if and only if the
original formula is also satisfied. Under that perspective, a
logical assignment such that ¬fG(t) = true will indicate
which nodes must be compromised (i.e. logically falsified) in
order to disrupt the operation of the system.

Considering the CNF formula produced by the Tseitin
transformation and a cost function ϕ(n) that indicates the
attack cost of a node n, we model our problem as a Weighted
Partial MAX-SAT problem [8]. Hard clauses are essentially
the clauses within the CNF formula:

¬c1 ∨ ¬d ∨ ¬a ∨ ¬b ¬c1 ∨ ¬d ∨ ¬b ∨ ¬c

whereas soft clauses correspond to each atomic node in the
graph with their corresponding penalties (costs) as follows:

a b c d c1

ϕ(a) = 2 ϕ(b) = 5 ϕ(c) = 2 ϕ(d) = 10 ϕ(c1) = inf

Therefore, a MAX-SAT solver will try to minimise the
number of falsified variables as well as their weights, which
in our problem equals to minimise the compromise cost for
the attacker. Note: the additional variables introduced by the
Tseitin transformation have cost/weight 0 in the formulation.

IV. AND/OR GRAPH GENERATION

The benchmark presented in this paper relies on
META4ICS, a Java-based security metric analyser for ICS [1],
[9]. We have used META4ICS to produce and analyse syn-
thetic pseudo-random AND/OR graphs of different size and
composition. To create an AND/OR graph of size n, we first
create the target node. Afterwards, we create a predecessor
which has one of the three types (atomic, AND, OR) accord-
ing to a probability given by a compositional configuration
predefined for the experiment. For example, a configuration of

(60, 20, 20) means 60% of atomic nodes, 20% of AND nodes
and 20% of OR nodes. We repeat this process creating children
on the respective nodes until we approximate the desired size
of the graph n. Node costs, represented by ϕ(n), are integer
values randomly selected between 1 and 100.

The benchmark also includes the solutions obtained by
META4ICS for each case, including resolution time, total cost
and critical nodes. Currently, META4ICS uses SAT4J [10]
and a Python-based linear programming approach as MaxSAT
solvers. The tool runs all available solvers in parallel and picks
the first one that comes up with a valid solution.

V. BENCHMARK DESCRIPTION

Out dataset includes 80 cases in total, and can be obtained
at [9]. There are four different sizes of AND/OR graphs
involving 5000, 10000, 15000, and 20000 nodes (20 cases
each). For each graph size, we consider two different graph
configurations, 80/10/10 and 60/20/20, which determine the
composition of the graphs (10 cases each). Table I shows the
identifiers of the cases within each one of these categories.

Nodes/Configurations 80/10/10 config 60/20/20 config

5000 1 to 10 11 to 20

10000 21 to 30 31 to 40

15000 41 to 50 51 to 60

20000 61 to 70 71 to 80

TABLE I
BENCHMARK CASES AND CONFIGURATIONS

Each case is specified in an individual .wcnf (DIMACS-like,
weighted CNF) file named with the case id and the number of
nodes involved. The weight for hard clauses (top value) has
been set to 1.0×106. Tables II and III detail each case as well
as the results obtained with our tool. The field id identifies
each case; gNodes indicates the total number of nodes in
the original AND/OR graph; gAT, gAND and gOR indicate
the approximate composition of the graph in terms of atomic
(cyber-physical components), AND and OR nodes; tsVars
and tsClauses show the number of variables and clauses
involved in the MaxSAT formulation after applying the Tseitin
transformation; cost and time show the total solution cost
reported by META4ICS and the time needed for its resolution
in milliseconds; solution shows the set of critical nodes ex-
pressed as a list of nodes with their respective costs (weights).
These experiments have performed on a MacBook Pro (15-
inch, 2018), 2.9 GHz Intel Core i9, 32 GB 2400 MHz DDR4.

As a final remark, it can be observed that some cases with
the same size and composition parameters have very different
resolution times. This is an interesting phenomenon and it is
due to the internal logical composition of the AND/OR graph
and how well the underlying solver performs with each case.
Within our experiments, we have observed that none of the two
solvers used in META4ICS is faster than the other in all of the
cases. We believe this is an interesting problem that should be
further investigated in the context of MaxSAT solvers.
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id gNodes gAT gAND gOR tsVars tsClauses cost time solution

1 5000 3977 512 512 8978 23981 2 1163 [(14:2)]

2 5000 3967 529 505 8968 23971 16 1264 [(2:16)]

3 5000 3984 515 502 8985 23988 2 920 [(98:2)]

4 5000 4008 461 532 9009 24012 8 919 [(8:1),(961:7)]

5 5000 3990 510 501 8991 23994 1 930 [(4057:1)]

6 5000 4002 486 513 9003 24006 5 946 [(788:3),(8431:2)]

7 5000 4026 477 498 9027 24030 20 920 [(8:1),(759:12),(6706:3),(6860:1),(7304:3)]

8 5000 3996 518 487 8997 24000 6 894 [(4:6)]

9 5000 4046 488 467 9047 24050 5 904 [(3177:5)]

10 5000 4026 493 482 9027 24030 5 887 [(4029:4),(5503:1)]

11 5000 3029 979 993 8030 23033 31 880 [(1258:30),(2189:1)]

12 5000 2998 1012 991 7999 23002 68 935 [(920:2),(1128:3),(1324:9),(1926:3),(2690:13),(2773:35),(3441:3)]

13 5000 3021 1008 972 8022 23025 2 879 [(300:2)]

14 5000 2986 1020 995 7987 22990 46 956 [(1027:12),(3624:3),(3778:17),(6453:2),(6496:4),(6544:8)]

15 5000 3014 1006 981 8015 23018 152 1889 [(5:1),(2930:5),(3245:7),(3434:34),(3925:17),(4158:14),
(4457:34), (6307:19),(7048:5),(7177:2),(7186:1),

(7191:7),(7337:1),(7367:1),(7570:4)]

16 5000 3030 990 981 8031 23034 12 859 [(3:12)]

17 5000 3015 1034 952 8016 23019 3 867 [(4:2),(7561:1)]

18 5000 3008 956 1037 8009 23012 22 877 [(2:19),(6253:3)]

19 5000 3031 970 1000 8032 23035 8 865 [(5444:8)]

20 5000 3033 972 996 8034 23037 13 870 [(2:13)]

21 10000 7983 1017 1001 17984 47987 1 1126 [(16139:1)]

22 10000 8026 996 979 18027 48030 13 1313 [(2:13)]

23 10000 8024 991 986 18025 48028 12 1310 [(24:1),(1580:1),(2201:2),(9663:3),(14360:5)]

24 10000 8058 974 969 18059 48062 14 1184 [(5:9),(12130:2),(12207:2),(12422:1)]

25 10000 8026 989 986 18027 48030 7 1459 [(9009:3),(12030:4)]

26 10000 7984 1003 1014 17985 47988 12 1309 [(7:9),(17023:1),(17074:2)]

27 10000 8051 939 1011 18052 48055 50 6248 [(1997:4),(2744:9),(3398:17),(5610:6),(6304:1),(11315:1),(11771:4),
(14136:1),(16399:4),(16831:3)]

28 10000 7998 995 1008 17999 48002 3 1141 [(2:3)]

29 10000 8095 972 934 18096 48099 10 1224 [(8330:4),(11696:5),(13881:1)]

30 10000 8022 987 992 18023 48026 2 1178 [(2:2)]

31 10000 6013 1991 1997 16014 46017 49 1275 [(4:32),(4857:17)]

32 10000 5981 2039 1981 15982 45985 7 1098 [(5929:5),(6199:2)]

33 10000 6023 1957 2021 16024 46027 12 1127 [(3:12)]

34 10000 6015 2021 1965 16016 46019 60 1247 [(5641:17),(5858:3),(5969:16),(5997:6),(6025:6),(6033:3),
(6133:2),(9790:2),(11731:5)]

35 10000 5953 1975 2073 15954 45957 24 1071 [(2:24)]

36 10000 6030 2034 1937 16031 46034 36 1279 [(12930:22),(15804:2),(15947:12)]

37 10000 6008 1996 1997 16009 46012 3 1092 [(13780:3)]

38 10000 6054 1963 1984 16055 46058 1 1111 [(3447:1)]

39 10000 6015 1977 2009 16016 46019 27 1194 [(2391:27)]

40 10000 6042 1967 1992 16043 46046 73 2607 [(2820:1),(7720:3),(8418:14),(8586:2),(10093:46),(12532:7)]

TABLE II
BENCHMARK DESCRIPTION - CASES 1 TO 40
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id gNodes gAT gAND gOR tsVars tsClauses cost time solution

41 15000 12090 1443 1468 27091 72094 16 3024 [(97:8),(6443:8)]

42 15000 11973 1517 1511 26974 71977 3 2139 [(14702:3)]

43 15000 12004 1529 1468 27005 72008 2 1511 [(1021:1),(22132:1)]

44 15000 11969 1517 1515 26970 71973 18 10965 [(2:18)]

45 15000 12123 1457 1421 27124 72127 5 1576 [(2350:1),(2665:1),(3626:3)]

46 15000 11969 1480 1552 26970 71973 5 1564 [(13:4),(25198:1)]

47 15000 11949 1490 1562 26950 71953 9 1605 [(58:1),(3272:6),(6793:2)]

48 15000 11982 1542 1477 26983 71986 18 2863 [(5:18)]

49 15000 12015 1486 1500 27016 72019 3 1511 [(2649:1),(6731:2)]

50 15000 11980 1496 1525 26981 71984 1 1627 [(1853:1)]

51 15000 9043 2893 3065 24044 69047 11 1423 [(22630:2),(22728:9)]

52 15000 9036 2976 2989 24037 69040 123 9571 [(10932:44),(13135:5),(15118:5),(15681:3),(15695:66)]

53 15000 9046 2938 3017 24047 69050 14 1182 [(3:6),(14013:8)]

54 15000 9015 3028 2958 24016 69019 47 1502 [(3:42),(11757:2),(13221:3)]

55 15000 8987 3035 2979 23988 68991 8 1208 [(17563:3),(17567:5)]

56 15000 9015 3002 2984 24016 69019 1 1483 [(15321:1)]

57 15000 9099 2966 2936 24100 69103 80 5040 [(3352:8),(3770:4),(8682:5),(10152:8),(10159:3),(10239:1),
(10468:3), (18507:6),(18555:8),(18573:2),(18628:8),(18753:14),

(19274:5),(22843:2),(23171:3)]

58 15000 9011 2943 3047 24012 69015 4 1152 [(18688:2),(19011:2)]

59 15000 9035 2998 2968 24036 69039 53 10802 [(2:53)]

60 15000 9013 3066 2922 24014 69017 14 1264 [(11895:1),(12533:3),(12590:3),(16787:2),(23583:5)]

61 20000 16004 1975 2022 36005 96008 1 1637 [(16475:1)]

62 20000 15977 1958 2066 35978 95981 3 1686 [(34706:3)]

63 20000 16007 2071 1923 36008 96011 1 2040 [(32144:1)]

64 20000 16067 1978 1956 36068 96071 1 1572 [(35189:1)]

65 20000 15999 1990 2012 36000 96003 2 1873 [(12825:2)]

66 20000 15947 2037 2017 35948 95951 4 2074 [(3:4)]

67 20000 16019 1992 1990 36020 96023 7 2153 [(6:3),(20228:4)]

68 20000 15976 2036 1989 35977 95980 5 1492 [(7:2),(17657:2),(24220:1)]

69 20000 16019 1997 1985 36020 96023 9 2545 [(3:9)]

70 20000 16052 1909 2040 36053 96056 2 2031 [(29145:2)]

71 20000 12037 4033 3931 32038 92041 2 1847 [(21278:2)]

72 20000 11977 3997 4027 31978 91981 373 12887 [(1172:17),(11919:5),(12728:2),(1295:1),(13840:2),(14081:4),
(14453:22), (15461:5),(16291:13),(17369:3),(18459:20),(19920:1),
(19925:4),(20651:2), (20789:37),(20929:9),(21080:41),(22175:7),
(22642:1),(22804:27),(22806:12),(22809:3),(22818:26),(22829:6),

(22852:31),(23065:7),(28543:65)]

73 20000 12037 3999 3965 32038 92041 3 1513 [(22359:2),(30489:1)]

74 20000 12004 3980 4017 32005 92008 1 1434 [(2:1)]

75 20000 12059 3930 4012 32060 92063 28 3071 [(2:18),(26845:10)]

76 20000 12094 3858 4049 32095 92098 2 1772 [(6431:2)]

77 20000 12000 4014 3987 32001 92004 3 1474 [(27418:3)]

78 20000 12110 3940 3951 32111 92114 4 1665 [(4:4)]

79 20000 12036 4012 3953 32037 92040 71 1600 [(2:9),(14499:3),(17840:14),(19998:32),(28910:2),
(29045:9),(29937:2)]

80 20000 12035 4055 3911 32036 92039 8 1688 [(13697:8)]

TABLE III
BENCHMARK DESCRIPTION - CASES 41 TO 80
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In machine learning, interpretability has gained significant
attention in recent years. Rule-based classifiers are particularly
effective for providing interpretations to end users. We have
designed a rule-based classifier MLIC [1] and its incremental
version IMLI [2] to generate classification rules in CNF/DNF,
wherein we formulate the learning problem as an optimization
problem, specifically as a MaxSAT problem.

In our experiments, we use several benchmarks/datasets
from UCI and Kaggle repository. We consider three pa-
rameters in our formulation: data-fidelity parameter λ ∈
{1, 5, 10, 15, 20}, number of clauses k ∈ {1, 2, 3, 4, 5} in
the desired rule, and rule-type ∈ {CNF,DNF}. We use 10-
fold (fold-index ∈ {0, . . . , 9}) cross-validation for evaluating
the performance of our classifier with other state of the art
classifiers. Additionally, we compute the accuracy of our
classifier by constructing a MaxSAT instance and eventually
solving it. Therefore, each MaxSAT instance has the following
naming convention.

〈dataset〉 〈{train, test}〉 〈fold〉 〈rule-type〉 〈k〉 〈λ〉.wcnf

Construction of MaxSAT query: We are given a dataset
(X,y) of n samples, each sample with m binary fea-
tures (X ∈ {0, 1}n×m and y ∈ {0, 1}n). We learn
a k-clause CNF rule and consider k × m + n boolean
variables {b11, b12, . . . , b1m, . . . , bkm, η1, . . . , ηn}. The MaxSAT
query comprises of two different soft clauses: Eq and Si

j and
hard clause Hq . The weight of a clause is defined by wt(·).

Eq := ¬ηi; wt(Eq) = λ

Si
j := ¬bij ; wt(Si

j) = 1

Hq := ¬ηq →
(
yq ↔

k∧

i=1

Xq ◦Bi

)
; wt(Hq) =∞

Here λ is the data-fidelity parameter that handles the trade-
off between rule-sparsity and prediction accuracy. In the hard
clause Hq , Xq is the q-th row of input matrix X, yq is the
q-th element of y, and Bi = {bij | j ∈ {1, . . . ,m}}. Between
two vectors u and v over boolean variables or constants (for
example, 0, 1), u ◦ v represents the inner product of u and
v, i.e. u ◦ v =

∨
i ui ∧ vi , where ui and vi denote a

variable/constant at the i-th index of u and v respectively.

Once we construct all soft and hard clauses, the MaxSAT
query Q is the conjunction of all clauses.

Q :=

n∧

q=1

Eq ∧
i=k,j=m∧

i=1,j=1

Si
j ∧

n∧

q=1

Hq
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Institut Polythechnique de Paris
France

badran.raddaoui@telecom-sudparis.eu

Lakhdar Sais
CRIL - CNRS UMR 8188

Université d’Artois
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The analysis of large networks has become very usefull in a
wide range of applications including social sciences, biology
and complex systems. This paper describes a set of instances of
networks for benchmarking MaxSAT Evaluation 2019. These
datasets were used in [1], [2]. All instances provided here are
wcnf formulae encoded in DIMACS wcnf format.

Amazon:
This instance represents a network that was collected by
crawling Amazon website. It is based on Customers Who
Bought This Item Also Bought feature of the Amazon website.
If a product i is frequently co-purchased with product j, the
graph contains an edge from i to j.

DBLP:
The DBLP computer science bibliography provides a com-
prehensive list of research papers in computer science. This
instance represents a co-authorship network where two authors
are connected if they publish at least one paper together.

Youtube:
Youtube is a video-sharing web site that includes a social
network. This instance represents the Youtube social network
where users form friendship each other and users can create
groups which other users can join.

Railway:
This instance represents the Indian Railway network that
consists of nodes representing stations, where two stations a
and b are connected by an edge if there exists at least one
train-route such that both a and b are scheduled halts on that
route.

Football:
This instance represents the network of American football
games between Division IA colleges during regular season Fall
of 2000. The vertices in the graph represent teams (identified
by their college names), and edges represent regular-season
games between the two teams they connect.

Karate:
This instance represents the karate social network where the
data was collected from the members of a university karate
club by Wayne Zachary in 1977. Each node represents a

member of the club, and each edge represents a tie between
two members of the club.

RiskMap:
This instance represents a graph which is a map of the popular
strategy board game,Risk. It is a political map of the Earth,
divided into 42 territories, which are grouped into 6 continents.
Therefore, the graph is comprised of 42 vertices and 83 edges.

Politics Book:
This instances describes a network where nodes represent
books about USpolitics sold by the online bookseller Ama-
zon.com while edges represent frequent co-purchasing of
books by the samebuyers on Amazon.
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Abstract—Many organizations have adopted a Role-Based
Access Control model (RBAC) to reduce administration costs
through an efficient management of permissions and the enforce-
ment of basic security principles.

In this approach, it is often needed to revise the current RBAC
policies to incorporate new permission-to-user assignments that
were not granted by mistake, or were not correctly anticipated.

This note describes a family of benchmarks which formalize
such RBAC maintenance instances as Weighted Partial Max-SAT
(WPMS) problems. A brief description is provided along with a
definition of the problem domain, and details on the parameters
used for generating the instances.

I. BENCHMARKS DESCRIPTION

Role-based Access Control (RBAC) [1], [2] is a widely
adopted access control model which supports an efficient
management of permissions by means of roles. Users are
assigned a set of roles, each encapsulating the permissions
required to accomplish certain tasks. It follows that an RBAC
policy can be formalized by means of two Boolean matrices:
the role-to-user assignment matrix and the permission-to-role
assignment matrix.

In this context, we considered the RBAC Maintenance
problem, i.e., the problem of fixing the current RBAC policy
by incorporating a new permission-to-user assignment given as
input (i.e., an “exception”) which has not been already granted.
In this process we balance two possibly conflicting metrics,
i.e., the “simplicity” of the target policy and its “stability”
with respect to the previous policy.

We formalize the role maintenance problem as a Weighted
Partial (WPMS) Max-Sat instance [3] and we generate a set
of benchmarks to prove the viability of our formalization in
real-world scenarios. The maintenance benchmarks have been
generated from four different matrices of permission-to-user
assignments of increasing size. The smallest one is a tiny
matrix representing a simple organizations (smallcomp); the
remaining three matrices belong to three different datasets
available in the role mining literature [4], namely domino, uni-
versity and firewall1. Starting from each of the four matrices,
we randomly subtract a fixed number of assignments and then
synthesize an initial RBAC policy through Fastminer [5]. Thus,
for each matrix, we obtain: (i) an RBAC policy “currently
in-place”, and (ii) a set of exceptions to incorporate (corre-
sponding to the randomly removed assignments). From the

previous inputs and taking into account several different values
for the balancing parameter β (where β close to 0 means “try
to remain as close as possible to the initial state” and β close
to 1 means “try to optimize as much as possible the resulting
state”), we generate the WPMS instances.

As far as the naming convention is concerned, each instance
file is named by concatenating the strings “role” with the
name of the dataset it refers to (either “smallcomp” or
“domino” or “university” or “firewall1”) with the
value of the balancing parameter β with the index of the
exception to incorporate. For example, the file named:

“role_university_0.8_9.cnf”

contains a WPMS instance in DIMACS format that encodes
the problem of incorporating exception number 9 into the
“university” benchmark using 0.8 as balancing factor.
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I. INTRODUCTION

This benchmark set is motivated by the problem of pattern
detection in software code, which is a particular instance of
the general maximum common sub-graph extraction problem.
Other applications of maximum common sub-graphs include
matching of chemical structures [4], computation of graph edit
distances [1], [2] and synthesis of malware signatures [3].
Given a finite set of graphs G, the maximum common sub-
graph problem consists of determining the largest sub-graph
that occurs in all of the graphs in G. Note that the notion of
largest may differ between different applications. We start by
formally defining the maximum common sub-graph extraction
problem, followed by a description of its encoding into a
partial MaxSAT formula. We conclude by explaining how the
benchmarks were generated and the file naming convention.

II. PROBLEM STATEMENT

A graph is given by a pair G = (V,E), where V is its
set of nodes and E its set of edges. We assume that G is a
directed graph, i.e., if (u, v) ∈ E, then G contains an edge
from u to v, but not necessarily from v to u (the latter is the
case only if (v, u) ∈ E as well). We consider that nodes and
edges have types. Given a node v ∈ V , we denote v’s type as
t(v). Analogously, we denote the type of an edge (u, v) ∈ E
as t(u, v).

Let G = (V,E) and G′ = (V ′, E′) be graphs. We say that
G is a sub-graph of G′ if, and only if, there exists a mapping
F : V ′ → V such that:

• For all v ∈ V , there exists v′ ∈ V ′ such that t(v) = t(v′)
and F (v′) = v.

• For all u′, v′ ∈ V ′, if u′ 6= v′ and F (u′) 6= ⊥ (or F (v′) 6=
⊥) then F (u′) 6= F (v′). Note F (u′) = ⊥ if u′ is not
mapped to any node in V , which is the case for at least
one node if V ′ is larger than V .

• For all (u, v) ∈ E, there exists u′, v′ ∈ V ′ such that
F (u′) = u, F (v′) = v, (u′, v′) ∈ E and t(u, v) =
t(u′, v′).

Let G = {G1, G2, . . . , Gn} be a set of graphs and G0 =
(V0, E0) another graph. We say that G0 is a common sub-
graph of G if G0 is a sub-graph of all graphs in G. Given
G, the goal is to find its largest common sub-graph. In this
particular scenario, we consider the largest common sub-graph
to be the one that maximizes |E0|.

III. PARTIAL MAXSAT ENCODING

Consider the graph set G = {G1, G2, . . . , Gn}. In order to
build the MaxSAT formula, a graph in G is picked to be the
reference graph Gr = (Vr, Er). A common sub-graph G0 is
extracted by computing a mapping of the nodes of the graphs
in Gm = G \ {Gr} to nodes of Vr.

Three sets of Boolean variables are considered:

• A domain variable di is introduced for each vi ∈ Vr. If
di = 1, then vi ∈ V0, otherwise di = 0.

• A mapping variable fi,k,j indicates if the node vi of some
graph Gk ∈ Gm is mapped to node vj ∈ Vr. If so, then
fi,k,j = 1, otherwise fi,k,j = 0. Note that fi,k,j = 1 only
makes sense if vi and vj share the same type. Therefore,
if t(vi) 6= t(vj), we assume fi,k,j = 0.

• A control-flow variable ci,j is introduced for each pair
of nodes vi, vj ∈ Vr. If ci,j = 1, then (vi, vj) ∈ E0,
otherwise ci,j = 0. Note that ci,j = 1 only makes sense
if (vi, vj) ∈ Er. If (vi, vj) /∈ Er, we assume ci,j = 0.

The MaxSAT formula encodes the following hard con-
straints:

• For all vi ∈ Vr and Gk ∈ Gm (Gk = (Vk, Ek)), vi is a
node of the common sub-graph (i.e. vi ∈ V0) if, and only
if, at least one node vj ∈ Vk is mapped to vi:

∀vi∈Vr∀Gk∈Gm :
di ∨

∨

vj∈Vk

fi,k,j


 ∧

∧

vj∈Vk

(
di ∨ fi,k,j

)
. (1)

• For all Gk ∈ Gm and vp, vq ∈ Vk such that vp 6= vq , vp
and vq cannot be mapped to the same node of Vr:

∀Gk∈Gm∀vp∈Vk
∀vq∈Vk,vp 6=vq∀vi∈Vr :

(
fp,k,i ∨ fq,k,i

)
.

(2)
• For all Gk ∈ Gm and vp ∈ Vk, vp is mapped to at most

one node in Vr:

∀Gk∈Gm∀vp∈Vk
∀vi∈Vr∀vj∈Vr,vi 6=vj :

(
fp,k,i ∨ fp,k,j

)
.
(3)

• For all (vi, vj) ∈ Er, (vi, vj) ∈ E0 if, and only if, for all
Gk ∈ Gm, there exists vp, vq ∈ Vk such that vp and vq
are mapped to vi and vj respectively, (vp, vq) ∈ Ek and
t(vi, vj) = t(vp, vq). Let Ek(t(vi, vj)) denote the set of
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edges in Ek that share the type t(vi, vj). This constraint
is encoded by the following formula:

∀(vi,vj)∈Er
∀Gk∈Gm

∀(vp,vq)∈Vk×Vk\Ek(t(vi,vj)) :(
fp,k,i ∨ fq,k,j ∨ ci,j

)
. (4)

• For all (vi, vj) ∈ Er, if (vi, vj) ∈ E0, then vi ∈ V0 and
vj ∈ V0:

∀(vi,vj)∈Er
: (ci,j ∨ di) ∧ (ci,j ∨ dj) . (5)

• For all vi ∈ Vr, vi ∈ V0 if, and only if, there exists an
edge (u, v) ∈ E0 such that u = vi or v = vi:

∀vi∈Vr :


di ∨

∨

(u,vj)∈Er,u=vi

ci,j ∨
∨

(vj ,u)∈Er,u=vi

cj,i


 .

(6)
Recall that the goal is to maximize the number of edges in

E0, and thus the soft clause set is given by:
⋃

(vi,vj)∈Er

{(ci,j)}. (7)

IV. BENCHMARK GENERATION AND FILE NAME
CONVENTION

The maximum common sub-graph MaxSAT benchmarks
were generated from instances of pattern detection in real-
world software code. For each maximum common sub-graph
instance, given by a set of graphs G, the graph with the least
amount of nodes was chosen to be the reference graph. The file
name for instance G follows the following convention. It starts
with the string gN , where N = |G|, followed by a sequence
of strings, one per graph Gk ∈ G, separated by underscores.
Each such string has the form nN1eN2, where N1 = |Vk| and
N2 = |Ek|.
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