
A comparison of Euclidean and Heisenberg Hausdorff
measures

Pertti Mattila and Laura Venieri

November 27, 2017

Abstract

We prove some geometric properties of sets in the first Heisenberg group whose Heisen-
berg Hausdorff dimension is the minimal or maximal possible in relation to their Euclidean
one and the corresponding Hausdorff measures are positive and finite. In the first case
we show that these sets must be in a sense horizontal and in the second case vertical. We
show the sharpness of our results with some examples.

1 Introduction

Let HsE denote the Euclidean Hausdorff measure in the first Heisenberg group H1 and let
HsH denote the Hausdorff measure with respect to some homogeneous metric. Let dimE and
dimH denote the corresponding Hausdorff dimensions. Generally, for a set A ⊂ H1, dimE A
and dimH A can be different. For example, every line has Euclidean Hausdorff dimension 1
but there are lines that have Hausdorff dimension 2 with respect to any homogeneous metric,
such as the vertical axis (corresponding to the t-axis when H1 is identified with R3 and points
have coordinates (x, y, t), as we will see in Section 2). On the other hand, any so-called
horizontal line has dimH equal to 1. Horizontal lines, which are lines through the origin in
the xy-plane or left translations of them with respect to the group operation, and horizontal
planes (defined in (3)) play a special role in the Heisenberg group, as we will see also in our
results.

Balogh, Rickly and Serra Cassano in [BRSC] compared dimE and dimH for general sets,
proving what follows. For 0 ≤ s ≤ 3 let

β−(s) = max{s, 2s− 2}, β+(s) = min{2s, s+ 1}.

Then for any A ⊂ H1,
β−(dimE A) ≤ dimH A ≤ β+(dimE A).

Moreover, they also showed the sharpness of some of these inequalities, which was then com-
pleted by Balogh and Tyson in [BT]: for any 0 < s < 3 they constructed compact subsets
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F1 and F2 of H1 such that HsE(F1) and Hβ−(s)H (F1) are positive and finite and HsE(F2) and
Hβ+(s)
H (F2) are positive and finite. The example F1, for 0 < s ≤ 2, is in a sense horizontal and

F2 is in a sense vertical. In this paper we show that this must be so. We prove in Theorem
2 that for any set A ⊂ H1 and 0 < s ≤ 2 (recall that then β−(s) = s), if both HsE(A)
and HsH(A) are positive and finite, then in some arbitrarily small neighbourhoods around its
typical points p, most of A lies close to the horizontal plane through p. We shall construct
an example (see Example 5) to show that this need not hold for all small neighbourhoods
and another example (see Example 7) to show that this does not hold when s > 2 and both
HsE(A) and H2s−2

H (A) are positive and finite. Note that β−(s) = 2s − 2 when 2 < s ≤ 3.
Corresponding to the second case we show in Theorems 3 and 4 that if both HsE(A) and
Hβ+(s)
H (A) are positive and finite, then in some arbitrarily small neighbourhoods around its

typical points p, a large part of A lies off the horizontal plane through p.
In [BTW] Balogh, Tyson and Warhurst solved the dimension comparison problem in

general Carnot groups, but here we restrict to the first Heisenberg group.

2 Preliminaries

In a metric space X for 0 < s < ∞ the s-dimensional Hausdorff measure of A ⊂ X is
defined by

Hs(A) = lim
δ→0
Hsδ(A),

where

Hsδ(A) = inf{
∞∑
i=1

diam(Bi)
s : A ⊂

∞⋃
i=1

Bi, diam(Bi) < δ}.

The Hausdorff dimension of A is

dimA = inf{s : Hs(A) = 0}.

Let B(p, r) be the closed ball with centre p ∈ X and radius r. We have the basic upper
density theorem for Hausdorff measures, see, e,g., [F], 2.10.19.

Theorem 1. Let A ⊂ X be Hs measurable with Hs(A) <∞. Then for Hs almost all p ∈ A,

2−s ≤ lim sup
r→0

Hs(A ∩B(p, r))

(2r)s
≤ 1

and for Hs almost all p ∈ X \A,

lim
r→0

Hs(A ∩B(p, r))

(2r)s
= 0.

It is easy to construct examples, in Euclidean and many other metric spaces, where the
lower density lim infr→0

Hs(A∩B(p,r))
(2r)s is 0 for all p ∈ X, see, for example, [M], 4.12.

Let H1 be the first Heisenberg group. It can be identified as R3 with the non-Abelian
group operation

p · p′ = (x+ x′, y + y′, t+ t′ + 2(x′y − xy′)),
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for p = (x, y, t), p′ = (x′, y′, t′), and with the metric

dH(p, p′) =
(
((x− x′)2 + (y − y′)2)2 + (t− t′ + 2(x′y − xy′))2

)1/4
.

In addition to dH we shall also use the Euclidean metric, which we denote by dE . Then for
0 < R <∞ there exists a constant cR > 0 such that for every p, p′ ∈ BE(0, R),

1

cR
dE(p, p′) ≤ dH(p, p′) ≤ cRdE(p, p′)1/2. (1)

The closed ball B(p, r) is denoted by BH(p, r) when the metric is dH and by BE(p, r) when the
metric is dE . The s-dimensional Hausdorff measures and dimensions with respect to dH and
dE are denoted by HsH ,HsE ,dimH and dimE . In place of dH we could use any homogeneous
metric on H1, that is, any left invariant metric d satisfying d((δx, δy, δ2t), (δx′, δy′, δ2t′)) =
δd((x, y, t), (x′, y′, t′)). By 5.1.5 in [BLU], these metrics are locally bi-Lipschitz equivalent.

Recall the definitions of β−(s) and β+(s) from the introduction. Then by Proposition 3.1
in [BTW], for any positive number R there exists a constant CR such that for A ⊂ BE(0, R)
and for 0 < s < 3,

Hβ+(s)
H (A)/CR ≤ HsE(A) ≤ CRHβ−(s)H (A). (2)

Let V (p) denote the horizontal plane passing through p = (x0, y0, t0) ∈ H1. This is the
set of points q = (x, y, t) such that

t− t0 − 2(xy0 − yx0) = 0. (3)

The Euclidean distance of a point q = (x, y, t) to the plane V (p) is

dE(q, V (p)) =
|t− t0 − 2(xy0 − yx0)|√

1 + 4(x20 + y20)
. (4)

We let A(δ) denote the closed δ neighbourhood of A ⊂ H1 in the Euclidean metric.
Observe that BH(p, r) looks like V (p)(r2) ∩ BE(p, r), more precisely, for p as above with
x20 + y20 ≤ R2 and 0 < r < 1,

V (p)

(
r2√

2(1 + 4R2)

)
∩BE

(
p,
r

2

)
⊂ BH(p, r) ⊂ V (p)(r2) ∩BE(p, cRr), (5)

where cR is the constant in (1).
The restriction of a measure µ to a set A ⊂ X is denoted by µ A;µ A(B) = µ(A∩B).

3 The theorems

Theorem 2. Let 0 < s ≤ 2 and let A ⊂ H1 be such that HsH(A) <∞. Then for HsE almost
every p ∈ A there exists 0 < ε < 1 such that

lim inf
r→0

HsE(A ∩BE(p, r) \ V (p)(r1+ε))

rs
= 0.

3



Proof. By the Borel regularity of Hausdorff measures we may assume that A is a Borel set.
Changing ε a bit it suffices to prove for HsE almost every p ∈ A that

lim inf
r→0

HsE(A ∩BE(p, r) \ V (p)(7r1+ε))

rs
= 0. (6)

Writing AR = A ∩ BE(0, R), we have A = ∪∞R=1AR and we could run the argument for any
R such that HsH(AR) > 0. Hence we may assume that for some positive number R,

A ⊂ BE(0, R).

First, let us see that we can reduce to the case when there is a positive number C such that

1

C
HsE(B) ≤ HsH(B) ≤ CHsE(B) (7)

for every B ⊂ A. The left-hand side inequality holds because of (1). We can decompose A as

A = C ∪D,

where
HsE(C) = 0 and HsE(B) = 0⇔ HsH(B) = 0 ∀B ⊂ D. (8)

This can be done as follows. Let µE = HsE A and µH = HsH A. Since µE << µH , we have
that for every Borel set B ⊂ H1,

µE(B) =

∫
B
D(µE , µH , x)dµHx,

where D(µE , µH , x) is the Radon-Nikodym derivative of µE with respect to µH . Thus if we
let

C = {x ∈ A : D(µE , µH , x) = 0}, D = {x ∈ A : D(µE , µH , x) > 0},

then C and D satisfy (8). Moreover, we can write

D =
∞⋃
j=1

Dj , where HsE(B) ≥ 1

j
HsH(B) ∀B ⊂ Dj

by taking

Dj = {x ∈ D : D(µE , µH , x) >
1

j
}.

Thus (7) holds for every Dj in place of A. If we can prove (6) under the assumption (7), and
so for every Dj , it follows that (6) holds for A by the the second part of the upper density
theorem 1. More precisely, HsE almost every p ∈ A belongs to some Dj and for HsE almost
every p ∈ Dj we have

lim
r→0

HsE((A \Dj) ∩B(p, r))

(2r)s
= 0,

so

lim inf
r→0

HsE(A ∩BE(p, r) \ V (p)(r1+ε))

rs
= lim inf

r→0

HsE(Dj ∩BE(p, r) \ V (p)(r1+ε))

rs
.
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Hence we can assume (7).
Let ε > 0. Supposing that (6) is false, we will reach a contradiction at the end of the

proof if ε is small enough depending only on s, R and the constant C appearing in (7). By
Theorem 1 there exist c > 0, 0 < r0 < 1 and A′ ⊂ A, HsE(A′) > 0, such that

HsE(A ∩BE(p, r)) ≤ 3srs (9)

and
HsE(A ∩BE(p, r) \ V (p)(7r1+ε)) > crs (10)

for every p ∈ A′ and 0 < r < r0. Let 0 < r < r0/5 and p ∈ A′ be such that r2 << r1+ε and

HsE(BH(p, r) ∩A′) ≥ 1

C
HsH(BH(p, r) ∩A′) > c′rs (11)

with c′ = 1/(2C) (we can find these by Theorem 1). Let k ∈ N be such that r2 < r(1+ε)
k

and r2 ≥ r(1+ε)
k+1 , whence k ≥ log 2/(2 log(1 + ε)). By the 5r covering theorem, see, e.g.,

Theorem 2.1 in [M], for j = 1, . . . , k we can find pj,i ∈ A′ ∩BH(p, r) such that

A′ ∩BH(p, r) =

mj⋃
i=1

A′ ∩BH(p, r) ∩BE(pj,i, 5r
(1+ε)j ), (12)

where the balls BE(pj,i, r
(1+ε)j ), i = 1, . . . ,mj , are disjoint. Since by (11), (12) and (9),

c′rs < HsE(BH(p, r) ∩A′)

≤
mj∑
i=1

HsE(A′ ∩BH(p, r) ∩BE(pj,i, 5r
(1+ε)j ))

≤ mj3
s5srs(1+ε)

j
,

we obtain
mj ≥ c1rs(1−(1+ε)

j), (13)

with c1 = c′/15s depending only on s and C.
In what follows we shall show that the sets

mj⋃
i=1

BE(pj,i, r
(1+ε)j ) \ V (pj,i)(7r

(1+ε)j+1
), j = 1, . . . , k, (14)

are disjoint. Let j ∈ {1, . . . , k−1} and let BE(pj,i, r
(1+ε)j ) and BE(pn,l, r

(1+ε)n), j+1 ≤ n ≤ k,
i ∈ {1, . . . ,mj}, l ∈ {1, . . . ,mn}, be such that BE(pj,i, r

(1+ε)j ) ∩ BE(pn,l, r
(1+ε)n) 6= ∅. We

want to show that

(BE(pj,i, r
(1+ε)j ) \ V (pj,i)(7r

(1+ε)j+1
)) ∩BE(pn,l, r

(1+ε)n) = ∅. (15)

Let us denote p = (x̄, ȳ, t̄), pj,i = (xi, yi, ti), pn,l = (xl, yl, tl). Since pj,i, pn,l ∈ BH(p, r), we
have

((x̄− xi)2 + (ȳ − yi)2)2 + (t̄− ti + 2(xiȳ − yix̄))2 ≤ r4, (16)
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and

((x̄− xl)2 + (ȳ − yl)2)2 + (t̄− tl + 2(xlȳ − ylx̄))2 ≤ r4. (17)

Moreover,
dE(pj,i, pn,l) ≤ r(1+ε)

j
+ r(1+ε)

n ≤ 2r(1+ε)
j
. (18)

We now want to show that dE(pn,l, V (pj,i)) ≤ 6r(1+ε)
j+1 . Indeed by (4), (16), (17) and (18)

we have

dE(pn,l, V (pj,i)) =
|tl − ti − 2(xlyi − ylxi)|√

1 + 4(y2i + x2i )

≤|tl − ti − 2(xlyi − ylxi)|
≤|tl − t̄− 2(xlȳ − ylx̄)|+ |2(ylx̄− xlȳ) + 2(xiȳ − yix̄)

+ 2(xlyi − ylxi)|+ |t̄− ti + 2(xiȳ − yix̄)|
≤2r2 + 2|(xl − xi)(yi − ȳ)− (yl − yi)(xi − x̄)|
=2r2 + 2|〈(xl − xi, yi − yl), (yi − ȳ, xi − x̄)〉|

≤2r2 + 4r(1+ε)
j
r ≤ 6r2,

where 〈·, ·〉 denotes the scalar product and we used Cauchy-Schwarz inequality. Since r2 <
r(1+ε)

k ≤ r(1+ε)j+1 , we have dE(pn,l, V (pj,i)) ≤ 6r(1+ε)
j+1 . Thus

BE(pn,l, r
(1+ε)n) ⊂ V (pj,i)(7r

(1+ε)j+1
),

which implies (15). Hence the sets in (14) are disjoint.
We have HsE(A∩BE(pj,i, r

(1+ε)j )\V (pj,i)(7r
(1+ε)j+1

)) > crs(1+ε)
j by (10) hence using (13)

and the fact that BE(pj,i, r
(1+ε)j ) ⊂ BE(p, 3r) we get

HsE(A ∩BE(p, 3r)) ≥
k∑
j=1

mj∑
i=1

HsE(A ∩BE(pj,i, r
(1+ε)j ) \ V (pj,i)(7r

(1+ε)j+1
))

≥ c
k∑
j=1

mjr
s(1+ε)j ≥ cc1

k∑
j=1

rs(1−(1+ε)
j)rs(1+ε)

j

= cc1kr
s ≥ cc1 log 2/(2 log(1 + ε))rs.

When ε is small enough, the last term is greater than 7srs. This yields a contradiction with
Theorem 1.

Remark. The above proof shows that if A ⊂ BE(0, R) satisfies (7), then we can choose ε
depending only on s,R and C.

Theorem 3. Let s ≥ 1 and A ⊂ H1 be such that HsE(A) <∞. Then for Hs+1
H almost every

p ∈ A there exists δ > 0 such that

lim sup
r→0

HsE(A ∩BE(p, r) \ V (p)(δr))

(2r)s
>

1

2s+1
. (19)
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Proof. We may assume that A is a Borel set and A ⊂ BE(0, R) for some R > 0. We can
again, using Theorem 1, reduce the proof to the case where there exists a constant C > 0
such that for every B ⊂ A we have

1

C
HsE(B) ≤ Hs+1

H (B) ≤ CHsE(B). (20)

Indeed, this follows from a similar reasoning as was used to prove the right-hand side inequality
in (7) since Hs+1

H << HsE holds always by (2) (when s ≥ 1, β+(s) = s+ 1).
By Theorem 1 for HsE almost all p ∈ A there exists 0 < rp < 1 such that for every

0 < r < rp
HsE(A ∩BE(p, r)) ≤ 3srs (21)

and
Hs+1
H (A ∩BH(p, r)) ≤ 3s+1rs+1. (22)

For j = 1, 2, . . . , let
Aj = {p ∈ A : 2−j ≤ rp < 2−j+1}.

Then HsE(A \ ∪∞j=1Aj) = 0.
Let p ∈ Al and HsE(Al) > 0 for some l and let

0 < δ <
1

2s+23s+2C
√

1 + 4R2
, (23)

where C is as in (20). Hence, as in the previous proof, δ depends only on s, R and C. For
every 0 < r < 2−l, r < δ, we want to show that there exist p1, . . . , pk, k ≈ (δ/r)

√
1 + 4R2,

such that

BE(p, r) ∩ V (p)(δr) ⊂
k⋃
i=1

BH(pi, 2r). (24)

Let p = (x̄, ȳ, t̄). By (3) the horizontal plane V (p) is the set of points (x, y, t) ∈ H1 such that

t̄− t− 2(xȳ − yx̄) = 0.

Let L(p) be the vertical line passing through p, that is L(p) = {(x̄, ȳ, t) : t ∈ R}. If q =
(x̄, ȳ, t) ∈ L(p) and dE(q, V (p)) ≤ δr then |t− t̄| ≤ δr

√
1 + 4R2. Indeed, by (4) we have

δr ≥ dE(q, V (p)) =
|t− t̄− 2(x̄ȳ − ȳx̄)|√

1 + 4(x̄2 + ȳ2)
(25)

=
|t− t̄|√

1 + 4(x̄2 + ȳ2)
≥ |t− t̄|√

1 + 4R2
.

Cover the interval [t̄− δr
√

1 + 4R2, t̄+ δr
√

1 + 4R2] with intervals [ti, ti+1], i = 1, . . . , k, with
ti+1 − ti = r2 and

k ≤ 3(δ/r)
√

1 + 4R2. (26)

Let
pi = (x̄, ȳ, ti) ∈ L(p).
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If u ∈ L(p) ∩ V (p)(δr) then there exists i such that dE(u, pi) ≤ r2 by (25). To see that (24)
holds, let q = (x, y, t) ∈ BE(p, r) ∩ V (p)(δr) and let q′ be the point of intersection between
the plane passing through q parallel to V (p) and the line L(p). This means that

q′ = (x̄, ȳ, t′) and t′ − t− 2((x̄− x)ȳ − (ȳ − y)x̄) = 0,

hence
q′ = (x̄, ȳ, t+ 2(yx̄− xȳ)).

Since q′ ∈ L(p) ∩ V (p)(δr), there exists j ∈ {1, . . . , k} such that

dE(q′, pj) = |t+ 2(yx̄− xȳ)− tj | ≤ r2. (27)

Let us now see that q ∈ BH(pj , 2r), that is dH(q, pj) ≤ 2r. Indeed,

dH(q, pj)
4 = ((x− x̄)2 + (y − ȳ)2)2 + (t− tj + 2(x̄y − ȳx))2 . (28)

Since q ∈ BE(p, r), we have
(x− x̄)2 + (y − ȳ)2 ≤ r2,

and by (27) the second term in (28) is ≤ r4. It follows that dH(q, pj) ≤ 2r, which proves (24).
Hence by (24), (20), (22), (26) and (23) we have that for every 0 < r < 2−l,

HsE(A ∩BE(p, r) ∩ V (p)(δr)) ≤
k∑
i=1

HsE(A ∩BH(pi, 2r))

≤ C
k∑
i=1

Hs+1
H (A ∩BH(pi, 2r))

≤ Ck3s+12s+1rs+1

≤ C3s+22s+1 δ

r

√
1 + 4R2rs+1 <

1

2
rs.

Thus for HsE almost every p ∈ A there exists δ > 0 such that

lim sup
r→0

HsE(A ∩BE(p, r) ∩ V (p)(δr))

(2r)s
<

1

2s+1
,

which proves (19) by Theorem 1.

Remark. It is easy to give examples where the lower limit of the expression in (19), and in
(29) in Theorem 4, is 0 everywhere. For example, this is so for any set of lower density zero,
recall the comment after Theorem 1. On the other hand, for many sets the lower limit can be
positive, for example, for classical Cantor sets C in the vertical axis for which 0 < HsE(C) <∞
and 0 < H2s

H (C) <∞ for some 0 < s < 1

Theorem 4. Let 0 < s < 1 and A ⊂ H1 be such that HsE(A) < ∞. Then for H2s
H almost

every p ∈ A there exists δ > 0 such that

lim sup
r→0

HsE(A ∩BE(p, r) \ V (p)(δr))

(2r)s
> 0. (29)
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We do not know if one can replace 0 with a positive constant as in the previous theorem,
our proof would give only a constant depending on the point p.

Proof. We may assume that A is a Borel set and A ⊂ BE(0, R) for some R > 0. Since
H2s
H << HsE always holds (here β+(s) = 2s because s < 1), we can assume, as in the proof of

Theorem 3, that there exists C > 0 such that
1

C
HsE(B) ≤ H2s

H (B) ≤ CHsE(B) (30)

for every B ⊂ A.
Suppose that (29) does not hold. Let A0 ⊂ A be a Borel set such that HsE(A0) > 0 and

that (29) fails for p ∈ A0 for every δ > 0. Fix δ > 0 and ε > 0, to be chosen sufficiently
small at the end of the proof. Then there exist a Borel set A′ ⊂ A0 and r0 > 0 such that
HsE(A′) > HsE(A0)/2 and for every p ∈ A′ and for every 0 < r < r0,

HsE(A ∩BE(p, r) \ V (p)(δr)) < εrs. (31)

Let 0 < η < min{r0, δ}. Let c = 3s. Then by Theorem 1 for HsE almost all p ∈ A′ there is
rp < η such that

rsp
c
≤ HsE(A′ ∩BE(p, rp)) ≤ crsp. (32)

Applying Vitali’s covering theorem (see Theorem 2.8 in [M]) to the family of balls

{BE(p, rp) : p ∈ A′ such that rp satisfying (32) exists},

we find a subfamily of disjoint balls, {BE(pi, ri)}∞i=1, such that

HsE

(
A′ \

∞⋃
i=1

BE(pi, ri)

)
= 0. (33)

Hence we have by (32)

HsE(A′) = HsE

(
A′ ∩

∞⋃
i=1

BE(pi, ri)

)

=
∞∑
i=1

HsE(A′ ∩BE(pi, ri)) ≥
1

c

∞∑
i=1

rsi . (34)

Since pi ∈ BE(0, R), we have by (1) that

diamH(BE(pi, ri)) ≤ cRdiamE(BE(pi, ri))
1/2 ≤ cR

√
2η.

Let η′ = cR
√

2η. Then we have

H2s
H,η′(A

′) ≤
∞∑
i=1

H2s
H,η′(A

′ ∩BE(pi, ri))

≤
∞∑
i=1

H2s
H,η′(A

′ ∩BE(pi, ri) ∩ V (pi)(δri)) (35)

+
∞∑
i=1

H2s
H,η′(A

′ ∩BE(pi, ri) \ V (pi)(δri)).
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Moreover, we have

H2s
H,η′(A

′ ∩BE(pi, ri) ∩ V (pi)(δri)) ≤ diamH(BE(pi, ri) ∩ V (pi)(δri))
2s

≤ (2(cR + 1)
√
δri)

2s = C ′′(δri)
s. (36)

To see this, let q, q′ ∈ BE(pi, ri) ∩ V (pi)(δri) and let q̄, q̄′ ∈ BE(pi, ri) ∩ V (pi) be such that
dE(q, q̄) ≤ δri and dE(q′, q̄′) ≤ δri. Then

dH(q, q′) ≤ dH(q, q̄) + dH(q̄, q̄′) + dH(q̄′, q′).

We have dH(q, q̄) ≤ cRdE(q, q̄)1/2 ≤ cR(δri)
1/2, dH(q′, q̄′) ≤ cRdE(q′, q̄′)1/2 ≤ cR(δri)

1/2 by
(1) and

dH(q̄, q̄′) ≤ dH(q̄, pi) + dH(pi, q̄
′) = dE(q̄, pi) + dE(pi, q̄

′) ≤ 2ri,

where we used the fact that dH(u, pi) = dE(u, pi) if u ∈ V (pi). Since ri < η < δ, it follows
that ri ≤ (δri)

1/2, hence

dH(q, q′) ≤ 2cR(δri)
1/2 + 2ri ≤ 2(cR + 1)(δri)

1/2,

which proves (36). On the other hand, by (30) and (31) we have

H2s
H (A′ ∩BE(pi, ri) \ V (pi)(δri)) ≤ CHsE(A′ ∩BE(pi, ri) \ V (pi)(δri)) < Cεrsi ,

thus also
H2s
H,η′(A

′ ∩BE(pi, ri) \ V (pi)(δri)) < Cεrsi . (37)

Hence we have by (35), (36), (37) and (34)

H2s
H,η′(A

′) ≤ (C ′′δs + Cε)
∞∑
i=1

rsi

≤ c(C ′′δs + Cε)HsE(A′)

≤ 2c(C ′′δs + Cε)HsE(A0).

whence letting η and η′ tend to 0,

0 < H2s
H (A0) < 2H2s

H (A′) ≤ 2c(C ′′δs + Cε)HsE(A0).

Since δ and ε are allowed to depend on A0 and they can be chosen arbitrarily small, we have
a contradiction which completes the proof.

4 Examples

We show the sharpness of Theorem 2 with three examples. Example 5 shows that
we cannot replace lim inf by lim sup, Example 6 shows that we cannot replace the r1+ε-
neighbourhood by Mr2-neighbourhood for any positive number M , in particular we cannot
replace it with the Heisenberg ball BH(p, r). We shall construct these two examples only for
s = 1, but very likely similar examples can be given for any 0 < s < 2. Example 7 shows
that when s > 2 then in arbitrarily small neighbourhoods around a point p the set cannot
lie too close to the horizontal plane through p, in the sense that we cannot obtain the same
conclusion as in Theorem 2.
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Example 5. There exists a compact set F ⊂ H1 such that for some positive constant C,
H1
H(F ) > 0 and H1

H(A) ≤ CH1
E(A) <∞ for A ⊂ F , and for p ∈ F ,

lim sup
r→0

H1
E(F ∩BE(p, r) \ V (p)(r/8))

2r
≥ 1

8
. (38)

Example 6. For any M, 1 < M <∞, there exists a compact set F ⊂ H1 such that for some
positive constant C, H1

H(F ) > 0 and H1
H(A) ≤ CH1

E(A) <∞ for A ⊂ F , and for p ∈ F ,

lim inf
r→0

H1
E(F ∩BE(p, r) \ V (p)(Mr2))

2r
≥ 1

16
. (39)

Both examples will follow from the same construction which we now describe. In both
cases F will be a subset of the vertical plane V = {(x, y, t) : y = 0}, whose points will now
be written as (x, t). The metric dH restricted to this plane is given by

dH((x1, t1), (x2, t2)) =
(
(x1 − x2)4 + (t1 − t2)2

)1/4
.

For p = (x, t) ∈ V , the horizontal plane V (p) intersects V along the line {(u, t) : u ∈ R}.
For p, q ∈ V we have dE(p, q) ≤ dH(p, q) if dE(p, q) ≤ 1/2. Thus

H1
E(B) ≤ H1

H(B) for B ⊂ V.

Let n be an integer, n ≥ 1, and λ a positive number, 0 < λ ≤ 1/2. For a rectangle
R = [a, b] × [c, d] ⊂ V such that λ(b − a) < d − c we let R(R,n, λ) be the collection of the
following 2n subrectangles:

[a+ 2i
b− a
2n

, a+ 2i
b− a
2n

+
b− a
2n

]× [c, c+ λ(b− a)],

[a+ (2i+ 1)
b− a
2n

, a+ (2i+ 1)
b− a
2n

+
b− a
2n

]× [d− λ(b− a), d],

for i = 0, . . . , n− 1.
Let (nk) be a sequence of integers, nk ≥ 1, and (λk) a sequence of positive numbers,

λk ≤ 1/2. We define for k ≥ 1,

R0 = R([0, 1]2, 1, 1/2),

Rk =
⋃

R∈Rk−1

R(R,nk, λk),

and

F =
∞⋂
k=0

⋃
R∈Rk

R.

Then F ⊂ V is compact and the projection of F on the x-axis is [0, 1]. Thus both H1
E(F )

and H1
H(F ) are at least 1. Using the natural coverings with the rectangles of Rk, one easily

checks that H1
E(F ) and H1

H(F ) are also finite provided λk goes to 0 sufficiently fast. More
precisely, let hk be the length of the horizontal sides of the rectangles of Rk and let vk be the

11



length of their vertical sides. Then the Euclidean diameter of each R ∈ Rk is (h2k + v2k)
1/2

and the Heisenberg diameter is (h4k + v2k)
1/4. If vk/hk tends to zero as k →∞, then

H1
E(F ∩R) = hk for R ∈ Rk, (40)

in particular, H1
E(F ) = 1. If moreover, vk ≤ Ch2k for all large enough k, then

H1
H(A) ≤ (1 + C2)1/4H1

E(A) for A ⊂ F. (41)

These conditions on hk and vk will be satisfied in both examples below; in Example 5
vk = h2k and in Example 6 vk = 34Mh2k for large k.

For Example 5 we choose nk = 2
2k−1−1 and λk = 2−3·2

k−1 . As a consequence, the rectangles
in Rk have horizontal sides of length hk = 2

−2k and the vertical sides of length 2
−2k+1

. For
R ∈ Rk, the horizontal sides of each rectangle R′ of Rk+1 inside R thus has the same length
as the vertical sides of R (see Figure 1). This implies that for p ∈ R′ and rk = 4hk+1,
BE(p, rk) \ V (p)(rk/8) contains another rectangle R′′ of Rk+1. Hence

H1
E(F ∩BE(p, rk) \ V (p)(rk/8))

2rk
≥
H1
E(F ∩R′′)

8hk+1
=

1

8
,

from which, recalling also (41), the asserted properties follow.

Figure 1: A rectangle R ∈ Rk and a rectangle R′ ∈ Rk+1 inside R in Example 5

For Example 6 we choose nk = 1 and we let λk = 1/2, when 34M4−k ≥ 2−k, that is,
2k ≤ 34M , and λk = 34M2−k−1 for all larger k. As a consequence, for large enough k,
the rectangles in Rk have horizontal sides of length hk = 2−k and vertical sides of length
34M4−k. For R ∈ Rk, we have two rectangles R1 and R2 of Rk+1 inside R, one along

12



the lower side of R and one along the upper. The distance between these rectangles is
34M4−k − 2 · 34M4−k−1 = 17M4−k (see Figure 2).

Let 0 < r < 1 and let k be such that 21−k ≤ r < 22−k. We assume that r is small enough so
that 2k > 68M . Let R,R1 and R2 be as above and p ∈ R2. Then Mr2 ≤M42−k < 17M4−k,
whence R1 lies outside V (p)(Mr2). On the other hand, as 21−k ≤ r, R1 lies inside BE(p, r).
This implies that BE(p, r)\V (p)(Mr2) contains R1, from which the asserted properties follow
as in the case of Example 5.

Figure 2: A rectangle R ∈ Rk and the rectangles R1, R2 ∈ Rk+1 inside R in Example 6

The next example shows that the conclusion of Theorem 2 fails when 2 < s < 3.

Example 7. For any 2 < s < 3 there exist constants cs, δs > 0 and a set Fs ⊂ H1 such that
HsE(Fs) > 0, H2s−2

H (Fs) <∞ and for HsE almost every p ∈ Fs,

lim inf
r→0

HsE(Fs ∩BE(p, r) \ V (p)(δsr))

rs
≥ cs. (42)

This example is taken from Theorem 4.1 in [BT] (see also [S]), where it is used to show
the sharpness of some of the dimension inequalities. We will consider the Heisenberg square
QH and a certain Cantor set above each point of QH . The Heisenberg square is the invariant
set of the affine iterated function system F1, F2, F3, F4, that is QH = ∪4j=1Fj(QH). The maps
Fi : H1 → H1, i = 1, 2, 3, 4, are similarities with respect to dH with contraction ratio 1/2 and
they are horizontal lifts of fj , j = 1, 2, 3, 4, which are maps in the plane. This means that
π ◦ Fj = fj ◦ π, where π : R3 → R2 is the projection π(x, y, t) = (x, y). These maps have
the form fj(x, y) = 1

2((x, y) + vj), where v1 = (0, 0), v2 = (1, 0), v3 = (0, 1) and v4 = (1, 1).
Then we have π(QH) = Q = [0, 1]2, where Q is the invariant set of the iterated function
system f1, f2, f3, f4. See [BHT] and [BT] for more details. We will use the symbolic dynamics
notation: for m ≥ 1 and w = w1w2 . . . wm ∈ Wm = {1, 2, 3, 4}m we let Fw = Fw1 ◦ · · · ◦ Fwm .
Then QH = ∪w∈WmFw(QH) for every m.

Given 2 < s < 3, let d = s−2 and let Cd be a standard symmetric Cantor set in the t-axis
such that 0 < HdE(Cd) < ∞. Then 0 < H2d

H (Cd) < ∞. Moreover, Cd is d-Ahlfors regular,
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which implies that for 0 < r < 1 and (0, 0, t′) ∈ Cd,

HdE({(0, 0, t) ∈ Cd : c0r ≤ |t− t′| ≤
r

4
}) ≥ cdrd (43)

for some constants c0 and cd. The set Cd is the invariant set associated to two maps G1, G2,
which are 2−1/2d-Lipschitz with respect to dH . Let

Fs = {(x, y, t+ t′) : (x, y, t) ∈ QH , (0, 0, t′) ∈ Cd}.

It is shown in Theorem 4.1 in [BT] that

HsE(Fs) > 0 and H2s−2
H (Fs) <∞.

Let p = (x̄, ȳ, t̄ + t̄′) ∈ Fs and let 0 < r < min{1/20, c0/6}. Let m be the integer such
that 2−m+2 diamH(QH) ≤ r < 2−m+3 diamH(QH), then

2−m+2 diamH(QH) < min{1/20, c0/6}.

Let n be the smallest integer such that n ≥ 2dm. For w ∈ {1, 2, 3, 4}m and v ∈ {1, 2}n, let

F vws = {(x, y, t+ t′) : (x, y, t) ∈ Fw(QH), (0, 0, t′) ∈ Gv(Cd)} ⊂ Fs.

Then
diamH(F vws ) ≤ 2−m+2 diamH(QH) ≤ r.

Indeed, if diamH(F vws ) = dH((x, y, t + t′), (x̃, ỹ, t̃ + t̃′)), then we have, as shown in the proof
of Theorem 4.1 in [BT],

diamH(F vws )4 = ((x− x̃)2 + (y − ỹ)2)2 + (t+ t′ − t̃− t̃′ + 2(x̃y − ỹx))2

≤ 2(((x− x̃)2 + (y − ỹ)2)2 + (t− t̃+ 2(x̃y − ỹx))2 + (t′ − t̃′)2)
≤ 2(2−4m diamH(QH)4 + 2−2n/d) ≤ 2−4m+2 diamH(QH)4.

Let w and v be such that p ∈ F vws , so we have F vws ⊂ Fs ∩ BH(p, r). Let now q =
(x, y, t+ t′) ∈ F vws be such that |x− x̄|2 + |y− ȳ|2 ≤ r2/400. Then q ∈ BH(p, r) and we have

|t+ t′ − t̄− t̄′| ≤ |t+ t′ − t̄− t̄′ + 2(x̄y − ȳx)|+ 2|x̄y − ȳx|
≤ dH(p, q)2 + 2|x̄(y − ȳ) + (x̄− x)ȳ|

≤ r2 +
4r

20
≤ r

20
+

4r

20
=
r

4
. (44)

Let
Cqd = {(0, 0, t′′) ∈ Cd : c0r ≤ |t′′ − t′| ≤

r

4
}. (45)

We want to show that the set

Lq = {(x, y, t+ t′′) : (0, 0, t′′) ∈ Cqd}

is contained in

Dr = Fs ∩BE(p, r) ∩ {(x, y, t) : |x− x̄|2 + |y − ȳ|2 ≤ r2/400} \ V (p)(c0r/6).
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Let q′′ = (x, y, t+ t′′) ∈ Lq. Then q′′ ∈ Fs since (x, y, t) ∈ QH and (0, 0, t′′) ∈ Cd. Moreover,
by (44) and (45) we have

|t+ t′′ − t̄− t̄′| ≤ |t+ t′ − t̄− t̄′|+ |t′′ − t′| ≤ r

4
+
r

4
=
r

2
,

thus

|q′′ − p|2 = |x− x̄|2 + |y − ȳ|2 + |t+ t′′ − t̄− t̄′|2 ≤ r2

400
+
r2

4
< r2.

This implies that q′′ ∈ BE(p, r). It remains to show that dE(q′′, V (p)) ≥ c0r/6. Using (4),
(45) and the facts that x̄2 + ȳ2 ≤ 2 and dH(p, q) ≤ r < c0/6, we have

dE(q′′, V (p)) =
|t′ + t′′ − t̄− t̄′ − 2(xȳ − yx̄)|√

1 + 4(x̄2 + ȳ2)

≥ |t′′ − t′|√
1 + 4(x̄2 + ȳ2)

− |t+ t′ − t̄− t̄′ − 2(xȳ − yx̄)|√
1 + 4(x̄2 + ȳ2)

≥ |t′ − t′′|/3− dH(q, p)2 ≥ c0r/3− r2 ≥ c0r/6.

Hence we have
Lq ⊂ Dr ⊂ Fs ∩BE(p, r) \ V (p)(c0r/6). (46)

In particular, for every point (x, y, t) ∈ Fw(QH) such that |x− x̄|2 + |y − ȳ|2 ≤ r2/400 there
are points (x, y, t+ t′′) ∈ Dr. Thus

π(Fs ∩BE(p, r) \ V (p)(c0r/6)) ⊃ π(Dr)

⊃ π(Fw(QH)) ∩ {(x, y) : |x− x̄|2 + |y − ȳ|2 ≤ r2/400}
= fw(Q) ∩ {(x, y) : |x− x̄|2 + |y − ȳ|2 ≤ r2/400},

which implies

H2
E(π(Dr)) ≥ H2

E(fw(Q) ∩ {(x, y) : |x− x̄|2 + |y − ȳ|2 ≤ r2/400}) ≥ cr2 (47)

for some constant c. Then by (46), (43), (47) and Theorem 7.7 in [M] we have for some
constant c′ > 0,

HsE(Fs ∩BE(p, r) \ V (p)(c0r/6)) ≥ HsE(Dr)

≥ c′
∫
π(Dr)

HdE({(0, 0, tq + t′′) : q = (xq, yq, tq + t′′) ∈ Dr})dH2
E(xq, yq)

≥ c′
∫
π(Dr)

HdE(Cqd)dH2
E(xq, yq)

≥ c′cdrdH2
E(π(Dr)) ≥ c′cdcr2+d = csr

s,

which implies (42).
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