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Abstract

This thesis consists of four research papers and an introduction covering the most important concepts
appearing in the papers. The papers deal with applications of gauge/gravity dualities in the study
of various physical quantities and systems. Gauge/gravity dualities are equivalences between certain
quantum field theories and classical theories of gravity. These dualities can be used as computational
tools in a wide range of applications across different fields of physics, and as such they have garnered
much attention in the last two decades. The great promise of these new tools is the ability to tackle
difficult problems in strongly interacting quantum field theories by translating them to problems in
classical gravity, where progress is much easier to make.

Quantum information theory studies the information contained in quantum systems. Entangle-
ment is the fundamental property of quantum mechanics that sets it apart from classical theories of
physics. Entanglement is commonly quantified by entanglement entropy, a quantity which is difficult
to compute in interacting quantum field theories. Gauge/gravity dualities provide a practical way for
computing the entanglement entropy via the Ryu-Takayanagi formula.

Entanglement of purification is an entanglement measure for mixed quantum states. It is in general
a difficult quantity to compute in quantum field theories. Its proposed holographic dual, the entan-
glement wedge cross section (EW ), is however sufficiently simple to enable practical computation.
We study the entanglement wedge cross section in various holographic backgrounds and entangling
region shapes. We find systems where EW exhibits nonmonotonous and noncontinuous behaviour.
In particular, we study the ABJM theory coupled to massive fundamental matter and find nontrivial
behaviour along the renormalization group flow between UV and IR fixed points.

We use holography to study different properties of quantum information in the ABJM theory with
massive fundamental matter. We derive analytical expressions showing how the entanglement entropy
and mutual information are affected by the introduction of fundamental matter. We introduce a new
quantity called extensivity for characterizing the behaviour of mutual information under scaling of
the entanglement region. The background represents a renormalization group flow between two fixed
points. This interesting property of the background is studied by seeing how the mutual information,
conditional mutual information and extensivity behave along the flow between the UV and the IR.
Additionally, we calculate c-functions in order to measure the number of degrees of freedom at different
length scales.

Noncommutative quantum field theories are interesting nonlocal theories with a minimal length
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scale set by the nonvanishing commutator of spatial coordinates. We construct one such noncom-
mutative theory by performing a series of string dualities on the known holographic background dual
to the ABJM theory with massive fundamental matter. The string dualities produce a new gravity
background which is interpreted to be dual to the noncommutative version of the initial theory. We
study various quantities, including the Wilson loop, two-point function, and holographic entanglement
entropy, focusing on their properties under changes in the amount of flavors or the length scale set
by the noncommutativity.

The spherical black hole in global anti de-Sitter spacetime can be either stable or unstable depending
on its radius. Small enough black holes are unstable and the thermodynamically stable phase in the
canonical ensemble is thermal AdS. We compute the quasinormal modes and the spectral function
dual to a massive bulk scalar field in the AdS-Schwarzschild background for different black hole radii,
covering both the large and small black hole phases. We find that both quantities agree with their
corresponding thermal AdS results when taken to the limit of small black hole radius.
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Chapter 1

Introduction

One of the most influential discoveries in string theory in the last few decades is the AdS/CFT
correspondence. The correspondence was discovered in the late 1990s and caused a wave of activity
in subfields of theoretical physics continuing to this day. AdS/CFT provides a first principles based tool
for studying quantum field theories (QFTs) in strongly interacting regimes, where traditional methods
based on perturbation theory are deemed insufficient. While AdS/CFT does have its limitations, it
has found success for example in predicting a lower bound for the ratio of the shear viscosity and
entropy density in a wide class of quantum field theories in finite temperature [2].

The AdS/CFT correspondence is a holographic duality. It relates two seemingly unrelated physical
systems to one another: a quantum field theory and a theory of quantum gravity in one higher
spatial dimension. The first and best known example is the duality between a (3 + 1)-dimensional
conformal field theory (CFT) and a type IIB superstring theory in a five-dimensional anti de-Sitter
(AdS) spacetime times a five-dimensional internal sphere [3]. Since string theory is not yet very well
understood, we need to work in a limit which makes the duality more practically useful. In the CFT
we may consider the limit where the gauge group rank and coupling constant are large. It turns out
that on the string theory side this limit corresponds to taking the string length and string coupling
constant to be small, and thus the string theory is well approximated by classical gravity. In this limit,
the duality is between classical gravity and a strongly interacting CFT, making it possible to perform
calculations on the gravity side and translate them to results in the CFT. The reason for the string
theory to simplify in this limit is that both quantum and stringy effects are suppressed. The shortness
of the string length compared to the curvature radius of the AdS space causes the strings to look like
point particles instead of extended objects, thus suppressing all but the massless string excitations.
The smallness of the string coupling constant suppresses quantum effects of string loops and enables
us to ignore the quantum fluctuations of the background spacetime. In other words, holographic
dualities state that certain strongly interacting QFTs are such that their collective dynamics gives rise
to emergent weakly coupled gravitational degrees of freedom.

It is a surprising discovery that two physical theories in different spacetime dimensions should be
equivalent to each other. After all, it seems implausible for a lower dimensional theory to hold the
same information content that a higher dimensional theory contains. In order to see that such a duality
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2 Introduction

could be possible, let us consider the number of degrees of freedom, as measured by entropy, on each
side of the correspondence. Let the QFT under consideration live on a d-dimensional manifold. The
entropy of some spatial region at constant time is extensive in the volume of that region. That is, the
entropy is proportional to a (d − 1)-dimensional volume. Now consider the dual gravity side which
describes the dynamics of a (d + 1)-dimensional manifold. Contrary to the naive expectation, the
entropy of a spatial region at constant time is not proportional to the volume, but to the surface area
of that region. This is a special property in gravitational theories: the entropy of a spatial volume is
bounded by the entropy of a corresponding black hole. The entropy of a black hole is given by the
Bekenstein-Hawking formula [4]

SBH =
A

4G
(d+1)
N

, (1.1)

where A is the area of the event horizon and G
(d+1)
N is the gravitational constant in (d+1) spacetime

dimensions. In other words, the entropy of a spatial volume in a gravity theory is proportional to
the boundary area of that surface which in our case means a (d− 1)-dimensional volume. Thus, the
entropy of the gravitational theory can indeed match the entropy of the QFT. This is all because the
degrees of freedom in quantum gravity are organized in a way that information about a spatial region
can be encoded on the boundary of that region [5, 6].

Since the original discovery of the AdS/CFT correspondence, many generalizations have been
found, collectively known as gauge/gravity dualities. For example, generalizations have been found
for theories in finite temperature and confining cases, in various dimensions. Dualities can be found
by the so-called top-down approach where one starts in string theory and derives a duality. The other
way is to work bottom-up, by directly writing down a gravity background which exhibits the physics
one wants to study. The drawback of the former approach is the difficulty of finding string theory
solutions. The drawback of the latter is the lack of knowledge about the dual QFT represented by
the gravitational background.

The AdS/CFT correspondence has applications in multiple branches of theoretical physics. One
important application is in the study of the dynamics of strongly coupled plasma, where difficult
nonequilibrium dynamics are converted to feasible problems involving numerical solutions to Einstein’s
equations. Even though the plasma modelled by holographic calculations is usually supersymmetric
and has a large number of colours, it still produces reasonable results when compared to real QCD
plasma formed in heavy ion collisions. It seems that there is some universality in a wide class of
strongly coupled QFTs which makes it possible to use holographic toy models for making qualitative
predictions for real QCD plasma [7, 8]. An another avenue for applications is in condensed matter
theory. Examples of applications of AdS/CFT in this context include superconductors [9] and strange
metals [10].

Entanglement entropy is an important quantity in quantum information theory, but its calculation is
prohibitively difficult in all but the simplest QFTs. Fortunately, the AdS/CFT correspondence equates
the entanglement entropy of a QFT with the area of a certain surface in the gravity side [11]. The
geometrization of entanglement entropy makes it a practical quantity to compute in interacting field
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theories with gravity duals.
This introduction to the thesis is primarily concerned with the entanglement entropy and quantities

derived from it, in the context of gauge/gravity dualities. We will cover other information theoretical
quantities and concepts appearing in the included papers. In Chapter 2 we introduce the quantities
from classical information theory which are most useful to us, after which we cover their quantum
counterparts. In Chapter 3 we start by discussing the anti de-Sitter space and its most important
properties. Then we introduce the holographic entanglement entropy and show examples as to its use.
We also cover related quantities, such as the mutual information and entanglement of purification,
along with their holographic realizations. In Chapter 4 we give concluding remarks.
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Chapter 2

Quantum entanglement entropy

In the early days of quantum mechanics it was realized that the predictions of quantum mechan-
ics cannot be described by a local hidden variable theory due to quantum entanglement. Quantum
entanglement is a phenomenon in which two particles can behave as one in such a way that measure-
ments on one will instantaneously affect measurements performed on the other [12]. Local hidden
variable theories are attempts to describe quantum phenomena in a way that preserves locality while
simultaneously avoiding the kinds of indeterminism that are present in quantum mechanics. These
theories put forward the idea that there should exist some variables associated to particles which
predetermine the results of all conceivable measurements independently of any observer. Quantum
mechanics on the other hand is a fundamentally probabilistic theory. In quantum mechanics, the
result of a measurement is not determined before the measurement is carried out. Some physicists
found this objectionable, Albert Einstein famously being convinced that God does not play dice, and
tried to find alternative models for quantum phenomena. It was shown that the statistical correlations
that are possible in a hidden variable model obey the so-called Bell inequalities [13] which were later
experimentally proven to be violated by nature, ruling out any local hidden variable descriptions of
our world [14, 15].

Entanglement is the fundamental property that distinguishes quantum mechanics from classical
theories of physics and its presence is thus responsible for many of the strange quantum properties of
nature. Entanglement causes different parts of a system to behave as one in a fundamental way, even
when the parts are not interacting with one another. Usual intuition is that one should be able to
study the behaviour of the non-interacting parts separately and thus understand the behaviour of the
full system. This intuition fails if the parts of the system are entangled, regardless of the parts not
interacting with one another or even being separated by a vast distance. We will give simple examples
that illustrate some of the surprising properties of quantum entanglement later in this thesis. Since
entanglement is purely a quantum phenomenon, its presence can be seen to signal the quantumness
of a given physical system. Different quantities have been developed for measuring the amount of
entanglement in a given system. One of them is the entanglement entropy which is the quantity
around which this thesis revolves.

We start this chapter by introducing the concept of entropy, a quantity which describes the amount

5



6 Quantum entanglement entropy

of uncertainty about a system, first in the context of classical information theory. We will also
introduce multiple quantities closely related to entropy and discuss their properties. Lot of these
classical information theory concepts have their quantum counterparts and it is instructive to compare
the similarities and differences between classical and quantum quantities in order to gain some intuition
about them. After covering the relevant concepts in the context of classical information theory, we
turn to study quantum mechanics. We will quickly cover the relevant foundational features of quantum
mechanics and then work our way towards entanglement entropy and related quantities.

2.1 Classical information theory

Entropy is a measure of uncertainty in a physical system. Much of information theory revolves around
the concept of entropy. Entropy assigns a non-negative number for a physical system in such a
way that higher entropy indicates higher uncertainty about the state of the system and vanishing
entropy indicates that the state of the system is perfectly known. Framed in an another way, entropy
characterizes the amount of information one gains by learning the state of the system. For example,
in a binary system which can occupy one of two states, one with probability p and the other with
probability 1 − p, entropy of the bit should be highest when p = 1/2 since in this case both states
are equally likely. The entropy should vanish for p = 0 and p = 1 since in that case the state of the
system is perfectly known.

Consider a discrete random variable X with N possible values and the associated probability distri-
bution assigning numbers 0 ≤ p(x) ≤ 1 for each realization X = x. The Shannon entropy , denoted
by H(X), of this probability distribution is defined as [16]

H(X) = −
∑
x∈X

p(x) log2 p(x) = 〈− log2 p(x)〉 , (2.1)

where we have adopted the notation 〈·〉 for the expectation value in anticipation of quantum me-
chanical treatment of entropy. The entropy (2.1) can be seen to be positive and vanish only for a
distribution where one specific realization of X occurs with certainty1. Also it is easy to show that
H(X) is maximized when p(x) = 1/N , in which case H(X) = log2N . All of these features is
what we intuitively expect when entropy is supposed to quantify our uncertainty about the value of
a random variable.

The Shannon entropy H(X) expresses the average number of bits of information carried by a
message comprised of letters drawn from the probability distribution of X. To see this, we return to
the example of a binary random variable with p(X = 0) := p. A message of length n is a string of n
letters drawn from the distribution of X. The key realization is that in order to store messages, one
only needs to consider how many different typical messages there are. For long messages n → ∞,
on average, np of the letters are zeros and the rest are ones. The number of messages of this kind is

1As is conventional, by 0 log2 0 we mean the limit limx→0 x log2 x = 0
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(
n
np

)
, which can be approximated in the limit of long messages by(

n

np

)
= 2log2 (

n
np) ≈ 2n(−p log2 p−(1−p) log2(1−p)) = 2nH(X) . (2.2)

Now one can use a code in which each of these typical messages is represented by an integer. For a
binary random variable, 0 ≤ H(X) ≤ 1, we see that the number of typical messages (2.2) can be
considerably lower than the number of all messages, 2n, depending on p. For n → ∞, the probability
of a message being atypical is small. The same logic generalizes to the case where X is not binary.
This was one of Shannon’s [16] results: a message of length n contains, on average, nH(X) bits
of information instead of the naive expectation of n bits. Conversely, if one tries to code a n letter
messages to fewer than nH(X) bits, error rate in decoding would be large because this scheme would
not be able to encode all frequently occurring messages.

The Shannon entropy works just as well for multiple random variables. For example, in the case of
two random variables X,Y ∼ P (X,Y ), the Shannon entropy is

H(X,Y ) = −
∑

x∈X,y∈Y
p(x, y) log2 p(x, y) , (2.3)

and for more random variables the above formula extends in the obvious way. The entropy of a joint
probability density has many interesting properties, including

1. H(X) ≤ H(X,Y ): uncertainty about the joint system X,Y is never less than the uncertainty
of one of its parts X. This inequality saturates either when Y is trivial or when X and Y are
perfectly correlated, or in other words, knowing the value of X implies a definite value for Y .

2. For three random variables X,Y, Z the following always holds

H(X,Y, Z) +H(Z) ≤ H(X,Z) +H(Y, Z) , (2.4)

with equality when X and Y are independent given Z. This property is called strong subaddi-
tivity .

3. In the special case when Z is trivial, the above reduces to

H(X,Y ) ≤ H(X) +H(Y ) . (2.5)

This property is called subadditivity , and the inequality saturates when X and Y are independent
random variables. Subadditivity states the intuitive fact that the uncertainty one has about a
joint system never exceeds the sum of uncertainties one has about the parts of the system.
This is as it should be, since if X and Y are correlated, measuring one gives at least some
information about the other.

At this point we note that the first listed property implies max(H(X), H(Y )) ≤ H(X,Y ), an
inequality which is spectacularly violated by the quantum extension of entropy explored in Section
2.2.
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Now a sensible question to ask is how uncertain we are about X, if Y is known. Say we know the
joint distribution p(x, y) and have already observed that Y = y. Given this information, we know
that X ∼ P (X|Y = y). The entropy of this distribution would still be a random variable over Y ,
whose expectation value is what we call conditional entropy , H(X|Y )

H(X|Y ) = 〈H(X|Y = y)〉Y . (2.6)

This form shows explicitly that the conditional entropy quantifies the average residual uncertainty
one has about the value of X once the value of Y has been observed. H(X|Y ) can be related to
H(X,Y ) and H(Y ) by

H(X|Y ) = H(X,Y )−H(Y ) (2.7)

which is conventionally taken as the definition of H(X|Y ). This definition clearly shows that H(X|Y )

measures the residual uncertainty about X after learning the value of Y , giving H(Y ) bits of informa-
tion. The conditional entropy is unsurprisingly non-negative H(X|Y ) ≥ 0, with equality only when
X has definite value given Y , thus leaving no uncertainty after one learns the value of Y .

The conditional entropy satisfies the following property

H(X|Y, Z) ≤ H(X|Y ) , (2.8)

which follows from the definition of conditional entropy (2.7) and strong subadditivity. The meaning
of this inequality is that conditioning never increases entropy. In other words, knowing the value of Z
can never increase our uncertainty about X|Y . The former happens when Z confers no information
about X|Y and latter when there is correlation, and thus Z can be used to deduce something about
the probable value of X|Y .

The property (2.8) implies the weaker inequality

H(X|Z) ≤ H(X) , (2.9)

if Y is taken to be trivial. This form conveys the same message as (2.8), that additional information
never increases uncertainty, in a simpler form.

A related quantity, mutual information, quantifies the amount of information that is shared between
two systems X and Y . The mutual information is defined

I(X,Y ) = H(X) +H(Y )−H(X,Y ) . (2.10)

The interpretation of this combination is the following. The sum H(X) + H(Y ) counts the total
of information contents of X and Y . This sum counts twice any information that is common to
both systems, that is, information which is present in both H(X) and H(Y ), while counting once any
information which appears only in one of the systems. Subtracting H(X,Y ), representing information
of the composite system, cancels all unique information specific to either X or Y and one copy of the
information shared between X and Y , thus leaving behind only one copy of this shared information.

Given this interpretation, one expects I(X,Y ) ≥ 0, with equality when X and Y are not correlated,
that is, there is no shared information. This property indeed holds, guaranteed by the subadditivity
of Shannon entropy.
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2.2 Entanglement in quantum mechanics

2.2.1 Density operator and entangled states

A density operator2 can be used to represent a quantum state, either pure or mixed. Pure states
are conveniently described by state vectors, elements of the underlying Hilbert space. A mixed state,
which can be understood as a statistical ensemble of pure states, is more conveniently described by
a density operator. In practice one is usually working on a mixed state since one is interested in
some subsystem of a larger system and there always is interaction between the subsystem and the
environment, causing the state of the subsystem to become mixed. The density operator contains
complete information about such open quantum systems, analogously to state vectors in the case of
pure states/closed systems.

A density operator ρ satisfies the following properties

(i) Self-adjointness: ρ† = ρ

(ii) Non-negativity: 〈ψ| ρ |ψ〉 ≥ 0 for any |ψ〉

(iii) Unit trace: tr ρ = 1

(iv) ρ2 = ρ (pure state) or ρ2 
= ρ (mixed state) .

The density operator ρ, being Hermitian, can be diagonalized and all its eigenvalues are real. Non-
negativity and unit trace additionally imply that all eigenvalues of ρ are non-negative and sum up to
unity. A general density operator can be written in the basis of its eigenvectors, {|i〉}, as

ρ =
∑
i

pi |i〉〈i| , (2.11)

where 0 ≤ pi ≤ 1 and
∑

i pi = 1. The eigenvalues pi have the interpretation of assigning probabilities
for the system to be in state |i〉 in the statistical ensemble described by ρ. While it can be useful
to think about density matrices as ensembles of pure states, it is important to remember that this
ensemble interpretation is not unique. Say we have an ensemble of states {pi, |ψi〉}, meaning that
the state |ψi〉 occurs with probability pi. This corresponds to the density matrix ρ =

∑
i pi |ψi〉〈ψi|.

An another ensemble {qi, |φi〉} results in the same density matrix, if the states and probabilities are
related by

√
pi |ψi〉 =

∑
j

uij
√
qj |φj〉 , (2.12)

where uij are components of an unitary matrix. If the sets {|ψi〉} and {|φi〉} are of different size,
the sets may be padded to equal size with zero vectors. The lesson is that for a given density matrix,
there is an infinite set of possible ensembles giving rise to it.

2We will use the terms density operator and density matrix interchangeably.
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Expectation values of operators can be compactly written as

〈O〉 = tr(Oρ) =
∑
i

pi 〈i|O|i〉 , (2.13)

so an expectation value of O is the average of individual expectation values of O in each |i〉, weighed
by the probability associated with that state.

Density matrices in d-dimensional Hilbert space form a convex subset of the space of d×d Hermitian
operators. Consider two density matrices ρ′ and ρ′′. Then there is an associated infinite family of
density matrices

ρ(λ) = λρ′ + (1− λ)ρ′′ , (2.14)

for any 0 ≤ λ ≤ 1. In contrast to most states, pure states cannot be written in terms of two
other density matrices. Other states can be written as linear combinations in multiple ways, and the
decomposition (2.11) corresponds to one particular way of forming the linear combination.

A natural way to obtain mixed states is to start with a pure state and trace out some of its parts.
Consider a bipartite system, constructed from subsystems A and B, in a pure state. As per the
axioms of quantum mechanics, if the individual systems A and B are described by vectors in HA and
HB, respectively, then the composite system is described by a vector in HA⊗HB. A pure composite
system can be written ρ = |Ψ〉〈Ψ|, with

|Ψ〉 =
∑
j,k

ajk |j〉A ⊗ |k〉B , (2.15)

where the coefficients satisfy
∑

j,k ‖ajk‖2 = 1 and the vectors {|j〉A} and {|k〉B} are orthonormal
bases of systems A and B, respectively. Any vector in a tensor product space of two Hilbert spaces
can be written in a standard form called the Schmidt decomposition

|Ψ〉 =
∑
i

√
pi |i〉A ⊗ ∣∣̃i〉

B
. (2.16)

This decomposition can be seen by writing the matrix of coefficients ajk = ujidiivik using a singular
value decomposition. The matrices uji, vik are unitary and dii = pi is a diagonal matrix with non-
negative elements. Then, if one defines new states

|i〉A =
∑
j

uji |j〉A (2.17)

∣∣̃i〉
B
=

∑
k

vik |k〉B , (2.18)

one ends up with |Ψ〉 in the Schmidt decomposition (2.16). Since the original basis was orthonormal
and the matrices u and v are unitary, {|i〉A} and

{∣∣̃i〉
B

}
are orthonormal as well.

The vector |Ψ〉 contains maximal information about a closed quantum system. Let us now study
what happens in a situation where we are only allowed to observe one part of a larger quantum
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system. Say we can observe the subsystem A while B remains inaccessible to us. To see how A

appears to us, we need to sum over all possible states of B, or in other words, perform a partial
trace of ρAB = |Ψ〉〈Ψ| over the subsystem B. The resulting density matrix represents our knowledge
about the subsystem A by itself and is called a reduced density matrix . The reduced density matrix
associated with A, denoted by ρA, is defined by

ρA = trB ρAB = trB

⎛⎝∑
i,j

√
pipj |i〉〈j|A ⊗ ∣∣̃i〉〈j̃∣∣

B

⎞⎠ (2.19)

=
∑
i,j,k

√
pipj |i〉〈j|A

〈
k
∣∣̃i〉

B

〈
j̃
∣∣k〉

B
=

∑
i,j,k

√
pipj |i〉〈j|A

〈̃
i
∣∣k〉

B

〈
k
∣∣j̃〉

B
(2.20)

=
∑
i

pi |i〉〈i|A . (2.21)

We started with a general bipartite pure state and ended up with a mixed state of form (2.11). This
property is a hallmark of quantum mechanics: the pure state |Ψ〉 contains maximal information about
the composite system but still upon tracing out part of it, one ends up with an ensemble of possible
states of the remaining part, each occurring with a probability pi. When a composite system in a pure
state has this property we say that the subsystems A and B are entangled . There is nothing special
about the subsystem A of course, if we chose to trace out A, we would obtain a reduced density
matrix for the subsystem B, ρB =

∑
i pi

∣∣̃i〉〈̃i∣∣.
As a simple example of an entangled state consider a pair of two-level quantum systems, or qubits,

denoted A and B, in the following state

|Ψ〉 = 1√
2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B) . (2.22)

Let us now find the reduced density matrix associated with the qubit A,

ρA = trB (|Ψ〉〈Ψ|) = 1

2
(|1〉〈1|A + |0〉〈0|A) =

1

2
1A , (2.23)

where 1A is the identity operator acting on the qubit A. Similarly, for the qubit B one would obtain
ρB = 1B/2. This means that upon tracing out B, the ensemble describing A contains no information
as to in which state the qubit A is. States where the reduced density matrix ρA (ρB) is proportional
to the identity operator once one traces out B (A) are called maximally entangled .

The entanglement in state (2.22) has some strange properties as was pointed out by Einstein,
Podolsky, and Rosen (EPR) during the formative years of quantum mechanics [12]. Suppose that
the two spins are separated by a great distance and a measurement is performed on the qubit A.
The outcome of this measurement is |0〉 half the time and |1〉 half the time, as in (2.23). Upon
measurement of A, the quantum state (2.22) collapses and immediately prepares B in a definite
state in such a way, that if B is measured, the results are perfectly correlated with those of A. The
objection of EPR to the formulation of quantum mechanics was that this breaks causality. Luckily,
this worry is unfounded because causality is still preserved in the sense that entanglement cannot be
used for superluminal communications [17, 18].
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An another way to characterize entanglement in a composite quantum system is in terms of the
Schmidt number . The Schmidt number is the number of terms in the Schmidt decomposition (2.16)
of a composite system. A pure state is said to be entangled if the Schmidt number is greater than
one, otherwise the state is said to be a product state. In other words, a product state is one which
can be written as

|Ψ〉product = |i〉A ⊗ ∣∣̃i〉
B

, (2.24)

for some states |i〉A ∈ HA and
∣∣̃i〉

B
∈ HB. A pure states can be represented by density matrices

ρproduct = ρA ⊗ ρB , (2.25)

where ρA = |i〉〈i|A and ρB =
∣∣̃i〉〈̃i∣∣

B
are density matrices on HA and HB, respectively.

As a concrete example consider a system of two qubits. One product state would be |Ψ〉 =

|0〉A ⊗ |1〉B, whereas |Ψ〉 = (|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B)/
√
2 is an entangled state. If a composite

system of subsystems A and B are in a product state, the reduced density matrices ρA and ρB are
still definite pure states, as opposed to the case of entangled composite states (2.23). Entangled
states are much more common than product states, since in real quantum systems interactions cause
different parts of the system to become entangled with one another.

2.2.2 Purification

So far we have only considered bipartite pure states. In this case, detecting entanglement was simple.
One only needed to diagonalize one of its reduced density matrices and check whether there is more
non-zero Schmidt coefficients than one. It is important to realize that the presence of entanglement
is not as clearly diagnosed in the case of mixed states as it is in the case of pure states. A mixed
state is said to be separable if it can be written as a convex combination of product states

ρseparable =
∑
i

piρA ⊗ ρB . (2.26)

If a mixed state is not a product state nor separable, it is considered to be entangled.
It is in general difficult to tell whether a given state is entangled or separable on the basis of this

definition, and a number of criteria for making the distinction have [19].
For any mixed state described by a density operator ρA there exists a pure state |Ψ〉 which reproduces

the original mixed density operator when a partial trace is performed. This associated pure state |Ψ〉
is called a purification of ρA. If ρA is a density operator on HA, then the purification |Ψ〉 lives on an
extended Hilbert space HA ⊗HB. As per the definition of |Ψ〉, upon tracing out this extended part
of the Hilbert space HB, the original state is recovered

ρA = trB (|Ψ〉〈Ψ|) . (2.27)

A state |Ψ〉 ∈ HA⊗HB such that (2.27) holds can always be constructed. Any ρA has an orthonormal
decomposition ρA =

∑
i pi |i〉〈i|. This state can be purified by introducing an auxiliary system HB
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with basis states {|i〉B}. Now

|Ψ〉 =
∑
i

√
pi |i〉A ⊗ |i〉B , (2.28)

with
∑

i pi = 1 purifies ρA as can be seen by direct computation.
Purification is a mathematical procedure and the introduced auxiliary system need not have any

physical meaning but in some cases it can have physical significance. For example, one can purify an
open quantum system by considering the environment as the auxiliary system. Since the composite
system is closed, it is described by a pure state. One could then perform the Schmidt decomposition
of the composite state to obtain a formula analogous to (2.28).

It is important to note that there exists multiple ways to purify a given state. Suppose |Ψ〉 ∈
HA ⊗HB purifies ρA =

∑
i pi |i〉〈i|. Then one can define an infinite family of purifications by∣∣Ψ′〉 = (1⊗ U) |Ψ〉 , (2.29)

where U is an unitary matrix with components uij in the basis implied by the Schmidt decomposition
of |Ψ′〉. The state |Ψ′〉 indeed purifies ρA

trB
(∣∣Ψ′〉〈Ψ′∣∣) = ∑

n

∑
i,j

∑
k,l

√
pipj |i〉〈j| 〈n|uik |k̃〉〈l̃|u†nj |n〉

=
∑
i,j

√
pipj |i〉〈j|

∑
n

uinu
†
nj

=
∑
i

pi |i〉〈i| = ρA . (2.30)

The non-uniqueness of purification will be important later when we discuss entanglement of purifica-
tion.

2.2.3 Von Neumann entropy

Now that we have a criteria for determining whether a quantum state is entangled or not, we should
also have ways of quantifying the amount of entanglement in a given state. One would like to find an
analogue of the Shannon entropy applicable to quantum states. This notion is provided by the von
Neumann entropy . Consider a quantum state described by a density operator ρ. The von Neumann
entropy is then defined by

S(ρ) = 〈− log2 ρ〉 = − tr(ρ log2 ρ) . (2.31)

If one expresses ρ in the basis of its eigenvectors, ρ =
∑

i pi |i〉〈i| the von Neumann entropy can be
written S(ρ) = −∑

i pi log2 pi, which coincides with the Shannon entropy of an ensemble where each
eigenstate |i〉 occurs with probability pi. In other words, the von Neumann entropy is the Shannon
entropy of the spectrum of the quantum state.

A few important properties of the von Neumann entropy are
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(i) S(ρ) ≥ 0 with equality only for a pure state ρ = |Ψ〉〈Ψ|.

(ii) Invariant under unitary transformations

S(ρ) = S(UρU †) , (2.32)

since such transformations preserve the eigenvalues of ρ.

(iii) If a state ρ has N non-zero eigenvalues, then

S(ρ) ≤ log2N (2.33)

and the equality saturates for a state where the non-zero eigenvalues all are 1/N .

(iv) If ρ is a pure state on HA ⊗HB, then the reduced density operators ρA and ρB satisfy

S(ρA) = S(ρB) , (2.34)

which is seen from the Schmidt decomposition since both ρA and ρB have the same eigenvalues.

(v) For any three non-overlapping subsystems A, B, and C, the following inequality is satisfied3

S(ρABC) + S(ρC) ≤ S(ρAC) + S(ρBC) . (2.35)

This inequality is called strong subadditivity .

(vi) If C is empty, the above inequality gives an another inequality

S(ρAB) ≤ S(ρA) + S(ρB) , (2.36)

which is called subadditivity .

(vii) Any bipartite system satisfies the Araki-Lieb inequality

S(ρAB) ≥ |S(ρA)− S(ρB)| . (2.37)

These properties again highlight the difference between quantum mechanics and classical physics.
Consider our previous example (2.22), where we found that the reduced density matrices are propor-
tional to unit operators, signalling maximal entanglement (2.23). Even though the composite system
is in a definite state, we do not get any information about that state by performing measurements on
either of the qubits alone. All information is encoded in nonlocal correlations between qubits.

The Araki-Lieb inequality is curious in comparison to properties of the classical Shannon entropy.
While the Shannon entropy of a subsystem never exceeds the entropy of the complete system itself,
the Araki-Lieb inequality allows the von Neumann entropies of subsystems to individually have a larger
value than their composite system has. Again, this is maximally demonstrated by the two qubit state
(2.22), for which S(ρAB) = 0 and S(ρA) = S(ρB) = 1.

3Throughout this thesis we will denote set unions by AB = A ∪B.
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It has been shown that all inequalities satisfied by general bipartite or tripartite systems can be
derived from strong subadditivity [20]. Strong subadditivity of the von Neumann entropy was proved
in [21]. Strong subadditivity reflects the concavity of the von Neumann entropy and is sufficiently
restrictive as a condition to essentially give an unique characterization of the von Neumann entropy [22,
23]. The hierarchy of entropy inequalities changes dramatically when one considers four or more
subsystems, in which case there exists an infinite number of independent inequalities for the von
Neumann entropy [24].

2.2.4 Measures of entanglement

Having now established the von Neumann entropy as the quantum analogue of the Shannon entropy,
let us provide the quantum versions of conditional entropy and mutual information. The definitions
are analogous to their classical counterparts

S(ρA|ρB) = S(ρAB)− S(ρB) (2.38)

I(ρA, ρB) = S(ρA) + S(ρB)− S(ρAB) . (2.39)

These quantities can be used to measure the correlations between subsystems. A given bipartite
system can have both classical and quantum correlations, but the distinction between the two is not
straightforward and multiple different notions of the difference have been proposed [25].

The mutual information has the interpretation of measuring the total amount of correlation between
subsystems. We say that two systems are correlated if we are less uncertain about the whole than
about sum of its parts taken separately. If we take uncertainty about a system to be quantified by
entropy, the definition of mutual information is easily understood to measure the amount of this
correlation. Furthermore, the non-negativity of the amount of correlation, or mutual information, is
guaranteed by the subadditivity of the von Neumann entropy.

As an example consider two qubits in a state ρAB = |Ψ+〉〈Ψ+|,∣∣Ψ+
〉
=

1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) . (2.40)

The two qubits are entangled as |Ψ+〉 cannot be written as a product |ψ〉A⊗|ψ〉B. In fact, the qubits
are maximally entangled, ρA = trB ρAB = 1A/2 and ρB = trA ρAB = 1B/2. The entanglement
entropy thus takes the maximal value on the subsystems, S(ρA) = S(ρB) = log2 2 = 1. Still the
composite state is pure, so S(ρAB) = 0 and the mutual information is I(ρA, ρB) = 2. This is an
extreme case where all information is encoded in nonlocal entanglement between qubits.

Now consider reducing the correlations between A and B by introducing randomness into the
system in the following way. At this point we introduce the conventional characters, Alice and Bob,
who possess the systems A and B, respectively. Alice flips a fair coin and if it lands heads, she applies
the unitary transformation σz on her qubit. The effect of this transformation is to reverse the sign of
of her qubit if it is in state |1〉, otherwise nothing happens. If the coin lands tails, she does nothing.
After carrying out this procedure, she forgets whether the coin landed heads or tails and which unitary
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operation she applied on her qubit. Now there is a 1/2 chance the state of the composite system is∣∣Ψ−〉 = 1√
2
(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B) (2.41)

or still in the initial state (2.40). The pure state ρ has become a mixture

ρ′AB =
1

2

∣∣Ψ+
〉〈
Ψ+

∣∣+ 1

2

∣∣Ψ−〉〈Ψ−∣∣ (2.42)

=
1

2
|0〉〈0|A ⊗ |0〉〈0|B +

1

2
|1〉〈1|A ⊗ |1〉〈1|B . (2.43)

This state is separable, since it is a mixture of product states. We would say that there is no
entanglement, but still there is correlation between the systems. Indeed, were Alice and Bob to
perform measurements on their respective qubits, the results would be perfectly correlated. Now the
entropy of the joint system is S(ρ′AB) = 1 and the mutual information has decreased to I(ρ′A, ρ

′
B) = 1.

The act of Alice forgetting which operation she performed is essential in this example. After all, Alice
performs unitary transformations on her qubit and the von Neumann entropy is invariant under such
operations. Forgetting which unitary operator acted on A makes the situation irreversible and increases
entropy.

Alice can remove the remaining correlation by flipping the coin once more and applying σx if the
coin lands heads. This has the effect of flipping her qubit |0〉A ↔ |1〉A with probability 1/2. Alice
again forgets the operation she performed on her qubit after performing it. Now the system is in a
product state

ρ′′AB =
1

2
1A ⊗ 1

2
1B . (2.44)

Now the joint entropy is S(ρ′′AB) = 2 and all correlations between A and B have been destroyed, as
indicated by the mutual information I(ρ′′A, ρ

′′
B) = 0.

A way of making an operational distinction between quantum and classical correlation is the fol-
lowing [26]. The amount of quantum correlation is equal to the amount of randomness one has to
introduce to a system in order to make it separable. Classical correlation is the maximal amount
of correlation left after removing the quantum correlations. Pure states, as the one in our example
above, have equal amounts of quantum and classical correlation by this definition [26].

An another measure of correlation in a quantum state, that is of interest later in this thesis, is the
entanglement of purification.4 The von Neumann entropy is essentially unique as an entanglement
measure [27], that is, on pure bipartite states all entanglement measures are equal to the von Neumann
entropy. For mixed states many measures of classical and quantum correlation are known [19, 28].
To see why using the von Neumann entropy to measure entanglement in mixed states might not be
sufficient, consider the mixed state (2.43). This state is a classical mixture of product states and
thus not considered to be entangled, but still the entanglement entropy S(ρA) is non-zero. The
entanglement of purification provides an another way of quantifying correlations in a mixed state. It
is a measure of both quantum and classical correlations in a quantum state [29].

4Defined below in (2.45).
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Consider a density matrix of a bipartite state ρAB acting on HA ⊗HB. Let the purification of this
state be |Ψ〉 ∈ HAA′ ⊗HBB′ . The entanglement of purification EP (ρAB) is defined as

EP (ρAB) = min
|Ψ〉

S(ρAA′) , (2.45)

where the minimization is taken over all purifications of ρAB. In the definition of EP we could
equivalently use S(ρBB′) instead of S(ρAA′) since the state |Ψ〉 is pure. EP (ρAB) is bounded from
below by mutual information divided by two,

EP (ρAB) ≥ I(ρA, ρB)

2
. (2.46)

Further properties of EP (ρAB) can be found in [30]. Entanglement of purification has applications
in quantum communication and quantum error correction but these applications are outside of the
scope of this thesis [31].

2.3 Entanglement in quantum field theory

Most of the concepts introduced in the previous section carry over to the context of QFTs by thinking
of taking a continuum limit of the theory defined on a discrete lattice. States of QFTs can be
expressed in terms of path integrals where field configurations are integrated over with a weight
given by the action of the theory. One may then imagine taking the resulting density matrix and
tracing out a part of the total Hilbert space and then calculating the von Neumann entropy of the
resulting reduced density matrix ρA to characterize entanglement in the QFT state. Omitting the
technicalities of calculating a logarithm of a continuum operator, one can imagine diagonalizing ρA

to find its spectrum which gives the entanglement entropy. A bigger difficulty in QFTs is that the
spatial bipartitioning, required by our wish to find the entanglement associated to a spatial region,
does not necessarily have a neat correspondence to a bipartitioning of the total Hilbert space. If there
are no gauge symmetries, one can think of the Hilbert space as a product of Hilbert spaces associated
to individual spatial points and bipartition the Hilbert space to HA ⊗ HAc .5 In the case of gauge
theories such bipartitioning turns out to be impossible [32–35]. The reason for this is that in gauge
theories, excitations are associated with closed loops instead of points in space [36–38]. All of these
loops cannot be associated with either A or Ac alone since there exist loops that cross the entangling
surface. We will omit this technicality by implicitly assuming that a convention has been adopted for
dealing with the problematic degrees of freedom.

2.3.1 Area law of entanglement entropy

An important difference compared to discrete systems is that the entanglement entropy is divergent
due to degrees of freedom lying very close to ∂A but still on opposite sides of it. This happens because
QFTs tend to be local, that is, their constituents interact primarily with their nearest neighbours. The

5We will denote a complement with a superscript, e.g., Ac.
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locality of interactions leads to correlations that are strong between nearby degrees of freedom and
decay for larger distances. This divergence can be removed by introducing a UV cutoff to regulate
correlations between degrees of freedom just on the opposite sides of the entangling surface. This
leads us to expect a leading divergence of entanglement entropy in a QFT living on a d-dimensional
spacetime to have the form [39]

S(ρA) = γ
V ol(∂A)

εd−2
+ . . . , (2.47)

where ε is the cutoff for regulating correlations across the codimension-2 entangling surface. This
type of a divergence is called an area law , since it is proportional to the area of the entangling surface.
The area law is a common feature in QFTs but it can be violated. Violations can be observed in some
fermionic systems [40–42] and in QFTs which have nonlocal interactions and the region considered
has size smaller than the length scale of the nonlocality [43, 44]. An another way to have area
law violating nonlocality is to study noncommutative QFTs [45, 46]. We have studied entanglement
entropy and various other quantities in a noncommutative QFT in the included paper [III].

Let us now focus on local quantum field theories. If the entangling surface ∂A is smooth, we expect
that the divergences in S(ρA) should only depend on local physics at the entangling surface. Then
the divergence should be expressible as an integral over ∂A such that the value of the integrand at
any point depends only on the local geometric invariants of ∂A

S(ρA)
div =

∫
∂A

dd−2σ
√
hF (Kab, hab) , (2.48)

where F (Kab, hab) gives the sum of all local geometric invariants built from the extrinsic curvature
Kab and induced metric hab at a given point in ∂A [47]. It can be then argued that the entanglement
entropy across a smooth, scalable surface in general has a UV-behaviour [47]

S(ρA) =

⎧⎨⎩ad−2

(
R
ε

)d−2
+ ad−4

(
R
ε

)d−4
+ · · ·+ (−1)

d−1
2 sd +O(ε) d odd

ad−2

(
R
ε

)d−2
+ ad−4

(
R
ε

)d−4
+ · · ·+ (−1)

d−2
2 sd log

R
ε + const +O(ε) d even ,

(2.49)

where R is a length scale characterizing the size of the entangling surface ∂A. Later when we are
considering holographic theories where practical entanglement computations are feasible, we must
prepare ourselves for encountering and regularizing the above divergences. We will see that the area
law divergence of entanglement entropy will arise elegantly in the holographic context.

2.3.2 Singular entanglement surfaces

We have already stated that the UV-behaviour (2.49) can be avoided by giving up locality in the
QFT, e.g. by introducing noncommutativity in the spacetime. Another way in which (2.49) might
fail is for entangling regions which are not smooth [48, 49]. A two-dimensional entangling region can
have sharp corners. In higher dimensions, the entangling region can have geometrical singularities
that look locally like creases or cones, see Fig. 2.1. In these cases, the entanglement entropy receives



2.3 Entanglement in quantum field theory 19

Figure 2.1: Three different entangling surfaces with geometrical singularities. The basic type of sin-
gularity in two spatial dimensions, that is, for one-dimensional entangling surfaces is the corner (left).
An arbitrary one-dimensional entangling surface is formed by a number of corners and smooth sec-
tions connecting them. In higher dimensions, entangling surfaces can have different singular loci. For
example, the crease (middle) and the cone (right) represent different extensions to higher dimensions.
Note that in the case of the cone, we define Ω to be the angle of the plane section of the cone instead
of a solid angle. In this way all of these singular surfaces reduce to smooth ones for Ω → π.

contributions of the form

a(d)(Ω) log
R

ε
, (2.50)

where a(d)(Ω) is a function that encodes the effect of the geometric singularity characterized by an
opening angle Ω. The function a(d)(Ω) depends on the spacetime dimension d and the type of the
singular surface. Different singular surfaces and dimensions may produce terms which differ in sign,
or can have a different power for the logarithm (2.50). The function is such that in the limit Ω → π

it vanishes since in this limit the entangling surface becomes smooth. If one considers a pure state,
then a(d)(Ω) = a(d)(2π − Ω) because S(ρA) = S(ρAc) must hold. For an explicit example of the
computation of entanglement entropy for a singular entangling surface, see the included paper [I].

2.3.3 Renormalization group flow and c-theorems

The renormalization group is a tool in quantum field theory for studying how a given physical system
behaves at different scales. Consider a QFT with an action functional

S(g, ε) =

∫
L(g, ε, x)ddx , (2.51)

where ε is a UV-cutoff, x = {x0, x1, . . . } are the spatial coordinates and g = {g0, g1, . . . } is a set of
parameters or coupling constants. The renormalization group flow is a single-parameter group of scale
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transformations Rt in the space of coupling constants Q. This flow is such that a QFT described by
the action S(Rtg, e

tε) is equivalent to the original QFT described by S(g, ε) in the sense that their
correlation functions agree at scales much larger than the new cutoff x � etε, with t > 0. The vector
field generating this flow in Q is given by a set of β-functions which describe how a coupling changes
as a function of t,

dgi
dt

= βi(g) . (2.52)

Renormalization group (RG) flow following this rough prescription can be used in most QFTs of
interest, with the notable exception of gravity. Observables in the QFT change in magnitude when
studied at larger scales, some always increase (relevant observables), some always decrease (irrelevant
observables), and some neither increase or decrease (marginal observables). In general, there are points
along the RG flow where the β functions vanish. These correspond to points of scale invariance in G

where the physical system is described by a conformal field theory (CFT).
For QFTs in two spacetime dimensions, there is a c-theorem which tracks the number of degrees

of freedom along their RG-flows [50]. The c-theorem states that there exists a function c(g) on
the space of coupling constants G such that c(g) monotonically decreases along the RG flow and is
stationary at the fixed points, where the value of c(g) equals the central charge of the corresponding
CFT. The central charge of a CFT is understood as a measure of the number of degrees of freedom
in the theory. As a consequence of the c-theorem we know that if two fixed points are connected by
an RG flow, then the c-function has a higher value at the UV fixed point than at the IR-fixed point.
This reflects the intuition that the number of degrees of freedom in a QFT should decrease when
short distances are integrated out by the RG transformation.

Similar c-theorems have been searched for in higher dimensions. There is a c-theorem in even
dimensions [51] that passed many non-trivial tests in four spacetime dimensions [52–55] and was later
proved [56]. This theorem is known as the a-theorem since the role of the c(g) function is played by
a function a(g).6 These even dimensional c-theorems rely on the existence of trace anomalies which
are not present in odd dimensions. In three spacetime dimensions, a F-theorem has been conjectured
based on the observed monotonicity along RG flow of the free energy on a three sphere in certain
QFTs [57]. The F-theorem is conjectured to hold in all three-dimensional QFTs, and it has been
shown to hold in various cases [58–60]. Further, there are connections between the F-theorem and
the entanglement entropy on the three sphere [61, 62].

The ideas of RG flow, c-theorems, and entanglement entropy are recurring themes in the papers
included in this thesis. We have studied entanglement entropy and c-functions derived from it in a
QFT which enables practical computations of observables along a RG flow between two conformal
fixed points [II]. We have also studied other information theoretic quantities, such as the mutual
information and entanglement of purification, along RG flows [I].7

6Note that there is no relation to the function in (2.50).
7Entanglement of purification is computed via its proposed holographic dual, the entanglement wedge cross section.



Chapter 3

Holographic entanglement entropy

It has been suspected for some time now that the degrees of freedom in quantum gravity must be
organized in such a way that they can be equivalently described by a non-gravitational quantum
many-body system in one lower spatial dimension [5, 6]. This radical reduction in the number of
degrees of freedom compared to the naive expectation was discovered by noting that the entropy
associated with a spatial region filled with particles must be proportional to the area of its boundary,
since a black hole can always be formed by throwing in additional matter. The entropy of a black hole
is famously given by the Bekenstein-Hawking formula [4, 63], which states that the entropy of a black
hole is proportional to the area of its event horizon. This observation is the basis of the holographic
principle which conjectures that it is a general property of quantum gravity that all information about
a spatial volume is encoded on its boundary.

The AdS/CFT correspondence [3] is the first explicit realization of the holographic principle.
AdS/CFT gives an example of a duality, or physical equivalence, between two seemingly unrelated
quantum systems. It is a correspondence between a standard theory of quantum fields and a theory
of quantum gravity, where the collective dynamics of the former give rise to the gravitational degrees
of freedom of the latter [64–66]. The way in which this dual spacetime emerges from standard QFT
dynamics has ties to entanglement properties of the QFT state considered.

Methods for computing the entanglement entropy in quantum field theories involve calculating
highly complicated functional integrals over singular branched manifolds. Computing such integrals
is an intimidating task and explicit calculations can be carried out only in a few particularly simple
situations where either symmetry or lack of interaction comes to the rescue. In free field theories
there are examples where explicit computations are possible [39, 67]. An another class of tractable
systems is provided by exploiting conformal symmetry in two spacetime dimensions [68]. Still, in
general interacting quantum field theories the task of computing the entanglement entropy remains
intractable.

Holographic dualities make it possible to translate the problem of finding the entanglement entropy
in a QFT to an equivalent but simpler problem on the gravity side of the correspondence. In the
limit of strong coupling and large number of degrees of freedom, a holographic QFT can be described
by classical gravity. Entanglement entropy can be calculated in gravity with a spectacularly simple

21
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formula proposed by Ryu and Takayanagi [69]. The proposal states that the entanglement entropy
is given by the area of a certain surface in the gravity background. This is a massive simplification
over the equivalent calculation in the field theory side and makes it practical to study entanglement
in ways that was previously impossible.

This thesis is primarily concerned with using the proposal of Ryu and Takayanagi for practical
calculations for entanglement entropy and related quantities. The QFTs we will study in this chapter
and the included papers are dual to spacetimes that are at least asymptotically anti-de Sitter spaces.
The notable exception to this is our study of entanglement entropy in a noncommutative QFT in
which case the nonlocality at the scales set by the noncommutative parameter deforms the UV away
from the CFT fixed point represented by the asymptotically AdS metric [III]. All the backgrounds we
work with are presented in detail in the included papers and in earlier original works [70–74].

We will first start by discussing what the anti-de Sitter space is and what kind of properties it has.
Then we will discuss the holographic entanglement entropy proposal of Ryu and Takayanagi in detail,
giving also explicit examples to its use. Finally we will discuss holographic realizations of some other
information theoretic quantities, such as mutual information and entanglement of purification.

3.1 Properties of anti-de Sitter spacetime

The anti-de Sitter spacetime is at the center stage in the papers included in this thesis, so in this
section we briefly recall some of its most important properties. Consistently with the rest of this
thesis, we will now work in d + 1 spacetime dimensions. One should note that the backgrounds in
the included papers are in many cases derived from string theory, meaning that the spacetimes are
ten-dimensional. The spacetimes are such that some dimensions are compact, forming an internal
space. Noncompact dimensions on the other hand are typically asymptotically AdS where the non-AdS
nature of the interior reflects the nonconformal nature of the dual QFT at these scales. However,
in this introduction we will suppress the internal dimensions since this reduces complexity and still
enables us to showcase the properties we wish to introduce.

Anti-de Sitter spacetime is one of three maximally symmetric Lorentzian signature solutions to
Einstein’s equations. Maximally symmetric solutions are those spacetimes which have the maximal
amount of Killing vectors, (d+1)(d+2)/2 in d+1 spacetime dimensions. The maximally symmetric
solutions are distinguished by the sign of their curvatures. Minkowski, de Sitter, and anti-de Sitter
spacetimes correspond to zero, positive, and negative curvatures, respectively. They are the Lorentzian
counterparts of the Euclidean space, sphere, and hyperboloid, respectively.

Anti-de Sitter space can be defined as a pseudosphere in Rd,2

−(X0)
2 − (Xd+1)

2 +

d∑
i=1

(Xi)
2 = −L2 , (3.1)

where L is the radius of curvature of AdSd+1. This equation defines a set of points equidistant from



3.1 Properties of anti-de Sitter spacetime 23

the origin as measured by the ambient metric

g = −dx20 − dx2d+1 +

d∑
i=1

dx2i . (3.2)

The ambient metric and the defining equation of the pseudosphere are invariant under SO(d, 2)

rotations around the origin, so the AdSd+1 has the isometry group SO(d, 2) inherited from the
embedding space. Anti-de Sitter space has the topology S1 ×Rd which can be seen by writing (3.1)
as

(X0)
2 + (Xd+1)

2 = L2 +

d∑
i=1

(Xi)
2 . (3.3)

Now consider fixing a point on the plane X1, . . . , Xd. Then the above equation states that through
each of these points, AdS has a closed circle in the (X0, Xd+1) timelike plane, that is, a closed
timelike curve. Later we will try to alleviate concerns about closed timelike curves by passing to the
universal covering space of (3.1) effectively by replacing the S1 with R. It is precisely this covering
space that is usually referred to by anti-de Sitter spacetime. In AdS/CFT, bulk classical gravity is
isomorphic to the dual QFT, so in particular, the same symmetries must be realized on both sides of
the correspondence. This is indeed the case: the SO(d, 2) group of isometries of AdSd+1 matches
the conformal group of the QFT in d dimensions.

In our applications, the two most important coordinate charts are the global coordinates and the
Poincaré coordinates. Global coordinates are defined by parametrizing the pseudosphere (3.1) by

X0 = L sin
τ

L
cosh

ρ

L
, Xd+1 = L cos

τ

L
cosh

ρ

L
(3.4)

Xi = L sinh
ρ

L
Ωi , i = 1, . . . , d , (3.5)

where Ωi are components of an unit vector on a Sd−1, parameterized by the usual d − 1 angular
variables. This parametrization makes sense because it is chosen in such a way that

(X0)
2 + (Xd+1)

2 = L2 cosh2
ρ

L
(3.6)

d∑
i=1

(Xi)
2 = L2 sinh2

ρ

L
. (3.7)

The temporal coordinate τ is chosen to be the angle parametrizing the S1 and Ωi contain the angular
coordinates on Sd−1. In these coordinates, the induced metric on AdSd+1 is

g = − cosh2
ρ

L
dτ2 + dρ2 + L2 sinh2

ρ

L
dΩ2

d−1 , (3.8)

with ρ ∈ [0,∞).1 These coordinates show explicitly the closed timelike curves in AdS. The temporal
coordinate winds around the embedding hyperboloid (3.1) with period 2π. In the universal covering

1We follow the convention where all metrics have mostly plus signature.
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space, where we will work most of the time, one does not identify τ ∼ τ + 2π and takes τ ∈ R

instead.
A different radial coordinate is also commonly used in the global patch of AdS. If one defines a

radial coordinate r by

r

L
= sinh

ρ

L
, (3.9)

then the AdSd+1 metric becomes

g = −
(
1 +

r2

L2

)
dτ2 +

dr2

1 + r2

L2

+ r2dΩ2
d−1 , (3.10)

which has the advantage of having a familiar form in that it looks like a Schwarzschild black hole with
a blackening factor f(r) = 1 + r2/L2. In this form it is also explicit that in the limit of large radius
of curvature L → ∞, the anti-de Sitter space approaches the flat Minkowski space.

We will introduce an another radial coordinate for the global patch in order to draw the Penrose
diagram of AdS. The goal is to find a radial coordinate in which (3.8) has equal prefactors for temporal
and radial directions. This is accomplished by defining σ = arcsin tanh(ρ/L) which brings the metric
(3.8) to the form

g =
1

cos2 α

(−dτ2 + dσ2 + sin2 αdΩ2
d−1

)
(3.11)

=
1

cos2 α

(−dτ2 + dΩ2
d

)
, (3.12)

where dΩ2
d denotes the standard metric on Sd. Note that the range of α is [0, π/2), meaning that

slices of constant time are half-spheres. The conformal boundary at α = π/2, where in the context of
the AdS/CFT correspondence the field theory lives, has a Lorentzian signature and topology R×Sd−1.
The conformal boundary can be regarded as the conformal compactification of Minkowski space where
the point at the spatial infinity has been added. Omitting the transverse Sd−1, the Penrose diagram
for AdSd+1 is an infinite strip extending in the time direction, shown in Fig. 3.1. From the Penrose
diagram one can see that some properties of AdS are quite different compared to the more usual,
asymptotically flat spacetimes. AdS has a Lorentzian boundary, which can be reached by light rays
in finite coordinate time. This is in stark contrast with asymptotically flat spacetimes where there
are distinct lightlike and spacelike infinities. Also, it shows in a nice way that AdS is not globally
hyperbolic. Indeed, it can be seen that no spatial slice has all of AdS in its domain of dependence. For
any spacelike surface Σ there exists points to the future of Σ such that past directed causal curves do
not necessarily intersect Σ, because they will hit the conformal boundary instead. We can still have
well defined time evolution if we supplement the initial conditions on Σ with boundary conditions
that define what happens when a light ray hits the boundary of AdS. A common prescription is to
consider reflective boundary conditions, where a light ray is reflected back into the bulk when it hits
the boundary.

Timelike geodesics in AdS are such that if two of them start from the same point at τ = 0, they will
first diverge until τ = Lπ/2 where they will turn back and finally converge at τ = Lπ. If one thinks
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Figure 3.1: Penrose diagram of anti de-Sitter space. The center of AdS is represented by α = 0

and the boundary lies at α = π/2. The diagram extends infinitely in the temporal direction and
i± represent the timelike infinities. The lines originating from τ = α = 0 are geodesics. The null
geodesic reaches the boundary and is reflected back while the timelike geodesics turn back at a finite
distance from the center. The geodesics converge after time τ = πL.

of AdS as a pseudosphere embedded in Rd,2, the geodesics are circles around the sphere. Geodesics
converging at time τ = Lπ corresponds to the circles intersecting at the point on the sphere antipodal
to the initial point. After time τ = 2πL the geodesics converge again, this time at the initial point
and then continue to alternate between diverging and converging infinitely. No timelike geodesic can
reach the boundary of AdS as they are all bound to return to their initial points after moving a finite
distance towards the boundary [75].

One further coordinate system on AdS must still be introduced. These are the Poincaré coordinates,
which are commonly used in the literature. This time we parametrize the embedded pseudosphere
(3.1) with a new radial coordinate z and a set xα = {t, x, y, . . . } corresponding to coordinates on
the conformal boundary. These coordinates are defined by

X0 =
1

2z

(
L2 + ηαβx

αxβ
)
, Xd+1 =

1

2z

(
L2 − ηαβx

αxβ
)
, (3.13)

Xi = L
xi

z
, i = 1, . . . , d , (3.14)

where xα ∈ R, z > 0 and η is the Minkowski metric. This time the metric reads

g =
L2

z2

(
dz2 + ηαβdx

αdxβ
)
. (3.15)
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The conformal boundary lies at z = 0. Another common parametrization of the radial direction
is to use r = 1/z, in which case the boundary is at r → ∞.2 Sometimes in the literature, z is
called r, usually in contexts where z already has some other meaning. The advantage of Poincaré
coordinates is that the metric is proportional to the metric of a flat Minkowski spacetime with a
proportionality factor that is a simple function of the radial coordinate only. In Poincaré coordinates,
many symmetries of the system are explicit. The metric (3.15) has explicit Poincaré invariance and
invariance under dilatations where all coordinates are multiplied by a common positive factor. In
the context of the AdS/CFT correspondence, the Poincaré and dilatation symmetries of the bulk are
related to the conformal symmetry of the boundary theory, which is why it is convenient to have the
symmetries manifest themselves in a simple way on the bulk side.

It is important to note that Poincaré coordinates only cover one half of the AdS manifold. One way
to see this is to notice that X0 +Xd+1 = L2

z > 0. Another way is to consider radial null geodesics
directed towards the center of AdS, that is, towards z → ∞ or r → 0. They will reach z = ∞ or
r = 0 at a finite value of the affine parameter of the geodesic and escape the region of space covered
by our coordinates. This region is called the Poincaré patch and the surface z = ∞ or r = 0 is
called the Poincaré horizon. To cover all of the AdS manifold, one needs two Poincaré charts, one for
z > 0 and another for z < 0. For a careful analysis on the relationship between global and Poincaré
boundaries of AdS, see [76].

One further property of AdS needs to be commented on: its stability or lack thereof. The two other
maximally symmetric spaces, Minkowski and de Sitter space, are stable linearly and nonlinearly [77,
78]. These proofs cover also asymptotically Minkowski and de Sitter spaces. Conceptually, stability of
these spaces follows from the fact that perturbations can escape to infinity and disperse in a way that
the metric is not modified substantially. The situation is dramatically different in AdS. As discussed
previously, no timelike geodesic can ever reach the boundary. That is, any massive particle will always
return to its starting point in finite time irrespective of their initial velocity towards the boundary.
Same is true of photons. Even though null geodesics will reach spatial infinity in finite coordinate
time, they will reflect back into the bulk due to reflective boundary conditions at the boundary,
imposed in order to prevent photons from escaping AdS and removing energy from the spacetime.
Thus, the curvature of AdS is such that it acts like a gravitational potential well with mirrors as its
boundaries. This particle trapping behaviour breaks the property that makes Minkowski and de Sitter
spaces stable, forcing particles to oscillate infinitely instead of dispersing to infinity. It is now known
that AdS is nonlinearly unstable for large classes initial data. There are islands of stability in the space
of initial conditions, but for many initial conditions, AdS seems to be unstable against gravitational
collapse even for perturbations with arbitrarily small amplitudes. What tends to happen is that energy
of the initial configuration flows to higher frequency spatial modes and eventually, when the energy
is concentrated enough, collapses to an AdS-Schwarzschild black hole [79–87].

Since much of the interest in the properties of AdS spacetime is driven by the AdS/CFT correspon-
dence, it is natural to ask what the instability of AdS means on the dual field theory side. From the

2Note that this r-coordinate is different from the one introduced in (3.9) for the global patch.
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point of view of the field theory, the instability is not all that surprising. After all, one would expect
any perturbation of a field theory to eventually thermalize and the endpoint of the instability is a black
hole in AdS, which is dual to a thermal state in the QFT. However, the islands of stability mentioned
before show that this expectation is not completely true either. There are initial conditions which
instead of collapsing to form a black hole, form periodic, oscillating solutions [88–91]. These bulk
solutions correspond to boundary states that fail to thermalize. Even in the case where some initial
data does collapse to a black hole, it necessarily does not mean that the field theory has thermalized.
If the spacetime does not have enough energy to form a sufficiently large black hole, the black hole
may be unstable and radiate away leaving behind a pure AdS space [92]. These small black holes in
AdS space are interesting objects that can appear as unstable phases between two stable phases, for
example, in between confined and deconfined phases [93]. For more about the properties of small
black holes in the context of the AdS/CFT correspondence, see the included paper [IV] where we
study the behaviour of correlation functions interpolating between stable black hole and thermal AdS
phases.

3.2 Holographic entanglement entropy proposal

The gauge/gravity duality gives a spectacularly simple way to calculate the entanglement entropy of
a QFT by performing the calculation on the gravity side of the duality. The prescription for how to do
this in static gravitational backgrounds was proposed by Ryu and Takayanagi [69, 94]. Their proposal
became to be known as the RT-prescription. Subsequently the RT-prescription was extended to time-
dependent backgrounds by Hubeny, Rangamani, and Takayanagi [95]. This extension is known as the
HRT-prescription.

Consider a holographic QFT on a d-dimensional manifold Bd. The quantum gravity dual in the
classical limit is a (d+1)-dimensional, asymptotically AdSd+1, manifold Md+1 such that ∂Md+1 =

Bd. For now we are assuming that the bulk manifold Md+1 is static, admitting a timelike Killing field,
which defines a canonical foliation for Md+1 and Bd with spacelike surfaces. We are now interested
in the entanglement entropy associated with a region A lying on a time slice of Bd. Here we are
assuming that at this instant of time, the Hilbert space of the QFT can be divided to HA ⊗ HAc ,
where HA is the Hilbert space associated with the spatial region A. This setup is shown in Fig. 3.2.

Now the prescription tells us to consider a codimension-2 bulk surface ΣA, which satisfies

• ΣA is anchored on A: ∂ΣA = ∂A

• ΣA is homologous to A .

The homology condition means that there exist a codimension-1 bulk interpolating surface bounded
by ΣA and A. In other words, the bulk surface ΣA should be smoothly retractable to A on the
boundary. The prescription for computing S(A) is to select the surface ΣA which simultaneously
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Figure 3.2: The bulk setup for computing S(A) with the RT-prescription. A constant time slice of the
boundary is partitioned into A and its complement Ac. The bulk surface ΣA is such that it anchors on
the boundary of A and minimizes its volume by extending into the bulk. The entanglement entropy
is then given by the volume of ΣA as in (3.16).

satisfies the above constraints and has minimal volume3. Then the holographic entanglement entropy
is the volume of this surface in Planck units4

S(A) =
1

4G
(d+1)
N

min
ΣA

V ol(ΣA) . (3.16)

In section 2.3 we saw that short range correlations in a QFT lead naturally to an area law divergence,
that is, a divergence in entanglement entropy proportional to the volume of the entangling surface.
This area law appears elegantly from the RT-proposal as can be seen directly from (3.16). The formula
diverges because of the infinite volume of AdSd+1, and the divergence originates from the part of
ΣA that anchors on the boundary. The bulk minimal surface touches the AdSd+1 boundary only at
∂ΣA = ∂A, and thus the divergence must be proportional to V ol(∂A), giving a simple, geometric
intuition for the leading divergence structure of entanglement entropy.

The RT-proposal massively simplifies the calculation of entanglement entropy in interacting QFTs,
reducing the task to finding a minimal surface in a curved spacetime. Geometric intuition makes it
easy to prove that the RT-proposal satisfies the properties it should, some of which we will now show.

The von Neumann entropy is always nonnegative for any state. Nonnegativity is manifest in (3.16)
as it is formulated as the volume of a surface on a spacelike spatial slice of a manifold.

For a pure state ρ = |Ψ〉〈Ψ|, the entanglement entropy must satisfy S(A) = S(Ac) for any
bipartition ρA = trHAc ρ. This property is clearly satisfied by (3.16) since the surfaces ΣA and ΣAc

are solely determined by their shared entangling surface, ∂A = ∂Ac. This results in the exact same
minimal surface for both A and Ac, implying S(A) = S(Ac).

An another important property of entanglement entropy is strong subadditivity, the proof of which
3In this chapter, we denote the entanglement entropy associated to region A by S(A), instead of S(ρA) which was

used in Chapter 2.
4In our units h̄ = c = 1, the gravitational constant is proportional to the Planck area: G

(d+1)
N ∼ l2P .
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we now outline [96]. This also is a nice example of a simple, holographic proof of an inequality that
would be quite involved to prove directly on the field theory side. Strong subadditivity

S(a ∪ c) + S(b ∪ c) ≥ S(a ∪ b ∪ c) + S(c) (3.17)

is an inequality concerning three reduced density matrices which in our QFT context correspond to
spatial regions a, b, and c. This inequality can be equivalently expressed with two overlapping regions
defined by

A = a ∪ c , B = b ∪ c . (3.18)

With this redefinition, the strong subadditivity becomes

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B) . (3.19)

Let Σmin
A and Σmin

B be the minimal bulk surfaces associated with the boundary regions A and B. The
corresponding bulk regions, denoted by RA and RB, satisfy ∂RA = A∪Σmin

A and ∂RB = B ∪Σmin
B .

Now let RA∪B = RA ∪ RB and RA∩B = RA ∩ RB. We define the associated bulk surfaces ΣA∪B
and ΣA∩B by the equalities

ΣA∪B :∂RA∪B = A ∪B ∪ ΣA∪B (3.20)

ΣA∩B :∂RA∩B = (A ∩B) ∪ ΣA∩B . (3.21)

These surfaces are anchored to A ∪ B and A ∩ B, respectively, ∂ΣA∪B = ∂(A ∪ B) and ∂ΣA∩B =

∂(A∩B). The surfaces ΣA∪B and ΣA∩B are clearly formed by cutting and pasting parts of the original
minimal surfaces Σmin

A and Σmin
B and thus their total area must be preserved in the rearrangement,

V ol(Σmin
A ) + V ol(Σmin

B ) = V ol(ΣA∪B) + V ol(ΣA∩B) . (3.22)

However, since neither ΣA∪B and ΣA∩B are guaranteed to be the minimal area surfaces of the
corresponding boundary regions A ∪B and A ∩B, we have

V ol(ΣA∪B) + V ol(ΣA∩B) ≥ V ol(Σmin
A∪B) + V ol(Σmin

A∩B) , (3.23)

where on the right hand side we have the bulk surfaces which actually have minimal area. By combining
the above relations and expressing surface areas in terms of the corresponding entanglement entropies,
we arrive at strong subadditivity (3.19), completing the proof. This proof is sketched as pictures in
Fig. 3.3. Similar proofs can be constructed for many other inequalities for entanglement entropy and
related quantities [97, 98].

As discussed in Section 2.3, vacuum states in QFTs typically follow the area law. We also mentioned
that the area law can be violated by nonlocality of the underlying QFT. The area law arises elegantly
from geometry in the RT-proposal (3.16) via a volume divergence originating from near the boundary
on which we are required to anchor our minimal surfaces. The area law thus seems quite generic
in the AdS/CFT correspondence and one might wonder how area law violations would arise in the
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Figure 3.3: Pictorial proof of holographic strong subadditivity. The proof works by rearranging the
bulk surfaces ΣA and ΣB to ΣA∪B and ΣA∩B. This rearrangement preserves the total area, as
stated in (3.22). While ΣA and ΣB are minimal surfaces by assumption, ΣA∪B and ΣA∩B are not,
which completes the proof (3.23). This example shows that in holography, nontrivial properties of
entanglement entropy can be inferred by simply drawing the corresponding minimal surfaces.

holographic context. Holographic entanglement entropy can indeed violate the area law if the dual
QFT is nonlocal, for example, in noncommutative QFTs [99–101]. In theories with Lorentz symmetry it
is expected for the entanglement entropy to satisfy an area law, if we exclude theories with pathological
properties [99]. Until now we have mainly discussed asymptotically AdS bulk geometries, where the
asymptotic AdS reflects a CFT fixed point in the UV. Noncommutative QFTs evade the area law by
being nonlocal. Noncommutativity violates Lorentz symmetry and corresponds to a bulk geometry
which is not asymptotically AdS. No longer having an AdS boundary can affect the asymptotic
behaviour of minimal surfaces in unusual ways, which can in particular lead to violations of the
area law. Noncommutativity of the QFT causes many observables to behave in surprising ways, an
example of which can be found in the included paper [III]. Notice though that simply violating Lorentz
symmetry does not necessarily produce a violation of the area law [102].

Even in local Lorentz invariant theories, the UV-behaviour (2.49) does not tell the whole story if the
entangling region under study contains sharp corners. The presence of corners produces logarithmic
terms in addition to the usual area law [I, 103–107].

The formula for holographic entanglement entropy we have discussed here is an approximation
since we are working in the limit N,λ → ∞ in the QFT. The RT-prescription gives the entanglement
entropy of ρA up to order N2 in the number of colours in the QFT. One can consider correcting the
RT-formula with either quantum or stringy corrections. Quantum corrections can be considered with
the similar treatment as described above, except instead of using the replica trick to compute bulk
partition function in the classical approximation, one can compute it in principle to any order in GN .
This will take into account quantum effects in the bulk. The first correction at order G0

N or N0, is
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Figure 3.4: The replica trick setup for computing the entanglement entropy of a spherical region.
The region A is located at a constant time slice in an Euclidean space and the angular coordinate τ

indicates the winding around the entangling surface ∂A which takes one to the next replica copy.

essentially given by the quantum entanglement of the bulk between the different sides of the classical
minimal surface [108, 109]. For stringy corrections one needs to consider gravity theories with higher
curvature terms. In this case the RT-proposal needs to be generalized to contain corrections involving
the extrinsic curvature of the surface [110, 111].

3.2.1 Derivation of the proposal

In this section we shortly outline a derivation of the RT-proposal following [112]. In quantum field
theory, the entanglement entropy can be computed, at least in principle, with the replica trick. Our
strategy is to extend this method to the holographic context in order to recover the RT-formula.

First, we briefly recall how the replica trick works in field theory. Our setup is illustrated in Fig. 3.4.
The goal is to first compute the Rényi entropy

S(q)(A) =
1

1− q
log trA

(
ρqA

)
, (3.24)

where A ⊂ B is the region we want to find the entanglement entropy of, and ρA is the associated
reduced density matrix. The Rényi entropy is typically defined for positive integer q, but in our
treatment we analytically continue the definition to positive real numbers. The Rényi entropy can be
used to find the von Neumann entropy, which for us is the quantity of primary interest

S(A) = lim
q→1

S(q)(A) . (3.25)

We are now considering static states and pass to Euclidean space. Let us construct a replica manifold
Bq in the following way. We take q copies of the original manifold and glue the copies together at
the entangling surface in such a way that encircling the entangling surface takes us from one copy
to the next. Furthermore, going around the entangling surface q times takes one back to the original
copy. This procedure results in a deficit angle 2π(1− q) located at ∂A. The Rényi entropy is found
by computing the path integral on this q-sheeted surface

S(q)(A) =
1

1− q
log

Z[Bq]

Z[B]q . (3.26)
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The path integral is in general very difficult to compute, but in simple cases the integral can be carried
out explicitly [68].

Now we consider the holographic analogue of the above. This time the entangling region lies on
the boundary of the spacetime ∂M = B. The replica manifold is again constructed by taking q

copies of M and gluing them together at ∂A. The boundary of this branched cover of the bulk Mq

should match Bq. The crucial point is that the singular locus at ∂A is assumed to extend into the
bulk, forming a bulk codimension-2 surface ΣA. Since we are working in the holographic dual of the
boundary field theory, we can use the bulk partition function to compute (3.26)

S(q)(A) =
1

1− q
log

Z[Mq]

Z[M]q
. (3.27)

This calls for the evaluation of the full string theory partition function. We simplify the problem by
working in the classical limit in the bulk. The partition function is then given in the saddle point
approximation by the on-shell action

logZ[Mq] ≈ −SE [Mq] , (3.28)

where Mq solves the equations of motion with the boundary condition ∂Mq = Bq. The authors of
[112] show that in the limit q → 1, receives contributions only from the codimension-2 surface ΣA,
and evaluates to

S(A) = lim
q→1

S(q)(A) =
V ol(ΣA)

4G
(d+1)
N

, (3.29)

when we work with a (d+ 1)-dimensional bulk and Einstein gravity.
Equation (3.29) already looks a lot like the RT-formula but we still need ΣA to be a minimal surface.

Remarkably, analysing the metric near ΣA, it can be shown that the equations of motion imply that
the traces of the extrinsic curvature matrix vanish in the directions transverse to the surface. The
equations for the vanishing of traces of extrinsic curvature coincide with the conditions of a surface
to have minimal area. In other words, the entanglement entropy S(A) is calculated by the area of a
minimal codimension-2 surface in the bulk, anchored on ∂A on the boundary.

Derivations have also been developed in the time-dependent case which reproduces the HRT-
prescription [113]. Extensions to higher derivative gravity also exist [110, 111, 114].

3.2.2 Minimal surfaces

The holographic entanglement entropy proposal calls for the determination of a bulk surface that
simultaneously satisfies the correct boundary conditions and has minimal area. We will now outline
the way to compute such minimal surfaces and give two explicit examples. We will focus on static
spacetimes foliated by constant time hypersurfaces since this simplifies the discussion and is the
situation we work in all of the included papers. We start with two pieces of information, the boundary
entangling surface ∂A and the bulk metric. The entangling surface provides the boundary condition
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that the bulk surface we are trying to find needs to be anchored to ∂A. The bulk metric on the other
hand provides the local data necessary to minimize surface areas in the bulk.

Our starting point is the RT-formula

S(A) =
1

4G
(d+1)
N

min
ΣA

V ol(ΣA) . (3.30)

Say we have coordinates x in the bulk and coordinates y on the surface, ΣA, the area of which we are
minimizing. The surface ΣA is embedded in the bulk by some function f : ΣA �→ M . First we need
to find the metric on ΣA since this quantity contains the information about local geometry necessary
for area determination. The metric h on ΣA is induced by the bulk metric g

h = f∗g (3.31)

=
∂xα

∂yμ
∂xβ

∂yν
gαβdy

μ ⊗ dyν . (3.32)

The area of ΣA is given by integrating its volume form

V ol(ΣA) =

∫ √
deth dy1 ∧ · · · ∧ dyd−1 (3.33)

=

∫
L(x(y), y)dy , (3.34)

where in the last line we have introduced a “Lagrangian” which depends on the coordinates y on
ΣA and the embeddings x(y). Now one can minimize the area of ΣA with the same methods one
would use to minimize an action integral in a classical mechanics course, that is, we need to solve the
Euler-Lagrange equation

∂

∂yν

(
∂L

∂(∂νxμ(y))

)
− ∂L

∂xμ(y)
= 0 , (3.35)

subject to the constraint that ΣA approaches ∂A near the AdS boundary. Once such a solution is
found, it can be plugged back into the integral (3.34) to obtain the volume of ΣA, and thus also the
entanglement entropy S(A). The area is divergent because the boundary on which ΣA is anchored lies
infinitely far away. This divergence is usually regulated by introducing an UV-cutoff so that ΣA instead
of reaching all the way to the boundary of AdS, the surface ends at some z = ε. Another way to deal
with the divergence is to consider a finite combination of entanglement entropies instead of S(A)

itself. One example would be to calculate the difference of entropies between two bulk surfaces with
the same boundary conditions. In this way the boundary contributions cancel and the UV-divergence
vanishes. One could also study an UV-finite quantity like the mutual information which is discussed
in Section 3.4.

Solving the Euler-Lagrange equations for the minimal surface is very difficult in general. In practice,
it is a popular choice to restrict one’s attention to situations where symmetries can be exploited in
such a way that only ordinary differential equations need to be solved. In simple cases one can express
the embedding of ΣA with only one nontrivial embedding function in terms of one coordinate on
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ΣA. One example of this would be a spherical entangling region, in a background with rotational
symmetry. Then one can specify the embedding by one function, the boundary radial coordinate as a
function of the bulk holographic coordinate. This is an example of a technique where one numerically
integrates from the deepest point on ΣA in the bulk, commonly termed the turning point, toward the
boundary to determine the relationship between this turning point and the boundary condition, in this
case the radius of A. This integration additionally gives the profile of the minimal surface, which can
be used for integrating the minimal area. These types of methods are popular because the numerics
required are relatively simple to implement and in some particularly simple cases, for example in pure
AdS spaces, some entangling region shapes can be dealt with analytically. We will give two examples
of minimal surface calculations shortly.

In cases where symmetries cannot be used for reducing the partial differential equations governing
the minimal surface to ordinary differential equations, more complicated numerical methods are re-
quired. This may take the form of developing specialized numerical schemes for the specific situation
under consideration or using existing numerical software [115, 116].

3.2.3 Examples

In order to give a better feel about how holographic entanglement calculations are done, we briefly
go over two example calculations corresponding to the two most common entangling surface shapes
in the simplest case of pure AdSd+1, dual to a CFT in d spacetime dimensions [94].

Slab

We choose to express the bulk geometry in Poincaré coordinates (3.15), in which the metric takes
the form

g =
L2

z2
(−dt2 + dz2 + d�x2

)
. (3.36)

Here (t, �x) are coordinates on the d-dimensional boundary and z is the holographic coordinate such
that z = 0 corresponds to the AdS boundary and z → ∞ corresponds to the Poincaré horizon.

If we denote the spatial coordinates of the field theory by �x = (x, �x⊥), a slab of width l is described
by a finite interval −l/2 ≤ x ≤ l/2 with the transverse coordinates �x⊥ being covered by the slab.
We consider a spacelike slice of constant time and parametrize the minimal bulk surface by x = x(z).
The functional to minimize is

S(A) =
Ld−1V

2G
(d+1)
N

∫ z∗

0

1

zd−1

√
1 + x′(z)2dz , (3.37)

where V =
∫
d�x⊥ is the volume of the transverse directions and z = z∗ is the turning point of the

minimal surface, as indicated in Fig. 3.5.
It is generally important to take advantage of symmetries when finding minimal surfaces. Naively,

one would find the equation of motion for x(z) by the Euler-Lagrange equation associated with
the area functional but then one would end up with a second-order nonlinear differential equation.
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Figure 3.5: Sketches of the RT surfaces for a slab (left) and a sphere (right). The slab has width l along
the x-coordinate on the boundary, and extends infinitely in the other spatial boundary dimensions.
This removes any edge effects associated to finite length slabs and enables us to describe the bulk
profile with a single function x(z). The sphere has radius R and due to rotational symmetry, its bulk
profile can also be described with a single function ρ(z).

Translational symmetry x → x+a is manifest in this simple situation and is reflected by the fact that
the area functional depends on x(z) only through its derivatives, which in turn implies that

∂

∂x′(z)

√
1 + x′(z)2

zd−1
(3.38)

is independent of z as a consequence of Euler-Lagrange equations. The value of this constant of
motion can be evaluated at the turning point, and used to algebraically solve for x′(z). There are two
solutions for x′(z) corresponding to the two branches of the minimal surface starting at the turning
point and extending towards the boundary. Here, we have chosen the branch in such a way that
x′(z) ≥ 0. Now knowing the profile of the minimal surface, rest can be solved simply by evaluating
two integrals. First, the relation between the slab width l and the turning point z∗ is

l =

∫ l/2

−l/2
dx = 2

∫ z∗

0
x′(z)dz = 2z∗

√
πΓ

(
d

2(d−1)

)
Γ
(

1
2(d−1)

) . (3.39)

The entanglement entropy is found by plugging x′(z) into the functional, resulting in

S(A) =
Ld−1V

2G
(d+1)
N

z2−d
∗

∫ 1

0

dλ

λd−1

1√
1− λ2(d−1)

, (3.40)

where we have defined λ = z/z∗. An important feature of the integral is that there is a divergence
originating from the boundary λ = 0. The divergence corresponds to the expected UV-divergence of
the entanglement entropy originating from strong correlations just across the entangling surface. By
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separating the divergent and finite parts, we find the entanglement entropy of a slab

S(A) =
Ld−1

2(d− 2)G
(d+1)
N

⎛⎜⎝ V

εd−2
− 2d−2π(d−1)/2

⎛⎝Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
⎞⎠2

V

ld−2

⎞⎟⎠ . (3.41)

The first term is the famous area law divergence, as can be seen by remembering that the entangling
surface volume is 2V .

Sphere

Now we will calculate the entanglement entropy of a spherical region of radius R in a d-dimensional
CFT. Whereas in the case of a slab, the need for solving differential equations was avoided by the use
of translation symmetry, we now will exploit the dilatation symmetry to achieve a similar simplification.
Adopting spherical coordinates on the boundary, the bulk metric reads

g =
L2

z2
(−dt2 + dz2 + dρ2 + ρ2dΩ2

d−2

)
. (3.42)

The functional to minimize is then

Ld−1V

4G
(d+1)
N

∫ z∗

0

ρd−2

zd−1

√
1 + ρ′(z)2dz . (3.43)

The important difference to the slab is that in that case a first integral of (3.37) was easily found due
to the cyclic coordinate x(z), but (3.43) has no cyclic coordinates.

Still we can find a conserved quantity via a coordinate transformation [I]. Dilatation symmetry of the
background is generated by the Killing vector kD = (t, z, ρ,�0)/L. The integral curves of this isometry
are such that the coordinates (t, z, ρ) are multiplied by eλ/L for λ ∈ R. The simplifying transformation
is to find coordinates in which this dilatation is realized simply as a coordinate translation. In other
words, we wish to find coordinates in which the Killing vector becomes kD = (0, 0, 1,�0). The desired
transformation is

(t, z, ρ) → (t̃, z̃, u) =

(
t

ρ
,
z

ρ
, log

ρ

L

)
, (3.44)

with the identity transformation acting on the coordinates on the Sd−2. Note that t̃ and z̃ are invariant
under dilatations, while u transforms as u �→ u + λ/L. In the new coordinates, the bulk metric no
longer depends on the u-coordinate, reflecting a translational symmetry. The entropy functional, in
parametrization z̃ = z̃(u), is

S(A) =
Ld−1V

4G
(d+1)
N

∫ ∞

0

1

z̃(u)d−1

√
1 + (z̃(u) + z̃′(u))2du . (3.45)

This new functional clearly has a conserved energy associated with u-translations. The rest of the
calculation can be done in a manner analogous to slabs. The conserved energy is used to algebraically
solve the surface profile z̃′(u), which can be used to integrate all remaining quantities [I, 116].
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3.3 Entanglement wedge

The reduced density matrix ρA associated with a region A in the dual QFT contains all information we
can have about observables in A. Holographic duality states that the full state ρ of the QFT is dual
to all of the bulk spacetime. A natural question arises: which part of the bulk is dual to the reduced
density matrix ρA? In other words, given ρA, we could consider all compatible density matrices ρ on
the full state which reduce to ρA upon tracing out Ac. Each ρ corresponds to a different bulk, but is
there a subregion of the bulk which can be reconstructed with the information contained in ρA? The
bulk region associated to ρA is called the entanglement wedge [117–119]. We will now describe the
entanglement wedge in more detail.

The reduced density matrix contains the information necessary for computing the entanglement
entropy of the region. The bulk dual is a codimension-2 surface hanging in the bulk, anchored on ∂A

at the boundary. This extremal surface, Σ, along with the bulk causal structure can be used to split
the bulk, M, into four parts.

M = WΣ(A) ∪WΣ(A
c) ∪ J̃+(Σ) ∪ J̃−(Σ) , (3.46)

where J̃+(Σ) and J̃−(Σ) are the future and past of Σ, respectively. That is, J̃+(Σ) is the set of points
connectable to Σ by causal future directed curves starting on Σ. The remaining regions, WΣ(A) and
WΣ(A

c) are the entanglement wedges associated to A and Ac, respectively. To see more clearly
where the wedges lie, remember that Σ defines a codimension-1 cohomology surface, RA, which is
bounded by the extremal surface Σ and the boundary entangling region A. The entanglement wedge
is the bulk domain of dependence of RA,

WΣ(A) = D̃(RA) . (3.47)

Even though any bulk codimension-2 surface could be used for this construction, the extremal surface
is special because it is determined by gravitational dynamics of the bulk. For more discussion, see
[119].

It is not uncommon for spacetimes to have regions which cannot be probed by extremal surfaces
anchored on the boundary [120–122]. These regions are called entanglement shadows. A simple
example of an entanglement shadow occurs in the case of a nonrotating BTZ black hole. A BTZ
black hole is a black hole in 2+1 spacetime dimension with an asymptotically AdS3 geometry. It can
be thought of as a lower dimensional and asymptotically AdS analogue of the familiar Schwarzschild
black hole. A BTZ black hole along with some minimal surfaces is shown in Fig. 3.6. A finite
region near the horizon is left untouched by extremal surfaces regardless of the entangling region
size. Even though no extremal surface can touch these shadow regions, entanglement shadows are
reconstructible using the information contained in boundary density matrices because the shadow
regions are contained in either the entanglement wedge of A or Ac.

Finding the bulk region dual to a boundary reduced density matrix is a part of a larger subject of
bulk reconstruction. In general, it should be possible to infer the structure of the bulk completely
just by studying QFT observables. It is possible to reconstruct static, spherically symmetric, and



38 Holographic entanglement entropy

Figure 3.6: A BTZ-black hole geometry and some minimal surfaces. The boundary is a circle and
the entangling regions are intervals of width θ0. For sufficiently thin surfaces (black curves), the
minimal surfaces are simply connected. If θ0 is large enough (orange curves), the minimal surfaces are
composed of two parts: one part that reaches the boundary and one part that wraps the black hole
horizon. An entanglement shadow exists, because there is a region of finite size around the black hole
horizon which is never touched by any minimal surface. The minimal surfaces approach the horizon
when θ0 is increased, but they cannot reach arbitrarily close to the horizon because for some θ0 the
minimal surfaces become an union of the horizon and a surface finite distance away from the horizon.

asymptotically AdS spacetimes using geodesics and entanglement entropy [123–127]. Subsequently
it has been shown that even general metrics can be uniquely fixed by the knowledge of boundary
entanglement entropy of differently shaped regions [128, 129]. For more on the relation between
entanglement and bulk geometry one should see [130–134]. Bulk fields can be given in terms of
boundary operators by first solving the bulk equations of motion [135–140]. These bulk operator
reconstructions are possible in the entanglement wedge as was proved in [141]. More general bulk
geometric objects can be constructed with boundary entanglement entropy: spacelike curves [142] and
further, general bulk surfaces can be reconstructed with differential entropy [143–146]. In a similar
vein, progress has been made towards extracting the dynamics of the bulk from entanglement [147–
149].

3.4 Mutual information

The entanglement entropy in QFT contains an UV-divergence originating from strong short range
correlations across the entangling surface. This divergence is reflected in the holographic computa-
tion of entanglement entropy via the infinite volume of the RT-surface. In actual calculations the
divergence has to be regulated somehow which has the downside of making results dependent on the
regularization scheme. The benefit in studying mutual information is that it gives a finite and thus



3.4 Mutual information 39

regularization scheme independent correlation measure. Its definition has been discussed in Section
2.2. For two disjoint regions A and B, the mutual information denoted by I(A,B) is

I(A,B) = S(A) + S(B)− S(AB) . (3.48)

UV-finiteness of the combination can be seen by noting that divergences of each term originate from
the part of the RT-surface near the boundary. Each near boundary part is counted once with positive
sign and once with a negative sign, ∂A∪∂B = ∂(A∪B), cancelling out the divergences. Nonnegativity
of I(A,B) follows from subadditivity [96], with equality I(A,B) = 0 occurring when the RT-surface
corresponding to AB is an union of two disjoint bulk surfaces, one being the same as the RT-surface
of region A alone and similarly for B. This vanishing usually happens when the distance between A

and B is much larger than their individual sizes. An example of this interplay between competing
locally minimal surfaces is shown in Fig. 3.7. Further, mutual information increases monotonically
when adding parts to A or B

I(A,BC) ≥ I(A,B) , (3.49)

in accordance with the intuition that it should measure the total amount of correlation between
subsystems.

We can also measure quantum information with conditional entanglement measures. Conditional
entanglement entropy measures the amount of uncertainty about a spatial region A conditioned on
the knowledge about an another region B

H(A|B) = S(AB)− S(B) . (3.50)

Subadditivity of entanglement entropy (2.36) guarantees that S(A) ≥ H(A|B). This means that
knowledge about a region B cannot increase our uncertainty about region A, exactly like in the
classical case with conditional Shannon entropy (2.9). A striking difference to the classical case is
that in the quantum case H(A|B) can be negative, meaning that sometimes one can be more certain
about the composite system ρAB than about its constituents. This is a fundamental property of
quantum entanglement and can be seen to occur even in the simplest case of two qubits in a Bell
state.

An analogous conditioned version can be defined for the mutual information,

I(A,B|C) = S(AB) + S(BC)− S(C)− S(ABC) . (3.51)

The conditional mutual information I(A,B|C) is guaranteed to be nonnegative by strong subadditivity
of entanglement entropy (2.35). As usual, conditional mutual information has the advantage of UV-
finiteness over conditional entanglement entropy.

Holographic mutual information satisfies the following tripartite inequality

I(A,B) + I(A,C) ≤ I(A,BC) , (3.52)
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Figure 3.7: Competing phases for the mutual information of two parallel slabs. When the slabs A

and B are sufficiently far away from each other, the disconnected phase is dominant (black surfaces).
The disconnected phase corresponds to vanishing mutual information. If the slabs are brought closer
together, there is a point when the connected (orange) surfaces have the minimal area. The connected
phase signals that A and B have nonvanishing mutual information.

for all disjoint regions A, B, and C [97]. This property is called monogamy of holographic mutual
information and it is symmetric under permutations of A, B, and C, which can be seen by expanding
all terms using the definition of I(A,B) in terms of the entanglement entropy. Monogamy can be
seen as a statement about the extensivity of mutual information [II]. In the case where the inequality
saturates, the mutual information of A with BC would be equal to the mutual information of A

with B and C separately. In this way the shared information increases extensively: when combining
B and C, the mutual information is simply a sum of individual amounts of mutual information.
Typically though, the inequality does not saturate in which case we say that mutual information is
superextensive. That is, A has more mutual information with BC than it has with the parts B and
C individually. We have introduced a quantity to characterize the degree of extensivity of mutual
information

e =
I(A,BC)

I(A,B) + I(A,C)
, (3.53)

which we simply call extensivity [II]. The mutual information in a theory behaves superextensively if
e > 1, subextensively if 0 < e < 1, and exactly extensively if e = 1.

The monogamy of mutual information is a special property of field theories with holographic duals,
since there are simple examples of quantum states where monogamy is violated [97]. One way to view
(3.52) is that it gives a necessary condition for a field theory to have a dual gravitational description
via holography.

In general quantum systems, correlations between operators in two subsystems A and B are bounded
from above by their mutual information I(A,B) [150]

I(A,B) ≥ C(MA,MB)
2

2‖MA‖2‖MB‖2
, (3.54)
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where C(MA,MB) = 〈MA ⊗MB〉 − 〈MA〉 〈MB〉 measures correlations of observables MA and MB.
This inequality tells us that if we have two subsystems with a vanishing mutual information, the
subsystems cannot have correlations in any observables. It is common for the mutual information to
undergo phase transitions between competing minimal surfaces in the bulk, such as the one shown in
Fig. 3.7. Generally, there exists a phase where I(A,B) = 0, which can be realized by taking the sizes
of A and B to be small when compared to their separation. The calculation of correlation functions
in AdS/CFT is not covered in this thesis but good explanations of the subject can be found, for
example, in [151].

In the situation depicted in Fig. 3.7, entanglement entropy has only two phases, corresponding to
the two competing bulk minimal surfaces anchored to ∂(AB). Different gravitational backgrounds
can have a richer phase structure, however. For example, in confining backgrounds where the bulk
space ends at some z = z0, where z is the radial coordinate in the Poincaré patch (3.15). In this
case more competing bulk surfaces appear, namely, disconnected surfaces which dive straight down
from the boundary z = 0 to the point where the space ends at z = z0. Another way to have more
complex phase structure is to consider more than two spatial regions, or regions that are composed
of disconnected parts [I, 152].

3.5 Entanglement wedge cross section

The von Neumann entropy is the unique measure of entanglement between subsystems A and B

making up a pure state and a simple bulk dual for it is given by the RT-proposal (3.16). Quantum
information theory has multiple quantities for measuring correlations, both classical and quantum, of
a system in a mixed state, but not much is known about their bulk duals in holographic theories. As
discussed in the previous chapter of this thesis, one such correlation measure is the entanglement of
purification, EP (A,B). Entanglement of purification is of particular interest for us because there is a
proposition for its holographic dual [153]. The proposed dual is called the entanglement wedge cross
section, EW (A,B).

Consider a static asymptotically AdSd+1 spacetime dual to some holographic QFT. We denote the
canonical time slice of the bulk by M . On the boundary ∂M , we have two regions A and B with no
nonzero overlap. We assume that the entanglement wedge, MAB, associated to AB is connected,
and the corresponding minimal surface is ΓAB. In other words, ∂MAB = A ∪ B ∪ ΓAB. Next, we
split the minimal surface ΓAB into two parts

ΓAB = Γ
(A)
AB ∪ Γ

(B)
AB . (3.55)

There are infinitely many ways of splitting ΓAB into two parts, reflecting the infinite number of ways
one can purify a mixed state. Further, we define

Γ̃A = A ∪ Γ
(A)
AB (3.56)

Γ̃B = B ∪ Γ
(B)
AB . (3.57)
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Figure 3.8: Our setup for the definition of the entanglement wedge cross section EW . The diagram
represents a time slice of an asymptotically AdSd+1 spacetime M . The black dashed circle represents
the boundary ∂M on which the QFT lives. The solid black curve outlines the entanglement wedge
MAB, assuming that the regions A and B are such that the entanglement wedge is connected. The
coloured lines visualize a partition of the entanglement wedge boundary, as in (3.59). The dashed
line is the surface ΣAB, which divides MAB into two parts. The entanglement wedge cross section is
given in terms of this surface, as in (3.61).

The point is that Γ̃A and Γ̃B give together us a new partition of the entanglement wedge boundary

∂MAB = A ∪B ∪ ΓAB (3.58)

= A ∪ Γ
(A)
AB ∪B ∪ Γ

(B)
AB (3.59)

= Γ̃A ∪ Γ̃B , (3.60)

in such a way that A ⊂ Γ̃A and B ⊂ Γ̃B. See Fig. 3.8 for a visualization of these surfaces.
Now we are in a position to define the surface we need for the definition of EW (A,B). Let ΣAB

be a bulk surface which

(i) is anchored on Γ̃A,B: ∂ΣAB = ∂Γ̃A = ∂Γ̃B

(ii) is homologous to Γ̃A inside MAB .

The surface ΣAB has the property of dividing the entanglement wedge into two parts in such a way
that one part contains A and the other contains B. The conditions above still do not uniquely
determine ΣAB, since there exist many surfaces anchored on Γ̃A and further, many different splits of
ΓAB in (3.55). The entanglement wedge cross section is defined by minimizing the area of ΣAB for
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a given split of ΓAB and then finding the split with minimal V ol(ΣAB),

EW (A,B) = min
Γ̃A,B

min
ΣAB :∂ΣAB=∂Γ̃A

V ol(ΣAB)

4G
(d+1)
N

. (3.61)

Now we see that EW (A,B) is understood to give the smallest possible area of a surface that splits
the entanglement wedge into a part associated with A and a part associated with B. Given that
a disconnected entanglement wedge signals the absence of correlation between A and B, it seems
natural to assume that the size, as measured by the minimal cross section, of the entanglement wedge
connecting A and B could give a measure of correlation. The entanglement wedge cross section is
the natural quantity for measuring the correlations represented by a connected entanglement wedge.

This construction is natural when thought of in light of the surface-state correspondence [154–157].
The mixed state ρAB corresponds to A∪B and the traced out part of the boundary is pulled into the
bulk until the surface becomes extremal, which corresponds to some quantum state R. The union of
A, B, and R is a closed convex surface in the sense of [154] and corresponds to a pure state |ABR〉,
which is a purification of ρAB. Now the prescription for computing EW seems more natural: ∂MAB

is dual to a purification of ρAB, which is then split in such a way that the entanglement of A ∪ Γ
(A)
AB

is minimal, analogously to the definition of EP (2.45).
As an entanglement measure of mixed states, EW (A,B) satisfies many important properties that

are clear by considering ΣAB in different cases. Firstly, EW (A,B) ≥ 0 for all ρAB because the volume
of ΣAB can only be nonnegative. Secondly, EW vanishes trivially for product states ρAB = ρA ⊗ ρB

because they correspond to disconnected entanglement wedges because of I(A,B) = 0. Thirdly, if
ρAB is a pure state, EW (A,B) reduces to the entanglement entropy of ρA. This can be seen by noting
that for pure ρAB, the minimal surface ΓAB = ∅, reducing Γ̃A to A. Then the split minimization
of (3.61) becomes trivial with boundary conditions ∂ΣAB = ∂A = ∂B thus reducing EW (A,B) to
S(A). More nontrivially, the entanglement wedge cross section satisfies

EW (A,B) ≥ I(A,B)

2
, (3.62)

as is required if EW (A,B) is to give the bulk dual of EP (A,B) [29]. The holographic proof of this
inequality is sketched in Fig. 3.9.

Calculations of EW are in principle straightforward but in practice requires the use of nontrivial
numerical schemes. Analytical calculations can be carried out in simple cases where symmetries of the
background and entanglement regions immediately imply the shape of ΣAB. As a practical example
consider the case of two parallel, infinite slabs in the Poincaré patch of AdS. The possible bulk surfaces
corresponding to the entanglement entropy of this system are the same ones as are shown in Fig. 3.7.
In the connected phase, the entanglement wedge is the region bounded by an U-shaped surface
connecting the closer edges of the entanglement regions and an another surface hanging deeper in
the bulk, connecting the far edges of the boundary regions. Now, if the boundary slabs have equal
width, then by symmetry, the surface ΣAB splitting the entanglement wedge must be a flat surface
at a constant x-slice connecting the turning points of the bulk surfaces bounding MAB. Then it is
a simple matter to calculate EW . Indeed, this was one of the first explicit calculations of EW , first
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Figure 3.9: A pictorial representation of the proof for the inequality EW (A,B) ≥ I(A,B)/2. The
dashed circle in each diagram represents the AdS boundary. Solid lines represent bulk surfaces whose
areas yield the entanglement entropy terms below the diagrams. The diagrams on the first line
represent the computation of I(A,B). On the second line, the bulk surfaces corresponding to A and
B are deformed such that their anchor points on the boundary are not changed, but the bulk parts
are no longer minimal area surfaces. Finally, subtracting surfaces in the indicated way establishes the
inequality (3.62).

in AdS3 [153] and later in AdSd+1 [I]. Now consider the same setup except with slabs of different
width. Symmetry is insufficient in this case for identifying the minimal surface for splitting MAB and
one has to resort to numerics. Still the computation is relatively simple since one knows a priori that
ΣAB must be a segment of a usual bulk surface associated with a boundary slab, but the parameters
for characterizing a specific surface must be searched numerically [158].



Chapter 4

Summary

In this introduction we have seen applications of holography to quantum information theory. The
goal of quantum information theory is to study the properties and distribution of information in
quantum systems. It is, however, exceedingly difficult to compute many quantities of interest in
quantum field theories in all but the simplest toy models. We have shown that holography can be
used to transform the problem of finding the entanglement entropy to a tractable form in certain
interacting quantum field theories. This is accomplished with the Ryu-Takayanagi prescription, which
expresses the entanglement entropy in terms of the area of a certain minimal surface. The insight
behind gauge/gravity dualities is that in certain strongly interacting quantum field theories, collective
excitations give rise to a new weakly coupled description of the same physics. Surprisingly, these
weakly coupled dynamics are governed by classical gravity with one more spatial dimension. This way
of translating problems in strongly coupled field theories to the language of classical gravity massively
simplifies calculations, in particular, enabling the computation of entanglement entropy.

We introduced information theoretical concepts, first classically, then in the context of quantum
mechanics, and finally we saw how to use holography in their computation. Most of our work
revolved around the entanglement entropy and quantities closely related to it, for example, we covered
properties of the mutual information and the entanglement of purification. We showed how the
holographic entanglement entropy proposal satisfies the properties that the dual of the von Neumann
entropy should satisfy. In particular, the proposal satisfies the famous area law and the way it is
realized has an intuitive geometrical interpretation. The entanglement entropy satisfies a number of
inequalities, the most important of which we proved for the holographic proposal. Entanglement of
purification is an entanglement measure for mixed states. It has been an important quantity in our
research, and as such we discussed its holographic dual candidate, the entanglement wedge cross
section, in detail.

Entanglement is a fundamental property in quantum mechanics and thus by probing its properties we
can learn about the underlying nature of quantum matter. Entanglement quantities have attracted
a lot of interest due to their applications in the study of many phenomena, for example, in the
thermalization of strongly coupled plasma. This interest is bound to persist in the future.
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Glossary

Araki-Lieb inequality

An inequality satisfied by the von Neumann entropy on bipartite quantum states. It highlights
the property of quantum entanglement that a composite system can have lower entropy than
the entropy of its parts. 14

area law

A behaviour of entanglement entropy common in ground states of local quantum systems where
the leading term of the entanglement entropy is proportional to the area of the boundary of the
region considered. 18

a-theorem

An analogue of the c-theorem in even dimensions higher than two based on certain trace
anomalies. 20

conditional entanglement entropy

A quantum generalization of the classical conditional entropy. Unlike the conditional entropy,
the conditional entanglement entropy can be negative. 39

conditional entropy

A measure of uncertainty about a system after learning the state of an another system. The
knowledge about the second system cannot increase the amount of uncertainty about the original
system. 8

c-theorem

A theorem stating that two-dimensional quantum field theories always have a function c(g)

depending on the coupling constants g of the theory such that the function decreases monoton-
ically along the renormalization group flow and becomes stationary at fixed points. At a fixed
point of the renormalization group flow, the value of the function is equal to the central charge
of the corresponding CFT. 20
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density operator

A Hermitian and non-negative linear operator with unit trace describing a quantum state. The
density operator gives a description of a quantum state equivalent to the description in terms
of state vectors. The terms density operator and density matrix are often used interchangeably.
9

entanglement

A quantum phenomenon where two physical systems cannot be described independently of
each other, in the sense that the quantum state does not factor to a product of states of the
two systems. The amount of entanglement can be quantified by entanglement measures, a
prominent example of which is the entanglement entropy. 11

entanglement of purification

An entanglement measure for mixed states based on first purifying the state and then minimizing
the von Neumann entropy over all purifications. The entanglement of purification reduces to
the von Neumann entropy in the case of a pure state. 16

entanglement shadow

A bulk region which cannot be probed by any extremal surface anchored on the boundary. 37

entanglement wedge

The bulk region encoding the information contained in a reduced density matrix of the boundary
theory. 37

entanglement wedge cross section

A measure of correlations between two subsystems in a QFT with a holographic dual. This en-
tanglement measure is proposed to be the holographic dual of the entanglement of purification.
41

extensivity

A quantity characterizing the behaviour of mutual information between two regions when one
of the regions is scaled. 40

F-theorem

An analogue of the c-theorem in three dimensional QFTs. 20

gauge/gravity duality

A holographic duality between a classical theory of gravity and a quantum field theory. The
QFT has one spatial dimension less and is said to live on the boundary of the bulk manifold
governed by gravity. 2
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global coordinates

A coordinate chart that covers the entire anti de-Sitter manifold. 23

holographic principle

A conjecture about quantum gravity stating that (d + 1)-dimensional quantum gravity states
can be naturally described by a theory in d dimensions. The primary example of the holographic
principle is the AdS/CFT correspondence. 21

maximally entangled state

A composite state such that the reduced density operators of subsystems are proportional to
identity operators. The entanglement entropy takes its largest possible value on maximally
entangled states. 11

monogamy of mutual information

An inequality satisfied by quantum states with holographic duals but not generic quantum states.
Monogamy states that the holographic mutual information is never a subextensive quantity. 40

mutual information

A measure of the amount of information shared between two systems. The mutual information
can be equivalently understood as measuring the amount of information one gains about a
system when one learns the state of an another system. 8

Poincaré coordinates

A coordinate chart commonly used for the anti de-Sitter spacetime. In Poincaré coordinates,
the metric is proportional to the Minkowski metric and many symmetries of AdS are explicit.
23, 25

Poincaré horizon

The surface which separates the Poincaré patch from the rest of the anti de-Sitter manifold. 26

Poincaré patch

The coordinate patch of AdS covered by the Poincaré coordinates. The Poincaré patch covers
the anti de-Sitter spacetime only partially. 26

product state

A composite quantum state that can be written as a product of states on its individual subsys-
tems. A product state has no entanglement. 12
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purification of a state

A pure state that can be associated to any mixed state by the introduction of an auxiliary state
on an auxiliary Hilbert space. The original state is recovered from the purification by partially
tracing over the auxiliary Hilbert space. A purification of a mixed state is not unique. 12

qubit

A quantum version of a classical binary bit. A qubit is realized as a two-level quantum system,
for example, the spin of an electron. Instead of taking one of two values like a bit, a qubit can
be in any superposition of its two basis states. 11

reduced density matrix

A partial trace of a density matrix. The reduced density matrix is used in a situation where only
a subsystem of a composite quantum system is accessible, and as such contains the information
needed to calculate the entanglement entropy associated to the subsystem. 11

renormalization group

A mathematical tool which allows the study of a quantum many body system at different length
or energy scales. 19

Schmidt decomposition

A particularly simple form in which one always can express a vector in the tensor product space
of two Hilbert spaces. 10

Schmidt number

The number of terms in the Schmidt decomposition of a state vector. If the Schmidt number
is one, the state is a product state. Otherwise the state is entangled. 12

separable state

A mixed quantum state which can be written as a linear combination of product states. 12

Shannon entropy

A measure of uncertainty about a system in classical information theory. 6

strong subadditivity

A fundamental inequality satisfied by the Shannon and von Neumann entropies. 7, 14

subadditivity

An inequality satisfied by the Shannon and von Neumann entropies. Subadditivity has the
interpretation that in a system of two random variables, the uncertainty about the joint system
can never exceed the sum of uncertainties about its parts. 7, 14
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von Neumann entropy

An entanglement measure on quantum states. It is the quantum analogue of Shannon entropy.
The von Neumann entropy is unique on pure composite states. 13
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