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Osteoporosis, characterized by deteriorated bone microarchitecture and low bone

mineral density, is a chronic skeletal disease with high worldwide prevalence.

Osteoporosis related to aging is the most common form and causes significant morbidity

and mortality. Rare, monogenic forms of osteoporosis have their onset usually in

childhood or young adulthood and have specific phenotypic features and clinical

course depending on the underlying cause. The most common form is osteogenesis

imperfecta linked to mutations in COL1A1 and COL1A2, the two genes encoding type

I collagen. However, in the past years, remarkable advancements in bone research

have expanded our understanding of the intricacies behind bone metabolism and

identified novel molecular mechanisms contributing to skeletal health and disease.

Especially high-throughput sequencing techniques have made family-based studies an

efficient way to identify single genes causative of rare monogenic forms of osteoporosis

and these have yielded several novel genes that encode proteins partaking in type I

collagen modification or regulating bone cell function directly. New forms of monogenic

osteoporosis, such as autosomal dominant osteoporosis caused by WNT1 mutations

or X-linked osteoporosis due to PLS3 mutations, have revealed previously unidentified

bone-regulating proteins and clarified specific roles of bone cells, expanded our

understanding of possible inheritance mechanisms and paces of disease progression,

and highlighted the potential of monogenic bone diseases to extend beyond the skeletal

tissue. The novel gene discoveries have introduced new challenges to the classification

and diagnosis of monogenic osteoporosis, but also provided promising new molecular

targets for development of pharmacotherapies. In this article we give an overview of the

recent discoveries in the area of monogenic forms of osteoporosis, describing the key

cellular mechanisms leading to skeletal fragility, the major recent research findings and

the essential challenges and avenues in future diagnostics and treatments.
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INTRODUCTION

Bone Health
Bone is a rigid connective tissue composed mainly of organic
components (90% type I collagen, the rest other non-collagenous
structural proteins and cells) and inorganic minerals (mostly
calcium hydroxyapatite). These combined give bones their
sturdiness to withstand an individual’s weight and the elasticity to
enable movement and resist fractures. Bone comprises dense and
compact cortical bone and cancellous, loosely-webbed trabecular
bone, and serves as a reservoir for minerals, growth factors,
cytokines, and fat. Bone also functions as an endocrine organ by
secreting several systemic hormonal factors (1).

Bone is all but a quiescent tissue—it undergoes active
renewing and remodeling throughout life. By coupled, successive
processes of bone resorption and bone formation, together
called “bone turnover,” old or damaged bone is eroded and
replaced by new bone to maintain healthy and strong bone tissue.
Throughout childhood and adolescent growth, the period of
bone mass accrual, bone turnover is formation-favoring, until
the highest amount of bone mass, termed “peak bone mass,”
is attained by young adulthood. Thereafter, bone mass remains
fairly constant until bone resorption begins to dominate by the
age of menopause and bone mass slowly declines.

Factors that impede skeletal growth in childhood or accelerate
bone loss later in adulthood, such as long-term or chronic
illnesses, glucocorticoid treatment and other medications,
hypogonadism and menopause, other endocrine disorders and
cancers, impose a great risk for low bone mass and osteoporosis
(1–3). In childhood, especially glucocorticoids play a major role
in secondary osteoporosis. Studies on patients receiving systemic
steroids for acute lymphoblastic leukemia (4), juvenile idiopathic
arthritis (5, 6), Duchenne muscular dystrophy (7) or asthma (8)
all indicate increased peripheral and vertebral fracture rates.

Osteoporosis
Osteoporosis is a chronic skeletal disease with high prevalence
and mortality worldwide. It is characterized by low bone
mass and bone mineral density (BMD), and by destructed
bone microarchitecture that often results from imbalanced
bone formation and resorption or from abnormal matrix.
Impaired bone quality leads to compromised bone strength
and high propensity to low-energy fractures in long bones
and vertebrae (9). Osteoporosis, with frequent fractures, pain
and physical limitations, causes significant human suffering and
burdens the health care system (9). BMD is considered to
define osteoporosis and risk of fractures. It is assessed using
dual-energy X-ray absorptiometry (DXA), where reduction of
more than 2.5 standard deviations from the normal mean for
young adults (T-score) is diagnostic of osteoporosis. Of note,
osteopenia (T-score 1.0 to −2.5) together with a high probability
of fractures, or a fragility fracture without another metabolic
bone disease and independent of BMD are also clinically
indicative of osteoporosis. Pediatric osteoporosis requires more
than mere DXA-determined low BMD, as variation in growth
and pubertal maturation make interpretation of BMD values
challenging. Therefore, age-, gender-, and body size–adjusted

DXAmeasurements (Z-scores) must be considered together with
fracture history. A pathologic fracture history entails (i) ≥2
clinically significant long bone fractures by age 10 years, (ii) ≥3
clinically significant long bone fractures by 19 years, or (iii) one
or more vertebral compression fractures in the absence of high-
energy trauma,meaning a≥20% loss in vertebral anterior, middle
or posterior height. However, a vertebral compression fracture
alone suffices for the diagnosis of pediatric osteoporosis even in
the presence of normal BMD (2, 9–12).

GENETICS IN BONE HEALTH

Genetics in Bone Health
Genetics play a substantial role in determining an individual’s
skeletal strength, bone microarchitectural properties and risk
of osteoporosis. BMD is known to be a highly heritable trait
and twin studies have shown genetic factors to determine up
to 80% of its variance (13, 14). Genetic factors influence bone
health in a polygenic manner and multiple gene variants, or
single nucleotide polymorphisms (SNPs), in several different
genes each contribute to the overall risk for compromised
bone health. Recent research, especially large-scale genome-wide
association studies in large cohorts, has elucidated the complexity
of genetic networks that are important for bone metabolism but
also evidenced limitations in our current knowledge. On the
other hand, significant scientific advances have been made by
studying rare monogenic forms of osteoporosis in which one
mutation in a single gene with a major role in bone metabolism
dominates and is alone sufficient to cause osteoporosis. Technical
advancements in research methods, especially high through-
put sequencing techniques, have made family-based studies an
efficient way to identify new genes relevant to osteoporosis. Such
studies have enabled recognition of novel molecular mechanisms
and given leeway to understanding the intricacies behind bone
metabolism (13, 14). In this article we only briefly summarize
GWAS methodology and recent advancements while the main
focus is on discoveries made from family-based research on
patients and families with monogenic forms of osteoporosis.

Genome Wide Studies to Identify
Contributing Genetic Factors
Genome wide association studies (GWASs) have proven
successful and robust in deciphering the genetic mechanisms
underlying complex diseases, including osteoporosis (14, 15).
As mentioned, single nucleotide variants (SNVs) in several
different genomic sites all contribute to bone quality and
strength and risk of osteoporosis but are often very common
in the general population and, by themselves, have only a
minor effect (16). The current GWAS catalog, released in
September 2018, comprises 55 separate studies focusing on
bone properties, fractures or osteoporosis. Together they report
425 different lead SNVs, in 118 different genomic regions,
that associate with some aspect of bone on a genome-wide
significant level (Figure 1). From these, altogether 144 different
genes are reported to be directly linked to, or plausible candidate
effectors, for the identified signals. Of note, this catalog is
not entirely up to date due to the extensive curation required
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FIGURE 1 | Manhattan plot displaying all lead SNPs independently associated with bone-related traits reported to the GWAS catalog as of September 2018. The

associated SNPs highlight genomic regions important to bone. However, they each have only a minor effect on an individual’s skeletal qualities and risk of

osteoporosis and hence have limited use in clinical practice.

before publication in the GWAS catalog. Recently, Kemp et al.
undertook a colossal genome-wide search for genetic factors
correlating with BMD, estimated from quantitative ultrasound
of the heel (eBMD) (17). The GWAS is the largest to date,
encompassing a total of 142,487 individuals from the UK
Biobank. The authors were able to identify 203 loci, of which
153 were novel, to be associated with eBMD. These together
explained about one third of the total variance in eBMD (17).
Although highly successful, none of the previous GWA-studies
with DXA-derived BMD have been as successful as the study
by Kemp et al.

Despite these great advances, thus far, only <10% of the
total estimated genetic variance in BMD can be explained by
the results of the performed GWA-studies (18–21). Further,
GWASs have predominantly been successful in identifying
common variants with a small effect size (Figure 1), which,
while giving insight into bone biology, have no clear or direct
clinical relevance. However, recent GWASs utilizing whole
genome sequencing (WGS) data have been able to identify
variants with larger effect sizes. In the largest DXA-derived
GWAS to date, Zheng et al. showed that rs11692564, a
non-coding SNP around 50 kb downstream of EN1, had an
estimated effect size of +0.20 SD for lumbar spine BMD (19).
Leveraging the Icelandic sequencing initiative withWGS data for
>2,000 individuals, rare variants can be imputed and assessed.
These data have enabled low frequency variants with large
effect sizes for BMD in COL1A2 and LGR4 to be identified
(22, 23). Several genomic loci, identified through common
genetic variation, have also been linked to genes known to
underlie monogenic forms of skeletal pathology. In a large
meta-analysis on BMD conducted by Estrada et al. (18), the

authors were able to identify 60 genes likely to underlie the
association signals. Of these, 13 genes (22%) had been implicated
in monogenic skeletal disorders and 27 genes (45%) had a
corresponding knockout mouse with a skeletal phenotype (14,
18). This demonstrates that even though the signals picked up
by GWASs might indicate a weak effect from the measured
variation, it is likely that rare and more damaging genetic
variations in the same genomic locus might have a large effect.
The genomic areas implicated in these GWASs are therefore
likely to be of greater importance than the individual signal
divulges (24).

While considering the great success of GWASs, the results
need to be interpreted in light of the studied trait. Fracture
is the most clinically relevant outcome measured, while BMD
represents perhaps the best proxy as it is still considered the
main determinant for bone strength, and the main diagnostic
measurement for osteoporosis (10, 25). BMD measured by
quantitative ultrasound (QUS) of the heel (eBMD) can
be used as a cost-effective alternative for BMD and is
also independently associated with fractures (ISCD Official
positions, 2015). The correlation between BMD and eBMD
is, however, not very strong (17, 26). Even the DXA-derived
BMD is a blunt measurement for bone health and fracture
prediction and needs to be considered with other diagnostic
parameters when clinically evaluating a patient’s skeletal
health (27).

Recent Advances in Genetic Research
As mentioned, several monogenic forms of osteoporosis have
been described. Osteogenesis imperfecta (OI) is the best-
known form of monogenic osteoporosis and comprises a
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heterogeneous family of different heritable bone dysplasias
with skeletal fragility (28). Parallel to new developments in
genetic methodology, new gene discoveries in variable forms of
monogenic osteoporosis have been made and, to date, the list
of genetic causes of OI and monogenic primary osteoporosis
comprises altogether 19 genes (Table 1). The novel genetic
findings have considerably enhanced our understanding of the
complexities of bone metabolism and uncovered new molecular
pathways that regulate bone metabolism and contribute to
skeletal pathology. They span beyond the collagen-related
pathways to include signaling cascades regulating bone cell
function and the extracellular matrix, as described in detail
below. The great variability in clinical features and inheritance

patterns emphasize the importance of a molecular diagnosis in
these patients.

PATHS TO MONOGENIC OSTEOPOROSIS

Defects in Bone Cell Function and Bone
Remodeling
Normal osteoblast and osteoclast functions are key to sustaining
healthy bone tissue. Bone resorption by osteoclasts and
formation by osteoblasts are tightly linked in successive
repetitive cycles at specific bone sites and the processes
are meticulously controlled by several locally produced and
circulating systemic factors (29). Communication between the

TABLE 1 | Different molecular mechanisms and genes underlying osteogenesis imperfecta.

Pathophysiological

mechanism

Gene Protein Inheritance Number of

known

mutations

OMIM (Phenotype MIM number)

Defects in collagen type I

synthesis, structure, folding,

post-translational

modification, processing

and cross-linking

COL1A1 Collagen alpha-1(I) chain AD >1,000* 166200; 166210; 259420; 166220

COL1A2 Collagen alpha-2(I) chain AD; AR◦ >600* 259420; 166210; 166220

CRTAP Cartilage-associated protein AR 32* 610682

PPIB Peptidyl-prolyl cis-trans isomerase B;

cyclophilin B

AR 17* 259440

P3H1 Prolyl 3-hydroxylase 1 AR 69* 610915

FKBP10 Peptidyl-prolyl cis-trans isomerase

FKBP10

AR 38* 610968

PLOD2 Procollagen-lysine,2-oxoglutarate

5-dioxygenase 2

AR 10* 609220

SERPINH1 Serpin H1 AR 9* 613848

BMP1 Bone morphogenetic protein 1 AR 11* 614856

Defects in other proteins

leading to abnormal bone

mineralization

SPARC SPARC; osteonectin AR 2* 616507

SERPINF1 Pigment epithelium-derived factor

(PEDF)

AR 38* 613982

IFITM5 Interferon induced transmembrane

protein 5

AD 2* 610967

PLS3 Plastin 3 XLD 17 300910

Defects in osteoblast

differentiation and function

TMEM38B Trimeric intracellular cation channel

type B

AR 6* 615066

WNT1 Proto-oncogene Wnt-1 AR 35* 615220

SP7 Transcription factor Sp7; osterix AR 2* 613849

CREB3L1 Cyclic AMP-responsive

element-binding protein 3-like protein

1

AR 3* 616229

MBTPS2 Membrane-bound transcription factor

site-2 protease

XLR 2 301014

Unknown TENT5A (also

known as

FAM46A)

Terminal nucleotidyltransferase 5A AR 3 617952

AD, autosomal dominant; AR, autosomal recessive; XLD, X-linked dominant; XLR, X-linked recessive.
◦Seen only in a few consanguineous families.
* Information taken from the Osteogenesis imperfecta & Ehlers-Danlos syndrome variant databases.
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osteoclast and osteoblast is crucial for balanced bone turnover
and defects in either cell’s function can jeopardize bone health.
Osteoblasts express the receptor activator of nuclear factor
kappa-B ligand (RANKL), which binds to its conjugate receptor
RANK on osteoclast cell surface (Figure 2) (30, 31). This
activates osteoclastogenesis and osteoclastic bone resorption.
Osteoblasts also secrete osteoprotegerin (OPG) that serves as a
decoy receptor for RANKL to inhibit RANKL-RANK–binding,
therefore downplaying RANKL’s osteoclastogenesis-promoting
effect and, as its name implies, protecting bone from over-
resorption (Figure 2) (30, 31). Recently, RANK was also noted
to relay back by vesicular trafficking from mature osteoclasts
to osteoblasts to promote bone formation by reverse signaling
(32). The significance of the RANK-RANKL–communication
is portrayed in several monogenic conditions with abnormal
bone mass resulting from defective RANK-RANKL-OPG–axis:
osteoclast-poor osteopetrosis with excessive bone formation due
to mutated RANKL, juvenile Paget’s disease with osteopenia and
progressive skeletal deformity from mutated OPG, and familial
expansile osteolysis (FEO) with osteolytic lesions and increased
bone remodeling from mutated RANK (33–35).

Alongside osteoblasts and osteoclasts, osteocytes have
emerged as key regulators of bone turnover, mineral homeostasis
and hematopoiesis (36). Osteocytes are terminally differentiated
osteoblasts embedded throughout the mineralized matrix.
They communicate with each other and other cells through an
extensive network of long cytoplasmic dendritic processes and
are thought to orchestrate the interplay between osteoblasts
and osteoclasts in bone modeling and remodeling by sensing
mechanical loading and responding to endocrine factors,

and blood calcium and phosphate concentrations (37).
Osteocytes express a range of proteins, such as dentin
matric protein 1 (DMP1), phosphate-regulating neutral
endopeptidase on chromosome X (PHEX), and matrix
extracellular phosphoglycoprotein (MEPE), that are crucial
for local matrix mineralization (38). Osteocytes are the primary
source of sclerostin, RANKL, and fibroblast growth factor
23 (FGF23), through which osteocytes exert their endocrine
functions in bone (Figure 2) (36, 38).

The WNT pathway has a key role in all aspects of bone
health—from fetal skeletal development to childhood bone
mass accrual to adult bone homeostasis and microarchitectural
sustenance (39). WNTs act locally by activating adjacent cells’
WNT signaling in a paracrine manner: in developmental
stages to partake in the cross-talk between osteoblasts and
hematopoietic stem cells (HSCs) in bone marrow and promote
bone cell development, differentiation and proliferation, and
later in mature adult bone, to induce osteoblastic bone
formation (39). WNTs can also act by autocrine means by
regulating cells of the same osteoblast or osteoclast lineage
(40). The activated pathway is anabolic to bone, leading
to increased bone formation and decreased bone resorption.
Three different WNT pathways are recognized: the canonical
pathway (WNT/β-catenin pathway), the non-canonical planar
cell polarity pathway, and the non-canonical WNT/Ca2+

pathway. While the latter two, also known as the β-catenin-
independent pathways, participate in a range of development
process and in bone metabolism, the canonical WNT/β-catenin
pathway is considered the predominant pathway maintaining
skeletal health (41).

FIGURE 2 | Schematic overview of bone cells and extracellular matrix components involved in regulating bone homeostasis. Receptor activator of nuclear factor

kappa-B ligand (RANKL) binds to its conjugate receptor RANK on osteoclast cell surface to stimulate osteoclast differentiation and activity. Osteoprotegerin (OPG)

inhibits RANK/RANKL-binding to inhibit bone resorption. WNT signaling pathway stimulates osteoblast function and bone formation. Sclerostin (SOST) and dickkopfs

(DKK1), produced by the osteocytes, are two WNT antagonists that promote osteoclasts differentiation. Osteonectin, produced by the osteoblasts, binds calcium,

hydroxyapatite and collagen type I and thus regulates bone mineralization. Plastin-3 (PLS3), expressed by the osteocytes, may also be involved in the mineralization of

the extracellular matrix but its role in osteoprogenitors and other bone cells is yet to be confirmed.
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Dysregulated WNT/β-catenin signaling leads to various
skeletal disorders of both high and low bone mass. This
was first recognized in 2001 when mutations in low-density
lipoprotein 5 (LRP5), encoding a coreceptor for WNT ligands,
were found to lead to low bone mass in the autosomal recessive
osteoporosis pseudoglioma syndrome (OPPG, MIM 259770),
characterized by early-onset severe osteoporosis and blindness
(42, 43). The LRP5 mutations inhibit normal WNT signaling
and lead to reduced osteoblast proliferation and function and
subsequently decreased bone formation (43). Since then, many
other mutations in LRP5 have been shown to cause OPPG (44).
In addition, functionally significant SNPs in LRP5 have been
linked to adolescent bone mass accrual and peak bone mass
(45, 46), and genome-wide searches have found common LRP5
polymorphisms that contribute to population-based variance in
BMD, confirming its significant role in osteoporosis risk also
in the general population (14, 18). The molecular mechanisms
by which these missense mutations in LRP5 decrease WNT
signaling, however, remain largely unknown (46, 47). Conversely,
inadequate WNT inhibition from mutations or deletions in the
sclerostin-encoding SOST results in high bone mass phenotypes
sclerosteosis (MIM 269500) and van Buchem disease (MIM
239100), respectively (48, 49). In the absence of sufficient
sclerostin, WNT signaling is unrestrained, leading to continuous
bone formation.

All in all, 19 different WNT proteins are known and
together they initiate several intracellular signaling cascades
to regulate organogenesis, cell fate determination, primary
axis formation, and stem cell renewal (39). Several of the
WNT proteins are expressed in bone tissue and regulate
bone health at various phases during skeletal growth,
development, and e.g., osteoporosis pathogenesis (50). For

example, WNT16 is considered an important ligand in
bone WNT signaling and has been shown to mediate its
bone-specific actions via both canonical and non-canonical
WNT pathways (51). Although the specifics behind its
mechanisms are unclear, GWASs show that polymorphisms
of the WNT16 locus associate with cortical bone thickness,
BMD, and osteoporotic fracture risk in large observational
studies and variations in WNT16 may also impact individual
peak bone mass (18, 52, 53). These findings are echoed in
in vivo studies as Wnt16 KO mice have reduced cortical
thickness and bone strength leading to spontaneous peripheral
fractures (54).

In 2013, several groups identified WNT1 as a key ligand
to the WNT pathway in bone; heterozygous WNT1 mutations
were reported to cause autosomal dominant osteoporosis, and
homozygous mutations, a more severe osteogenesis imperfecta
(55). Since then, various other mutations have been found
worldwide, all reporting skeletal morbidity with frequent and
childhood-onset peripheral and vertebral compression fractures
and successive changes in spinal stature (55–61). In our
comprehensive clinical analyses of a large cohort of 25 WNT1
mutation-positive subjects with the same heterozygous missense
mutation p.C218G, the aberrant WNT1 signaling results in a
severe skeletal pathology (62). In addition to prevalent fractures,
long bone modeling is altered and BMD low in affected children,
while vertebral compression fractures are very common later
in adulthood and result in severe kyphotic deformity and loss
of adult height soon after the age of 50 years (Figure 3).
Bone biopsy histomorphometry demonstrated low-turnover
osteoporosis with scarce and inactive bone cells and stagnant
bone turnover. Noted extra-skeletal traits included changes
in spinal cartilaginous structures, namely vertebral endplate

FIGURE 3 | Spinal magnetic resonance images of four WNT1 p.C218G mutation-positive subjects. (A) Thoracic spine of a 17-years-old female showing multiple

Schmorl nodes (arrow). (B) Thoracic spine of a 44-years-old female showing exaggerated thoracic kyphosis. (C) Thoracic spine of a 76-years-old male showing

several compressed vertebrae, kyphotic stature, and Schmorl hernia (arrow). (D) Lumbar spine of a 74-years-old female showing several compressed vertebrae and

enlarged intervertebral discs (arrows). Reprinted from Mäkitie et al. (63) with permission from Elsevier.
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deterioration and frequent Schmorl nodes, and increased
reticulin and early-phase–shifted granulopoiesis as signs of
abnormal bone marrow function (63, 64).

The latest finding of dysregulated WNT signaling in
monogenic osteoporosis is SFRP4 mutations in Pyle’s disease
(65). Frizzled-related protein 4 (SFRP4) acts as an WNT
inhibitor and biallelic, truncating mutations in its encoding
gene SFRP4 result in aberrant regulation of WNT signaling,
osteoblasts and osteoclast function and bone remodeling
(65). The patients’ clinical phenotype is predominated by
cortical-bone thinning and fragility and expanded metaphyseal
trabecular bone, resulting in limb deformity and high propensity
to fracture. Correspondingly, Sfrp4-null mice present with
increased trabecular bone, decreased cortical bone and failure in
bone modeling (65).

Despite their important functions, known monogenic forms
of bone diseases stemming from osteocyte defects are rare
and often relate to defective mineral metabolism, especially
hypophosphatemia due to disturbed FGF23 regulation. One of
the most recently identified monogenic forms of osteoporosis
is caused by mutations in the PLS3 gene (66–70), encoding the
actin binding, actin bundling protein plastin 3. This X-linked
form of primary early-onset osteoporosis is characterized
by low BMD, frequent peripheral fractures and vertebral
compression fractures, and subsequent severe thoracic kyphosis.
Due to its X-chromosomal inheritance, male patients are more
severely affected, usually presenting with severe childhood-
onset osteoporosis. Clinical manifestations in females with
heterozygous PLS3 mutations are variable ranging from
subclinical osteopenia to a more severe phenotype resembling
that of males’ (68). The total number of diagnosed patients is still
scarce and hence the comprehension of the clinical and genetic
spectrum, the disease progression and appropriate treatment
is limited.

While the role of PLS3 in bone fragility is yet unknown,
one theory presumes PLS3 to alter osteocyte function through
abnormal cytoskeletal microarchitecture. Plastins, in general,
are Ca-dependent actin binding and bundling proteins and as
such, are involved in cytoskeletal arrangements and partake in
regulating cellular morphology, motion, and adherence (71).
Despite lack of systematic studies, plastin 3 (also called T-
plastin) is supposedly expressed in all solid tissues and through
indicated functions in other tissues, such as spinal muscle,
inner ear stereocilia, and periodontal ligaments, is suggested
to be involved in bone mechano-transduction (72–74). This is
supported by the high expression of plastin 3 in chicken osteocyte
dendrites, especially during dendrite formation (Figure 2) (75–
77). Although this is supported by clinical investigations from
biochemical and bone biopsy findings indicating that osteocytes
appear affected in PLS3 mutation-positive subjects (78), the
observation remains mostly theoretical.

Another suggested role for PLS3 in bone is involvement in
mineralization. This is collectively supported by the patients’
low BMD and their bone biopsies’ histology. We have reported
accumulation of non-mineralized osteoid in trabecular bone in
patient biopsies (69, 70, 78, 79) and shown that biochemical
markers of bone turnover, although not directly echoing

the mineralization process, are normal despite altered bone
formation (68). The detailed mechanisms of bone tissue
mineralization are still debated, but extracellular mineral
deposition through budding off of intracellular microvesicles
has emerged as one part of the process (80). This process
requires dramatic changes in the cell membrane through a
complex and well-orchestrated process involving the actin
cytoskeleton. Thouverey et al. (81) and Piehl et al. (82)
have demonstrated congruently that plastin 3 is involved
in the formation of extracellular vesicles. It can thereby be
speculated that PLS3 mutations could have deleterious effects
on the mineralization process in bone through defective
microvesicle formation, although the details behind this too
remain undisclosed.

Lastly, a recent experimental animal study presented new
findings suggesting involvement of osteoclast malfunction as
part of pathophysiology in PLS3 osteoporosis (83). In vivo
and in vitro studies using Pls3 knockout and overexpressing
mice confirmed the osteoporotic phenotype in the former
and thickening cortical bone in the latter. In vitro studies of
osteoclasts derived from the animals demonstrated a regulatory
role of PLS3 in osteoclastogenesis. Additionally, a dysregulation
of osteoclast activity was found in cells from Pls3 knockouts,
likely connected to impaired podosome organization due to
decreased actin regulation (83). These findings are yet to be
confirmed in humans.

Defects in Bone Extracellular Matrix
In addition to bone cells, reduced bone strength and various
skeletal disorders can also stem from defects in the extracellular
matrix (ECM). The ECM is primarily composed of different
collagenous proteins, non-collagenous proteins (in particular
glycoproteins and proteoglycans), lipids, minerals and water
(84, 85). The most abundant protein is the type I collagen,
made of two alpha-1 and one alpha-2 chains intertwined in
a triple helical structure. Mutations in the encoding genes,
COL1A1 and COL1A2, respectively, lead to qualitative or
quantitative defects in the protein and give rise to osteogenesis
imperfecta (OI), a skeletal dysplasia characterized by low BMD
and enhanced bone fragility, and often extra-skeletal features,
such as blue sclerae, dentinogenesis imperfect, and hearing
loss (86, 87). Heterozygous glycine substitutions that affect
the Gly-Xaa-Yaa pattern in the triple helix are the most
common mutations and can cause mild to lethal OI (87).
However, multiexonic deletions or deletion of an entire allele
have been sporadically found (88–91). Interestingly, mutations
that lead to a reduced amount of normal protein give rise
to a milder phenotype than missense mutations affecting the
primary structure of the triple helix (dominant negative effect)
(87). Furthermore, homozygous glycine substitutions in COL1A2
have been identified in a handful of consanguineous families
(92–95). Surprisingly, the patients harboring biallelic COL1A2
mutations have a moderate to severe phenotype whereas the
mutation carriers are only mildly affected or free from any
obvious skeletal impairment. On the other hand, homozygous
COL1A1 mutations are likely to be lethal since they have
never been reported in humans. Furthermore, some previous
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reports have indicated that when the COL1A1 or COL1A2
mutation involves the C-propeptide cleavage site, the phenotypic
manifestations may include high BMD and mild skeletal fragility
(96). A recent study on such cleavage site variants showed
that the mutations lead to a distinctive OI phenotype with
variable expression, mild to moderate disease severity, moderate
fracture rate, high bone mass and increased bone mineral
density (97).

Although COL1A1 or COL1A2 mutations are detected in
∼85% of OI cases, to date, mutations in altogether 17 other
genes are also known to cause OI-like skeletal disorders (Table 1).
Some of these genes play a role in the post-translational
modification of type I collagen while some are key regulators of
osteoblast differentiation and function and/or lead to abnormal
bone mineralization (Table 1). One example of severe autosomal
recessive OI caused by a mineralization defect is linked to
mutations in SPARC (98). The encoded protein Secreted Protein
Acidic and Cysteine Rich, better known as osteonectin, is a
glycoprotein that is mainly expressed by osteoblasts during bone
formation and binds calcium, hydroxyapatite and collagen type
I and other proteins in the ECM (Figure 2). Null mutations in
SPARC lead to reduced accumulation of type I collagen in the
ECM (99). Furthermore, the osteonectin-type I collagen complex
is suggested to sequestrate calcium and phosphate in order to
initiate bone mineralization (100). An impairment of two other
proteins expressed by the osteoblasts, the pigment epithelium-
derived factor (encoded by SERPINF1) and the interferon-
induced transmembrane protein 5 (encoded by IFITM5),
respectively, can also compromise bone mineralization and
lead to OI (86, 87, 101, 102). Most recently, mutations in
FAM46A, encoding the terminal nucleotidyltransferase 5A, have
been detected in four patients with OI. However, the molecular
function of this protein and the pathophysiological mechanism
by which the mutations lead to OI are not yet known (103).

Besides OI, there are several other skeletal syndromes that
feature osteoporosis and are caused by defects in the ECM. For
example, mutations in XYLT2 lead to spondyloocular syndrome
characterized by childhood-onset osteoporosis, cataract, cardiac
defects and hearing impairment (104–106). The mutated
protein xylosyltransferase 2 is involved in the biosynthesis
of glycosaminoglycan chains and plays an important role
in endochondral ossification and chondrocyte differentiation
and maturation. Proteoglycans are also important for other
tissues and organs, including brain, heart, and retina, which
could explain why the clinical manifestations of spondyloocular
syndrome are not only restricted to the skeleton (106).

In addition to causing autosomal recessive OI, inadequate
folding and post-translational modification of type I collagen can
result in another skeletal syndrome characterized by congenital
contractures, named Bruck syndrome. Homozygous mutations
in FKBP10 and PLOD2 result in Bruck syndrome 1 and
2, respectively (107–110). FKBP10 encodes the immunophilin
FKBP65, a molecular chaperon of type I collagen and PLOD2
encodes the procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2,
which catalyzes the hydroxylation of lysyl residues in type I
collagen. Mutations in both FKBP10 and PLOD2 can also cause
autosomal recessive OI (Table 1).

TOOLS FOR DIAGNOSING MONOGENIC
OSTEOPOROSIS

Uncovering the Genetics
As discussed, to make the diagnosis of osteoporosis in children

two criteria need to be met; (1) low BMD or BMC (Z-score

≤ −2.0 SD) and (2) a clinically significant fracture history. A

vertebral fracture indicates severely compromised bone strength
and suffices alone for the diagnosis (12). The diagnosis of primary
osteoporosis in children can be made when potential causes
of secondary osteoporosis, such as other underlying illnesses
or medical treatments, have been excluded (2). Most forms of
childhood-onset primary osteoporosis are termed osteogenesis
imperfecta, although the diagnosis is vague and merely appoints
the disease to belong to a heterogeneous group of skeletal
disorders with diverse clinical presentation (86, 87). As indicated
earlier, the genetic background of OI is heterogeneous and
the phenotypic and genetic variability have complicated OI
classification. As of yet, there is no consensus indicating which
genotype-phenotype combinations should be classified under the
umbrella of OI and which should not. The current classification
of OI is based on phenotypic features, but the molecular cause is
often the key factor determining clinical prognosis, appropriate
treatment approach and recurrence risk in the family, and
should therefore be emphasized (28). A molecular diagnosis also
facilitates the refinement of future treatment and clinical care
protocols (87, 111). Although more than 85% of OI cases can still
be traced to pathogenic variants in either of the two collagen type
I–coding genes COL1A1 or COL1A2 (112, 113), the several other
genes identified over the past 12 years in OI or monogenic forms
of primary osteoporosis need to be kept in mind (92, 114, 115).

While most clinicians begin by screening COL1A1 and
COL1A2 possibly in combination with MLPA, proceeding to
a full OI gene panel using massive parallel sequencing is
recommended (87). A sequencing-based gene panel will not only
capture sequence variants but also possible structural variations
including larger deletions and duplications. Although the surge
of new genetic findings has facilitated interpretation of sequence
variants, deep intronic splice variants or splice variants masked
as synonymous variants are still difficult to correctly annotate.
Transcriptome analysis using RNA sequencing together with
DNA sequencing has proven successful in increasing the
diagnostic yield and assessing functional impact of variants
that are otherwise hard to interpret (116). This, however,
requires that the disease in focus has a readily accessible proxy
tissue, where the gene expression reflects the expression in
the affected tissue. Unfortunately, tissue accessibility is very
difficult in bone diseases and the method cost-restricted in
clinical settings.

Regarding structural variants, WGS has provided an
advantage in assessing structural variants compared to exome
sequencing or other capture-based protocols. However, all short-
read sequencing technologies have shortcomings in their ability
to detect and identify structural variants, and, as concluded by
Telenti et al. (117), after sequencing 10 000 human genomes
the interpretation of structural variants on an individual level
still remains challenging. Older methods to indirectly detect
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structural variations, such as array-based comparative genomic
hybridization (array-CGH), are still applicable in specific
cases and can help clinicians in their search for a molecular
diagnosis (91).

Clinical Characterization
Owning to the wide spectrum of genetic causes, the clinical
presentation of different OI and primary osteoporosis forms
is unsurprisingly miscellaneous (87). The diseases vary in
their primary skeletal traits, age-at-onset, natural progression,
sensitivity to treatment, and presence and spectrum of extra-
skeletal characteristics. Although severely compromised bone
strength is usually a unifying finding, the DXA-derived
BMD, bone biopsy findings, prevalence and type of fractures,
and radiographic findings are inconsistent. The phenotypic
severity can vary from mild to severe and disease onset
from childhood to early adulthood—at times provoked by
pregnancy-related calcium loss. Presentation may vary between
patients with different mutations and even between family
members with identical mutations (87). Classical OI-related
extra-skeletal findings include blue sclerae, increased joint
laxity, dentinogenesis imperfecta and impaired hearing (28,
87, 118). Mutations in proteins affecting the collagen-related
pathways all seem to exhibit similar traits; only the severity and
array of affected skeletal sites vary. Some typical presentations
include popcorn epiphyseal plates in CRTAP, calcifications of
interosseous membranes and hyperplastic callus formation in
IFITM5, and skull ossification defects in SEC24D-related OI
(Table 1) (86, 87, 118). The extra-skeletal manifestations of
bone cell-related forms are still incompletely defined; with
monoallelic WNT1 mutations patients have changes in spinal
cartilaginous structures (63) and mild abnormalities in bone
marrow hematopoiesis and reticulin formation (119), while in
biallelic mutations the phenotype is more severe and OI-like
but no bone marrow defects have been reported (55). However,
central nervous system manifestations have been reported in
some patients with homozygous WNT1 mutations (55, 61).
Patients with PLS3 mutations do not exhibit any apparent extra-
skeletal traits, though this is still scantily explored.

Novel Biomarkers
In addition to DXA and plain radiography, several factors
can be measured from systemic circulation and urine when
diagnosing and monitoring patients’ disease state, progression
and treatment response. The conventional metabolic markers
reflect bone turnover and consist of enzymatic and proteinaceous
by-products; the most widely used resorption markers include
mainly by-products of collagen breakdown, [urinary collagen
type 1 cross-linked N-telopeptide (NTX), urinary/serum collagen
type 1 cross-linked C-telopeptide (CTX), and collagen fragments
from matrix-metalloproteases (ICTP)], and formation markers
procollagens from collagen synthesis [serum amino-terminal
propeptide (PINP) and carboxyl-terminal propeptide (PICP)] or
osteoblast-related proteins (serum osteocalcin (OC) and serum
bone isoenzyme of alkaline phosphatase (ALP) (120, 121).
While these markers are commonly used and easily analyzed in
automated routine laboratories, they do lack specificity and are

easily confounded by other patient-related (e.g., body adiposity,
inflammation, blood glucose level, time of sampling) and
analytical factors. Furthermore, they often respond inadequately
to bisphosphonate treatment and correlate poorly with BMD
and bone histomorphometric parameters (55, 120–125). None of
the monogenic forms of osteoporosis have a specific biomarker
profile and these conventional markers are of little value in
differentiating between the various genetic forms of osteoporosis.

The limitations of the conventional bone markers have fueled
a field-wide search for new potential biomarkers. Zooming into
smaller cell-released particles, small microRNAs (miRNAs), as
one, have attained much attention and are proposed to hold
promise in future diagnostic and treatment in skeletal disorders.
These small, non-coding fragments of RNA are highly conserved
and comprise, on estimate, 1% of our genome (126, 127). They
alter gene expression by RNA silencing and post-transcriptional
regulation; each miRNA is predicted to regulate hundreds of
different target genes, thus serving important functions in many
tissues and biological processes (127, 128). While their exact
function in gene regulation is still largely unknown, miRNAs
are thought to mediate intercellular communications in various
metabolic processes and diseases and a unique imprint of
differentially expressed miRNAs is observed in e.g., certain
cancers, metabolic diseases and viral infections. In bone, miRNAs
contribute to homeostasis and their dysfunctional expression
relays to progression of skeletal disorders (129, 130). Their
expressions change in result of low BMD, frequent fractures, or
menopausal osteoporosis (129, 130).

These findings have encouraged researchers to explore the
clinical potential of miRNAs in disease diagnostics and follow-
up. Several clinical studies have evaluated miRNA expression
in osteoporotic patients and distinguished specific miRNAs
correlating with the degree of osteoporosis (131). miR-133a was
significantly elevated in postmenopausal Caucasian women with
low BMD (132), and miR-194-5p and miR-21-5p negatively
correlated with BMD in Chinese osteoporotic women (133,
134). Seeliger et al. (135) also identified miR-21-5p, in addition
to four other miRNAs (miR-23a-3p, miR-24-3p, miR-100-5p,
and miR-125b-5p) to be differentially expressed in serum and
upregulated in bone tissue in patients with osteoporotic fractures.
In vitro studies have observed miRNAs that interact with known
key regulators of bone metabolism, such as miR-152-3p and
miR-335-3p with Dickkopf-1 (136, 137), miR-30e-5p with Lrp6
(138), and the aforementioned miR-133 with Runx2 (139).
Furthermore, Anastasilakis et al. (140) reported that serum
levels of miRNAs changed in response to anti-osteoporotic
treatment. While different studies pinpoint to varying miRNAs
depending on cohort size, demographic or other factors, a clear
congruency is echoed that a unique miRNA signature is observed
in osteoporosis.

We have reported altered miRNA pattern in patients
with WNT1 osteoporosis, with two upregulated and six
downregulated miRNAs, as compared with age and sex-matched
mutation-negative controls from the same family (119). While
specific miRNA alterations may be recognized in certain
monogenic forms of osteoporosis, the role of miRNAs in
complementing or substituting genetic testing remains to be
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explored in future studies. Further, the utilization of miRNA
assessments in clinical practice demands further methodological
development but based on present data, they hold great potential
for future diagnosis and follow-up, including monogenic forms
of osteoporosis.

OPTIONS FOR TREATMENT

Conventional Osteoporosis Drugs and
Implications for Treatment
Conventional osteoporosis drugs, namely bisphosphonates, have
been the mainstay of pharmacological treatment in classical,
type I collagen-related OI forms. These typically have high
bone turnover and thus the osteoclast-targeting and resorption-
decreasing bisphosphonates have proven effective in increasing
BMD, reducing fractures, and improving VCFs in patients (141–
143). Contrary to collagen I-related OI, bisphosphonates have
proven insufficient in improving BMD or fracture tendency in
several new forms of primary osteoporosis (55, 57, 60). These
OI forms often present with low-turnover osteoporosis and
hence the benefits of anti-catabolic treatment are not optimal.
We have also shown that patients with prior bisphosphonate
treatment have abnormal and apoptotic osteocytes, suggesting
adverse effects of bisphosphonates in WNT1 osteoporosis (63).
However, our longitudinal study on the effects of teriparatide-
treatment in WNT1 osteoporosis indicated that exogenous
PTH may be efficient in increasing bone formation and BMD
during a 24-months-long treatment in adults; however, there
may be simultaneous increase in bone marrow adiposity (79).
Thus far, the efficacy of anti-sclerostin antibodies have been
experimented in mice only; subcutaneous administration of
Scl-Ab to the murine model of WNT1 OI Wnt1sw/sw mice
significantly improved fracture rate and increased bone mass that
seemed to result from increased osteoblast activity (144).

BesidesWNT1-related skeletal pathologies, even less is known
about the optimal treatments in other new forms of primary
osteoporosis andOI, such as PLS3 and XYLT2 (105, 145). Efficacy
of bisphosphonates in PLS3 osteoporosis has been evaluated in
a handful of cases and indicate positive response (66, 67, 70).
Our above-mentioned clinical study on teriparatide also included
PLS3 mutation-positive subjects and they showed congruent,
although slightly lesser, improvement in bone parameters in
24-months follow-up, as compared with patients with WNT1
osteoporosis (79). Patients with XYLT2 mutations seem to
benefit from pamidronate treatment with increase in BMD and
improvement in vertebral morphology (104, 105).

Clinical care of OI patients, including both classical and newer
forms of OI and monogenic osteoporosis, is often complex and
challenging. Means of treatment and pace of clinical follow-up
are dependent on the patient’s age, clinical manifestations, and
degree of impairment, and should be individually tailored and
regularly evaluated. Bisphosphonates are still the main treatment
option for pediatric patients and are often used to prevent greater
decrease in BMD and enable maximum yield in bone mineral
throughout childhood and adolescent bone mass accrual. The
overall benefits of bisphosphonate treatment in most cases of
OI are non-negligible (146). Variable treatment protocols exist.

Clinical care and follow-up are advised to be centered in special
health care units with abilities to provide multidisciplinary care
and expertise.

Novel Target-Drugs
Discoveries through rare, monogenic forms of skeletal disorders
have provided new information on the biology of bone health
and revealed previously unidentified proteins that take part in
key regulatory pathways. Naturally, these proteins also present
as appealing target molecules for development of new treatment
modalities. In early 2000s, inhibition of RANKL by a monoclonal
antibody denosumab brought a novel approach for treatment of
osteoporosis (147). The drug has been used to improve skeletal
health in some forms of OI. Particularly patients with SERPINF1
mutations show a modest increase in BMD in response to
denosumab whereas treatment outcomes with bisphosphonates
are poor (148). Due to the coupled nature of osteoblast-
osteoclast–activity, blocking osteoclastogenesis through RANKL
is also unfavorably accompanied by reduced osteoblast function.
The previously mentioned discovery of RANKL reverse signaling
could offer a novel solution to avoid this problem (32).
Also, inhibition of cathepsin K, an osteoclast-derived lysosomal
enzyme, seemed promising due to its coupled bone formation-
favoring action, but its development was later discontinued due
to increased risk of cardiovascular complications (149). As of
recently, the effects of anti-TGF-β antibodies have been studied
in Crtap−/− and Col1a1frt/− mice with varying results; while
the Crtap−/− showed great improvements in bone mass and
biochemical qualities, Col1a1frt/− mice did not show significant
changes in bone quality or strength (150).

Along with the discovery of van Buchem disease and
sclerosteosis, two human models of sclerostin inhibition,
fueled the development of a new anabolic target drug named
romosozumab—a monoclonal anti-sclerostin antibody targeting
the WNT pathway (151, 152). Its efficacy has been evaluated
in several clinical trials with promising results; a placebo-
controlled, multicenter, phase II study on 419 postmenopausal
women with osteoporosis treated with subcutaneous injections
of romosozumab at 3-months intervals showed significant, and
superior to those attained by alendronate and teriparatide,
increase in areal BMD and a tilt in BTMs reflective of increased
bone formation (151), and another phase III study reported a
reduction in fracture risk in 7,180 postmenopausal osteoporotic
women (153). Anti-DKK1 antibodies act similarly to oppose
WNT signaling and are potent as osteoanabolic agents. However,
administration of anti-DKK1 is only mildly efficacious as the
WNT-neutralizing effect is compensated by upregulation of
sclerostin, although the opposite is not seen when given only
anti-sclerostin antibodies. Thus, the benefits of anti-DKK1
antibodies manifest only when given in conjunction with anti-
sclerostin (154).

Another target of interest for new drug development is
Notum. It is a secreted enzyme that inhibits WNTs by removing
the palmitoleic acid group that is essential for binding of
WNTs to Frizzled receptors, thereby inhibiting WNT signaling.
Interestingly, experimental studies in rodents have shown
that inhibiting Notum through either knockout, or by oral
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administration of molecular inhibitors or neutralizing antibodies
increase cortical bone formation and strength, but do not affect
trabecular bone mass (155, 156).

Possible undesired adverse and extra-skeletal effects of new
drugs are inevitable as many of the targeted proteins have tissue-
wide expression and key roles in various biological processes.
Side effects can be latent and subtle but also challenging and
life-threatening. Knowing the WNT pathway’s fundamental role
in embryonic development, tumorigenesis and pathogenesis of
other systemic or chronic diseases, romosozumab has been
under careful scrutiny for its clinical safety. In mice receiving
different doses, no malignancies were noted over a 98-weeks
follow up (157). However, along with the robust and positive
skeletal effects, use of romosozumab has been associated with
cardiovascular and cerebrovascular events, and the drug is
currently under FDA review (Amgen and UCB).

MicroRNAs
Recently, researchers have acknowledged the opportunities in
targeting miRNA pathways to develop new therapeutic means
and genome editing approaches (128, 158). A few groups
have pursued clinical trials to evaluate efficacy of miRNAs in
disease target treatment: an on-going clinical trial evaluates
the anticancer effect of miRNA lethal-7 in binding to Kirsten
rat sarcoma viral oncogene homolog (KRAS) gene in patients
suffering from stage III colon cancer, and miR-122 in hepatitis
C (159, 160). Bone-specific miRNAs have not been evaluated
clinically, but analyses have shown that for example in vitro
miR-21 could promote osteogenesis in bone marrow stem cells,
and systemic administration of miR-214 induced BMD increase
and miR-92a enhance fracture healing in mice (161–163). In
fracture healing, also angiogenesis is vital to the repair process
and Li et al. (164) were able to demonstrate that implantation
of MSCs transfected with an angiogenesis-involved anti-miR-
26a showed good bone repair. Further, anti-miR-31-transfected
MCSs efficiently repaired bone defects by increasing BMD and
new bone volume (165). These findings and the efficacy, safety
and possible side effects need to be confirmed and carefully
evaluated in clinical settings in vivo.

CONCLUSIONS

Recent advances in genetic methodology have resulted in several
new discoveries relating to the genetic architecture of bone
homeostasis. Not only have the basic clinical and genetic pillars
of classical OI been refined, but several new forms of monogenic
osteoporosis have also been identified that have pinpointed
novel molecular mechanisms contributing to skeletal health and
disease. The clinical presentation, inheritance mode, natural
course and response to conventional osteoporosis drugs are
diverse, often variable and logically dependent on the affected
protein. Although uncovering the limitations in our current
diagnostic and treatment modalities, they have also provided
new signaling pathways that hold promise in new targeted drug
development. Future research will hopefully continue expanding
the genetics andmolecular mechanisms behind bone metabolism
and increasing our understanding of the specific skeletal and
extra-skeletal characteristics of monogenic osteoporosis, while
finding new avenues for improved diagnosis and treatment of
patients with severe bone diseases.
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