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Abstract

In this thesis we aim to learn models that can describe the sites in DNA that a
transcription factor (TF) prefers to bind to. We concentrate on probabilistic
models that give each DNA sequence, of fixed length, a probability of binding.
The probability models used are inhomogeneous 0th and 1st order Markov
chains, which are called in our terminology Position-specific Probability
Matrix (PPM) and Adjacent Dinucleotide Model (ADM), respectively. We
consider both the case where a single TF binds in isolation to DNA, and
the case where two TFs bind to proximal locations in DNA, possibly having
interactions between the two factors. We use two algorithmic approaches to
this learning task.

Both approaches utilize data, which is assumed to have enriched number of
binding sites of the TF(s) under investigation. Then the binding sites in
the data need to be located and used to learn the parameters of the binding
model. Both methods also assume that the length of the binding sites is
known beforehand.

We first introduce a combinatorial approach where we count �-mers that
are either binding sites, background noise, or belong partly to both of
these categories. The most common �-mer in the data and its Hamming
neighbours are declared as binding sites. Then an algorithm to align these
binding sites in an unbiased manner is introduced. To avoid false binding
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sites, the fraction of signal in the data is estimated and used to subtract
the counts that rise from the background.

The second approach has the following additional benefits. The division
into signal and background is done in a rigorous manner using a maximum
likelihood method, thus avoiding the problems due to the ad hoc nature of
the first approach. Secondly, use of a mixture model allows learning multiple
models simultaneously. Then, subsequently, this mixture model is extended
to include dimeric models as combinations of two binding models. We call
this reduction of dimers as monomers modularity. This allows investigating
the preference of each distance, even the negative distance in the overlapping
case, and relative orientation between these two models. The most likely
mixture model that explains the data is optimized using an EM algorithm.
Since all the submodels belong to the same mixture model, their relative
popularity can be directly compared. The mixture model gives an intuitive
and unified view of the different binding modes of a single TF or a pair of
TFs.

Implementations of all introduced algorithms, SeedHam and MODER for
learning PPM models and MODER2 for learning ADM models, are freely
available from GitHub. In validation experiments ADM models were ob-
served to be slightly but consistently better than PPM models in explaining
binding-site data. In addition, learning modularic mixture models confirmed
many previously detected dimeric structures and gave new biological insights
about different binding modes and their compact representations.

Computing Reviews (1998) Categories and Subject
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Chapter 1

Introduction

Control of gene expression, the process of producing proteins from DNA
sequences, is the mechanism that allows different cells to look and act
differently, even though each cell contains the same DNA. Regulation of
gene transcription is one major aspect of this control. Proteins called
transcription factors (TFs) can affect gene transcription by binding to
regulatory areas of corresponding genes. The transcription factor binding
is specific to the nucleotides in the binding site. In order to understand
regulation of gene transcription, it is necessary to be able to model these
binding sites. From a set of DNA sequences that are known to be enriched
in transcription factor binding sites, one can try to learn models for binding
sites.

In this thesis we consider probabilistic binding site models and algorithms
for learning the models. The probabilistic models we use are inhomogeneous
Markov chains of order either zero or one. Our aim is to create algorithms
that can handle the large data sets that modern high-throughput experimen-
tal methods produce. Also, when trying to learn multiple binding models
from a data set, many previous algorithms sequentially learn a model from
data, then remove its occurrences from the data, and then start over again
to learn the next model. This process might not treat each model equally
as the end result will depend on the order in which the models are learned.
We aim to create a method that can learn each model simultaneously, and
hence treat each model the same way. Another aim is to test whether the
commonly assumed independence holds between the positions of the binding
sites or not.

The regulatory areas of genes can contain multiple binding sites, possibly
for different transcription factors. Therefore, it is interesting to analyze if
two close-by transcription factors bind independently or in co-operation.
This co-operativity can be measured as the popularity of each possible
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2 1 Introduction

distance and relative orientation of two transcription factors. In addition, it
is interesting how the binding models change as the distance between two
binding sites gets smaller.

Once we have learned binding models, we can use them, for example,
to predict putative binding sites in genomes. In addition to mutations in
genes, a major cause of disease are mutations outside genes, for example in
the regulatory areas. The binding models can be used to assess the effect of
a mutation in a binding site on the binding strength and subsequently to
the expression of a related gene. The transcription factors can be grouped
into families based on the amino-acid similarity. As another application, the
binding models of transcription factors provide another way of classifying
TFs. These two classification methods are largely in accordance.

About ten years ago several new technologies appeared that are capable
of producing large amounts of binding data from which to learn binding
models. Previously, when example data was scarce, the models learned were
not very accurate, and learning of more complicated models was not possible.
After this revolution in experimental technology, the computational methods
needed an update as well to handle the data from these high-throughput
methods.

Over the years several different computational methods have been used
for learning binding models. Word based methods try to find sequences
that are over-represented in comparison to either a background model or
to another, negative, data set. A binding model is then built from these
sequences. Probability based methods first choose a model family and then
try to find model parameters that maximize the likelihood of the model.
An EM algorithm or Gibbs sampling can, for instance, be used to perform
this optimization task. Regression methods and recently also deep learning
have been used for learning of binding models as well. In this thesis we
develop both word based methods and probabilistic methods that use an
EM algorithm.

1.1 Original papers

This thesis consists of three papers. Paper I presents a combinatorial method
for learning a single, monomeric, Position-specific Probability Matrix (PPM).
Paper II considers both monomeric and dimeric PPMs in a single mixture
model, learned by an EM algorithm. Paper III extends the method of
Paper II to first order Markov chains called Adjacent Dinucleotide Models
(ADMs).
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Paper I. This paper gives a combinatoric method, called SeedHam, to
learn monomeric PPM models using a frequent �-mer and its Hamming
neighbours, when given the length � of the binding model and sequences
known to contain binding sites as input. New contributions include the
correct, unbiased, alignment of a Hamming sample of binding sites into a
PPM model, and an equation relating the counts of three classes of �-mers in
the data. An implementation of SeedHam is freely available. Experimental
testing showed that SeedHam performed favourably compared to two other
common methods.

Paper II. The paper introduces a mixture model of multiple monomeric
models and their dimeric combinations. An EM algorithm, called MODER,
to find the maximum likelihood parameter estimates of this mixture model
is given. New contributions include a representation for the dimeric cases
of a TF pair (COB table), which allows investigation of the relative abun-
dances of the different dimeric cases. The mixture model also allows a
rigorous investigation of overlapping dimeric cases in a unified probabilistic
model, which has previously been done in ad hoc manner. Freely available
implementation of MODER was used in various qualitative and quantitative
experimental testing presented in the paper.

Paper III. This paper extends the mixture model and the corresponding
learning algorithm to the ADM models. It also extends the alignment
algorithm of a Hamming sample of binding sites to the case of ADM models.
An additional contribution is the analysis of the overlapping case of two
ADM models. Extended software implementation of MODER2, which
is freely available, can learn both PPM and ADM models. Large-scale
experimental testing showed ADM models performing slightly better than
PPM models.

The contribution of the thesis author to the original papers is substantial
and can be specified as follows. All the algorithms and experimental testing
were implemented by the author. Paper I was written by the thesis author
and Esko Ukkonen. The algorithms were designed by the three authors.
Experimental testing was co-designed with Esko Ukkonen. Paper II was
mostly written by the thesis author and Esko Ukkonen, with all authors
giving critical feedback. The algorithm was mostly designed by the thesis
author. The experimental testing was mostly designed by the thesis author,
but with Teemu Kivioja, Jussi Taipale, and Esko Ukkonen contributing as
well. Paper III was mostly written by the thesis author and Esko Ukkonen,
with all authors giving critical feedback. The algorithm was co-designed with
Jussi Taipale and Esko Ukkonen. The experimental testing was co-designed
with Esko Ukkonen, with other authors contributing as well.



4 1 Introduction

1.2 Outline

The rest of this overview consists of the following parts: Chapter 2 introduces
the biological background necessary to understand this thesis. Basic concepts
of molecular biology are introduced and more details are given about the
regulation of transcription. Chapter 3 gives different formal representations
of transcription factor binding sites and focuses on probabilistic models. In
addition to the binding models, ways to characterize and compare models
are also summarized. As a new contribution, the Co-Operative Binding
table (COB) is introduced to describe the strength of different dimeric
binding cases. In Chapter 4 three common application areas of binding
models are described for completeness. Chapter 5 gives an introduction
to the new methods of this thesis for learning binding models. Section 5.2
gives an overview of the SeedHam algorithm that is the topic of Paper I.
Section 5.3 recapitulates the EM algorithm in the setting of learning binding
models from sequence data, and in Section 5.4 the EM algorithm is extended
to learning dimeric binding models and COBs, which is the main topic in
Papers II and III. In Section 5.5 we show what needs to be changed in the
EM algorithm in order to be able to learn ADM models as well, which is
done in Paper III. At the end of the chapter we discuss the evaluation of
the goodness of the models learned. Chapter 6 contains the results from
experimental evaluations. Chapter 7 contains a concluding discussion of the
thesis.



Chapter 2

Biological background

In this chapter we review some biological preliminaries needed in the rest of
this thesis. For more details, see, for example, the book Molecular Biology
of the Cell [1], especially its chapter seven on Control of Gene Expression.

The main components in cell biology are the macro molecules DNA,
RNA, and protein. The DNA serves as storage of information, and proteins
are used to build the main body of cells and function in different ways as
cell machinery. The central dogma of molecular biology states the flow of
information between these three molecules. Information can be copied from
DNA to RNA (transcription), which is done by a molecular machine called
RNA polymerase, and information can be copied from RNA to proteins
(translation). However, there are no known cases where information flows
from proteins to either RNA or DNA. Hence, proteins are end products of
this flow. RNA, besides being the intermediate messenger between DNA
and proteins, can also function as an end product. For example, ribosomes,
that perform the translation, are machines built out of protein and RNA
molecules. This central dogma of the information flow is visualized in
Figure 2.1.

These three molecules can be considered as linear molecules built out
of basic building blocks. In terms of computer science, these molecules
can be expressed as strings over certain alphabets. For DNA this alphabet
consists of four nucleotides. The distinguishing part that separates the four
nucleotides is called a base, and the bases (and the related nucleotides) are
marked with letters A (adenine), C (cytosine), G (guanine), and T (thymine).
In RNA the base T is replaced by U (uracil). The protein alphabet consists
of 20 amino acids. The DNA has a double-stranded structure, where two
strands are joined together with base-to-base bindings, like a zipper. The
base pairs in this double-stranded structure are complementary: A binds to
T and C binds to G.

5
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Promoter Exon

DNA

mRNA

Protein

Transcription

Translation

Folding

Figure 2.1: The information flow between DNA, RNA, and proteins. Binding
of TFs to the promoter area of a gene can help recruit the RNA polymerase
to the transcription start site (marked with the arrow with an angle), which
starts transcribing the gene into a message RNA (mRNA). Afterwards, a
ribosome can translate the mRNA into an amino acid sequence, which folds
into a 3-dimensional structure of the final protein.
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The human genome consists of DNA of total length approximately 3
billion base pairs (bp), which is organized into 23 DNA molecules manifesting
as chromosomes. Each cell in the human body, with the exception of sperm
and egg cells, contains two copies of this genome, one from the paternal
side and the other from the maternal side.

Each protein is coded by a piece of DNA called gene. A current estimate
for the number of genes in humans is as low as 19 000 [25]. These genes
cover only about 1–2% of the human genome. The fact that the number of
different proteins in humans is much higher than 19 000, is explained by a
process called alternative splicing, which can assemble the DNA of a gene
in multiple ways to produce different messenger RNAs, and hence different
proteins. The pieces of DNA of a gene, which are available to use in this
assembly are called exons, whereas the non-coding parts between exons are
called introns.

Even though each cell in the human body contains the same genome,
different cells can look and function very differently from each other. For
instance, a liver cell has completely different shape and size than a neuron.
This diversity is due to different genes being expressed in different cell types,
that is, different sets of genes are used for producing proteins. A typical
cell expresses 30–60% of the total number of genes. In addition to the
cell type, the stage of development of an individual (e.g., embryo, fetus,
child, adult) affects the gene expression, as do various signals between cells
and changes in the environment. For example, expression of heat shock
proteins is increased during stressful conditions to the cell, such as increase
in temperature.

There are several mechanisms that a cell can use to control the expression
of genes: control of transcription, epigenetic mechanisms, RNA processing
control, transportation and placement of RNA within the cell, degradation of
RNA, control of translation, and post-translational control. These happen at
different phases of the information flow from DNA through RNA to protein.
Of these mechanisms, the control of transcription of DNA to messenger
RNA is the most important, and it is also the one that is considered in this
thesis. This control can both up-regulate the expression of a gene, so that
more proteins from that gene are produced, or in the case of down-regulation
fewer or zero proteins are produced.

The transcription is mainly regulated by proteins called transcription
factors (TFs) that can affect the transcription of its target gene by chemically
binding to areas of DNA related to the target gene. Typically these regulatory
areas are outside the coding region of the gene, but can still be quite close.
For example, a promoter is a stretch of DNA just before the transcription
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a b

Figure 2.2: Schematic of regulatory areas. The following colour coding is
used: yellow for gene, brown for promoter, cyan for enhancer, green for
RNA polymerase, purple for the TF under consideration, blue for other
proteins. The direction and start site of transcription is indicated by the
black arrow. Binding of the transcription factor to the regulatory area
recruits the RNA polymerase, which does the transcription of the gene. (a)
The TF binds to the promoter area. (b) The TF binds to the enhancer area.
Note that DNA bending is required for the enhancer to reach proximity
with the transcription start site.

start site of the target gene. Typically the promoter is contained in a region
of 1000 bp before the transcription start site. Several TFs can be bound
to this area. The short stretch of DNA a single TF is bound to is called
a binding site. These typically have a length of about 6–12 bp [41]. For
example, the transcription factor GATA1 can bind to sequence TGATAG
[1]. The nucleotide content of the binding site affects the chemical binding
energy between the DNA and the transcription factor. In other words, the
binding sites of TFs are sequence-specific.

A classic example of regulation of transcription is the production of
trypthophan in bacterium E. coli [66]. When the transcription factor called
tryptophan repressor binds to the promoter of a group of genes called
tryptophan operon, it prevents the transcription of tryptophan operon, and
subsequently stops the production of tryptophan.

Another example of a regulatory area is called enhancer. Unlike pro-
moters, an enhancer can be even a million bps away from the gene it
controls [3]. However, as the DNA molecules are very densely packed, like
coils of thread, the enhancer can be close to the gene in the 3D distance.
Figure 2.2 illustrates the relation of regulatory areas with respect to the
target gene. Enhancers are involved in up-regulation of its target gene;
the down-regulating counterparts of enhancers are called silencers. It has
been estimated that the human genome contains hundreds of thousands
of regulatory regions [15]. Therefore, these can explain a fraction of the
genome outside the coding regions, whose function has so far been largely
unknown.
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As the transcription factor binding sites are relatively short, it would
seem that they should appear in the genome very frequently, purely by
chance. If we assume that each nucleotide position in the genome is uni-
formly and independently distributed, then we expect, for example, the site
TGATAG to appear in the genome approximately 2 · 3 · 109/46 ≈ 1 500 000
times. However, in practice not all of these are possible binding sites. There
are other mechanisms that affect the binding of a TF.

The dense packing of the genome allows the DNA molecules that other-
wise would have a total length of about two meters, to fit in the nucleus of
a cell, which has an average diameter of 6 micrometers. This condensing is
enabled by “packing proteins” that bind to DNA and coil it into a small
space. The complex formed by DNA and the packing proteins bound to it is
called chromatin. This condensing of DNA is not uniform along the genome,
and it is not static either: it can depend on the type and cell-division
phase of the cell. The loosely condensed regions of the chromatin are called
euchromatin and the more densely packed regions are called heterochro-
matin, although in practice there can be several classes of densities instead
of just two clearly separate classes. The euchromatin allows transcription
factors to easily access the regulatory areas, which is why it is also called
open chromatin. Heterochromatin, on the other hand, makes it hard for a
transcription factor to access the DNA, because of the dense packing. So,
the openness of different areas of the genome further restricts the putative
binding sites. Since the openness of DNA can be of a dynamic nature, this
provides another mechanism for regulating the transcription of genes.

Another mechanism that modifies the specificity of TF binding is co-
operation of two or more TFs. The binding energy when two factors bind
together to DNA can be higher than the sum of binding energies when
the two TFs bind to DNA independently. When two TFs bind DNA co-
operatively it is called dimeric binding. There are basically two main ways
for transcription factors to co-operate in binding: the TFs can first bind to
each other to form a dimeric complex, which subsequently binds DNA; or,
initially one TF can bind to DNA, which subsequently makes it possible
for the other TF to bind to DNA as well. As the dimeric binding sites
are longer, they also become more restrictive. Hence, one expects them to
appear less frequently in the genome. We will study the discovery of dimeric
binding sites later in Chapters 3 and 5.

TFs, like other proteins, consist of subunits called domains that can
fold into 3-dimensional structures independently of each other [1]. A DNA-
binding domain (DBD) is a domain responsible for binding to DNA. The
DBDs can be divided into structural families based on the amino acid
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sequence similarity [82]. The binding sites of two TFs from the same family
are often very similar, but the differences can manifest themselves, for
example, as different dimeric binding sites these TFs make [34].

As humans have approximately only 1600 transcription factors [41], the
co-operation between TFs allows more refined control of gene expression.
In addition, as transcription factors are proteins and hence have genes that
encode them, the production of TFs can be regulated as well, possibly by a
different TF. So, transcription factors form complex regulatory networks
with interdependencies and feedbacks.



Chapter 3

Representation of motifs

A motif is a reoccurring pattern in biological sequential data such as
nucleotide or amino acid sequences. A motif can have different instances,
that are subsequences occurring in the data. In this thesis we consider
only nucleotide motifs of the binding sites of transcription factors. In
addition, we assume that each motif has a fixed length, that is, all the motif
instances have the same length, say �. In this chapter, we describe two
ways of representing these sequence motifs: as a set of sequences and as
a probabilistic model. At the end of this chapter we introduce a way of
representing the relative binding preferences among the dimeric binding
modes of transcription factors.

3.1 Sets of sequences

Some DNA-binding proteins are very strict about which DNA sites they
choose to bind. For example, the restriction endonuclease EcoRI binds
to site GAATTC only [50]. If there are more than one preferred sites,
then one might list them all. However, as the diversity usually occurs in
certain positions in the binding sites, a more compact representation can
be used. A consensus sequence specifies one or more preferred sequences as
(simplified) regular expressions or as IUPAC sequences [56]. For example,
the set of sequences GTCACA, GTCGCA, GTTACA, GTTGCA can be
represented as a regular expression GT[CT][AG]CA or an IUPAC sequence
GTYRCA, where the IUPAC symbol Y corresponds to C or T, and the
symbol R corresponds to A or G. For example, the PRODORIC2 database
of prokaryotic TFs [19] includes a consensus sequence for each factor.

11



12 3 Representation of motifs

1 2 3 4 5 6 7 8 9 10

A 0.59 0.07 0.06 0.00 0.00 0.99 0.79 0.43 0.03 0.24
C 0.05 0.80 0.93 0.00 0.00 0.01 0.00 0.01 0.24 0.18
G 0.27 0.11 0.00 0.99 1.00 0.00 0.00 0.56 0.04 0.44
T 0.09 0.02 0.00 0.00 0.00 0.00 0.20 0.00 0.69 0.13

Table 3.1: PPM model of monomeric FLI1 binding site. Each column
in this matrix defines a probability distribution over nucleotides for the
corresponding position in the motif.

3.2 Probabilistic models

Previously consensus sequences were used to represent binding sites also be-
cause the experimental methods produced only very few example sequences
of motif instances, and therefore the need for more complicated representa-
tions was not realized. Now, however, due to the advent of high-throughput
methods, the data is plentiful and a more continuous variation in the binding
sites is detected. Next we review a few motif representations based on the
probability of a sequence being a binding site.

3.2.1 Position-specific Probability Matrix

Position-specific Probability Matrix (PPM) [67] defines a probability for each
nucleotide sequence of fixed length, say �. The probability of a nucleotide
in one position is independent of the nucleotides in other positions in this
model. Hence, the model can be compactly defined as a product of �
categorical distributions. The parameters of this model can be represented
as a matrix θ as follows. PPM θ is a 4× � matrix

θ =

⎡
⎢⎢⎣
θA,1 θA,2 · · · θA,�

θC,1 θC,2 · · · θC,�

θG,1 θG,2 · · · θG,�

θT,1 θT,2 · · · θT,�

⎤
⎥⎥⎦ ,

where θa,h := θ[a, h] gives the probability for a symbol (nucleotide) a from
alphabet Σ = {A,C,G,T} to occur in position h of θ, and � denotes the
length of θ. A real example of a PPM model of the TF FLI1 is shown in
Table 3.1. For every sequence X = X1X2 · · ·X� of length �, the PPM model
θ gives the probability P (X) =

∏
1≤h≤� P (Xh) =

∏
1≤h≤� θ

Xh,h.

If we sample N sequences from the product distribution θ, then the
number of nucleotides in the position h is multinomially distributed with
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parameters N and θ·,h. If the sample size N is large enough, then the
maximum likelihood estimates

θa,hMLE = na,h/N,

for each a ∈ Σ, where na,h gives the number of nucleotide a in position
h of the sequences, give the most likely explanation of the nucleotide in
the position. Hence, with a large enough unbiased sample of binding sites
of a transcription factor, we can use maximum likelihood estimates for
each position h to get an accurate PPM model for the data, assuming the
positions in the binding sites really are independent. We call this PPM
model learning algorithm the standard alignment method. The matrix
na,h of counts mentioned above is sometimes called the Position-specific
Frequency Matrix (PFM).

If, however, the data is scarce, then the maximum likelihood estimates
may give non-optimal models. For instance, if the sample contains only ten
sequences, and in the first position we have nucleotide counts nA,1 = nC,1 = 5
and nG,1 = nT,1 = 0, then the estimated model would give probability zero
for all sequences starting with either G or T. The sample size ten is too
small to infer that the probabilities are zero for these two nucleotides. If
we have no a priori information that a nucleotide is impossible in some
position, then we can try to correct this small sample error by adding a
pseudo-count for each nucleotide. A common pseudo-count method, called
Laplace’s rule of succession, is to add one to each of the nucleotide counts.

Although using pseudo-counts may seem like an ad hoc solution, it can be
theoretically supported using the Bayesian interpretation of probability. To
this end, let us fix a position 1 ≤ h ≤ �, and assume that the parameters of
the multinomial distribution in position h are a priori distributed according
to a Dirichlet distribution with parameters α = (αa)a∈Σ, that is, θ·,h ∼
Dir(α). Then it can be shown (see, for example, [18]) that the posterior
distribution of the parameters is also Dirichlet, but with different parameters:
θ·,h|(nA, nC, nG, nT) ∼ Dir((nA, nC, nG, nT) + α). In addition the posterior
mean estimator

θ·,hPME :=

∫
θ·,h

P (nA, nC, nG, nT|θ)P
(
θ·,h|α)

P (nA, nC, nG, nT)
dθ·,h

is in fact
na + αa

N +A
,

where A =
∑

b∈Σ αb and a ∈ Σ. So, the pseudo-counts can be thought of as
parameters αa of the prior Dirichlet distribution.
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3.2.2 Position-specific Weight Matrix

Another way to represent binding motifs is the Position-specific Weight
Matrix (PWM) [77]. The PWM M is an array with shape 4 × � like
the PPM, but, instead of probabilities, the values Ma,h in the array are
arbitrary real numbers called weights. All the positions are again assumed
independent and the total weight of a sequence X is

∑
1≤h≤�M

Xh,h. Note
that the contributions of each position are now added together instead of
multiplying.

One common way of defining a PWM is through a PPM θ and a
background model θ0 = (θA0 , θ

C
0 , θ

G
0 , θ

T
0 ), a categorical distribution. The

background model can, for example, give the nucleotide distribution of the
genome of an organism under consideration. The weights are now defined
by Ma,h := log2

θa,h

θa0
for each a ∈ Σ and 1 ≤ h ≤ �. Sometimes these weights

are also called (log-ratio) scores.

Another example is the energy PWM H, whose elements give the
contribution of each nucleotide in each position of the site to the total
binding energy between the DNA and the TF. The contribution of each
DNA position is again assumed independent of the other positions. In this
thesis we will not give methods for learning the energy PWMs, but we
note that according to Heumann et al [30], the PWM M defined above
approximates the energy PWM H. This connection establishes that our
probability models learned from count-based sequence data are in accordance
with the energy model. Some references to methods which learn energy
models are given later in Chapter 5.

3.2.3 Adjacent Dinucleotide Model

The Adjacent Dinucleotide Model (ADM) [76] is defined as the inhomoge-
neous Markov chain (of order 1). It has the Markov property which tells
that the probability of a nucleotide b in position h is independent of the
nucleotides in positions h′ < h− 1 on the condition that the nucleotide in
position h−1 is given. An ADM can be represented as a matrix θ with shape
16× � whose elements θab,h, a, b ∈ Σ, 1 ≤ h ≤ � are the transition probabili-
ties P (Xh = b|Xh−1 = a). The probability of a sequence X = X1X2 · · ·X�

given by the ADM model θ is

P (X) =
∏

1≤h≤�

P (Xh|Xh−1) =
∏

1≤h≤�

θXh−1Xh,h.

Note that we define X0 to be A, so that the initial probabilities P (X1 = b) =
P (X1 = b|X0 = A) = θAX1,1 get treated symmetrically with the transition
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probabilities. With the ADM models we use notation θb,h := P (Xh = b) for
the probability of symbol b in position h, that is,

θb,h =
∑

a1,...,ah−1∈Σ
θAa1,1θa1a2,2 · · · θah−1b,h

for b ∈ Σ, 1 ≤ h ≤ �.
Let us fix a position 1 ≤ h ≤ � and a nucleotide a ∈ Σ. If we sample N

sequences from the ADM distribution θ, then the number of nucleotides
in the position h on the condition that P (Xh−1 = a) is multinomially
distributed with parameters na,h−1 and θa·,h. If the sample size N is large
enough, then the maximum likelihood estimates

θab,hMLE = nab,h/na,h−1,

for each b ∈ Σ, where the nab,h gives the number of dinucleotide ab ending
in position h of the sequences, give the most likely explanation of the
nucleotides in the position h on the condition that P (Xh−1 = a).

3.2.4 Higher order models

Assume X = X1X2 · · ·X� is a random vector with Xh ∈ Σ, for each
1 ≤ h ≤ �. The probability of X can be written as

P (X) = P (X1)P (X2|X1) · · ·P (Xh|X1X2 · · ·Xh−1) · · ·P (X�|X1X2 · · ·X�−1)

by the chain rule. If we further assume that X is a Markov chain of order
k, then we can write

P (X) = P (X1)P (X2|X1) · · ·P (Xh|Xh−k · · ·Xh−1) · · ·P (X�|X�−k · · ·X�−1).

To be more specific, this is an inhomogeneous Markov chain of order k, since
the transition probability matrix is allowed to be different at each position
of the motif. The sequence Xh−k · · ·Xh−1 is the context of position h, for
each 1 ≤ h ≤ �. Using higher order Markov chains allows more precise
modeling of the dependencies between positions, but the downside is that
more data is needed to learn more complex models. This is because for a
Markov chain of order k the number of parameters that need to be learned
is

∑�
h=1 3 · 4min(h−1,k). So, the number of parameters grows exponentially

with the order k. In addition, there is a risk of overfitting the model, and
therefore the model might not be usable for prediction of new binding sites.
Siebert and Söding have, however, developed an adaptive form of higher
order Markov chains [72], where the lower order models function as priors
to higher order models. This should in principle guard against overfitting.
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Eggeling et al [20, 21] provide a model called inhomogeneous Parsimo-
nious Markov Model (iPPM), which enables another way of using higher
order Markov models without overfitting. It is based on parsimonious con-
text trees [11], which allow varying context lengths. Each context should
be as short as possible.

Another possible extension of the ADM model is to allow dependencies
between any pair of positions, not only the adjacent ones. Recently, Omidi
et al [55] proposed a model called Dinucleotide Weight Tensor (DWT) for
this purpose.

3.2.5 Relative entropy

Relative entropy, also known as the Kullback–Leibler divergence, between two
discrete distributions p and q is defined by D(p||q) = ∑

i pi log2
pi
qi
. Gibbs’

inequality tells us that D(p||q) ≥ 0, where the equality holds if and only if
p = q. Relative entropy gives us a way to compare two distributions. In
terms of information theory, relative entropy D(p||q) tells the extra amount
of information (in bits) that needs to be transmitted, if a message is coded
using code optimal to distribution q instead of the correct distribution p.
Note that relative entropy is not symmetric with respect to p and q.

If the distributions are over the set of all sequences of length �, that is,
pX = Pθ1(X) and qX = Pθ2(X) for X ∈ Σ�, then it can be shown that the
relative entropy between distributions p and q, defined by PPM models θ1
and θ2, decomposes as

D(p||q) =
�∑

h=1

∑
a∈Σ

θa,h1 log2
θa,h1

θa,h2

.

Because of the dependencies between columns in ADM models, the
decomposition becomes slightly more complex:

D(p||q) =
�∑

h=1

∑
a∈Σ

Pθ1(Xh−1 = a)
∑
b∈Σ

θab,h1 log2
θab,h1

θab,h2

.

3.2.6 Information content

If p is a distribution over the set of sequences Σ�, defined by a PPM motif
θ, then the information content [67] of the distribution is

IC(p) =
�∑

h=1

∑
a∈Σ

θa,h log2
θa,h

0.25
= 2�+

�∑
h=1

∑
a∈Σ

θa,h log2 θ
a,h.
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Figure 3.1: Sequence logo for factor RFX1. (a) The letter heights directly
show the probabilities of nucleotides. (b) The letter heights are scaled by
the information content of the corresponding column. Logos have been
produced using enoLOGOS [85].

Similarly, we define the information content for ADMs with

IC(p) =
�∑

h=1

∑
a∈Σ

Pθ(Xh−1 = a)
∑
b∈Σ

θab,h log2
θab,h

0.25

= 2�+

�∑
h=1

∑
a∈Σ

θa,h−1
∑
b∈Σ

θab,h log2 θ
ab,h.

(3.1)

Since information content is actually the relative entropy between p and
the uniform distribution, we immediately see that information content is
non-negative. It is also clear by the definition that IC(p) is at most 2�.
Information content can be thought to measure the specificity of the TF,
that is, how strict it is about the nucleotide content in the binding site.

3.2.7 Visualization

The PPM logo can be visualized as a sequence logo [68] as shown in Figure 3.1.
In Figure 3.1a the height of each letter is proportional to the probability
of the corresponding base. In addition, the nucleotides in each position
are ordered according to the probability with the most probable nucleotide
at the top and the least probable at the bottom. If we instead scale the
probabilities in each column by its information content, we get an alternative
visualization of the same model, shown in Figure 3.1b.

In Figure 3.2 an example ADM motif is visualized as a river-lake logo.
The visualization is a slight modification of the one used in Morgunova et
al [52].

3.2.8 Distance between models

In order to assess the success of learning of motif models, it is useful to
have a concept of distance between the models. If we have a “ground truth”
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Figure 3.2: Visualization of an ADM motif. The radius of circles reflects
the probability of reaching the corresponding state, and the thickness of the
edges are proportional to the probabilities of the corresponding dinucleotides.
A circle and the edges leaving it (in left-to-right direction) are not drawn, if
the probability of the state is less than 0.05. This river-lake logo for factor
HNF4A is from Paper III.

of what the target model should be, then our learning algorithm should
produce a model which is close to the ground truth model. And even if we
do not know the ground truth, the distance measure allows us to reason
whether an iterative learning method converges to a model or not. Next we
present a few commonly used distance measures for motif models.

Max norm

The max norm distance between two discrete distributions p and q is defined
by d(p, q) = maxi |pi − qi|. This is an intuitive distance, but is not a very
natural distance for distributions. For PPMs θ1 and θ2 we define the max
norm distance with

d(θ1, θ2) = max
a∈Σ,1≤h≤�

|θa,h1 − θa,h2 |,

and for ADMs θ1 and θ2 as a distance between dinucleotide probabilities:

d(θ1, θ2) = max
a,b∈Σ,1≤h≤�

|θa,h−1
1 θab,h1 − θa,h−1

2 θab,h2 |.

Symmetric Kullback–Leibler divergence

The symmetric Kullback–Leibler divergence is defined as Dsymmetric(p, q) =
D(p||q) +D(q||p). This measure is symmetric, but the triangle-inequality
does not hold for it. The square root of the Jensen–Shannon divergence

√
DJS(p, q) :=

√
1

2
D(p||r) + 1

2
D(r||q),
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where distribution r := 0.5p + 0.5q, satisfies all three requirements of a
distance measure, for proof see [22].

Total variation distance

The total variation distance between two discrete distributions is defined by
δ(p, q) = 1

2

∑
i |pi−qi|. This distance is automatically symmetric and suitable

for measuring the distance between distributions. The total variation
distance works trivially for both PPM and ADM motifs by defining pX =
Pθ1(X) and qX = Pθ2(X). However, the computation of the total variation
distance between two wide models is computationally heavy.

3.3 Co-Operative Binding model

In this section we introduce a representation for the strength of different
dimeric binding cases.

As we mentioned in Chapter 2, the binding energies of two transcription
factors might not be additive. It seems plausible that as the distance
between the two binding sites increases, the probability of co-operative
binding should decrease. To analyze the variation of the probability of
dimeric binding as the function of the distance between the binding sites, we
systematically measure the relative preference of each distance and present
these values in array form. We define the distance between sites as the
number of bases in the gap between the sites. We allow the distance to be
negative, that is, the binding sites are allowed to overlap.

In addition to the distance between the binding sites, also the relative
orientation of the two TFs affects the strength of the binding. If we assume
that the TF molecule is not fully symmetric, then the TF bound to DNA
has a direction. In case of two TFs bound to DNA, the TFs and their
binding sites can either have the same direction or opposite. If we further
assume that the two TFs are different, then the TFs can, in addition, be
ordered in two ways. This gives in total four possible relative orientations of
the binding sites, which we name Head-to-Tail (HT), Head-to-Head (HH),
Tail-to-Tail (TT), and Tail-to-Head (TH). These relative orientations are
illustrated in Table 3.2. If we have two copies of the same TF, then only
three orientations are possible, as the orientations HT and TH indicate the
same case. We refer to the dimer formed by different TFs as heterodimer,
and the dimer formed by copies of the same TF as homodimer. In Figure 3.3
four heterodimeric cases are visualized.

For each TF pair, distance and orientation we assign a probability. This
is the probability of a (short) sequence, known to have likely been bound by
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a

b

d

c

Figure 3.3: Four different heterodimeric cases with distance d and relative
orientation o. The threshold δ is the minimum distance when the two
binding sites are considered independent. Exponent −1 denotes taking the
reverse complement of the binding model. Box ψ indicates the region of the
model in which co-operative effects are anticipated to occur.
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Table 3.2: Relative orientation of two motif occurrences within a dimer.

Orientation o Short-hand

Head-to-Tail HT → →
Head-to-Head HH → ←
Tail-to-Tail TT ← →
Tail-to-Head TH ← ←

Figure 3.4: An example COB table. The rows correspond to orientations
o and the columns correspond to distances d between the binding sites,
measured as the number of positions between the sites. Negative distance
specifies that the sites overlap. The individual values are probabilities of
the corresponding dimeric case. The sum of values in the COB table is at
most 1. Values below a threshold (by default 0.001) are denoted by a dash
character. As this COB table is for a homodimer, only three orientations
are possible (by symmetry, orientation HT equals orientation TH).

both factors, to contain exactly this dimeric binding site. These probabilities
are represented as Co-Operative Binding tables (COB). Formally, a COB
table between two factors, θk1 and θk2 , is a two-dimensional array (λk1k2od),
whose rows are orientations o, columns are distances d, and values are in
the interval [0, 1]. As the individual values in the array are probabilities,
their sum cannot exceed 1. A visualization of an example homodimeric
COB table is shown in Figure 3.4. In this thesis we do not consider more
complicated binding modes, such as trimers that consist of co-operative
binding of three TFs, as the number of interaction models (generalization of
COB table) increases exponentially with the number of TFs taking part in
the interaction model. We instead assume that a sequence contains either
zero, one, or two binding sites.

We have earlier [34] considered a COB table that used the concepts of
distance and orientation, but whose entries, instead of probabilities, were
log-ratios that measured the over- or under-representation of each dimeric
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case comparing the number of occurrences observed in a data set against
the number of expected occurrences in a background model. There were
mainly three problems with this approach. Firstly, an arbitrary threshold
for binding score needed to be set in order for us to be able to count the
number of occurrences. Secondly, the approach was not flexible enough
to handle overlapping dimers well. Thirdly, it did not allow comparison
of strengths of monomeric and dimeric binding modes, because it did not
form a total probability model. All these problems are handled by our new
method, called MODER, that is described in Chapter 5.

Multiple methods have been proposed to discover binding motifs that
comprise two parts, that is, dimeric motifs. For instance Bioprospector [46]
allowed variable spacing between two half-sites. This enabled finding the
motifs for the two half-sites from cases where both factors are bound within
a short gap range (for example 1–4 bp). From the predicted binding sites
in the input sequences, the observed gap lengths can be listed, but as at
that time the number of sequences was typically less than 100, conclusions
about preferred distances and possible interactions between the two factors
do not have much evidence. Although Bioprospector allows detection of
palindromic homodimers of the same TF, different relative orientations are
not considered in general.

Bipad [9] and its improved version MaskMinent[47] also allow discovery
of motifs consisting of two parts, in addition to contiguous motifs. The
distance between the two parts can vary, and all four relative orientations are
considered, but the distribution of orientations or the joint distribution of
orientations and distances are not discussed in the articles. The distributions
of distances are visualized as histograms.

After the introduction of high-throughput TF binding experiments,
which provide thousands of sequences expected to be bound by a TF, many
new methods appeared that considered the over-representation of motif
occurrence pairs. Of these coMOTIF [86] is closest to our method. Both use
a total probability model, which allows zero, one, or two motif occurrence
per sequence. coMOTIF does not explicitly give the distribution of distances
between the two binding sites, but it does consider the distribution of the
number of occurrences per sequence and the four relative orientations in
the case of two occurrences. The method does not allow consideration of
homodimers.

SpaMo [84], iTFs [38], and TACO [33] consider different distances
between occurrences and all four relative orientations. Of these only TACO
allows overlapping dimers. None of the three methods propose a standard
representation for the distribution of different orientation and distance
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combinations. SpaMo shows the frequencies of distances as a histogram for
each relative orientation. iTFs bins distances into the following categories:
0–10 bp, 10–25 bp, 25–50 bp, and 50–100 bp. For each factor pair the
p-value of the combination of distance category and relative orientation
is listed. TACO visualizes for a motif pair the p-values as a function of
distance as a heatmap.
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Chapter 4

Applying motif models

In this chapter we will briefly give three application areas for binding models.

4.1 Scanning genomes for putative binding sites

One application of the binding models of TFs is to scan the whole genome
of an organism to find putative binding sites. Clustering of binding sites
may indicate a regulatory area of a gene. A threshold for the score must be
defined so that a locus whose score by the binding model is equal or above
this threshold is declared as a binding site. This threshold is often based on
a p-value threshold. For example, consider a p-value threshold 0.001 and a
background model θ0. For the significance threshold 0.001 there corresponds
a score threshold T such that the probability of a sequence distributed
according to the background model getting score at least T is (about) 0.001.
For example the MOODS software [39, 40] uses this method to efficiently
locate putative binding sites from a genome. FIMO is another example of a
binding site searching software [28]. Instead of p-values, it uses q-values [75]
to decide the score threshold in order to handle multiple hypothesis testing.
Note that when scanning the human genome for binding sites of length �,
the number of tests performed is very large; roughly equal to the size of
the genome 3 · 109. So, the multiple hypothesis testing correction, such as
the Bonferroni correction, where the significance threshold is divided by the
number of the tests, cannot be neglected. The Bonferroni correction may
however be too conservative as the probabilities of overlapping binding sites
are not independent.

The well known genome browser Ensembl [89] uses MOODS and sets
of published PPMs [35, 36, 53] to annotate the human genome with the
putative TF binding sites [23, 88].

25
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High-affinity binding sites of a TF can also appear in a genome just by
chance. Therefore, to avoid false positives, it may be useful to restrict the
search to the parts of genome that contain open chromatin. These cell type
and development phase-dependent areas of a genome can be obtained, for
example, using the DNase-seq experiment [12].

4.2 Classifying factors using motif similarity

Binding models have also been used to create a network representation of
their similarity. Jolma et al [34] produced a set of PPM models for 411 TFs
(human and mouse) and using a similarity measure for the models a network
representation was created. Since many of the models were very similar to
each other, a representative model was chosen among the similar ones. This
resulted in a dominating set of 239 representative PPMs. This offers an
alternative view to the set of TFs, complementing the ones obtained through
protein sequence similarity or 3D structure similarity. The subnetworks
in the representation seemed to be in accordance with the established TF
families.

To measure the divergence of binding specificities of TFs between human,
mouse, and fruit fly, Nitta et al [53] obtained accurate binding models for
orthologous TFs of the three species using identical methods. Using a motif
similarity measure, the divergence of the binding sites was noted to be
surprisingly small.

4.3 Predicting the effect of mutations in binding
sites on binding strength

Single Nucleotide Polymorphism (SNP) is the most common type of genetic
variation in human genome [14]. The 1000 Genomes Project [14] listed
84.7 million SNPs. Only a fraction of these are functional. Besides SNPs
in coding regions, the regulatory regions can also contain SNPs that can
affect the regulation of genes, called regulatory SNPs (rSNPs). Since testing
the function of rSNPs experimentally is expensive, many computational
methods have been developed to predict them [4, 48, 63, 78, 92]. Most of
them test whether an SNP has a significant effect on the binding affinity of
a TF.

As an example of how different variants of a regulatory SNP can affect
the development of a disease, two studies [58, 81] have shown that the
G-variant in rSNP rs6983267 can increase the risk of colorectal cancer. Each
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of the studies describe a different mechanism for how the risk variant can
lead to the disease by changing the binding probability of different TFs.
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Chapter 5

Learning models

In this chapter we go through the main results of this thesis, namely, the
learning algorithms of monomeric and dimeric motifs for both 0th and 1st
order Markov chains, and the COB tables. In Section 5.1 we briefly describe
some biological experiments that can provide data for learning algorithms.
In Section 5.2 we introduce the combinatorial SeedHam method, and in
Section 5.3 we introduce the EM-based learning algorithm called MODER.
Learning of COB tables is discussed in Section 5.4, and Section 5.5 is about
learning ADM models. In Section 5.6 some other approaches that have
previously been used to learn binding models are reviewed. Section 5.7
discusses the evaluation of the goodness of the learned models.

5.1 Experimental data for learning binding models

Molecular biological experiments can be divided into two classes: in vitro
and in vivo methods. In vitro experiments study some feature in isolation,
whereas in vivo experiments study a feature as part of a cell line, a living
tissue or an organism. The data, from which one can try to learn binding
models, can be obtained from several different biological experiments. In
vitro methods consider binding of TFs to a set of short DNA sequences,
called oligonucleotides. In the case of in vivo methods, however, the binding
of TFs to DNA happens to full length chromosomes, which are folded into
packed chromatin, in the presence of other proteins that a living cell contains.
Since the structure of chromatin and the set of proteins contained in a cell
depends on its cell and tissue type, in vivo methods must be performed
separately for each tissue type and cell line. In the rest of this section we
briefly cover two in vitro methods and one in vivo method.

29
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5.1.1 In vitro methods

SELEX is an in vitro method that was originally introduced in the beginning
of the 1990s [54, 80], and was later converted into a high-throughput method
[36, 91]. The HT-SELEX experiment starts with a large set of fixed length
(typically 14–40 bp) random DNA sequences. Then copies of a TF are
added, and those oligonucleotides that were bound by the TF are selected.
The selected oligonucleotides are amplified using PCR (Polymerase Chain
Reaction), and a fraction of the oligonucleotides are sequenced, while for the
rest the procedure is repeated. Several rounds can be performed, and from
each round a sample is sequenced. In each round the relative abundances of
different sequences are enriched according to the affinity of the binding sites
of the TF they contain. HT-SELEX can result in hundreds of thousands
or even millions of sequences per round. CAP-SELEX [35] is a modified
version of SELEX, which allows selection of oligonucleotides that were
simultaneously bound by two different TFs. This gives information about
the heterodimeric binding sites.

Protein Binding Microarray (PBM) contains oligonucleotides of length
L attached from the other end to the array. Each single spot on the array
has several copies of the same oligonucleotide. The oligonucleotides are
designed to contain all possible k-mers. Typically the length L is 60 bp and
the value of k is 10 bp [8]. Then, fluorescently marked TFs are allowed to
bind to the array, and the intensity of each spot is measured using laser.
The intensity is proportional to the amount of TFs bound to that spot.
The result of the experiment is a list of oligonucleotides with corresponding
intensities. For longer binding sites, especially for dimeric sites, PBM might
not produce enough different sequences to obtain accurate models.

5.1.2 In vivo method

Chromatin ImmunoPrecipitation followed by sequencing (ChIP-seq) [64]
can give information about the binding sites of a TF in the tissue type
under consideration. First, the bound proteins are fixed to the chromatin
using formaldehyde. Then the nuclei of the cells are extracted, and the
genome is broken into short pieces. The pieces that were bound by the
TF are selected using an appropriate antibody. The selected pieces are
amplified using PCR and then sequenced. The resulting sequence reads
are mapped to the genome, and over-represented regions in the genome
are likely to contain binding site(s) of the TF. The degree of enrichment
can give a score for the region. As the width of the enriched regions can
be hundreds of base pairs, the resolution of the binding site location is not
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very good. Versions of ChIP-seq, such as ChIP-exo [61] and ChIP-nexus
[29], have been developed to improve the resolution.

5.2 SeedHam method

In this section we give a high-level overview of the SeedHam algorithm,
presented in Paper I. It can be used for obtaining a PPM for a TF from count-
based data, such as SELEX or ChIP-seq data. The idea can be extended
to ADM models as shown in Paper III. In addition to the set of sequences
in which we know the binding sites of the TF are enriched, the length � of
the binding model/sites needs to be known. The most common �-mers can
be assumed to have high affinity towards the TF under investigation. We
choose one such common subsequence as the seed, from which we build the
binding model. Furthermore, the �-mers that are within a small Hamming
distance from the seed are likely to have relatively high affinity towards the
TF as well. So, all the occurrences of the small Hamming neighbourhood of
the seed are declared as binding sites, and by aligning them in a special way,
we obtain a binding model. If the positions in the binding sites of the TF are
assumed to be independent, or if dependencies are assumed to appear only
between the adjacent positions, a small Hamming neighbourhood should
contain all the information necessary to obtain accurate models, provided
the data is large enough.

So, the SeedHam algorithm consists of three phases:

• Find a seed s of length �;

• Locate all occurrences of the Hamming neighbourhood of the seed s
in the data;

• Align the occurrences to obtain a binding model.

However, all these phases have details which complicate the algorithm. We
will address the problems of each phase in turn in the subsequent subsections.

5.2.1 Finding the seed

Although the most common �-mer in the data is a more or less unique
sequence, it might not always be the one we want to use. There are some
TFs, such as HOXB13, that seem to have two different binding profiles [51].
There should be two seeds corresponding to the two profiles. When the
SeedHam algorithm is started using a seed of a profile, the result should be
the binding model for the profile corresponding to that seed.
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Figure 5.1: The curved lines indicate the information content of the dimeric
motif as the function of position. The most common �-mer corresponds
to the middle part of the dimer (solid line box) instead of either of the
half-sites (dotted line boxes).

Even if a TF does not have multiple monomeric binding profiles, there
may still be in the data enriched subsequences that belong either to mono-
meric binding sites of the TF or to different dimeric binding sites. The most
common �-mer of the data could be, for example, just a middle section of
a dimeric binding site instead of a monomeric binding site, see Figure 5.1.
Some kind of global analysis of the enriched subsequences in the data could
be used to decide which subsequences are monomeric or dimeric binding
sites, and which are just shifts of the full binding sites.

The data might also contain repetitive low-complexity sequences (like
ACACACAC), especially in ChIP-seq data, that are very frequent, but
might not have anything to do with TF binding sites. These could first be
masked, for example with RepeatMasker [74], before finding the common
�-mers in the data. Or alternatively, low-complexity sequences could be
rejected as seeds, by requiring that all four bases be included in the seed,
as has been done in BEESEM [65].

Finally, the selection of the seed may affect the ambiguity between
selecting a binding site or its reverse complement, in case both belong to
the Hamming neighbourhood of the seed. This will be further discussed in
the next subsection.

5.2.2 Locating the occurrences of the Hamming
neighbourhood

As the SeedHam algorithm is designed for learning monomeric models only,
we assume that the data does not contain overlapping dimeric occurrences.
However, even if we assume that the TFs had not bound overlapping sites in
the data, there may still be occurrences of Hamming neighbours of the seed
partly overlapping the real binding sites. These occurrences appear out of
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Figure 5.2: A true occurrence (solid black bar) induces two artefact occur-
rences (hollow box) in separate strands. Two false occurrences rise purely
from the background (dotted hollow box).

randomness, and can occur in either DNA strand, see Figure 5.2. For exam-
ple, if we assume that in positions 4–9 of sequence GCTACTACTGTAGT
there is the true occurrence ACTACT and the other positions were dis-
tributed randomly, then, with high probability, there are occurrences of the
Hamming neighbourhood of ACTACT with radius 1 in positions 1–6 and,
as reverse complement, in positions 9–14. The probability of these artefact
occurrences depends on the self-similarity of the binding model θ. Some
occurrences of the Hamming neighbours of the seed can also come purely
from the background.

Let us assume that we know the binding model θ, the background model
θ0, and the fraction λ of the sites that are true binding sites. Assume further
that there are N �-windows in the data X, that is, there are N possible
locations where the TF could bind in theory. The relationship between the
total counts of �-mers and the counts of artefact occurrences and the real
binding sites is described by the equation

count(u) =λN(Pθ(u) + Pθ(u
−1))

+ (1− λ(2�− 1))N(Pθ0(u) + Pθ0(u
−1))

+ λN
�−1∑
|j|=1

(Pθj (u) + Pθj (u
−1)),

(5.1)

where u ∈ Σ�. The models θj are formed by prepending (appending) the
prefix (suffix) of length �− j of θ with j copies of background model θ0, if j
is negative (positive). The first term counts the real occurrences (type i),
the second term of the right-hand side corresponds to �-mers arising purely
from the background distribution θ0 (type ii), the third term corresponds to
�-mers arising partly from the background and partly from the real binding
site (type iii). When locating the binding sites of the TF for alignment,
the sites of type (ii) and (iii) must be ignored, as they are not distributed
according to the binding model θ. False occurrences of type (ii) are easy to
remove, if we have an estimate for the signal fraction λ and the background
model θ0. However, subtracting false occurrences of type (iii) would require
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knowing the binding model θ as well, which is what we are trying to learn.
An ad hoc iterative approach where an estimate for θ could be used to obtain
a better estimate. But there are no guarantees that this would converge
to the correct binding model. Another alternative approach is presented
in Paper I, where an occurrence of a Hamming neighbour is selected if
all overlapping occurrences are farther away from the seed in Hamming
distance than the occurrence under consideration. This heuristic method
may cause bias to the selected occurrences, though.

There is also a problem with choosing the correct orientation of the site.
Two things can go wrong here:

• If both u and u−1 are Hamming neighbours of the seed, then only
one of them should be selected, as the TF cannot bind both ways
simultaneously.

• Even if only one of the orientations, say u, give an �-mer which is a
Hamming neighbour of the seed, we might still want to exclude it.
This is because the correct orientation could be u−1, which is not a
Hamming neighbour of the seed, and should therefore be excluded.

The choice of the seed has an effect on the uniqueness of the orientation, as
is further discussed in Paper I. In brief, the seed s should be such that the
Hamming neighbourhoods of s and s−1 intersect as little as possible.

The choice of the radius of the Hamming neighbourhood should be based
on the size of the data, the signal strength, and the length of the model. If
the data is small but the signal is strong then a higher radius gives more
accurate results. Otherwise a small radius should be preferred, because a
high radius may introduce noise to the model. For PPM models the radius
needs to be at least 1, and for ADM models it needs to be at least 2. The
effect of different Hamming radii on learning PPM and ADM models is
analyzed in more detail in Papers I and III.

5.2.3 Aligning the occurrences of the Hamming
neighbourhood

Locating the putative binding sites using the Hamming neighbourhood of a
seed has the unfortunate effect that the predicted sites cannot be directly
aligned anymore. In more detail, assume that we have a multiset A of
binding sites that are correctly oriented and that are sampled according to
the distribution given by the binding model θ. So, aligning the multiset A in
the standard way should approximately give the binding model θ. Let s ∈ A
be a relatively frequent �-mer and ρ be a Hamming radius. Now we can
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define a subset B = {u ∈ A|h(s, u) ≤ ρ} ⊂ A. The standard alignment of
this multiset does not give the binding model θ, as B is a biased sample of A.
This bias can be corrected by using a special alignment. Let us first assume
that the binding model is a PPM. For each column j of the binding model we
have to use a corresponding subset Cj of B, whose alignment gives correct
distribution for column j. Specifically, each element u ∈ Cj can have at most
ρ− 1 mismatches against the seed s outside the column j. (In the special
case that sj = N, we have Cj = B.) This way each nucleotide in position j
is treated equally. Had we instead allowed the full set B for the alignment
of position j, then for nucleotide sj more mismatches outside position j
would have been allowed than for other nucleotides. In the case of an ADM
model the correction is more complicated due to the dependencies between
adjacent positions. The correct way to align Hamming neighbourhoods is
derived in Paper III.

5.2.4 Time and space complexities

The basic form of the SeedHam algorithm for learning a PPM has time
and space requirement O(|X|+ � ·min(|X|,K)), where K is the number of
distinct sequences in the Hamming neighbourhood of the seed. But if the
artefact subtraction is used, there will be an additional term exponential
in �.

The SeedHam algorithm for learning an ADM model, essentially Algo-
rithm S1 in Paper III, has time-complexities O(�ρ) and O(�min(ρ, �)) for
initialization (lines 1–2) and bias correction (lines 11–27) phases, respec-
tively. Since the counting phase (lines 3–10) takes the same time as for the
PPM version, the total time-complexity is again O(|X|+ � ·min(|X|,K)).

5.2.5 Related work

Berger et al [8] have used a similar alignment method for learning PWMmod-
els (using fixed Hamming radius 1) from PBM data without any justification
for correctness. Later this method has been dubbed Seed-and-wobble.

There have been many methods that tried to find over-represented motifs
from data, where the motifs were (restricted) IUPAC sequences [10, 24, 73].
In all these methods the over-representation is defined by the Z-score, and
the artefact motifs are the main problem. The difference between these
methods and SeedHam (in addition to using different types of motif) is that
SeedHam tries to learn a single model and handles artefacts at the occurrence
level, whereas the other methods try to learn multiple motifs and handle
the artefacts at motif level. DECOD [31] learns multiple PWM models by
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masking the previously found motifs from the data before finding the next
motif. The problem of shifted motifs is handled using deconvolution.

5.3 EM algorithm

The EM algorithm (Expectation Maximization) [16] is a framework of
algorithms whose instances can be used to find a maximum likelihood
parameters for model η and data X specific to that instance. We want to
maximize

P (X|η) (5.2)

over all distributions given by parameters η. In case finding the maximum
by derivating this likelihood function is hard, one may try to apply the EM
algorithm instead. It assumes there are hidden variables Z which make
the maximization easier if they are known. Then the likelihood of the
model is considered on the condition that the additional hidden data is
given: P (X,Z|η). The single maximization task is replaced by a sequence
of simpler maximization tasks. If we assume we have an estimate for
the parameter η, say η(t), then we first try to compute the expectation
EZ|X,η(t)P (X,Z|η) using the estimated parameters and the data. This is
the expectation phase of the algorithm. Then in the maximization phase
we compute the next estimate η(t+1) := argmaxη EZ|X,η(t)P (X,Z|η). If we
start from some initial parameter η(0), possibly chosen randomly, we get
a sequence of parameters η(0), η(1), η(2), . . .. It can be shown that in this
sequence the next parameter gives better likelihood in Expression 5.2 than
the previous parameter, unless the algorithm already converged [16].

If the likelihood function is bounded from above, then the EM algorithm
must converge. Note that there are families of distributions, such as the
exponential families, for which the expectation and maximization phases
are of particularly simple form. For an EM algorithm to work, however, it
is enough that we can compute the expectation and maximization, as we
have done below.

There is a risk that the algorithm converges only to a local maximum,
not global. This risk can be reduced by starting the EM randomly from
several different starting points. Or alternatively one can try to use a single
good starting point, which is expected to be close to the global maximum.

As a more concrete instance of the EM algorithm we will discuss esti-
mating a probabilistic mixture model composed of a background model θ0
and p PPM models θ1, . . . , θp. The observed data X consists of n nucleotide
sequences of length �. For simplicity, we assume first that each PPM motif
has width �, then later we show how to generalize this to the case where the
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motif width can be shorter than the length of the sequences. Each sequence
Xi is assumed to be generated randomly by one of the models of the mix-
ture. The probability of each model is given by the non-negative weights
λ0, λ1, . . . , λp (mixing parameters) that sum up to 1. In this example we
define the hidden variables so that variable Zik is 1 if the ith sequence was
generated by model k, and 0 otherwise, for i = 1, . . . , n, k = 0, 1, . . . , p. We
have λk = P (Zik = 1) for any i = 1, . . . , n, k = 0, 1, . . . , p. The total model
η is then (λ0, λ1, . . . , λp, θ0, θ1, . . . , θp). If the sequence Xi was generated by
the background model θ0, then its probability is

P (Xi|Zi0 = 1, θ0) =
�∏

h=1

θXih
0 . (5.3)

If on the other hand the sequence was generated by PPM θk, then its
probability is

P (Xi|Zik = 1, θk) =
�∏

h=1

θXih,h
k . (5.4)

In the EM algorithm, instead of maximizing the likelihood, we maximize the
logarithm of the likelihood to ease the computations. Since the logarithm is a
monotonically increasing function, the maximum of the log likelihood occurs
in the same point as the maximum of the likelihood. The log likelihood of
model η given complete data X and Z is

logP (X,Z|η) = log

n∏
i=1

p∑
k=0

ZikλkP (Xi|Zik = 1, η). (5.5)

Since, for any i = 1, . . . , n, only one of the variables Zik has value 1, we get

logP (X,Z|η) =
n∑

i=1

p∑
k=0

Zik log(λkP (Xi|Zik = 1, η)). (5.6)

When computing the expectation of the log likelihood, by linearity of
expectation, we only need to compute the expectation of the hidden variables.
We denote these by lowercase z. By Bayes’ rule we get

z
(t)
ik := E[Zik|X, η(t)] = P (Zik = 1|Xi, η

(t)) =
λ
(t)
k P (Xi|Zik = 1, η(t))

P (Xi|η(t))
.

(5.7)
The denominator can be computed as

P (Xi|η(t)) =
p∑

k=0

λ
(t)
k P (Xi|Zik = 1, η(t)). (5.8)
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In the maximization phase we now need to compute

argmax
η

n∑
i=1

p∑
k=0

zik(log λk + logP (Xi|Zik = 1, η)). (5.9)

By reordering the terms we get

η(t+1) := argmax
η

[ n∑
i=1

p∑
k=0

zik log λk

+
n∑

i=1

zi0 logP (Xi|Zi0 = 1, θ0)

+

n∑
i=1

p∑
k=1

zik logP (Xi|Zik = 1, θk)
]
.

(5.10)

As the three parts above only depend on parameters λ, θ0, and θk, respec-
tively, they can be maximized separately.

Let us first compute argmaxη
∑n

i=1

∑p
k=0 zik log λk. By reordering we

get argmaxη
∑p

k=0(
∑n

i=1 zik) log λk. We define ek :=
∑n

i=1 zik and claim
that ek∑

k′ ek′
, for k = 0, 1, . . . , p, is the maximum likelihood estimate for

parameter λk. We proof this with Gibbs’ inequality, which states that for
distributions p and q

p∑
k=0

pk log qk ≤
p∑

k=0

pk log pk, (5.11)

where equality holds if and only if pk = qk for all k = 0, . . . , p. If we now
set pk = ek∑

k′ ek′
and qk = λk, we get

p∑
k=0

ek∑
k′ ek′

log λk ≤
p∑

k=0

ek∑
k′ ek′

log
ek∑
k′ ek′

. (5.12)

By multiplying both sides by
∑

k′ ek′ we get

p∑
k=0

ek log λk ≤
p∑

k=0

ek log
ek∑
k′ ek′

. (5.13)

So, by Gibbs’ inequality the maximum is attained when λk = ek∑
k′ ek′

.

Maximizing the second part gives new estimate θ
(t+1)
0 for the background

model parameters. The second part is
n∑

i=1

zi0 log
∏
a∈Σ

(θa0)
Nia =

n∑
i=1

zi0
∑
a∈Σ

Nia log θ
a
0 =

∑
a∈Σ

(

n∑
i=1

zi0Nia) log θ
a
0 ,

(5.14)
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where Nia is the count of nucleotide a in sequence Xi. If we denote ea =∑n
i=1 zi0Nia, then using the same reasoning as above with the mixing

parameters, we get new estimates θa0 = ea∑
a′∈Σ ea′

for all a ∈ Σ.

Finally, in the third part we have

n∑
i=1

p∑
k=1

zik log

�∏
h=1

θ
Xih,h

k =

n∑
i=1

p∑
k=1

zik

�∑
h=1

log θ
Xih,h

k

=

p∑
k=1

�∑
h=1

∑
a∈Σ

(

n∑
i=1

[Xih = a]zik) log θ
a,h
k ,

(5.15)

where [Xih = a] is 1 or 0 depending on whether the equality holds or not,
respectively. Let us write ekah :=

∑n
i=1[Xih = a]zik. Since the columns of

PPM models are independent, we get new estimates for each k = 1, . . . , p
and h = 1, . . . , � by θahk = ekah∑

a′∈Σ eka′h
using the same reasoning as earlier.

The more general mixture model where the length � of models can be
shorter than the sequence length L can be obtained by using hidden variables
Zikj that have value 1 only when the model θk has generated the occurrence
starting in position j of sequence Xi. The sum Zi0 +

∑p
k=1

∑
j Zikj of

hidden variables for a sequence Xi is required to be 1. Then Equation 5.4
is replaced by equation

P (Xi|Zikj = 1, θk, θ0) =
∏

h<j or j+�≤h

θXih
0

j+�−1∏
h=j

θXih,h−j+1
k . (5.16)

And in the maximization phase the terms corresponding to the background
model are collected together for estimation of parameter θ0.

In addition to this relaxation, the MODER implementation has several
other generalizations. For example, the sequences do not need to have the
same length, so we denote the length of sequence Xi with Li. Also, we
have included the SeedHam-style restriction of learning of a model to the
Hamming neighbourhood of a seed to prevent close-by models from interfer-
ing with each other, and to speed-up the implementation. Furthermore, in
Paper III the EM algorithm is extended to include learning of ADMs, see
also Section 5.5.

Since the data takes nL space, the model takes 1+p+4+4p� space, and
the hidden variables take space np(L− �+ 1), the total space complexity is
O(nL+ p�+np(L− �+1)). Computing the probabilities in the expectation
phase takes O(np(L− �+ 1)�) time, and maximizing the models also takes
time O(np(L− �+ 1)�) per iteration.
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Method Time (hh:mm:ss) Iterations

PPM monomer 00:03:11 7.24
ADM monomer 00:31:57 69.99
PPM with COB 09:49:11 27.73
ADM with COB 19:16:26 100.39

Table 5.1: Average running times and numbers of iterations over runs of
314 SELEX data sets of 95 485–1 294 346 sequences of length 40 bp. The
reported time is the CPU time.

Lawrence and Reilly [44] first presented an EM algorithm for learning
a motif model from a set of sequences. The algorithm assumed that every
sequence contained at least one occurrence of the motif (OOPS, One Oc-
currence Per Sequence). Bailey and Elkan [7] extended this to a ZOOPS
model (Zero or One Occurrence Per Sequence) in their widely-used program
MEME by using a mixture model of two components: background sequence
and motif sequence. Above we have extended this mixture model to include
multiple motif models.

The main problem in MEME is its slowness. MEME takes all possible
nucleotide sequences of given length, then builds an initial seed model for
each of these sequences and runs EM for a few rounds to see if it starts
to converge. Then the best seeds are run to convergence. Secondly, after
convergence, several significance tests are run to decide, which binding sites
to align to get the final model. As MODER does neither of these steps, it
can handle also large data sets in reasonable time, see Table 5.1.

SEME [90] tries to improve this by using importance sampling to use
only a small portion of the data to learn the model. They claim this improves
both the speed and accuracy of the algorithm. SEME also allows modifying
the binding model length during the run. Also EXTREME [59] tries to
reduce the time requirement of MEME. It uses an online EM algorithm in
which at each iteration only a single new sequence is considered. It also
uses over-represented subsequences as seeds for the algorithm. STEME [60]
is yet another MEME variant aiming for faster operation. It uses a suffix
tree to implement an approximation of the EM algorithm.

Omidi et al [55] use an EM algorithm to learn the parameters of their
Dinucleotide Weight Tensor (DWT), which models all pairwise dependen-
cies. InMoDe [20] learns an inhomogeneous Parsimonious Markov Model
(iPMM), which allows a Markov model with varying context lengths. It
uses a variant of the EM algorithm, which optimizes the BIC-score [69] (see
Subsection 5.7.4) instead of likelihood.
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5.4 Co-Operative Binding model

We can use the EM algorithm to estimate COB tables. For each dimeric
case k1k2od we add to our mixture model the weight λk1k2od and the corre-
sponding binding model τk1k2od. In the case where the distance d ≥ 0 the
dimeric binding model can be though to be built from the pair (θk1 , θk2)
of monomeric binding models. The parameters θk are then derived from
the monomeric cases of the kth model and from the dimeric cases kk′od
and k′kod for any k′ = 1, . . . , p, orientation o, and distance d ≥ 0. In the
overlapping case (d < 0) the situation is more complicated and is discussed
in Paper II, for PPMs, and in Paper III for ADMs.

The coMOTIF method [86] uses a similar mixture model and an EM
algorithm to learn it, but as its interest is mainly in refining the monomeric
models and finding out which TFs like to bind together, it does not output
anything similar to our COB table, even though it could.

Bioprospector [46] uses Gibbs sampling to learn two PPMs and a list
of two-block sites. But no representation for distribution of distances and
orientations is given, possibly since at that time the binding data was scarce.
Bipad/MaskMinent [9, 47] first chooses a random multiple alignment of
bipartite sites, and then tries to greedily improve the information content of
the multiple alignment by modifying it a sequence at a time. This is repeated
until the information content does not improve anymore. This procedure is
started from several random initial points to avoid local maximum. The
algorithm represents the distribution of orientation and distance only in
an ad hoc manner, as histograms. SPAMO [84] gets as inputs a ChIP-seq
data for a TF, a PPM model (primary motif) for the TF, and a database of
PPMs (putative secondary motifs) whose co-occurrences with the primary
motif are tested. The frequencies of distances between binding sites of
primary and secondary motifs are displayed as separate histograms for each
orientation. The statistical significance of a fixed distance is tested using
a binomial test based on the null model, which assumes each distance is
equally probable. iTFs [38] uses a given database of binding motifs and
FIMO scanner [28] to find occurrences of the motifs in genomic data. The
distance and orientation of adjacent occurrences are recorded, and Fisher’s
exact test is used for finding significant biases in (i) orientation, (ii) distance,
and (iii) distance specific to an orientation. Distances are binned into the
following bins 0–10 bp, 10–25 bp, 25–50 bp, and 50–100 bp. TACO [33]
gets a set of regulatory regions from a genome and a database of motifs
as inputs. Over-represented dimeric motifs are ranked according to their
p-values.
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5.5 Learning ADM models

Paper III extends the EM algorithm from Paper II so that it can handle
both inhomogeneous zeroth and first order Markov chains as binding models,
that is, PPMs and ADMs. As the algorithm framework is similar for both
model types, we list here only the parts that change in the ADM model
case.

The joint likelihood of the model parameters η, given data X and missing
information Z, has exactly the same form as with PPMs:

L(η|X,Z) = P (X,Z|η) =
n∏

i=1

(
Zi0 · λ0 · P (Xi|Zi0 = 1, η)

+
∑

k∈M∪D+∪D−

∑
j∈Sik

Zikj · λk

|Sik| · P (Xi|Zikj = 1, η)
)
.

However, the probabilities of sequences are computed differently, as
the model η now contains ADMs instead of PPMs. In Section 3.2.3 we
represented the ADM model as a matrix θ with shape 16× � whose elements
θab,h, a, b ∈ Σ, 1 ≤ h ≤ � are the transition probabilities P (Xh = b|Xh−1 =
a). The probability of a sequence X = X1X2 · · ·X� given by the ADM
model θ is

P (X) =
∏

1≤h≤�

P (Xh|Xh−1) =
∏

1≤h≤�

θXh−1Xh,h =
∏

1≤h≤�

θ[Xh−1Xh, h].

Note that we define X0 to be A, so that the initial probabilities P (X1 = b) =
P (X1 = b|X0 = A) = θAX1,1 get treated symmetrically with the transition
probabilities. With the ADM models we use notation θb,h := P (Xh = b) for
the probability of symbol b in position h, that is,

θb,h =
∑

a1,...,ah−1∈Σ
θAa1,1θa1a2,2 · · · θah−1b,h

for b ∈ Σ, 1 ≤ h ≤ �.

The reverse complement θ−1
k of θk is an ADM such that

θ−1
k [ab, h] =

θk[ba, �k − h+ 2]θk[b̄, �k − h+ 1]

θk[ā, �k − h+ 2]
,

where ab denotes the complementary dinucleotide āb̄ (e.g., AC = TG). If
the denominator is zero, we define θ−1

k [ab, h] = 0 for all b ∈ Σ.
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The SeedHam-style restriction of learning of a binding model to the
Hamming neighbourhood of a seed is slightly more complicated in the ADM
case because of the dependencies between adjacent positions. The full
algorithm that corrects the seed bias caused by the Hamming sample is
given in detail in the Supplement of Paper III. The text and the pseudo-code
algorithm also show how the pseudo-counts need to be added in this case.

Again, if the COB table and the associated dimers are learned as
well, then the case of overlapping ADM models (distance d < 0) is more
complicated than with the PPM models. This is handled in the supplement
of Paper III.

Similarly as with learning the PPMs, the data takes nL space, the model
takes 1+p+4+16p� space, and the hidden variables take space np(L−�+1),
the total space complexity is O(nL+ p�+ np(L− �+ 1)). Computing the
probabilities in the expectation phase takes O(np(L − �+ 1)�) time, and
maximizing the models also takes time O(np(L − � + 1)�) per iteration.
Table 5.1 shows examples of running times and numbers of iterations for
learning ADM models.

5.6 Review of other existing methods to optimize
binding models

Gibbs sampling is another common method for learning TF binding models.
Lawrence et al originally introduced it for motifs in protein sequences [43],
but it has later been used for TF binding site motifs, see for example [26, 79].
Gibbs sampling can be though of as a stochastic version of EM algorithm:
instead of using all putative sites from sequence Xi according to weights zikj ,
it samples just one site proportionally to weights zikj . From these sampled
sites the model is estimated. The algorithm is iterated until convergence.
However, Gibbs sampling can get stuck in a local mode. This can be avoided,
for example, by running the algorithm several times, starting from different
initial points.

RPMCMC (Repulsive Parallel Markov Chain Monte Carlo) [32] is also
based on Gibbs sampling, but it uses several Gibbs samplers to learn multiple
models simultaneously. To avoid the different samplers converging to the
same model, a repulsive force is used to keep the motifs separate.

Laurila et al [42] predict binding sites in a genome while taking into
account the simultaneous competition between multiple TFs over possibly
overlapping binding sites. They use a Metropolis–Hastings algorithm to
compute the posterior probability of a non-overlapping subset of binding
sites by a given set of TFs. The PWM models are random variables



44 5 Learning models

having Dirichlet priors, whose hyperparameters are specified by PWMs from
TRANSFAC [49]. The protein–protein interactions available from existing
databases can be used to specify the prior probabilities of each set of TF and
binding site pairs. Wasson et al [83] give another method to compute the
posterior probabilities of binding sites when competition between multiple
factors is taken into account. Their method includes other factors besides
TFs, such as nucleosomes, in the competitive model. The concentrations of
TFs and nucleosomes are also included in the model.

GADEM [45] combines several techniques to find multiple dimeric motifs.
It first finds over-represented k-mers (k = 3, 4, 5, 6) and forms dimeric
patterns. Patterns of a randomly selected sample are then refined using the
EM algorithm to PPM models. Significant sites of these motifs are located
in the data, and the E-value of each alignment is computed. The E-value
is used as a fitness score for a genetic algorithm, which tries to iteratively
improve the models. Weak motifs are modified by either a mutation or a
recombination.

Alipanahi et al [2] predict sequence specificities of TFs and RNA binding
proteins using deep learning. Here deep learning produces a weighted set of
PWMs. They showed that deep learning can outperform 26 other common
discovery algorithms. Problems with deep learning include the possibility
of overfitting and complicated binding models. This deep learning approach
has later been been improved for example by Zeng et al [87] and Shen et al
[71].

Colombo and Vlassis [13] use spectral methods to learn a PPM model.
The idea is to first form a multi-dimensional array, which tells the observed
relative frequencies of all �-mers in the data. Then matrix decomposition is
used to represent this as a mixture of p PPM models. Then one of these
components is chosen as the result based on the p-values of the PPMs.
The method is fast and performs well compared to our early version of
SeedHam [36] and DREME [6].

Annala et al [5] describe a linear regression method to predict PBM
probe intensities. All 4–8-mers of the PBM array are used as features in the
design matrix H = (hs,k), where hs,k has value 1 if the K-mer k is contained
in the probe sequence s, and 0 otherwise. The solution vector of feature
affinities can be used to predict intensities of sequences of the same length
as the original probes. They have later extended the method to handle
SELEX data [37]. In the case of SELEX data the probes are replaced by
SELEX reads, and the probe intensities are replaced by binary variables,
which have value one for bound reads and zero for unbound reads.
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Pelossof et al [57] use regression techniques to try to predict TF binding
intensities of PBM probes based on the TF’s amino acid sequence. An
interaction model matrix is learned from the k-mer feature matrix of the
probes of the PBM and from the k′-mer feature matrix of the amino acid
sequences. All the amino acid sequences must belong to the same TF family
as does the TF whose binding intensities we are trying to learn. Because
the regression includes two feature matrices, it is called bilinear regression.

Sharon et al [70] propose a binding model, which considers both mononu-
cleotide and dinucleotide (not necessarily adjacent) features. The probability
of a sequence is based on the sum of the frequencies of its statistically sig-
nificant features. To keep the model complexity low, L1-regularization is
used. A discriminative ad hoc method is used to find aligned k-mers that
are enriched in a positive set over a negative set.

Biophysical methods try to learn the real affinities, that is, the Gibbs
free energy between a DNA and a TF, based on thermodynamical principles.
Djordjevic et al [17] present a biophysical approach to discover TF binding
sites, which should give accurate binding models also in the case of high
TF concentration when the high-affinity binding sites are saturated. Their
algorithm QPMEME uses quadratic programming to learn the parameters
of a biophysical model from a set of known binding sites. Foat et al [27]
gave an algorithm called MatrixREDUCE, which used regression methods
to learn the parameters of a biophysical model from BPM data. They
later [62] extended their method to incorporate more complicated sequence
features besides the positional mononucleotides. The extended method,
called FeatureREDUCE, could include, e.g., dinucleotide features, and robust
regression methods were used to learn the model parameters. Biophysical
methods have also been applied to SELEX data: Ruan et al [65] present an
algorithm called BEESEM that uses an EM algorithm to learn the model
parameters.

5.7 Measuring goodness of the models

In this section four measures for comparing the goodness of the learned
models are discussed.

5.7.1 Distance to ground truth

If we know the correct model beforehand, then we can use various distance
measures to compare our estimated model to the correct one. In case we have
generated some test data using a model, then we obviously know what the
correct result is. But also in case there is a good model available, obtained
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possibly using some other more accurate and expensive method, we can use
this as a ground truth against which to compare a model obtained from our
own method. We have mainly used the max norm of parameter differences
to compare two binding models, as it is an intuitive distance measure. On
the downside, it is not specifically meant for probability distributions, and it
can be too conservative. Total variation distance on the other hand is meant
for comparing probability distributions, but it is expensive to compute for
longer models, and it is less intuitive than the max norm. Finally, the
square root of JS-divergence is a distance between distributions, although it
does not have very intuitive interpretation. Papers I, II, and III use max
norm distance to compare the ground truth model and the learned model.

5.7.2 Correlation

If a ground truth model is not available, then one way of measuring the
goodness of a model is to check how well the model explains the k-mer
counts in a data. This is achieved by computing the correlation (coefficient
of determination, R2) between the counts of a k-mer in the data and the
score of the k-mer given by our binding model. The value of k should be
high enough to cover all the important features of the model, but not so
long that the counts are low and only a small fraction of all possible k-mers
are present in the data, i.e. the expected count of a k-mer according to the
background model should be at least 1.

The score is computed as the maximum sum of log ratios log p(x)
q(x) over

aligned positions x over all possible alignments of the k-mer and the model,
where p and q are the probabilities given by the binding model and the
background model, respectively. Figure 5.3 gives an example of a correlation
plot between the logarithm of observed counts and the expected scores.
Logarithm of counts is used to make sure they are on the same scale as
the scores. Correlations are used in Papers II and III to assess goodness of
learned models.

5.7.3 Receiver operating characteristic

If we choose some threshold T for the score given by motif, we can then
use the model to classify sequences into positive or negative sequences,
depending on whether the maximum score given by the model to the
sequence is above the threshold T or not. If we additionally have two sets of
sequences, one whose sequences are known to be positive (for example, they
contain a binding site of a TF), and another whose sequences are known to
be negative (do not contain any binding sites), then we can use these data
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Figure 5.3: Correlation of observed counts and scores by a binding model
of 8-mers. The coefficient of determination (R2) is shown in the left upper
corner. Least squares line fitted to the data points is plotted in red.

sets to check our model’s performance as a binary classifier. If we correctly
predict a sequence to be positive (negative), then we call it a true positive
(true negative). If we however fail to predict the class of the sequence, then
we call it either false positive (FP) or false negative (FN). The count ratio
#(TP )
#(P ) is the true positive rate, and the ratio #(FP )

#(N) is the false positive rate.
When we slide the threshold T from maximum possible to minimum

possible score, the points (FPR, TPR) draw the Receiver Operating Charac-
teristic (ROC) curve. An example ROC curve is shown in Figure 5.4. The
performance of a model as a classifier is the better the closer the curve goes
to the upper left point (0, 1). The diagonal line TPR=FPR is the worst
possible classifier. ROC curves are used in Paper II to evaluate goodness of
the learned models.

5.7.4 Bayesian information criterion

If one increases the number of parameters in a model so that the original
model can be considered as a submodel of the new model, then the maximum
likelihood with the new model should be at least as high as with the original
model. This may however lead to overfitting as the larger model may get
higher likelihood just by modeling some random features of the data. One
way of avoiding this overfitting is to use the Bayesian Information Criterion
(BIC) [69], which penalizes the use of a large number of parameters. The
BIC is defined by

BIC = ln(n)k − 2 ln(L),

where L is the maximum likelihood, n is the number of data points and k
is the number of model parameters. This measure is used in Paper III to
compare ADMs to PPMs.
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Figure 5.4: Example ROC curve, where the area under the curve is shown
in a pattern.



Chapter 6

Experimental evaluation of the
new methods

Paper I introduces the SeedHam method and its improved version Seed-
Ham+. The relative strengths of each variant were discussed, and the
effect of the Hamming radius and the seed length on learning accuracy
was demonstrated in Figure 2 of Paper I using generated data. Briefly,
optimal Hamming radius increases as the motif length � increases, but
decreases when the number of motif instances increases. We also compared
SeedHam with two similar seed-driven PPM learning methods DREME [6]
and DECOD [31]. The results of the comparison are presented in Table 2
of Paper I which shows that in majority of cases SeedHam relearned the
PPM from generated data more accurately than the two other methods.

In Paper II a probabilistic framework where dimeric binding models are
built modularly from monomeric models is presented, and an EM algorithm
for learning the model parameters is given. The utility of the learned mixture
models is demonstrated on SELEX data using correlation plots shown in
Figures 3–10 for TFs HOXB13, HNF4A, TFAP2A, FLI1, FOXC1, and
PKNOX2. The ability of MODER allowing deviations from the expected
dimeric models is also shown to have importance. For example, for factors
FLI1 and PKNOX2 MODER detects directional dimeric models where the
expected models have palindromic symmetry. For factor HNF4A we have
shown how different binding modes can be represented as dimeric cases
of two short PPM models. Again, this required that our model allowed
deviations in the overlapping or gap region.

In Figure 9 of Paper II the models learned by MODER from SELEX
data are shown to generalize for classifying ChIP-seq peaks. MODER can
learn mixtures of binding models also from ChIP-seq/ChIP-exo data sets,
see Figures S2–S4 for examples with factors NRSF, CTCF, and RXRA.
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Finally, in comparison to other methods, MODER is shown to be faster
than the popular motif discoverer MEME [7] and to give models that better
explain the data. In comparison between MODER and MaskMinent [47] on
40 ENCODE ChIP-seq data sets, MODER wins in 35 out of 40 cases.

In Paper III, when we repeated the modularity analysis of HNF4A from
Paper II for ADM models, it was discovered that, instead of four separate
models, a single ADM model could explain the data with R2 value of 0.96,
see Figures 3, 4, S3, and S4 of Paper III. When learning both PPM and
ADM models from 230 SELEX data sets, the ADM models gave slightly
but consistently better R2 values than the PPM models, see Table 1 of
Paper III. Next we compared MODER2 to BaMM [72], which can learn
higher order binding models, using data sets from four TF families: ETS
(20 TFs), bHLH (24), bZIP (14), and homeodomain containing family (172).
When comparing ADMs by MODER2 and by BaMM, the difference is small,
with MODER2 giving the best average in two families of TFs and BaMM
in the remaining two. As for the number of wins, MODER2 is best in three
families, while it seems to have difficulties with the ETS family. Table S8
of Paper III shows the value of including strong dimers into the mixture
model over using only monomer models.



Chapter 7

Concluding discussion

This thesis studied models of monomeric and dimeric transcription factor
binding sites and methods for learning them efficiently and accurately.

In Papers I and III we have shown that the introduced SeedHam method
can be used to locate putative binding sites from a data and align them in
unbiased manner to obtain either a PPM or ADM model. SeedHam takes
advantage of the assumption that the binding model is a product of indepen-
dent categorical distributions. The radius of the Hamming neighbourhood
one should use was shown to depend on the size of the data, the fraction
of signal in the data, and the length of the binding model. The method
is simple and fast, but the method may in some cases produce inaccurate
models due to inclusion of background into the model. As the heuristic
method we used in Paper I to exclude the background did not fully solve
this issue, and it considerably complicated and slowed the algorithm, we
chose to use another approach to this problem.

In Paper II we introduced an EM algorithm, called MODER, that can be
used for learning binding models from a set of enriched nucleotide sequences.
It also prevents mixing of the background and the binding sites, as it tries
to find a maximum likelihood model for both the background and the signal.
If a mixture of several distinct binding models and a background model
is used, then EM can learn several models simultaneously and divide the
data between the models. As a next step, a probabilistic representation for
strengths of different dimeric cases of a pair of TFs, the COB table, was
given. It was shown that MODER can be used for learning COB tables
accurately.

In experiments it was detected that frequently one or two strong dimeric
cases were present. Often these dimers could be corroborated by previous
research. In Paper II PPM binding models were used, and in Paper III the
method was extended, and implemented as MODER2, to allow learning of
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ADM models as well. This allows finding out whether PPM is a sufficient
model for TF binding sites or is the more complicated ADM required in
some cases. In Paper III it was noted that often PPM models were accurate
enough, with ADM models giving only slightly, but consistently, better R2

values.
In Papers II and III we assumed that dimeric binding models can be

constructed from two copies of monomeric binding models. We call this
property modularity. As we allowed the two monomeric instances to overlap,
we had to compute the expected dimeric model in each overlapping scenario.
Especially in the case of ADM models, computing the expected model proved
to be non-trivial due to the dependencies between the adjacent positions. To
test whether interactions between the two proteins of the dimer can modify
the expected dimeric binding motif, we allowed deviation from the expected
overlapping dimeric model in the overlapping area. However, we allowed the
overlapping area to be at most half of the lengths of the monomeric binding
models, otherwise the modular structure of the total model would collapse.
This is because if the overlapping area is nearly the full length of the dimer,
then the deviation would allow nearly complete independence from the
monomeric model. Experiments on real data revealed many deviations from
the expected model.

We restricted the learning of a model to a Hamming neighbourhood
of the consensus sequence of the model even in MODER, since that can
remove noise and prevent two similar models from mixing up. In addition,
it can also make the implementation more efficient as only part of the data
needs to be considered in the maximization phase. MODER is efficient as
its time-complexity depends linearly on the data size, but if the number of
monomeric models and the COB tables increases, then also the required
time increases fast.

We have tested our methods both on generated data and on biological
data from SELEX and ChIP-seq experiments. We have given binding models
and COB tables for several different TFs. These models can easily confirm
previous observations as well as gain new biological insights.

A possible future direction of our work is a scanner that could read
an entire genome and predict regulatory areas. The scanner would use
monomeric binding models of all TFs, and dimeric binding models of all
possible TF pairs. The system would also include a binding model for
nucleosomes that could help define areas of DNA accessible to TFs.
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[12] Alan P. Boyle, Sean Davis, Hennady P. Shulha, Paul Meltzer, Elliott H.
Margulies, Zhiping Weng, Terrence S. Furey, and Gregory E. Craw-
ford. High-resolution mapping and characterization of open chromatin
across the genome. Cell, 132(2):311–322, 2008.
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