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Abstract
We discuss air shower simulations based on the EPOS hadronicin-
teraction model. A remarkable feature is the fact that the number of
produced muons is considerably larger compared to other interaction
models. We show that this is due to an improved treatment of baryon-
antibaryon production.

1 Introduction

Air shower simulations are a very powerful tool to interpretground based cosmic ray experi-
ments. However, most simulations are still based on hadronic interaction models being more
than 15 years old. Much has been learned since, in particulardue to new data available from the
SPS and RHIC accelerators.

In this paper, we discuss air shower simulations based on EPOS, the latter one being a
hadronic interaction model, which does very well compared to RHIC data [1, 2], and also all
other available data from high energy particle physic experiments (ISR,CDF and especially SPS
experiments at CERN).

EPOS is a consistent quantum mechanical multiple scattering approach based on partons
and strings [3], where cross sections and the particle production are calculated consistently, tak-
ing into account energy conservation in both cases (unlike other models where energy conserva-
tion is not considered for cross section calculations [4]).A special feature is the explicit treatment
of projectile and target remnants, leading to a very good description of baryon and antibaryon
production as measured in proton-proton collisions at 158 GeV at CERN [5]. Nuclear effects re-
lated to CRONIN transverse momentum broadening, parton saturation, and screening have been
introduced into EPOS [6]. Furthermore, high density effects leading to collective behavior in
heavy ion collisions are also taken into account [7].

2 EPOS Basics

One may consider the simple parton model to be the basis of hadron-hadron interaction models
at high energies. It is well known that the inclusive cross section is given as a convolution of
two parton distribution functions with an elementary parton-parton interaction cross section. The
latter one is obtained from perturbative QCD, the parton distributions are deduced from deep
inelastic scattering. Although these distributions are taken as black boxes, one should not forget
that they represent a dynamical process, namely the successive emission of partons (initial state
space-like cascade), as shown in fig. 1(a). We refer to this whole structure as “parton ladder”,
with a corresponding simple symbol as shown in fig. 1(b), to simplify further discussion.
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Fig. 1: (a) Elementary parton-parton scattering: the hard scattering in the middle is preceded by parton emissions

(initial state space-like cascade). (b) Symbolic parton ladder, representing the structure shown left. (c) The complete

picture, including remnants. The remnants are an importantsource of particle production at RHIC energies.

Actually our “parton ladder” is meant to contain two parts [3]: the hard one, as discussed
above, and a soft one, which is a purely phenomenological object, parametrized in Regge pole
fashion.

Still the picture is not complete, since so far we just considered two interacting partons,
one from the projectile and one from the target. These partons leave behind a projectile and
target remnant, colored, so it is more complicated than simply projectile/target deceleration. One
may simply consider the remnants to be diquarks, providing astring end, but this simple picture
seems to be excluded from strange antibaryon results at the SPS [8].

We therefore adopt the following picture, as indicated in fig. 1(c): not only a quark, but a
two-fold object takes directly part in the interaction, being a quark-antiquark, or a quark-diquark,
leaving behind a colorless remnant, which is, however, in general excited (off-shell). So we
have finally three “objects”, all being white: the two off-shell remnants, and the parton ladders
between the two active “partons” on either side (by “parton”we mean quark, antiquark, diquark,
or antidiquark). We showed in ref. [5] that the “three objectpicture” as discussed in this paper
can solve the “multi-strange baryon problem” of ref. [8].

Even inclusive measurements require often more information than just inclusive cross sec-
tions, for example via trigger conditions. Anyhow, for detailed comparisons we need an event
generator, which obviously requires information about exclusive cross sections (the widely used
pQCD generators are not event generators in this sense, theyare generators of inclusive spectra,
and a Monte Carlo event is not a physical event). This problemis known since many years,
the solution is Gribov’s multiple scattering theory, employed since by many authors. This for-
mulation is equivalent to using the eikonal formula to obtain exclusive cross sections from the
knowledge of the inclusive one.

We indicated recently inconsistencies in this approach, proposing an “energy conserving
multiple scattering treatment” [3]. The main idea is simple: in case of multiple scattering, when
it comes to calculating partial cross sections for double, triple ... scattering, one has to explic-
itly care about the fact that the total energy has to be sharedamong the individual elementary
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Fig. 2: Inelastic and elastic “rescattering” of a parton from the parton ladder with a second target parton. We talk

about (inelastic and elastic) splitting of a parton ladder.

interactions.

A consistent quantum mechanical formulation of the multiple scattering requires not only
the consideration of the (open) parton ladders, discussed so far, but also of closed ladders, rep-
resenting elastic scattering. The closed ladders do not contribute to particle production, but they
are crucial since they affect substantially the calculations of partial cross sections. Actually, the
closed ladders simply lead to large numbers of interfering contributions for the same final state,
all of which have to be summed up to obtain the corresponding partial cross sections. It is a
unique feature of our approach to consider explicitly energy-momentum sharing at this level (the
“E” in the name EPOS).

3 Splitting of Parton Ladders

Let us consider very asymmetric nucleus-nucleus collisions, like proton-nucleus or deuteron-
nucleus. The formalism developed earlier forpp can be generalized to these nuclear collisions,
as long as one assumes that a projectile parton always interacts with exactly one parton on the
other side, elastically or inelastically (realized via closed or open parton ladders). We employ the
same techniques as already developed in the previous section. The calculations are complicated
and require sophisticated numerical techniques, but they can be done.

In case of protons (or deuterons) colliding with heavy nuclei (like gold), there is a com-
plication, which has to be taken into account: suppose an inelastic interaction involving an open
parton ladder, between a projectile and some target parton.The fact that these two partons in-
teract implies that they are close in impact parameter (transverse coordinate). Since we have a
heavy target, there are many target partons available, and among those there is a big chance to
find one which is as well close in impact parameter to the two interacting partons. In this case
it may be quite probable that a parton from the ladder interacts with this second target parton,
inelastically or elastically, as shown in fig. 2.

The main effect of elastic splittingis suppression of smalllight cone momenta, which
agrees qualitatively with the concept of saturation. But this is only a part of the whole story,
several other aspects have to be considered [6]. Consider the example shown in figure 2(left).
In the upper part, there is only an ordinary parton ladder, sowe expect “normal” hadroniza-



tion. In the lower part, we have two ladders in parallel, which are in addition close in space,
since they have a common upper end, and the lower ends are partons close in impact parameter,
so the hadronization of the two ladders is certainly not independent, we expect some kind of a
“collective” hadronization of two interacting ladders. Here, we only considered the most simple
situation, one may also imagine three or more close ladders,hadronizing collectively.

The strength of the effects due to parton ladder splitting will depend on the target mass,
via the numberZ of partons available for additional legs. The numberZ of available partons
will also increase with energy, so at high enough energy the above-mentioned effects can already
happen inpp collisions.

A quantitative discussion how the above-mentionned effects are realized may be found
in [6].

4 Air Shower Simulations

In the following, we discuss air shower simulations, based on the shower programs CORSIKA [9]
or CONEX [10,11], using EPOS or QGSJET II-3 [12] (as a reference) as interaction model.
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Fig. 3: Total number of charged particles (left plot) and muons (right plot) at ground divided by the primary energy as

a function of the primary energy for proton and iron induced shower using EPOS (full lines) and QGSJET II-3 (dotted

lines) as high energy hadronic interaction model.

Air shower simulations are very important to analyze the twomost common types of high
energy cosmic ray experiments: fluorescence telescopes andsurface detectors. In the first ones,
one observes directly the longitudinal shower development, from which the energy and the depth
of shower maximumXmax can be extracted. Comparing the latter with models allows usto have
informations on the mass of the primary. EPOS results concerning Xmax are in good agreement
with former models and experimental data.

Concerning particles measured at ground by air shower experiment, the situation is quite
different. Whereas the number of charged particles is very similar for EPOS and QGSJET II-
3 (see fig. 3), EPOS produces a much higher muon flux, in particular at high energy. At
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Fig. 4: Left: Ratio of the number ofπ0 over the number of charged particles as a function of the energy of the sec-

ondary particles at105 GeV kinetic energy with EPOS (full line) or QGSJET II-3 (dashed line) in pion-air. Right: Lon-

gitudinal momentum distributions of protons in pion carboncollisions at 100 GeV from EPOS (full) and QGSJET II-3

(dashed) compared to data.

10
20 eV EPOS is more than 40% higher and gives even more muons with aprimary proton than

QGSJET II-3 for iron induced showers.

The muon excess from EPOS compared to other models will affect all experimental ob-
servables depending on simulated muon results. In the case of the Pierre Auger obervatory (PAO),
this will affect mostly the results on inclined showers, forwhich the electromagnetic component
is negligible at ground. It is interesting to notice that thePAO claims a possible lack of muons in
air showers simulated with current hadronic interaction models.

5 The origin of the increased muon production

During the hadronic air shower development, the energy is shared between neutral pions which
convert their energy into the electromagnetic component ofthe shower, and charged hadrons
which continue the hadronic cascade producing muons. The ratio of the two (referred to asR) is
a measure of the muon production.

Comparing EPOS to other models, this ratioR of neutral pions to charged hadrons pro-
duced in individual hadronic interactions is significantlylower, especially for pi-air reactions, as
seen in fig. 4(left). This will increase the muon production,as discussed above.

Furthermore, the reduced ratioR is partly due to an enhanced baryon production, as shown
in fig. 4(right) (data from [13]). This will increase the number of baryon initiated sub-showers.
Since the ratioR is much softer in case of proton-air interactions compared to pion-air interac-
tions, this will even more reduceR, providing a significant additional source of muons.



6 Summary

EPOS is a new interaction model constructed on a solid theoretical basis. It has been tested
very carefully against all existing hadron-hadron and hadron nucleus data, also those usually not
considered important for cosmic rays. In air shower simulations, EPOS provides more muons
than other models, which was found to be linked to an increased baryon production.
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