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Skyrme-HFB deformed nuclear mass table
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Abstract. The Skyrme-Hartree-Fock-Bogoliubovcode HFBTHO using theaxial (2D) Transformed
Harmonic Oscillator basis is tested against the HFODD (3D Cartesian HO basis) and HFBRAD
(radial coordinate) codes. Results of large-scale ground-state calculations are presented for the SLy4
and SkP interactions.

1. INTRODUCTION

The code HFBTHO [1] solves the self-consistent HFB equations by using the axial
(2D) Transformed Harmonic Oscillator (THO) basis [2], which allows for a correct
treatment of the single-quasiparticle wave function asymptotics. As discussed recently
[3], the THO technique is a method of choice for performing massive nuclear structure
calculations including weakly bound systems. In order to fully test the formalism, in the
present study we present results obtained with the axial (2D) HFBTHO (v1.64) code
compared to those obtained with two other codes: HFODD (v2.08i) [4], which uses a
Cartesian (3D) Harmonic Oscillator (HO) basis and spherical (1D) HFBRAD [5], which
uses a lattice of points in the radial coordinate.

In Ref. [3] we have published the first complete mass table of even-even nuclei
obtained by using the THO method for the SLy4 Skyrme force [6]. Here we discuss one
specific improvement of the method, and also present new results obtained with the SkP
Skyrme force [7]. More details, including downloadable tables of ground-state proper-
ties can be found athttp://www.fuw.edu.pl/~dobaczew/thodri/thodri.html.

2. TESTS

In this section, we discuss results of two numerical tests. First, by switching off the Local
Scaling Transformation (LST) of THO, we run HFBTHO in the axial HO basis and test
it against HFODD. For a given Skyrme interaction and zero-range, density-dependent
pairing force, both codes should give exactly the same results. Since technical details of
the inner structure of both codes are completely different,such calculations constitute
an extremely stringent test of both codes.
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Second, by switching the LST on, we could test the code HFBTHOagainst the
spherical code HFBRAD [5]. Here, results of both codes cannot be exactly identical,
because the phase spaces in which the solutions are obtainedare significantly different.

Table 1 displays the results of test calculations performedfor the SLy4 Skyrme in-
teraction [6] and for the mixed zero-range pairing force [8]: V(~r)=V0(1−ρ(~r)/ρ0) for
ρ0=0.32 fm−3. The cutoff energy ofεcut=60 MeV was used for summing up contribu-
tions of the HFB quasiparticle states to density matrices [2]. For a given phase space,
the strength of the pairing forceV0 was adjusted so as to reproduce the experimen-
tal neutron pairing gap in120Sn. The resulting values areV0=−285.88,−284.10, and
−284.36 MeV fm3 for the HO (THO) bases of 680 and 3276 states, and for the ra-
dial box ofRbox=30 fm, respectively. The radial HFBRAD calculations were performed
with 300 points (i.e., the∆r=0.1 fm grid spacing), and the wave functions were in-
cluded up tojmax=39/2. We checked that even withjmax=33/2, all energies were sta-
ble within 1 eV. The nucleon-mass and elementary-charge parameters were fixed at
h̄2/2m=20.73553 MeV fm2 ande2=1.439978 MeV fm, respectively.

Table 1 displays the following quantities:N0 is the maximum number of the HO
oscillator quanta included in the basis (for the deformed basis we give the numbers
of quanta in the perpendicular (N⊥) and axial (Nz) directions);Nst is the number of
the lowest deformed HO states included in the basis;Nqp

n and Nqp
p are the numbers

of (doubly degenerate) neutron and proton quasiparticle states with equivalent single-
particle energies [2] below the cutoff energyεcut; b⊥ andbz are the oscillator constants
in the perpendicular and axial directions;λn andλp are the neutron and proton Fermi
energies, which, for vanishing pairing correlations, are taken as the s.p. energies of the
last occupied states;∆n and ∆p are the average pairing gaps [7];Rn and Rp are the
rms radii;Qn andQp are the quadrupole moments〈2z2− x2− y2〉; εgs

n andεgs
p are the

s.p. energies of the most bound neutron and proton states;Σε
n andΣε

p are sums of the

canonical energies weighted by the corresponding occupation probabilities;Epair
n and

Epair
p are the pairing energies;Ekin

n andEkin
p are the kinetic energies;EcenandESOare the

energies corresponding to the central and spin-orbit partsof the Skyrme energy density
functional;Edir andEexc are the direct and exchange parts of the Coulomb energy; and
Estab is the stability energy characterizing the level of self-consistency. In the code
HFODD, Estab is estimated from the sum of s.p. energies [9]; in the code HFBTHO
Estab is estimated from the maximum difference of all matrix elements of s.p. potentials
calculated in two consecutive iterations; and in the code HFBRAD it is calculated as a
variance of the total binding energy,Etot, over the last five iterations.

Calculations for208Pb yield a spherical solution with vanishing pairing gaps. HF-
BTHO and HFODD give the total binding energies that differ by627 eV, and this dif-
ference can be (primarily) traced back to the direct Coulombenergy. We have checked
that without the Coulomb interaction, this difference decreases to 202 eV. The axial-
basis HFBTHO calculation gives a very small total quadrupole moment of 39µb. This
suggests that the THO basis generates a slight deviation from the spherical symmetry
due to a different numerical treatment ofz- and⊥-direction. In this respect, HFODD
calculations should be considered more accurate.

Calculations for168Er performed within a spherical HO basis,b⊥=bz, yield a well-
deformed and weakly paired prolate ground state. Here, the total binding energies and



TABLE 1. (Color online) Benchmark results of the HFB calculations performed for the SLy4 interaction and mixedδ pairing. All energies are in MeV,
lengths in fm, and quadrupole moments in barns. Boldface colored digits differ between the HFBTHO and HFODD/HFBRAD calculations. See text for
details.

Nucleus: 208Pb 168Er 168Er 120Sn

Code: HFBTHO HFODD HFBTHO HFODD HFBTHO HFODD HFBTHO HFBRAD
Basis: 2D-HO 3D-HO 2D-HO 3D-HO 2D-HO 3D-HO 2D-THO Radial

N0 14 14 14 14 N⊥=13,Nz=17 N⊥=13,Nz=17 25 n.a.
Nst 680 680 680 680 680 680 3276 n.a.
Nqp

n 532 532 489 489 497 497 924 4260
Nqp

p 481 481 448 448 451 451 855 4003
b⊥ 2.2348121 2.2348121 2.1566616 2.1566616 2.0581218 2.0581218 2.0390141 n.a.
bz 2.2348121 2.2348121 2.1566616 2.1566616 2.3681210 2.3681210 2.0390141 n.a.
λn −8.114095 −8.114020 −6.936061 −6.936058 −6.943872 −6.943858 −8.016795 −8.018081
λp −8.810501 −8.810445 −7.156485 −7.156477 −7.152114 −7.152007 −11.107284 −11.107777
∆n 0 0 0.394570 0.394578 0.392326 0.392327 1.244750 1.244648
∆p 0 0 0.390601 0.390605 0.397728 0.397746 0 0
Rn 5.619758 5.619757 5.357578 5.357578 5.360037 5.360044 4.730466 4.730184
Rp 5.460080 5.460090 5.225538 5.225539 5.227218 5.227231 4.593884 4.593653
Qn −0.000022 6.6E-11 11.473921 11.473920 11.567875 11.567983 −0.001055 0
Qp −0.000017 4.7E-11 7.880228 7.880224 7.930128 7.930227 −0.000631 0
εgs

n −58.001139 −58.001145 −56.014966 −56.014973 −55.996356 −55.996370 −55.756516 −55.755837
εgs

p −44.042810 −44.042814 −44.422148 −44.422167 −44.486154 −44.486271 −46.629670 −46.631739
Σε

n −3009.265452 −3009.264720 −2401.023343 −2401.023305 −2401.701865 −2401.698888 −1667.965633 −1668.063705
Σε

p −1678.791400 −1678.790238 −1439.480739 −1439.480826 −1439.922261 −1439.913577 −1123.812244 −1123.857483
Epair

n 0 0 −1.716956 −1.717024 −1.703028 −1.703045 −12.467146 −12.466964
Epair

p 0 0 −1.528611 −1.528643 −1.584308 −1.584480 0 0
Ekin

n 2525.991268 2525.991925 1974.613878 1974.613824 1973.986024 1973.980663 1340.457995 1340.668648
Ekin

p 1334.854760 1334.854465 1118.313614 1118.313442 1118.495643 1118.487818 830.735396 830.848077
Ecen −6194.978513 −6194.978930 −4944.027994 −4944.027545 −4943.869108 −4943.856093 −3475.705844 −3476.043789
ESO −96.374920 −96.375003 −80.186775 −80.186826 −80.216433 −80.214900 −49.167364 −49.196956
Edir 827.607126 827.607885 602.810399 602.810352 602.694020 602.697867 366.472441 366.503834
Eexc −31.248467 −31.248462 −25.935909 −25.935905 −25.935633 −25.935528 −19.102496 −19.103705
Estab 8.1E-09 3.5E-11 1.0E-08 3.4E-06 9.6E-09 3.8E-06 9.9E-09 8.8E-08
Etot −1634.148747 −1634.148120 −1357.658354 −1357.658322 −1358.132823 −1358.127702 −1018.777019 −1018.790854



FIGURE 1. (Color online) Left: differences inEtot obtained in HFBTHO by using LST based on
RHO or LAM conditions. Right: differences betweenEtot obtained in THO and HO bases. Calculations
were performed using the SLy4 interaction with volume pairing and 20 oscillator shells. Lipkin-Nogami
method followed by the exact particle-number projection was used to correct for the particle number
nonconservation in HFB.

quadrupole moments obtained within HFBTHO and HFODD differonly by 32 eV and
5µb, respectively. When the same calculation is performed in adeformed HO basis,
b⊥ 6=bz, the differences grow to 5.1 keV and 207µb, respectively. Again, without the
Coulomb interaction, the difference in the total binding energy is only 96 eV. It is seen
that by employing the deformed basis, the binding energy decreases, as expected.

Comparison with the coordinate-space code HFBRAD for120Sn shows thatEtot in
HFBTHO is correct up to 14 keV forN0=25. However, the kinetic energy still differs
by as much as 221 keV, which is compensated by a similar difference in the interaction
energy. Within the HO basis andN0=25, the corresponding differences are larger: 41 and
337 keV. The analogous differences obtained forN0=20 are 142 and 1103 keV (THO),
and 152 and 964 keV (HO), respectively. Nevertheless, the above comparison shows that
theN0=20 calculations yieldEtot with a precision of a couple of hundred keV.

3. MASS TABLES

The LST employed in Ref. [3] was based on HO densities corrected in the asymptotic
region by the contribution from the lowest-energy quasiparticle. Since a common LST
has to be carried out for both neutrons and protons, for each nucleus one is forced to
make a decision whether the LST is to be based on neutron or proton density. In Ref. [3]
we used a prescription (referred to as LAM) that the neutron densities were used for
λn≥λp andvice versa. In this work, we use the conditionρn(Rmin)≥ρp(Rmin), where
Rmin is the point where the neutron or proton logarithmic densityhas a minimum as a
function ofr. In practice, the above condition, dubbed RHO, does not depend on whether
the neutron or protonRmin is considered.

In Fig. 1 (left panel) we show the differences inEtot obtained in HFBTHO by using
the LST condition employing the Fermi energies (LAM) [3] or the densities (RHO). One



can see that in the majority of neutron-rich nuclei both prescriptions lead to identical
results. However, in many proton-rich nuclei the new prescription decreases binding
up to about 500 keV, and for some medium-mass proton-rich nuclei the RHO method
decreasesbinding by up to 100 keV. This latter effect is due to a better description of
asymptotics in the pairing channel, which leads to extendedpairing fields and reduced
pairing energies [10]. The right panel of Fig. 1 shows differences inEtot obtained in
THO and HO bases. In most nuclei, by using the THO basis, one obtains a small
energy gain of up to 10 keV. This grows to∼500 keV for the very neutron-rich systems.
Again, in lighter nuclei, a better asymptotics may lead to a reduced binding. In fact,
our results show that improvements in density profiles at large distances cannot be
treated variationally. First,Etot is quite insensitive to the precise description of nucleonic
densities in outer nuclear regions. Second, due to the pairing-space cutoff, the pairing
energy is not reacting variationally on the improvement of the wave function.

Figures 2 and 3 present HFBTHO results obtained with the SLy4and SkP Skyrme
forces. It is obvious that without further improvements these traditional Skyrme forces
describe nuclear masses rather poorly. The rms deviations between calculated and mea-
sured masses are as large as 3.14 MeV for SkP and 5.10 MeV for SLy4, respectively, as
compared to about 0.70 MeV deviations obtained for forces fitted specifically to masses
(see Ref. [11] for a review). Moreover, pronounced kinks obtained at magic numbers
suggest that the quality of the description of (semi)magic and open-shell systems is not
the same. This may point to a need to systematically include dynamical zero-point cor-
rections [12]. Work in this direction is in progress.
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FIGURE 2. (Color online) Ground-state deformationsβ (left) and two-neutron separation energiesS2n
(right) obtained within HFBTHO using SkP (top) and SLy4 (bottom) interactions.
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FIGURE 3. (Color online) Deviations of ground-state HFBTHO energiesfrom experiment [13] for
SkP (left) and SLy4 (right) interactions. Positive values correspond to underbound nuclei. No corrections
beyond mean field were included.

9. J. Dobaczewski and J. Dudek, Comput. Phys. Commun.102, 166 (1997);102, 183 (1997).
10. J. Dobaczewskiet al., Phys. Rev.C53, 2809 (1996).
11. D. Lunney, J.M. Pearson, and C. Thibault, Rev. Mod. Phys.75, 1021 (2003).
12. M. Bender, G. Bertsch, and P.-H. Heenen, Phys. Rev.C69, 034340 (2004).
13. G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys.A729, 337 (2003).


	Introduction
	Tests
	Mass Tables

