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ABSTRACT 

Nickel tin alloy nanoparticles (NPs) with tuned composition NixSn (0.6 ≤ x ≤ 1.9) were synthesized by 

a solution-based procedure and used as anode materials for Li-ion batteries (LIBs) and Na-ion 

batteries (SIBs). Among the compositions tested, Ni0.9Sn-based electrodes exhibited the best 

performance in both LIBs and SIBs. As LIB anodes, Ni0.9Sn-based electrodes delivered charge-

discharge capacities of 980 mAh g-1 after 340 cycles at 0.2 A g-1 rate, which surpassed their maximum 

theoretical capacity considering that only Sn is lithiated. A kinetic characterization of the charge-

discharge process demonstrated the electrode performance to be aided by a significant 

pseudocapacitive contribution that compensated for the loss of energy storage capacity associated to 

the solid-electrolyte interphase formation. This significant pseudocapacitive contribution, which not 

only translated into higher capacities but also longer durability, was associated to the small size of the 

crystal domains and the proper electrode composition. The performance of NixSn-based electrodes 

toward Na-ion storage was also characterized, reaching significant capacities above 200 mAh g-1 at 0.1 

A g-1 but with a relatively fast fade over 120 continuous cycles. A relatively larger pseudocapacitive 

contribution was obtained in NixSn-based electrodes for SIBs when compared with LIBs, consistently 

with the lower contribution of the Na ion diffusion associated to its larger size.  

Keywords: colloidal bimetallic nanoparticles; nickel tin alloy; anode materials; lithium-ion batteries; 

sodium-ion batteries.   
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INTRODUCTION  

Lithium ion batteries (LIBs) have become essential in portable electronic applications. However, while 

widely spread in the market, current LIBs are far from being optimized electrochemical energy storage 

devices.[1–5] LIBs still suffer from moderate durabilities and current densities, which are in large part 

associated to the limitations of actual electrode materials. Additionally, the availability of lithium 

poses middle-long term limitations to this technology.[6,7] Thus, the development of improved 

electrode materials for LIBs and alternative battery technologies based on more abundant ions, such as 

sodium, is a worthwhile endeavor.   

Current commercial LIBs use graphite as anode material, what limits the theoretic maximum energy 

density to 375 mAh g-1.[8–11] On the other hand, sodium ion batteries (SIBs) cannot make use of 

graphite due to the insignificant Na-insertion in this material.[12–14] As an alternative anode material 

for both LIBs and SIBs, Sn and Sn-based alloys have been extensively studied due to their abundance, 

low toxicity and high energy density, 992 mAh g-1 for LIBs and 847 mAh g-1 for SIBs, corresponding 

to the formation of Li22Sn5 and Na15Sn4, respectively.[15–18] However, Sn undergoes huge volume 

changes during charge-discharge cycles that shorten its usage time.[19–24] This drawback can be 

partially overcome by reducing the size of the crystal domains in the electrode. The use of 

nanostructured electrodes provides additional advantages in terms of increasing rate capability, 

because of the shorter Li-ion diffusion paths, and increasing the pseudocapacitive contribution 

associated with the larger surface/volume ratios.[25–30] An additional strategy to improve stability is 

to alloy tin with non-active elements, reducing in this way the volume changes and potentially 

increasing the pseudocapacitive contribution. In this direction, bimetallic Sn-based allows such as Cu-

Sn,[31–33] FeSn,[33–35] Co-Sn,[34–53] and Ni-Sn[17,33,54–56] have been tested as base materials 

for LIB and/or SIB electrodes with excellent results.  

Not considering pseudocapacitive effects, the main drawback of alloying Sn with non-active metals is 

the decrease of the maximum energy density potentially achieved with the amount on non-active metal 

introduced. Thus, the alloy composition needs to be finely and continuously tuned along the whole 

solid-solution range to find the optimal composition. However, most previous works have focused on 

studding the performance of intermetallic Sn-based alloys, with strongly constrained compositions. In 

the present work, we take advantage of the versatility of colloidal synthesis method to produce 

nanoparticles (NPs) of a range of Ni-Sn solid solutions with Ni:Sn ratios from 0.6 to 1.9. After 

removing surface ligands, we use these NPs to test the performance Ni-Sn solid solutions as anode 

materials for LIBs and SIBs.      
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EXPERIMENTAL 

Chemicals: Nickel(II) acetylacetonate (Ni(acac)2·xH2O (x∼2), 95%, Sigma-Aldrich), tin(II) acetate 

(Sn(oac)2, 95%, Fluka), oleic acid (OAc, Sigma-Aldrich), oleylamine (OAm, 80-90%, TCI), tri-n-

octylphosphine (TOP, 97%, Strem), borane tert-butylamine complex (TBAB, 97%, Sigma-Aldrich), 

TIMCAL Graphite & Carbon Super P ( Super P, KJ group), polyvinylidene fluoride (PVDF, KJ 

group), N-methy1-2-pyrrolidone (NMP, 99%, Aladdin), hydrazine monohydrate (N2H4 64-65%, 

reagent grade, 98%, Sigma-Aldrich) and acetonitrile (CH3CN, extra dry, Fisher) were used as received 

without any further purification. Chloroform, acetone and ethanol were of analytical grade and 

purchased from various sources. An argon-filled glove-box was used for storing and dealing with 

sensitive chemicals. 

Colloidal Synthesis of NiSn NPs: All the syntheses were carried out using standard airless techniques 

using a vacuum/dry argon gas Schlenk line. Ni-Sn NPs were prepared following the scaled-up version 

of a protocol we previously detailed.[57] Briefly, 20 mL OAm, 1.0 mL OAc, 0.9 mmol 

Ni(acac)2·xH2O and 0.6 mmol Sn(oac)2 were loaded into a 50 mL three-neck flask containing a 

magnetic stirring bar. The reaction was strongly stirred and degassed under vacuum at 80 °C for 2 

hours to remove water, air, and low-boiling point impurities. Then, a gentle flow of argon was 

introduced, 5 mL of TOP were injected and the reaction flask was heated to 180 °C at 5 °C/min. 

Meanwhile, a reducing solution was prepared by dissolving 5 mmol TBAB in 5 mL OAm through 

sonication for 30 min, and subsequently degassed this mixture for 1 hour at ambient temperature. This 

reducing solution was injected into the reaction flask containing the Ni and Sn precursor at 180 °C. 

Upon injection, a visible color change, from deep green to black, was immediately observed. The 

reaction was maintained at 180 °C for 1 hour, followed by a rapid cool down to room temperature 

using a water bath. The content of the reaction mixture was transferred to two centrifuge tubes, 

followed by centrifuging at 9000 rpm for 3 min after introducing acetone as non-solvent. The 

precipitate was suspended in chloroform and centrifuged again after adding additional acetone. This 

process was repeated twice. Finally, the NPs were suspended in 10 mL chloroform. 

Ligand removal: The native organic ligands were removed from the NP surface according to a 

previously published report.[28,58] Briefly, 25 mL acetonitrile and 0.8 mL hydrazine hydrate was 

introduced into a vial containing the precipitated NPs. The mixture was stirred for 4 hours at room 

temperature and then collected by centrifuging at low speed. The product was further washed with 

acetonitrile and centrifuged at 2000 rpm for another 3 times. NPs were collected and stored in inert air 

atmosphere after drying under vacuum at room temperature. 

Characterization: Powder x-ray diffraction (XRD) was measured on a Bruker AXS D8 Advance x-

ray diffractometer with Cu K radiation (λ = 1.5106 Å) operating at 40 kV and 40 mA. Scanning 

electron microscopy (SEM) analyses were performed on a ZEISS Auriga SEM with an energy 
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dispersive X-ray spectroscopy (EDS) detector at 20 kV. Transmission electron microscopy (TEM) 

analyses were carried out on a ZEISS LIBRA 120, operating at 120 kV, using a 200 mesh Carbon-

coated grid from Ted-Pella as substrate. High-resolution TEM (HRTEM) and scanning TEM (STEM) 

studies were carried out using a field emission gun FEI Tecnai F20 microscope at 200 kV with a point-

to-point resolution of 0.19 nm. High angle annular dark-field (HAADF) STEM was combined with 

electron energy loss spectroscopy (EELS) in the Tecnai microscope by using a GATAN QUANTUM 

filter. For the ICP, 5 mg sample dessolved in 10 ml freshly prepared Agua Regia. 0.5 ml were taken 

into 24.5 ml MilliQ water. X-ray photoelectron spectroscopy (XPS) was done on a SPECS system 

equipped with an Al anode XR50 source operating at 150 mW and a Phoibos 150 MCD-9 detector. 

The pressure in the analysis chamber was kept below 10-7 Pa. The area analyzed was about 2 mm x 2 

mm. The pass energy of the hemispherical analyzer was set at 25 eV and the energy step was 

maintained at 1.0 eV. Data processing was performed with the Casa XPS program (Casa Software Ltd., 

UK). Binding energies were shifted according to the reference C 1s peak that was located at 284.8 eV. 

The Fourier transform infrared spectrometer (FTIR) data were recorded on an Alpha Bruker 

spectrometer. 

Electrochemical measurements: Ni-Sn NPs (80 wt%) were mixed with Super P (10 wt%), PVDF (10 

wt%) and NMP. The obtained slurry was bladed onto a copper foil and dried at 80 ºC for 24 h in a 

vacuum oven. Working electrodes were obtained by cutting the printed foil into circular disk with a 

diameter of 12.0 mm. The mass loading of active materials was estimated to be 0.7-1.2 mg cm−2. To 

test the performance of electrodes based on Ni-Sn NPs, half cells were assembled in the glove box 

(H2O and O2 < 0.1 ppm) using Celgard2400 as separator. As electrolyte for LIBs, a 1 M LiPF6 solution 

in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 in volume) with 5 vol% fluoroethylene 

carbonate (FEC) as additive was used. For SIBs, 1 M NaClO4 in propylene carbonate (PC)/ EC (1:1 in 

volume) with 5 vol% FEC was used as the electrolyte. Galvanostatic charge-discharge were measured 

by a battery test system (CT2001A, LAND) with cutoff potentials from 0.01 V to 3.0 V. Cyclic 

voltammograms (CV) were obtained using an electrochemical workstation (Gamry Interface 1000) in 

the voltage range of 0–3.0 V at scan rates from 0.1 mV s-1 to 1 mV s-1.  
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RESULTS AND DISCUSSION 

NixSn NPs with tuned composition (0.6<x<1.9) were prepared by the co-reduction of proper amounts 

of nickel(II) acetylacetonate and tin(II) acetate at 180 ºC by TBAB and in the presence of OAm and 

OAc (see experimental section for details). Following this procedure, quasi-spherical NPs with sizes in 

the range from 3.9 ± 0.7 nm to 4.6 ± 0.6 nm were produced (Figure 1). SEM-EDS analysis showed the 

Ni/Sn ratio of the NixSn NPs to be 0.6, 0.9, 1.2 and 1.9 ± 0.1 for nominal Ni/Sn ratios of 0.75, 1.0, 1.5 

and 2.0, respectively (Figure S1). As examples, the Ni composition of Ni0.9Sn and Ni1.2Sn by EDS 

were found to be 0.95 and 1.17 using ICP technology.  XRD analysis displayed the crystallographic 

phase of all the alloys to resemble that of Sn or orthorhombic Ni3Sn2 (Figure 1c). Main XRD peaks did 

not significantly shift with the introduction of different amounts of Ni. However, as the Ni amount 

increased, the material crystallinity decreased and additional peaks became visible, denoting the 

formation of a more complex crystal phase, which did not match well with any of the reported 

intermetallic Ni-Sn phases.  

 

Figure 1. a) TEM micrographs of Ni-Sn NPs with different compositions, as obtained from EDX and displayed 
in each image. Scale bar: 50 nm. b) Size distribution histograms of the Ni-Sn NPs; c) XRD patterns of the Ni-Sn 
NPs with different compositions. Sn, Ni and different Ni-Sn intermetallic XRD patterns are displayed as 
reference. 

EELS chemical composition maps showed Ni and Sn to be present in all the NPs with similar ratio 

(Figure 2). Additionally, uniform distributions of Ni and Sn within each NP were observed (Figure 

2a). HRTEM analysis revealed the NPs to have a good crystallinity with a crystallographic phase in 

agreement with the Ni3Sn2 orthorhombic phase (space group = Pnma) with a = 7.1100 Å, b = 5.2100 Å 
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and c = 8.2300 Å (Figure 2b). [59] Additional EELS and HRETM for Ni1.9Sn and Ni1.2Sn was 

presented in Figure S2, displaying a Ni3Sn2 structure.  

 

Figure 2. a) STEM and EELS compositional maps of Ni0.6Sn NPs. b) HRTEM micrograph of Ni0.6Sn NPs 
exposed to atmosphere and displaying a core-shell type structure. The Ni3Sn2 lattice fringe distances were 
measured to be 0.260 nm, 0.337 nm and 0.269 nm, at 69.40 and 134.54º which could be interpreted as the 
orthorhombic Ni3Sn2 phase, visualized along its [010] zone axis. 

As displayed in Figures 3 and S2, XPS analysis of the NixSn NPs showed Ni to be present in two 

different chemical states, which we associated with metallic Ni0 (Ni 2p3/2 at 852.3 eV) and Ni2+/3+ 

oxidation states (Ni 2p3/2 at 855.6 eV).[60] The ratio of the two components was found to be 

Ni2+/3+/Ni0 = 2.5.  Sn was also present in two chemical states, displaying a metallic (Sn 3d5/2 peak at 

484.4 eV) and an oxidized component (Sn 3d5/2 peak at 486.2 eV) with a relative ratio Sn2+/4+/Sn0 = 

3.2.[60] We associated the oxidized states to the presence of an oxide layer at the NixSn NPs surface, 

which had been grown during their manipulation and transportation in ambient conditions. The ratio of 

the two metals in Ni1.2Sn NPs, as measured by XPS, was Ni/Sn = 0.46, which pointed at a slight 

segregation of Sn to the NP surface, also consistent with the higher relative oxidized component in Sn 

than Ni. The XPS for other compositions were studied and presented in Figure S4, an oxidized layer 

was seen each. We hypothesize that this surface segregation could have taken place during 

oxidation.[57,61,62]  

 

Figure 3. XPS spectra of the Ni 2P3/2 region (a) and the Sn 3d5/2 region (b) of Ni1.2Sn NPs. 
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Before testing the performance of NixSn NPs as anode material in LIBs and SIBs, the organic ligands 

present at their surface were removed though a treatment with a mixture of hydrazine and acetonitrile. 

FTIR analysis confirmed the effectivity of this treatment through the disappearance of peaks at 2890 

cm-1 and 2822 cm-1 that correspond to C-H stretching modes (Figure S5).[63] 

To evaluate the performance of NixSn NPs as anode material in LIBs and SIBs, coin-type half-cells 

with metallic Li or Na foil as counter electrodes were assembled. Working electrodes were prepared 

by mixing NixSn NPs with Super P, PVDF and NMP, and coating the resulting slurry onto Cu foil. 

Standard liquid electrolyte formulations were used: LiPF6 in EC/DEC with FEC for LIBs and NaClO4 

in PC/EC with FEC for SIBs. 

Figure 4 shows representative initial CV profiles of the Ni0.9Sn NP-based electrode obtained at 0.1 mV 

s-1 in the applied potential region of 0-3.0 V vs. Li+/Li and Na+/Na, respectively. Significant 

differences were obtained between the 1st and following cycles, associated to the formation of the solid 

electrolyte interface (SEI) layer in both systems.[17]  

 

Figure 4. Initial CV curves obtained from the Ni0.9Sn NP-based electrode at 0.1 mV s-1 in the voltage window 0-
3.0 V vs. (a) Li+/Li (b) Na+/Na. 
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of cycles, but recovered after some additional cycles up to values well above their theoretical 

maximum capacity, e.g. 980 mAh g-1 after 340 cycles for the Ni0.9Sn electrode (Figure 5b). On the 

other hand, the columbic efficiency was stabilized at ca. 99% after the first 10 cycles. Besides the SEI 

formation in the first few cycles, the phenomenon of a capacity decrease in the initial fifty cycles 

followed by an increase during subsequent cycling may be attributed to structural and compositional 

changes of the electrode material, resulting in a complex evolution of the electrical conductivity, the 

electrode porous volume and its surface area.[64] During cycling, a redistribution of Ni and Sn, and 

changes in the shape and size of the material domains take place, strongly influencing the electrical 

properties of the electrode, the amount of solid/electrolyte interphase accesible, the amount of material 

contributing to the storage capacity through ion diffusion and the amount of surface providing a 

pseudocapacitance contribution. Additionally, a capacity increase during repeated cycles is a common 

feature of NixSn and other MxSn (M = transition metal) alloys, which has been associated to the 

formation and dissolution of gel-like polymeric species in the SEI layer aided by the catalytic activity 

of the anode material.[65–67] Within this complex system, while the maximum theoretical capacity 

decreases with the amount of Ni introduced, Ni0.9Sn showed the highest capacity after several 

hundreds of cycles (Figure S6) among the different NixSn compositions tested in the present work. 

The extra-capacity of NixSn alloys, compared with their theoretical maximum, should be attributed to 

the ultra-small particle size and the related high surface area, which provided additional active sites for 

Li-ion storage that translated into an increased pseudocapacitive contribution. The relative stable 

cycling performance and high capacity retention could be also ascribed to the ultra-small particle size 

and the presence of Ni as a conductive buffer substrate, both parameters moderating the variation of 

stress during the alloying/dealloying process. 

 

Figure 5. a) First three charge-discharge curves at 0.2 A g-1 for the Ni0.9Sn electrode. b) Charge-discharge 
capacity and related columbic efficiency over 340 cycles at a current density of 0.2 A g-1. 
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0.5, 1.0, 2.0 A g-1, respectively. The notable rate capability of NixSn-based electrodes was associated 

with their ultra-small particles size with high surface area shorting Li-ion diffusion paths and 

providing more channels for Li+/electrons transporting. The inactive Ni as conductive part improved 

the electrical conductivity of the all NixSn alloys also facilitating the diffusion of Li+/electrons. 

 

Figure 6. Li-ion storage performance of the Ni0.9Sn electrode: a) Rate performance at 0.1, 0.2, 0.5, 1.0, 2.0 A g-1. 
b) Charge-discharge curves at rates: 0.1, 0.2, 0.5, 1.0, 2.0, 0.5 A g-1. 
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increasing the scan rate, reaching a capacitive contribution up to 72% at 1.0 mV s-1. This increased 

contribution with the scan rate is related to the slower Li+ diffusion that translates into minor Li+ in-

depth alloying when compared with the faster and less rate-depended contribution of the surface 

reaction. High capacitive contributions, such as the ones found for NixSn alloys, are highly beneficial 

because surface processes are much faster and stable than diffusion-controlled alloying. The high 

capacitive contributions also illuminated the origin of the notable rate capability of Ni0.9Sn NP-based 

electrodes. We also conducted the kinetic analysis of the Li-ion storage performance of other NiSn 

electrodes. As shown in Figure S8. At the same scanning rate, similar capacitive contribution were 

obtained for the NixSn (1.9 ≤ x ≤ 0.9), larger than that of Ni0.6Sn.  By comparing the capacity and 

durability performance of the NixSn electrode, it is rather rigorous not to draw a conclusion that it is 

relevant to the pseudocapacitive process.     

 

Figure 7. Kinetic analysis of the Li-ion storage performance of the Ni0.9Sn electrode: a) CV curves at the scan 
rates of 0.1, 0.2, 0.4, 0.7, 1.0 mV s-1. b) Logarithmic dependence between peak current density and scan rate at 
the peaks 0.62, 0.54 and 1.04 V. c) Capacitive contribution (blue region) to the total current contribution at 0.4 
mV s-1. d) Normalized contribution ratio of capacitive part and diffusion-controlled fraction at the scan rates of 
0.1, 0.2, 0.4, 0.7, 1.0 mV s-1. 
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Figures 8 and S9 present the Na-ion storage performance of NixSn NP-based electrodes over 120 

cycles at 0.1 A g-1. Again, while capacity should decrease with the Ni content, Ni0.9Sn NPs exhibited 

the highest capacities among the different compositions tested. In the first cycles, Na-ion discharge-

charge storage capacities above 300 mAh g-1 at 0.1 A g-1 were obtained for the Ni0.9Sn NP-based 

electrode. However, upon subsequent cycling, a monotonous capacity decrease was observed, 

decaying to 160 mAh g-1 at the 120th cycle. It is worth noting that the smaller Na-ion storage capacity, 

when compared with Li-ion, is ascribed to the larger radius of Na+ than Li+, causing less Na+ in-depth 

alloying. Rate-capability tests in the window 0.1-2.0 A g-1 showed the Ni0.9Sn NP-based electrode to 

deliver average discharge capacities of 327, 258, 217, 168, 128, and 88 mAh g-1 at 0.05, 0.1, 0.2, 0.5, 

1.0, and 2.0 A g-1, respectively. In addition, Ni0.9Sn NP-based electrodes showed similar capacities at 

0.1 and 0.2 A g-1 after 30-40 more cycles at higher discharging-charging rate (Figure 8d).  

 

Figure 8. Na-ion storage performance of the Ni0.9Sn electrode: a) Typical first three charging-discharging curves 
at 0.1 A g-1. b) Charge-discharge capacity and related efficiency over 120 cycles at a current density of 0.1 A g-1. 
c) Selected charging-discharging curves at 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 0.1 and 0.2 A g-1 rates. d) Rate capabilities 
of Ni0.9Sn at 0.05, 0.1, 0.2, 0.5, 1.0 and 2.0 A g-1. 

The kinetics of Ni0.9Sn NP-based electrodes in SIBs was investigated in a similar way as in LIBs, by 

collecting CV curves at different scan rates: 0.1, 0.2, 0.4, 0.7, 1.0 mV s-1. Ni0.9Sn NP-based electrodes 

in SIBs were characterized with b values of 0.91 and 0.84 at 0.85 V and 1.36 V, respectively. Higher b 

values already pointed out at a relatively higher capacitance contribution in SIBs than LIBs. This 

phenomenon could be associated with the larger radius of Na+, which increased the diffusion 

resistance into the interior of the materials and caused a larger fraction of Na+ to exist on the surface, 
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leading to higher capacitive contributions in SIBs than in LIBs. As shown in Figures S8 and 9, 

contributions up to 84% at 1.0 mV s-1 were measured from Ni0.9Sn NP-based electrodes in SIBs.  

Ni0.9Sn was selected as an example to conduct the EIS study in Li- and Na-ion batteries, as shown in 

Figure S10, revealing that the NiSn provides small charge-transfer resistances. 

CONCLUSION 

In summary, we reported the synthesis of NixSn NPs with tuned composition (0.6≤ x ≤1.9) and their 

performance as anode material in LIBs and SIBs. Among the different compositions tested, best 

performances toward Li+ ion and Na+ ion insertion were obtained for Ni0.9Sn NP-based electrodes. 

This optimized cycling charge-discharge performance for LIBs provided 980 mAh g-1 at 0.2 A g-1 after 

340 cycles. Additionally, Ni0.9Sn NP-based electrodes were tested in Na+-ion half cells, exhibiting 160 

mAh g-1 over 120 cycles at 0.1 A g-1. From CV measurements at different current rates, it was found 

that the charging process was both capacitive and diffusion controlled, while the capacitive 

contribution was dominant in both LIBs and SIBs. The pseudocapacitive charge-storage accounted for 

a high portion of the whole energy storage capacity, which was associated to the small size and the 

composition of the NixSn NPs used. 
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