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This paper is focused on the study of the important property of the asymptotic hyperstability of a class of continuous-time dynamic
systems. The presence of a parallel connection of a strictly stable subsystem to an asymptotically hyperstable one in the feed-
forward loop is allowed while it has also admitted the generation of a finite or infinite number of impulsive control actions which
can be combined with a general form of nonimpulsive controls. The asymptotic hyperstability property is guaranteed under a set
of sufficiency-type conditions for the impulsive controls.

1. Introduction

The problems of absolute stability and hyperstability classi-
cally received much attention from the fifties in a wide class
of problems of control theory and its applications, [1–10].
Some extensions or applications of hyperstability theory rely
on the incorporation of the formalism of quantified controls
[3] and multiple nonlinearities, [4]. Also, in some of the
studies, the incorporation of extra subsystems to the linear
positive real part, the presence of delays, and that of hybrid
continuous-discrete systems has also been considered, [5–
7]. Its extension to some models based on neural networks
has been studied in [9] and references therein, while its
usefulness for the design of adaptive schemes with good
stability and transient properties was proposed in a set
of results compiled in [10] and in more exhaustive later
investigations performed along the eighties and nineties. The
properties of parametrical stability of nonlinear systems with
some robustness extensions have been investigated in [11, 12]
and references therein. Also, applications of stability theory to
base-isolated building structures including modelling delays
and wireless control issues has been investigated in a number

of papers. The main objective of the studies is to prevent
the structures via active control designs against earthquake
or heavy wind potential damages. See, for instance, [13, 14]
and references therein. In those studies, Lyapunov stability
and associated appropriate manipulations via linear matrix
inequalities are used ad hoc for the problems at hand.

Furthermore, the following Figures 3 and 4 show, respec-
tively, the output and control input to the system.

The problem of absolute stability is basically stated as
that of guaranteeing the global asymptotic stability of a
control system consisting of a linear plant under a feedback
nonlinear regulator which belongs to a certain class of regu-
lators all satisfying either some sector-type or some integral-
type constraints of Lurie’s or Popov’s type, respectively. See,
for instance, [2–4, 15–17]. If global asymptotic stability is
guaranteed for the whole class of regulators then it is typically
said that the closed-loop system is absolutely stable for such a
class of controllers. The main reason for setting this theory
was its ability to guarantee the stabilization for a whole
class of systems under potential dispersion of the values of
the parameters in a serial controller construction process
while keeping its stabilization capability. Thus, it is a robustly
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stable design for a characterization of the nonlinear feedback
controller as belonging to a certain admissible class.Then, the
absolute stability property is guaranteed for the feed-forward
controlled object and the whole class of nonlinear controllers.

The more general problem of asymptotic hyperstability
extends that of absolute stability to classes of nonlinear regu-
lators satisfying integral-type constraints for eventually time-
varying nonlinearities which are not necessarily constrained
to sectors.The asymptotic hyperstability property of a closed-
loop system requires, in particular, that the feed-forward loop
consists of a positive real transfer matrix (sometimes referred
to as the asymptotic hyperstability of the linear feed-forward
loop) or function, and that the nonlinear/time-varying con-
troller belongs to a class satisfying an integral-type constraint,
the so-called Popovian integral inequality, [15, 16]. Then,
the property is guaranteed for such a linear feed-forward
linear block and the whole class of nonlinear/time-varying
controllers. Historically, the properties of absolute stability
and hyperstability were of crucial interest by the time of
WorldWar II because the component dispersion in regulators
controlling tanks often fail the blank targeting process, [16].
Such a practical problem motivated the convenience of
formulating and designing stabilizing classes of regulators
rather than individual stabilizing ones, [15, 16]. The related
studies on this subject have been performed for the stabi-
lization of both linear continuous-time and discrete dynamic
systems.

Asymptotic hyperstability has also received a very impor-
tant attention in adaptive control designs such as model ref-
erence adaptive control or model reference adaptive systems.
See, for instance, [17–25] and references therein. A wide
representation of practical problems has been focused on this
theoretical formalism including theoretical design of adaptive
systems, adaptive control of manipulators and other robotic
devices, adaptive neural networks, and synchronization. A
main reason of the success of the hyperstability formal theory
in the existing background of adaptive designs relies on the
fact that the implementation of the estimation algorithms is
flexible while offering the designer the chance of choosing
wide ranges of admissible values of the free design parameters
being compatible with accomplishing the required properties
of convergence and closed-loop stabilization.

Most of the stability problems can be extended to the use
of switching laws acting on the controlled objects or on their
controllers so that the dynamics can be changed to improve
certain suitable performances like, for instance, suited settling
times or transient errors, or to accommodate the system
behavior to suitable transients around several operation
points. This frequently happens in complex dynamic prob-
lems associated to distinct phases in some production chains
like it occurs, for instance, in some chemical engineering
processes. Some of such complexmodels might include point
or distributed delays and/or hybrid structures consisting
of continuous-time, discrete-time, and digitally modelled
subsystems. The existing background literature on switch-
ing dynamics is exhaustive. See, for instance, [26–29] and
references therein. Finally, recent work on absolute stability
and hyperstability of complex nonlinear models, including
absolute stability of hyperbolic systems and topics related to

Ulam’s-type stability, has been reported in [30–32] and some
of the references therein.

Other topics of increasing interest in the last years and
nowadays in stabilization and control of dynamic systems
are that of the synthesis of impulsive controls and that
of the switching conditions of the dynamics guaranteeing
the closed-loop stabilization. In particular, the injection of
impulsive controls lead to a discontinuous sudden change
(in practice, in a very short time interval) in the state
vector at impulsive time instants. Switched dynamic sys-
tems have several possible parameterizations while switches
among them in such a way that the dynamic system is
parameterized by one of such parameterizations in connected
time-intervals before the next switching happens. It is of
interest the design of switching laws which ensure closed-
loop stabilization either conditionally, via appropriate rules
either on the minimum residence time or on the averaging
dwelling times, or under arbitrary switching. Exhaustive
work has been made in this field. See, for instance, [26–
30, 33–39] and references therein. Related studies are of
interest, for instance, in synchronization, deterministic, and
stochastic stabilization, impulsive vaccination in epidemic
models, control of chemical process under their various
dynamics, and so forth. Switched dynamic systems and
impulsive control also appear in some combined problems.
See, for instance, [27, 38–40] and references therein.

This paper is focused on an extended study of asymptotic
hyperstability in the continuous-time framework for a single-
input single-output system. Basically, the undertaken gener-
alizations are:

(a) it has admitted the presence of a parallel connection
of a linear strictly proper and strictly stable subsystem
to the standard linear asymptotically hyperstable
subsystem in the feed-forward loop of the feedback
system;

(b) the generation of a finite or infinite number of
impulsive control actions is allowed while it can
be combined with a general form of nonimpulsive
controls. The control impulses can be state/output
dependent or not.

The asymptotic hyperstability property is guaranteed to hold
under sufficiency-type conditions for the above proposed
general structure. The property is guaranteed under con-
ditions being dependent on certain combined constraints.
Such constraints involve the values of the gain of the feed-
forward strictly positive real transfer function at infinity, the
maximum value of the modulus of its parallel-connected
linear block, and the sign and gain bounds of the different
impulses of the impulsive control. The paper is organized
as follows. Section 2 is devoted to the problem statement
and some preliminary results while the main asymptotic
hyperstability results are stated and commented in Section 3.
The proofs are given inAppendices. Section 4 considers some
extensions for robust hyperstability due to the presence of
state andmeasurement disturbances. Section 5 presents some
illustrative simulated examples and, finally, conclusions end
the main body of the paper.
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2. Problem Statement and Some
Preliminary Results

Consider the following linear and time-invariant system:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑏𝑢im (𝑡) , 𝑥 (0) = 𝑥

0
, (1)

𝑢im (𝑡) = −𝜑 (𝑦 (𝑡) , 𝑡) , (2)

𝑦 (𝑡) = 𝑐

𝑇
𝑥 (𝑡) + 𝑑

0
𝑢im (𝑡) , (3)

which is subject to a potentially nonlinear time-varying con-
troller device satisfying the Popovian type integral inequality
below:

∫

𝑡

0

𝜑 (𝑦 (𝜏) , 𝜏) 𝑦 (𝜏) 𝑑𝜏 ≥ −𝛾

2
> −∞, ∀𝑡 ∈ R

0+
,

(4)

where 𝑥(𝑡) ∈ R𝑛 is the 𝑛-state vector, and 𝑦(𝑡) and 𝑢im(𝑡) are
the output and the (in general, impulsive) control which sat-
isfies the Popovian integral constraint ∫𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥

−𝛾

2
> −∞ for all 𝑡 ∈ R

0+
and any nonzero 𝛾 ∈ R. The,

in general, nonlinear function 𝜑(𝑦(𝑡), 𝑡) used to generate the
control input, subject to the integral constraint (4), defines a
class of regulators via such a constraint which is admissible
to control the linear plant (1) and (3).Thus, the hyperstability
property to be addressed in the paper ensures the closed-
loop stability for any member of such a class of regulators.
Note that if (4) holds for any nonzero 𝛾 then it also holds for
any 𝛾 ≥ 𝛾. The transfer function of the linear feed-forward
loop (1)–(3) is decomposed in parallel blocks as follows:

𝐺 (𝑠) = 𝑐

𝑇
(𝑠𝐼 − 𝐴)

−1
𝑏 + 𝑑

0
= 𝐺

∗
(𝑠) +

̃

𝐺 (𝑠) ,
(5a)

𝐺

∗
(𝑠) = 𝑐

∗𝑇
(𝑠𝐼 − 𝐴

∗
)

−1
𝑏

∗
+ 𝑑

∗
,

(5b)

where

(i) ̃𝐺(𝑠) is both strictly stable and strictly proper with
poles in Re 𝑠 ≤ −𝜎 < 0 for some 𝜎 ∈ R

+
and satisfy-

ing Re ̃𝐺(𝑖𝜔) ≥ −̃𝐾 > −∞ for some nonnegative real
constant ̃𝐾 and all 𝜔 ∈ R

0+
. Note that its real part is

finitely lower-bounded since it is strictly stable.
(ii) 𝐺∗(𝑠) is strictly positive real with 𝑑∗ = 𝑑

0
=

lim
𝜔→±∞

𝐺(𝑖𝜔) = lim
𝜔→±∞

𝐺

∗
(𝑖𝜔) > 0, since

lim
𝜔→±∞

̃

𝐺(𝑖𝜔) = 0, where 𝑖 =
√
−1 is the

complex unit and 𝑐∗𝑇(𝑠𝐼 − 𝐴∗)−1𝑏∗ is strictly proper
and strictly stable since 𝐺∗(𝑠) is strictly positive real
and 𝑑

0
is a positive real constant.

Note that ̂𝐺∗(𝑠) = 𝐺∗(𝑠) − 𝑑
0
= 𝑐

∗𝑇
(𝑠𝐼 − 𝐴

∗
)

−1
𝑏

∗ is strictly
proper and strictly stable since 𝐺∗(𝑠) is of zero relative degree
(i.e., biproper) since 𝑑∗is nonzero. It is well-known that
a transfer function 𝐺∗(𝑠) is strictly positive (resp., positive
real) real if Re𝐺(𝑠) > 0 (resp., Re𝐺(𝑠) ≥ 0) for any complex
number 𝑠 with Re 𝑠 ≥ 0 (resp., for Re 𝑠 > 0), and then, it has
a relative degree equal to 0 or 1. The sets of strictly positive
real and positive real transfer functions are simply denoted
in the sequel by SPR and PR, respectively. Strictly positive
real transfer functions are strictly stable while the positive

real transfer functions are stable. Note that the set of positive
real functions contains that of strictly positive real ones. If the
transfer functions are realizable, then it is evident that they
have relative degrees (also often referred to as relative orders,
equivalently, and their pole-zero excess number) being 0 or
1. Now, assume that the impulsive control is of the following
form:

𝑢im (𝑡) = 𝑢 (𝑡) +
∞

∑

𝑗=1

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝛿 (𝑡 − 𝑡

𝑗
) , ∀𝑡 ∈ R

0+
, (6)

where 𝑢(𝑡) is the piecewise continuous impulse-free input,
𝛿(𝑡) is the Dirac distribution describing the impulsive actions
of amplitudes 𝐾

𝑗
𝑔(𝑡

𝑗
) where 𝑔(𝑡

𝑗
) = 1 if the input impulse

is independent of the output and 𝑔(𝑡
𝑗
) = 𝑦(𝑡

𝑗
) in the case

that it depends directly on such an output. The sequence
{𝑔(𝑡

𝑗
)} can be, in general, any nonzero function sequence

being dependent on the output and input sequences {𝑦(𝑡
𝑗
)}

and {𝑢(𝑡
𝑗
)} at the impulsive time instants. A typical case in

many practical situations is that the input impulse is 𝑢(𝑡+
𝑗
) =

𝑢(𝑡

𝑗
) + 𝐾

𝑗
𝑦(𝑡

𝑗
), that is, 𝑔(𝑡

𝑗
) = 𝑦(𝑡

𝑗
). In the following, the

subsequent notation is used:

(i) 𝑓
𝑡
1
,𝑡
2

(𝜏) = 𝑓(𝑡) if 𝜏 ∈ [𝑡

1
, 𝑡

2
) and 𝑓

𝑡
1
,𝑡
2

(𝜏) = 0,
otherwise, it is a truncated function of 𝑓(𝑡) (𝑓

0,𝑡
(𝜏) ≡

𝑓

𝑡
(𝜏) is used for notation abbreviation);

(ii) Im(𝑡) = {𝑡
1
, 𝑡

2
, . . . , 𝑡

𝑝
(𝑡)} is the set of impulsive time

instants until time 𝑡 with the convention 𝑡
𝑝
(𝑡) < 𝑡 so

that Im(𝑡+) = {𝑡

1
, 𝑡

2
, . . . , 𝑡

𝑝+1
(𝑡) = 𝑡} if 𝑡, itself, is

an impulsive time instant which is denoted by 𝑡 ∈
Im(𝑡+). Note that the convention implies that if 𝑡 ∉
Im(𝑡+) then Im(𝑡+) = Im(𝑡) and that 𝑡

𝑘
∉ Im(𝑡

𝑘
).

Let us also denote Im
∞
≡ ⋃

𝑡∈R
0+

Im(𝑡) as the whole
set of impulsive time instants and card Im

∞
is its

cardinal. The notation card Im
∞
= 𝜒

0
(the usual

symbol for an infinite cardinal of a numerable set)
refers to the case when the set of impulses is infinity
while card Im

∞
< 𝜒

0
indicates that there is a finite

number of impulses.

The notation “support sequence” for {𝑔(𝑡
𝑗
)}, 𝑡
𝑗
∈ Im
∞

for
some impulsive set Im

∞
is often used by obvious reasons for

such a sequence {𝑔(𝑡
𝑗
)}.

The limit notation lim
𝑡∈[𝑡
𝑗
,𝑡
𝑗+1
),𝑡
𝑗→∞

𝑓(𝑡) used in some of
the obtained results stands for the limits as time tends to
infinity within the interimpulse time intervals provided that
they exist. In this context, note that (6) is very general so
that the impulses can be state-dependent or not. Thus, such
limits do not always exist as time tends to infinity to the left
of the impulsive time instants. This motivate the use of such
a notation.

The following definitions are well-known from the back-
ground literature for the impulsive-free case 𝑢im(𝑡) = 𝑢(𝑡) in
(6).

Definition 1. The closed-loop system (1)–(4) is said to
be asymptotically hyperstable (resp., hyperstable) for the
impulsive-free case 𝑢im(𝑡) = 𝑢(𝑡) for all 𝑡 ∈ R

0+
if it

is globally asymptotically stable (resp., globally stable) for
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any control device satisfying Popov’s integral inequality
∫

𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥ −𝛾

2
> −∞ for all 𝑡 ∈ R

0+
and any

nonzero 𝛾 ∈ R
+
.

It is well-known that the system (1)–(4) is asymptotically
hyperstable if and only if its associate transfer function 𝐺(𝑠) ∈
SPR. Note that if 𝐺(𝑠) is strongly strictly positive real,
since ̃𝐺(𝑠) is strictly proper, then

𝑑

0
= lim
𝜔→±∞

Re𝐺 (𝑖𝜔) > 0,

𝑑 = min
𝜔∈R
0+

Re𝐺 (𝑖𝜔) = 𝑑
0
+ min
𝜔∈R
0+

Re (𝑐𝑇(𝑖𝜔𝐼 − 𝐴)−1𝑏) > 0.

(7)

The following preliminary technical results to be then
used to establish the main asymptotic hyperstability results
hold.

Lemma 2. The input-output energy measure on the time
intervals [0, 𝑡), respectively, on [0, 𝑡], 𝐸(𝑡) = ∫𝑡

0
𝑦(𝜏)𝑢im(𝜏)𝑑𝜏,

respectively, on [0, 𝑡] is uniformly bounded for all time while it
satisfies the following relationships:

𝛾

2
≥ 𝐸 (𝑡) ≥ (𝑑 −

̃

𝐾)∫

∞

−∞

𝑢

2

𝑡
(𝜏) 𝑑𝜏

= (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 + ∑

𝑡
𝑗
∈𝐼𝑚(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ,

∀𝑡 ∈ R
+
,

(8)

𝛾

2
≥ 𝐸 (𝑡

+
) = 𝐸 (𝑡) + ∫

𝑡
+

𝑡
𝑝(𝑡)

𝑦

𝑡
(𝜏) 𝑢 (𝜏) 𝑑𝜏

≥ (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 + ∑

𝑡
𝑗
∈𝐼𝑚(𝑡

+
)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ,

∀𝑡 ∈ R
+
,

(9)

where 𝑑 = min
𝜔∈R
0+

𝑅𝑒𝐺(𝑖𝜔).

Proof. See Appendix A.

A useful result based on Lemma 2 follows below so as to
get the main stability result after establishing the subsequent
definition.

Definition 3. Any sequence of impulsive gains {𝐾
𝑗
} subject

to the following constraints:

𝛾

2
− (𝑑 −

̃

𝐾)∫

𝑡
𝑘

0

𝑢

2
(𝜏) 𝑑𝜏 − ∑

𝑡
𝑗
∈Im(𝑡

𝑘
)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

≥ 𝐾

𝑘
𝑔 (𝑡

𝑘
) 𝑦 (𝑡

𝑘
) ≥ 𝑚 (𝑡

𝑘
) − (𝑑 −

̃

𝐾)∫

𝑡
𝑘

0

𝑢

2
(𝜏) 𝑑𝜏

− ∑

𝑡
𝑗
∈Im(𝑡

𝑘
)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ,

(10)

for some given real function𝑚(𝑡), which satisfies 0 < 𝑚(𝑡) <
𝛾

2 for all 𝑡 ∈ R
+
, and any 𝑡

𝑘
∈ Im
∞
≡ ⋃

𝑡∈R
0+

Im(𝑡) such
that 𝑦(𝑡

𝑘
) ̸= 0, is said to be of the class 𝐼gain = 𝐼gain(Im∞, 𝛾, 𝑔)

for some given 𝛾 ∈ R
+
and for the support sequence {𝑔(𝑡

𝑗
)},

𝑡

𝑗
∈ Im
∞
.

The feature that if (4) holds for any nonzero 𝛾 then it
also holds for any 𝛾 ≥ 𝛾 makes that the particular value
of any finite nonzero 𝛾 in (10) can be increased to upper-
bound the admissible impulsive gains for different controls
while keeping the validity of the formulated asymptotic
hyperstability theorem for the impulsive case. SeeTheorem 10
in Section 3.

Definition 4. An integral Popovian inequality (4) for a
nonzero real constant 𝛾 and an impulsive control is said to
be impulsive control-compatible if the sequence of impulsive
gains {𝐾

𝑗
} is of the class 𝐼gain(Im∞, 𝛾, 𝑔) for some 𝛾 ∈ R

+
.

Lemma 5. Assume that the sequence of impulsive gains for
system (1)–(4) is of the class 𝐼

𝑔𝑎𝑖𝑛
= 𝐼

𝑔𝑎𝑖𝑛
(𝐼𝑚

∞
, 𝛾, 𝑔), then, the

following properties hold:











𝑑 −

̃

𝐾











∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 < ∞,

























∑

𝑡
𝑗
∈𝐼𝑚(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

























< ∞, ∀𝑡 ∈ R
+
,

(11)

if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
< 𝜒

0
, and

∞ > 𝛾

2
≥ (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏

+ ∑

𝑡
𝑗
∈𝐼𝑚(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) > 0, ∀𝑡 ∈ R

+
,

(12)

if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
≤ 𝜒

0
so that the input-output energy is positive

and uniformly upper-bounded by a finite bound for all nonzero
time.

Proof. See Appendix B.

Remark 6. It is then proven inTheorem 10 that (11) holds even
if card Im

∞
= 𝜒

0
and 𝑑 = ̃𝐾.

Lemma 5 is subject to the subsequent important neces-
sary condition.

Lemma 7. Assume that 𝑑 < ̃𝐾 then a necessary condition for
Lemma 5 to hold is that the class 𝐼

𝑔𝑎𝑖𝑛
= 𝐼

𝑔𝑎𝑖𝑛
(𝐼𝑚

∞
, 𝛾, 𝑔) is

such that 𝑡
1
= 0 ∈ 𝐼𝑚(𝑡) ⊂ 𝐼𝑚

∞
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R

0+
, and its

associate impulsive gain satisfies the constraint:










𝑑 −

̃

𝐾











∫

𝑡
1

0
𝑢

2
(𝜏) 𝑑𝜏 − 𝛾

2

𝑔 (𝑡

1
) 𝑦 (𝑡

1
)

≤ 𝐾

1
≤

𝛾

2
+











𝑑 −

̃

𝐾











∫

𝑡
1

0
𝑢

2
(𝜏) 𝑑𝜏

𝑔 (𝑡

1
) 𝑦 (𝑡

1
)

.

(13)



Abstract and Applied Analysis 5

Another necessary condition for Lemma 5 to hold is that the
class 𝐼

𝑔𝑎𝑖𝑛
= 𝐼

𝑔𝑎𝑖𝑛
(𝐼𝑚

∞
, 𝛾, 𝑔) has an impulsive set of time

instants 𝐼𝑚
∞

of infinite cardinal.

Proof. Proceed by contradiction by assuming that 𝑑 <

̃

𝐾,
Im
∞
∋ 𝑡

1
> 0, and Lemma 5 holds so that (12) holds. Then,

∞ > 𝛾

2
≥ −











𝑑 −

̃

𝐾











∫

𝑡
1

0

𝑢

2
(𝜏) 𝑑𝜏 + 𝐾

1
𝑔 (𝑡

1
) 𝑦 (𝑡

1
) > 0,

∞ > 𝛾

2
≥ 0 > −











𝑑 −

̃

𝐾











∫

𝑡
1

0

𝑢

2
(𝜏) 𝑑𝜏 > 0, ∀𝑡 ∈ [0, 𝑡

1
) ,

(14)

and the previous second relationship is clearly a contradiction
to 𝑡
1
> 0. On the other hand, if there is a finite number

of impulsive time instants then the following contradiction
follows from (12):

∞ > 𝛾

2
≥ lim
𝑡→∞

(𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏

+ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) = ∞.

(15)

Hence, the proof of the result is complete.

To the light of Definition 3, the hyperstability concepts of
Definition 1 are extended so as to consider also certain classes
on impulsive controls which lead to the global asymptotic
stability of the closed-loop system as follows.

Definition 8. The impulsive closed-loop system (1)–(4) is said
to be impulsive asymptotically 𝐼gain(Im∞, 𝛾, 𝑔)-hyperstable
(resp., impulsive 𝐼gain(Im∞, 𝛾, 𝑔)-hyperstable) if it is globally
asymptotically stable (resp., globally stable) for any sequence
of impulsive gains {𝐾

𝑗
} of the class 𝐼gain = 𝐼gain(Im∞, 𝛾, 𝑔) for

a given nonzero 𝛾 ∈ R
+
, a given support sequence {𝑔(𝑡

𝑗
)}, 𝑡
𝑗
∈

Im
∞
, and any control device satisfying an impulsive control

compatible Popov’s integral inequality ∫𝑡
0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥

−𝛾

2
> −∞ for all 𝑡 ∈ R

0+
.

3. Main Results on Asymptotic Hyperstability

It turns out that Lemma 7 establishes that the origin has
to be an impulsive time instant to keep the input-output
energy to be positive and upper-bounded for all time. On the
other hand, Lemma 5 leads to the subsequent main result of
usefulness in the impulsive-free case.

Theorem 9. Assume that Im
∞

= 0 (i.e., there are no
impulsive controls). Then, the following properties hold.

(i) Assume also that 𝐺∗(𝑠) ∈ 𝑆𝑃𝑅 and 𝑑 >

̃

𝐾. Then,
∞ > 𝐸(𝑡) ≥ 0 for all 𝑡 ∈ R

0+
with 𝐸(0) = 0, and

the closed-loop system is asymptotically hyperstable
for any nonlinear feedback device 𝜑(𝑦(𝑡), 𝑡) satisfy-
ing Popov’s integral inequality ∫𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥

−𝛾

2
> −∞ for all 𝑡 ∈ R

0+
. As a result, 𝐺(𝑠) ∈

𝑆𝑃𝑅, lim
𝑡→∞

𝑢(𝑡) = 0, 𝑢(𝑡), 𝑦(𝑡) and 𝑥(𝑡) are
uniformly bounded for all 𝑡 ∈ R

0+
, and lim

𝑡→∞
𝑦(𝑡) =

0 and lim
𝑡→∞

𝑥(𝑡) = 0 for all 𝑥
0
∈ R𝑛.

(ii) Assume that 𝑅𝑒𝐺∗(𝑖𝜔) > 0, 𝑅𝑒 ̃𝐺(𝑖𝜔) > −𝑅𝑒𝐺∗(𝑖𝜔)
for all 𝜔 ∈ R

0+
, and 𝑑 = inf

𝜔∈R
0+

𝑅𝑒𝐺(𝑖𝜔) =

lim
𝜔→±∞

𝑅𝑒𝐺

∗
(𝑖𝜔) = 0.

Then, Lemma 5 holds and the closed-loop system is asymptoti-
cally hyperstable for any nonlinear feedback device 𝜑(𝑦(𝑡), 𝑡)
satisfying Popov’s integral inequality ∫𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥

−𝛾

2
> −∞ for all 𝑡 ∈ R

0+
. The, lim

𝑡→∞
𝑢(𝑡) = 0,

𝑢(𝑡), 𝑦(𝑡) and 𝑥(𝑡) are uniformly bounded for all 𝑡 ∈ R
0+
,

and lim
𝑡→∞

𝑦(𝑡) = 0 and lim
𝑡→∞

𝑥(𝑡) = 0 for all 𝑥
0
∈ R𝑛.

Proof. It is given in Appendix C.

Theorem 9(i) addresses the asymptotic hyperstability for
the impulsive-free case when 𝐺∗(𝑠) ∈ SPR is strongly posi-
tive real since 𝐺∗(𝑖𝜔) ≥ 𝑑 > 0 for all 𝜔 ∈ R

0+
. Theorem 9(ii)

considers the same property for the case when 𝐺∗(𝑠) ∈

SPR is weakly positive real since 𝐺∗(𝑖𝜔) > 0 and 𝑑 =

lim
𝜔→±∞

𝐺

∗
(𝑖𝜔) = 0, that is, the transfer function is strictly

proper so that it is zero at infinity frequency. Lemma 5 leads
to the subsequent main result of usefulness in the control
impulsive case.

Theorem 10. Assume that 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
≤ 𝜒

0
(i.e., there are

impulsive controls with 𝜒
0
being the infinity cardinal of a

denumerable set) for any set of control impulses of amplitudes
satisfying (10). Then, the following properties hold.

(i) Assume also that 𝐺(𝑠) ∈ 𝑆𝑃𝑅 with 𝑑 >

̃

𝐾. Then,
∞ > 𝐸(𝑡) ≥ 0 for all 𝑡 ∈ R

0+
with 𝐸(0) = 0,

and the closed-loop system is impulsive asymptotically
𝐼

𝑔𝑎𝑖𝑛
(𝐼𝑚

∞
, 𝛾, 𝑔)-hyperstable for any nonlinear feed-

back device 𝜑(𝑦(𝑡), 𝑡) satisfying a compatible Popov’s
integral inequality ∫𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥ −𝛾

2
> −∞

for all 𝑡 ∈ R
0+
. As a result, 𝑦(𝑡) and 𝑥(𝑡) are uniformly

bounded for all 𝑡 ∈ R
0+

for all 𝑥
0
∈ R𝑛, 𝑢(𝑡) is

bounded for 𝑡 ∈ R
0+
\𝐼𝑚

∞
, with lim

𝑡∈[𝑡
𝑗
,𝑡
𝑗+1
),𝑡
𝑗→∞

𝑢(𝑡) =

0 if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
= 𝜒

0
(i.e., there are infinitely many

control impulsive time instants); and lim
𝑡→∞

𝑢(𝑡) = 0

if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
< 𝜒

0
, that is, if there is a finite number of

control impulsive time instants. Also

∑

𝑡
𝑗
∈𝐼𝑚(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ≤ 𝛾

2
< ∞,

∑

𝑡
𝑗
∈𝐼𝑚(𝑡

+
)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ≤ 𝛾

2
< ∞, ∀𝑡 ∈ R

0+
.

(16)

(ii) Assume that 𝑅𝑒𝐺∗(𝑖𝜔) > 0, 𝑅𝑒 ̃𝐺(𝑖𝜔) > −𝑅𝑒𝐺∗(𝑖𝜔)
for all 𝜔 ∈ R

0+
and 𝑑 = inf

𝜔∈R
0+

𝑅𝑒𝐺(𝑖𝜔) =

lim
𝜔→ ±∞

𝑅𝑒𝐺

∗
(𝑖𝜔) = 0.

Then, Lemma 5 holds and the closed-loop system is asymptoti-
cally hyperstable for any nonlinear feedback device 𝜑(𝑦(𝑡), 𝑡)
satisfying Popov’s integral inequality ∫𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥
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−𝛾

2
> −∞ for all 𝑡 ∈ R

0+
. Then, 𝑦(𝑡) and 𝑥(𝑡) are

uniformly bounded for all 𝑡 ∈ R
0+
, for all 𝑥

0
∈ R𝑛, 𝑢(𝑡) is

bounded for 𝑡 ∈ R
0+
\ 𝐼𝑚

∞
, with lim

𝑡∈[𝑡
𝑗
,𝑡
𝑗+1
),𝑡
𝑗→∞

𝑢(𝑡) =

0 if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
= 𝜒

0
(i.e., there are infinitely many control

impulsive time instants); and lim
𝑡→∞

𝑢(𝑡) = 0, lim
𝑡→∞

𝑥(𝑡) =

0 and lim
𝑡→∞

𝑦(𝑡) = 0 if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
< 𝜒

0
(i.e., there is a finite

number of control impulsive time instants) or if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
=

𝜒

0
(i.e., there are infinitely many control impulsive time

instants) and 𝐾
𝑗
→ 0 as 𝑗 → ∞. Also, the boundedness

properties (16) for the impulsive contributions still hold.

Proof. It is given in Appendix D.

Note that the constraint (10) invoked in Theorem 10 is
guaranteed by amplitude constraints of each impulse at 𝑡

𝑘

depending only on input and output values on [0, 𝑡
𝑘
) for the

case of signal-dependent control impulses.

4. Some Extensions Concerning Robustness

Assume that (1) is modified in the presence of state and mea-
surement disturbances 𝜂(𝑡) and 𝜆(𝑡), of respective Laplace
transforms 𝑁(𝑠) and Λ(𝑠), as follows:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑏𝑢im (𝑡) + 𝜂 (𝑡) , 𝑥 (0) = 𝑥0
,

𝑦 (𝑡) = 𝑐

𝑇
𝑥 (𝑡) + 𝑑

0
𝑢im (𝑡) + 𝜆 (𝑡) .

(17)

Taking Laplace transforms under zero initial conditions in
(17), one gets

𝑌 (𝑠) = 𝐺 (𝑠) 𝑈im (𝑠) + 𝑐
𝑇
(𝑠𝐼 − 𝐴)

−1
𝑁(𝑠) + Λ (𝑠)

= 𝑐

𝑇
(𝑠𝐼 − 𝐴)

−1
(𝑏𝑈im (𝑠) + 𝑁 (𝑠)) + 𝑑0𝑈im (𝑠) + Λ (𝑠)

= (𝐺

∗
(𝑠) +

̃

𝐺 (𝑠))𝑈im (𝑠) + 𝑐
𝑇
(𝑠𝐼 − 𝐴)

−1
𝑁(𝑠) + Λ (𝑠)

= (𝑐

∗𝑇
(𝑠𝐼 − 𝐴

∗
)

−1
𝑏

∗
+ 𝑑

0
)𝑈im (𝑠)

+

̃

𝐺 (𝑠)𝑈im (𝑠) + 𝑐
𝑇
(𝑠𝐼 − 𝐴)

−1
𝑁(𝑠) + Λ (𝑠) ,

(18)

where 𝐴 and 𝐴

∗ are stability matrices with 𝐺

∗
(𝑠) =

𝑐

∗𝑇
(𝑠𝐼 − 𝐴

∗
)

−1
𝑏

∗
+ 𝑑

∗
∈ SPR (then also strictly stable

biproper if 𝑑
0
= 𝑑

∗
> 0 and strictly proper if 𝑑

0
= 0), and

̃

𝐺(𝑠) being strictly stable and strictly proper. Now, the results
of Sections 2 and 3 can be reformulated for this case with the
replacement of the nominal output 𝑦(𝑡) by amodified output
calculated as follows:

𝑦 (𝑡) → 𝑦 (𝑡) + 𝑦 (𝑡) ,

𝑦 (𝑡) = 𝑦 (𝜂, 𝜆, 𝑡) = ∫

𝑡

0

𝑔

𝑇

0
(𝑡 − 𝜏) 𝜂 (𝜏) 𝑑𝜏 + 𝜆 (𝑡) ,

(19)

where 𝑔𝑇
0
(𝑡) is the impulse response of 𝑐𝑇(𝑠𝐼 − 𝐴)−1. Define

the robust impulsive class and its associated robust impulsive
𝐼rgain = 𝐼rgain(Im∞, 𝛾, 𝑔, 𝜂, 𝜆)-hyperstability and asymptotic
𝐼rgain = 𝐼rgain(Im∞, 𝛾, 𝑔, 𝜂, 𝜆)-hyperstability as follows.

Definition 11. Any sequence of impulsive gains {𝐾
𝑗
} subject

to the following constraints:

𝛾

2
− (𝑑 −

̃

𝐾)∫

𝑡
𝑘

0

𝑢

2
(𝜏) 𝑑𝜏 − ∫

𝑡
𝑘

0

𝑦 (𝜂, 𝜆, 𝜏) 𝑢 (𝜏) 𝑑𝜏

− ∑

𝑡
𝑗
∈Im(𝑡

𝑘
)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

≥ 𝐾

𝑘
𝑔 (𝑡

𝑘
) 𝑦 (𝑡

𝑘
)

≥ 𝑚 (𝑡

𝑘
) − (𝑑 −

̃

𝐾)∫

𝑡
𝑘

0

𝑢

2
(𝜏) 𝑑𝜏

− ∫

𝑡
𝑘

0

𝑦 (𝜂, 𝜆, 𝜏) 𝑢 (𝜏) 𝑑𝜏 − ∑

𝑡
𝑗
∈Im(𝑡

𝑘
)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ,

(20)

for some given real function𝑚(𝑡), which satisfies 0 < 𝑚(𝑡) <
𝛾

2 for all 𝑡 ∈ R
+
, and any 𝑡

𝑘
∈ Im

∞
≡ ⋃

𝑡∈𝑅
0+

Im(𝑡),
such that 𝑦(𝑡

𝑘
) ̸= 0, is said to be of the robust impulsive class

𝐼rgain = 𝐼rgain(Im∞, 𝛾, 𝑔, 𝜂, 𝜆) for some given 𝛾 ∈ R
+
and for

the support sequence {𝑔(𝑡
𝑗
)}, 𝑡
𝑗
∈ Im
∞
.

Definition 12. The impulsive closed-loop system (17), sub-
ject to (2), is said to be robustly impulsive asymp-
totically 𝐼rgain(Im∞, 𝛾, 𝑔, 𝜂, 𝜆)-hyperstable (resp., impulsive
𝐼rgain(Im∞, 𝛾, 𝑔, 𝜂, 𝜆)-hyperstable) if it is globally asymp-
totically stable (resp., globally stable) for any sequence of
impulsive gains {𝐾

𝑗
} of the class 𝐼rgain(Im∞, 𝛾, 𝑔, 𝜂, 𝜆) for a

given nonzero 𝛾 ∈ R
+
, a given support sequence {𝑔(𝑡

𝑗
)}, 𝑡
𝑗
∈

Im
∞

and any control device satisfying an impulsive control
compatible Popov integral inequality ∫𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥

−𝛾

2
> −∞; for all 𝑡 ∈ R

0+
.

Now, the asymptotic hyperstabilityTheorem 10 is directly
extended for robust asymptotic hyperstability as follows.

Theorem 13. Assume that 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
≤ 𝜒

0
for any set of

control impulses of amplitudes satisfying (20). Assume also
that 𝑦(𝑡) is uniformly bounded for all 𝑡 ∈ R

0+
(it suffices that

𝜆(𝑡) and 𝜂(𝑡) be bounded for all time). Then, the following
properties hold.

(i) Assume also that 𝐺(𝑠) ∈ 𝑆𝑃𝑅 with 𝑑 >

̃

𝐾. Then,
∞ > 𝐸(𝑡) ≥ 0 for all 𝑡 ∈ R

0+
with 𝐸(0) = 0, and

the closed-loop system is robustly impulsive asymptot-
ically 𝐼

𝑟𝑔𝑎𝑖𝑛
(𝐼𝑚

∞
, 𝛾, 𝑔, 𝜂, 𝜆)-hyperstable for any non-

linear feedback device 𝜑(𝑦(𝑡), 𝑡) satisfying a compat-
ible Popov’s integral inequality ∫𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥

−𝛾

2
> −∞ for all 𝑡 ∈ R

0+
. As a result, 𝑦(𝑡) and

𝑥(𝑡) are uniformly bounded for all t ∈ R
0+

for all
𝑥

0
∈ R𝑛, 𝑢(𝑡) is bounded for 𝑡 ∈ R

0+
\ 𝐼𝑚

∞
, with

lim
𝑡∈[𝑡
𝑗
,𝑡
𝑗+1
),𝑡
𝑗→∞

𝑢(𝑡) = 0 if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
= 𝜒

0
(i.e., there

are infinitely many control impulsive time instants);
and lim

𝑡→∞
𝑢(𝑡) = 0 if 𝑐𝑎𝑟𝑑 𝐼𝑚

∞
< 𝜒

0
(i.e., there is a

finite number of control impulsive time instants).
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(ii) Assume that 𝑅𝑒𝐺∗(𝑖𝜔) > 0, 𝑅𝑒 ̃𝐺(𝑖𝜔) > −𝑅𝑒𝐺∗(𝑖𝜔)
for all 𝜔 ∈ R

0+
and d = inf

𝜔∈𝑅
0+

𝑅𝑒𝐺(𝑖𝜔) =

lim
𝜔→±∞

𝑅𝑒𝐺

∗
(𝑖𝜔) = 0.

Then, Lemma 5 holds and the closed-loop system is
robustly asymptotically hyperstable for any nonlinear feed-
back device 𝜑(𝑦(𝑡), 𝑡) satisfying Popov’s integral inequality
∫

𝑡

0
𝜑(𝑦(𝜏), 𝜏)𝑦(𝜏)𝑑𝜏 ≥ −𝛾

2
> −∞ for all 𝑡 ∈ R

0+
. Then, 𝑦(𝑡)

and 𝑥(𝑡) are uniformly bounded for all 𝑡 ∈ R
0+
, for all 𝑥

0
∈ R𝑛,

𝑢(𝑡) is bounded for 𝑡 ∈ R
0+
\ 𝐼𝑚

∞
, with lim

𝑡∈[𝑡
𝑗
,𝑡
𝑗+1
),𝑡
𝑗→∞

𝑢(𝑡) =

0 if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
= 𝜒

0
(i.e., there are infinitely many control

impulsive time instants); and lim
𝑡→∞

𝑢(𝑡) = 0, lim
𝑡→∞

𝑥(𝑡) =

0 and lim
𝑡→∞

𝑦(𝑡) = 0 if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
< 𝜒

0
(i.e., there is a finite

number of control impulsive time instants) or if 𝑐𝑎𝑟𝑑 𝐼𝑚
∞
= 𝜒

0

(i.e., there are infinitely many control impulsive time instants)
and 𝐾

𝑗
→ 0 as 𝑗 → ∞.

Proof (outline). It is given in Appendix E.

5. Numerical Examples

This section discusses some simulation examples illustrating
the theoretical results stated in the previous ones. Two
different examples will be provided.The first one corresponds
to the impulsive-free case while the second one considers the
effect of feedback impulses. The following transfer functions
are used:

𝐺

∗
(𝑠) =

𝑠 + 3

𝑠

2
+ 7𝑠 + 10

,

̃

𝐺 (𝑠) =

2

𝑠

2
+ 6𝑠 + 9

. (21)

𝐺

∗
(𝑠) is SPR since it is stable and Re 𝐺∗(𝑗𝜔) = (4𝜔

2
+

30)/(𝜔

4
+ 29𝜔

2
+ 100) > 0 for 𝜔 ≥ 0. On the other hand,

̃

𝐺(𝑠) is stable but is not SPR since its relative degree is two.
Therefore, 𝐺(𝑠) = 𝐺

∗
(𝑠) +

̃

𝐺(𝑠) is a parallel connection
of an SPR and a non-SPR transfer function as discussed
in Section 2. In addition, a family of nonlinear feedback
functions is given by 𝜑

𝑖
(𝑦, 𝑡) = tanh (𝛾

𝑖
𝑦), where 𝛾

𝑖
∈

{0.2, 0.6, 1.4}. These nonlinear functions satisfy the integral-
type Popov’s constraint specified by (4) since tanh (𝛾

𝑖
𝑦)𝑦 >

0 for 𝑦 ̸= 0, and tanh (𝛾
𝑖
𝑦)𝑦 = 0 for 𝑦 = 0, implying

that ∫𝑡
0
tanh (𝛾

𝑖
𝑦)𝑦𝑑𝑡 ≥ 0 for any 𝑡 > 0 and all 𝑖 = 1, 2, 3.

The next Section 5.1 shows the asymptotic hyperstability of
the closed-loop for the SPR transfer function 𝐺∗(𝑠) and
for the non-SPR transfer function 𝐺(𝑠) in the absence of
impulses. The state variables are always defined from the
(minimal) canonical controllable state-space realizations of
the transfer functions with the first state component being
the output. The initial conditions are in all the cases 𝑥

1
(0) =

1, 𝑥
2
(0) = 2.5 for the realization of 𝐺∗(𝑠), and 𝑥

1
(0) =

1, 𝑥
2
(0) = 2.5, 𝑥

3
(0) = −1, 𝑥

4
(0) = 2 for the realization

of 𝐺(𝑠). We point out that the hyperstability properties of
strictly positive real transfer functions are independent of the
chosen realization and on the fact that it is minimal or not.
Note that, if the realization is nonminimal, it has to be stable
and any potential zero-pole cancellations do not modify the
frequency plots and then the positive realness properties and
minimum gain values.
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Figure 1: Evolution of the state variable 𝑥
1
(𝑡).
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Figure 2: Evolution of the state variable 𝑥
2
(𝑡).

5.1. Asymptotic Hyperstability in the Impulsive-Free Case.
Figures 1 and 2 show the evolution of the state variables of the
SPR system 𝐺

∗
(𝑠) when members of the family of nonlinear

static feedback devices 𝜑
𝑖
(𝑦, 𝑡) = tanh (𝛾

𝑖
𝑦) are used as

controllers.
Figures 1–4 confirm the results of Theorem 9(i) guar-

anteeing the boundedness and convergence to zero of the
state, the output and the control signal. Moreover, it can be
appreciated in Figures 1–3 that the evolution of the system
is very similar for the different considered values of 𝛾

𝑖
. This

similar evolution is obtained at the expense of a different
control action for each 𝛾

𝑖
, as Figure 4 depicts. On the other

hand, the following Figures 5, 6, and 7 show the state
evolution, the output and the control input for the non-
SPR system 𝐺(𝑠). The particular value of 𝛾

𝑖
= 0.6 has been

used in Figures 5 and 6 since the evolution of the system
is very similar for all values of 𝛾

𝑖
. However, Figure 7 shows

the control input for different values of 𝛾
𝑖
since its value

varies depending on 𝛾
𝑖
. Figures 5–7 confirm the results of
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Figure 3: System output.
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Figure 4: Control input 𝑢(𝑡) = −𝜑(𝑦, 𝑡).

Theorem 9(ii) guaranteeing the convergence to zero of the
state, the output, and the control signal. The next Section 5.2
is devoted to the study of the impulsive control.

5.2. Asymptotic Hyperstability in the Presence of Impulses.
A number of impulses are added to the nonlinear feed-
back controller introduced in Section 5.1. The support
sequence is given by 𝑔(𝑡

𝑘
) = 𝑦(𝑡

𝑘
) and the impulsive gains

constant 𝐾
𝑘
= 1. The impulsive time instants are multiples

of 0.2 seconds; this means that the presence of impulses is
periodic. The value 𝛾

𝑖
= 0.6 has been used for the sake of

simplicity. Figure 8 depicts the evolution of the state variables
of the SPR transfer function 𝐺∗(𝑠) while Figure 9 shows the
output. Finally, Figure 10 illustrates the control input with the
impulsive action.

Figures 8–10 confirm the statements of Theorem 10(i)
showing the convergence to zero of the state, the output, and
the control signal. In addition, these figures explicitly show
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Figure 5: Evolution of the state variables.
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Figure 6: Output of the system.

the presence of impulses in different signals of the system.
On the other hand, for the complete system, 𝐺(𝑠), we obtain
the following Figures 11, 12, 13, and 14 depicting the state
evolution, the output, and the control input.

Figures 11–14 illustrate the results compiled in
Theorem 10(ii) since they show the convergence of the
state, the output and the input to zero. Moreover, it can
be appreciated the effect of adding impulses to the control
signal by first comparing Figures 3 and 9 and, on the other
hand, Figures 6 and 13. It can be deduced that the use of an
impulsive controller makes the output to converge to zero
faster than when a single continuous-time one is used. This
fact highlights how the concept of impulsive asymptotic
hyperstability is relevant since it allows ensuring the closed-
loop stability for a whole family of nonlinear devices while
accelerating the convergence of the output to zero.
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Figure 7: Control input to the system, 𝑢(𝑡) = −𝜑(𝑦, 𝑡).
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Figure 8: Evolution of the state variables in the presence of impulses.
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Figure 9: System output in the presence of impulses.
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Figure 10: Control input with impulses.
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Figure 11: Evolution of the state component 𝑥
1
(𝑡).
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Figure 12: Evolution of the state components 𝑥
2
(𝑡), 𝑥

3
(𝑡),

and 𝑥
4
(𝑡).
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Figure 13: System output.
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Figure 14: Control input with impulses.

6. Conclusions

This paper has studied the problem of asymptotic hyper-
stability under a regular controller combined with a class
of impulsive controls provided that the feed-forward linear-
loop is not asymptotically hyperstable, since it has a paral-
lel component subsystem being strictly stable. Asymptotic
hyperstability results with robustness extensions have also
been discussed.The controller has been assumed to satisfy an
integral Popovian-type inequality for all time. Also, examples
have been given to illustrate the proposed study.

Appendices

A. Proof of Lemma 2

The Popovian integral constraints (8)-(9) and Parseval’s
theorem while absorbing the delta distribution describing
impulses from the time-integral or frequency-integral of the

input-output energy measures are used. Then, one gets the
following sets of inequalities and equalities by taking into
account the use of truncated signals to convert time-integral
expressions in frequency ones and vice versa as well as the
symmetry of the frequency-response hodographs𝐺∗(𝑖𝜔) and
̃

𝐺(𝑖𝜔):

𝛾

2
≥ 𝐸 (𝑡) = −∫

𝑡

0

𝜑 (𝑦 (𝜏)) 𝑦 (𝜏) 𝑑𝜏 = ∫

𝑡

0

𝑦 (𝜏) 𝑢im (𝜏) 𝑑𝜏

= ∫

∞

−∞

𝑦

𝑡
(𝜏) 𝑢im𝑡 (𝜏) 𝑑𝜏 = ∫

∞

−∞

𝑦

𝑡
(𝜏) 𝑢im (𝜏) 𝑑𝜏

= ∫

∞

−∞

𝑦 (𝜏) 𝑢

𝑡
(𝜏) 𝑑𝜏

+ ∑

𝑡
𝑖
∈Im(𝑡)

∫

𝑡
+

𝑖+1

𝑡
𝑖

𝐾

𝑗
𝑔 (𝑡

𝑖
) 𝑦

𝑡
(𝜏) 𝛿 (𝜏 − 𝑡

𝑖
) 𝑑𝜏

= ∑

𝑡
𝑖
∈Im(𝑡)

∫

𝑡
𝑖+1

𝑡
+

𝑖

𝑦

𝑡 (
𝜏) 𝑢 (𝜏) 𝑑𝜏 + ∫

𝑡

𝑡
+

𝑝
(𝑡)

𝑦

𝑡 (
𝜏) 𝑢 (𝜏) 𝑑𝜏

+ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) =

1

2𝜋

∫

∞

−∞

𝑌

𝑡 (
𝑖𝜔)𝑈𝑡 (

−𝑖𝜔) 𝑑𝜔

+ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

=

1

2𝜋

∫

∞

−∞

Re 𝐺∗ (𝑖𝜔) 


𝑈

𝑡
(𝑖𝜔)









2
𝑑𝜔

+

1

2𝜋

∫

∞

−∞

Re ̃𝐺 (𝑖𝜔) 


𝑈

𝑡
(𝑖𝜔)









2
𝑑𝜔

+ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

≥

1

2𝜋

(min
𝜔∈R
0+

Re 𝐺∗ (𝑖𝜔) +min
𝜔∈R
0+

Re ̃𝐺 (𝑖𝜔))

× ∫

∞

−∞









𝑈

𝑡
(𝑖𝜔)









2
𝑑𝜔 + ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

= (𝑑 −

̃

𝐾)∫

∞

−∞

𝑢

2

𝑡
(𝜏) 𝑑𝜏 = (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏

+ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) , ∀𝑡 ∈ R

+
.

(A.1)

In the same way, and since, 𝐸(𝑡+) = 𝐸(𝑡) + ∫𝑡
+

𝑡
𝑝
(𝑡)
𝑦

𝑡
(𝜏)𝑢(𝜏)𝑑𝜏,

one has

𝛾

2
≥ 𝐸 (𝑡

+
) ≥ (𝑑 −

̃

𝐾)∫

∞

−∞

𝑢

2

𝑡
(𝜏) 𝑑𝜏 = (𝑑 −

̃

𝐾)

× ∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 + ∑

𝑡
𝑗
∈Im(𝑡+)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) , ∀𝑡 ∈ R

+

(A.2)

and the proof is complete.
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B. Proof of Lemma 5

The finite uniform upper-bound of (12) follows from
Lemma 2. It is needed to guarantee a positive lower-bound
for all nonzero time so that

𝛾

2
≥ (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏

+ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) > 0, ∀𝑡 ∈ R

+

(B.1)

to hold with | ∑

𝑡
𝑗
∈Im(𝑡)𝐾𝑗𝑔(𝑡𝑗)𝑦(𝑡𝑗)| < ∞. This

implies that −∞ < (𝑑 −

̃

𝐾) ∫

𝑡

0
𝑢

2
(𝜏)𝑑𝜏 < ∞ and

−∞ < ∑

𝑡
𝑗
∈Im(𝑡)𝐾𝑗𝑔(𝑡𝑗)𝑦(𝑡𝑗) < ∞ while it is avoided

that (12) can hold with lim
𝑡→∞

(𝑑 −

̃

𝐾) ∫

𝑡

0
𝑢

2
(𝜏)𝑑𝜏 =

− lim
𝑡→∞

∑

𝑡
𝑗
∈Im(𝑡)𝐾𝑗𝑔(𝑡𝑗)𝑦(𝑡𝑗) = +∞. Thus, it

suffices for any given strictly positive bounded
function 0 < 𝑚(𝑡) < 𝛾

2 for all 𝑡 ∈ R
+
to guarantee

(B.1) in the form

𝛾

2
≥ (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏

+ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ≥ 𝑚 (𝑡) > 0, ∀𝑡 ∈ R

+
,

(B.2)

or, equivalently,

𝛾

2
− (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 ≥ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

≥ 𝑚 (𝑡) − (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏,

(B.3)

so that (12) holds if card Im
∞
≤ 𝜒

0
if and only if for each

𝑡

𝑘
∈ ⋃

𝑡∈R
0+

Im(𝑡).
Consider

𝛾

2
− (𝑑 −

̃

𝐾)∫

𝑡
𝑘

0

𝑢

2
(𝜏) 𝑑𝜏 − ∑

𝑡
𝑗
∈Im(𝑡

𝑘
)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

≥ 𝐾

𝑘
𝑔 (𝑡

𝑘
) 𝑦 (𝑡

𝑘
) ≥ 𝑚 (𝑡

𝑘
) − (𝑑 −

̃

𝐾)

× ∫

𝑡
𝑘

0

𝑢

2
(𝜏) 𝑑𝜏 − ∑

𝑡
𝑗
∈Im(𝑡

𝑘
)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ,

(B.4)

which holds if (10) holds for any 𝑡
𝑘

∈ ⋃

𝑡∈R
0+

Im(𝑡),
such that 𝑦(𝑡

𝑘
) ̸= 0, which also implies that (11) holds

if card Im
∞
< 𝜒

0
.

C. Proof of Theorem 9

(i) If Im
∞
= 0 and 𝑑 >

̃

𝐾, then also 𝑑 > 0 as a result,
and one has from (B.1) in the proof of Lemma 5 that for

any nonzero piecewise continuous control input satisfying
Popovian integral inequality the following:

𝛾

2
≥ 𝐸 (𝑡) ≥ (𝑑 −

̃

𝐾)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 > 0, ∀𝑡 ∈ R

+
,

⇒

𝛾

2

𝑑 −

̃

𝐾

≥ ∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 > 0, ∀𝑡 ∈ R

0+
,

⇒ lim
𝜏→ 𝑡,𝑡→∞

𝑢

𝑡
(𝜏) = lim

𝑡→∞

𝑢 (𝑡) = 0.

(C.1)

The property 𝛾2 ≥ 𝐸(𝑡) > 0 for all 𝑡 ∈ R
0+

with 𝐸(0) =
0 follows from (B.1) in view of (A.1). Since 𝑢(𝑡) is piecewise
continuous then it is also bounded for all time. Thus, since
thematrix 𝐴 is strictly stable, 𝑥(𝑡) and 𝑦(𝑡) are bounded for
all time and also lim

𝑡→∞
𝑥(𝑡) = 0, and lim

𝑡→∞
𝑦(𝑡) = 0 for

any 𝑥
0
∈ R𝑛 with the state and output being also uniformly

bounded since min
𝜔∈R
0+

Re (𝐺∗(𝑖𝜔) + ̃𝐺(𝑖𝜔)) ≥ 𝑑 −

̃

𝐾 >

0 implies that Re (𝐺∗(𝑠) + ̃𝐺(𝑠)) > 0 for all Re 𝑠 ≥ 0 so
that (𝐺∗(𝑠) + ̃𝐺(𝑠)) ∈ SPR and then is strictly stable.

(ii) In this case, Im
∞

= 0. One has from the given
hypotheses that

(1) Re (𝐺∗(𝑖𝜔) + ̃𝐺(𝑖𝜔)) ≥ Re 𝐺∗(𝑖𝜔) + Re ̃𝐺(𝑖𝜔) >
0 for all 𝜔 ∈ R

0+
,

(2) lim
𝜔→±∞

𝐺(𝑖𝜔) = lim
𝜔→±∞

Re 𝐺(i𝜔) =

lim
𝜔→±∞

Re (𝐺∗(𝑖𝜔) + ̃𝐺(𝑖𝜔)) = 𝑑 = 0.

Direct calculations similar to those performed in the proof of
Lemma 2 yield

𝛾

2
≥ 𝐸 (𝑡) ≥

1

2𝜋

(𝑀(𝑊)∫

∞

−∞









𝑈

𝑡
(𝑖𝜔)









2
𝑑𝜔 + 2𝜋𝜀

𝑡
(𝑊))

=

1

2𝜋

𝑀 (𝑊)∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 + 𝜀

𝑡
(𝑊) ≥

1

2𝜋

× ( min
𝜔∈[−𝑊,𝑊]

Re 𝐺 (𝑖𝜔) ∫
∞

−∞









𝑈

𝑡
(𝑖𝜔)









2
𝑑𝜔

+ min
𝜔∈[𝑊,∞)

Re 𝐺 (𝑖𝜔)∫
∞

𝑊









𝑈

𝑡
(𝑖𝜔)









2
𝑑𝜔) ,

∀𝑡 ∈ R
0+
,

(C.2)

where 𝑀(𝑊) = min
𝜔∈[−𝑊,𝑊]

Re 𝐺(𝑖𝜔) and 𝜀

𝑡
(𝑊) =

(1/2𝜋)min
𝜔∈[𝑊,∞)

Re 𝐺(𝑖𝜔) ∫∞
𝑊
|𝑈

𝑡
(𝑖𝜔)|

2
𝑑𝜔 for all 𝑡 ∈ R

0+

are everywhere continuous, nonnegative, and strictly
decreasing so that lim

𝑊→∞
𝑀(𝑊) = lim

𝑊→∞
𝜀

𝑡
(𝑊) = 0;

for all 𝑡 ∈ R
0+
. Thus, for a sufficiently large finite𝑊

0
∈ R+

and for all 𝑡 ∈ R
0+
, (𝛾2 − 𝜀

𝑡
(𝑊))/𝑀(𝑊) is finite and positive

for all𝑊 ≥ 𝑊

0
so that

∞ > 2𝜋

𝛾

2
− 𝜀

𝑡 (
𝑊)

𝑀 (𝑊)

≥ (∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏) ⇒ lim

𝑡→∞

𝑢 (𝑡) = 0.

(C.3)

The remaining of the proof follows in the same way as that of
property (i).
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D. Proof of Theorem 10

It follows directly as the proof of Theorem 9 by using
Lemma 5 and the guidelines for the proof of Lemma 2 with
the following modifications. The control is bounded except
at the impulsive time instants while the state and output
are uniformly bounded while possessing discontinuities at
the impulsive time instants. Furthermore, if card Im

∞
<

𝜒

0
, then it is possible to take an initial state after some

sufficiently large finite time, which are bounded for any
bounded 𝑥

0
, to conclude that the control, input, and output

converge asymptotically to zero as in the impulsive-free case
of Theorem 9. To prove that the control, state and output
converge to zero as time tends to infinity if card Im

∞
=

𝜒

0
with 𝐾

𝑗
→ 0 as 𝑗 → ∞, note that

𝑥 (𝑡

+

𝑗
) − 𝑥 (𝑡

𝑗
) = 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) → 0,

𝑦 (𝑡

+

𝑗
) − 𝑦 (𝑡

𝑗
) = 𝑐

𝑇
𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) → 0,

(D.1)

as 𝑗 → ∞, 𝑢(𝑡) → 0 since 𝑢(𝑡+
𝑗
) − 𝑢(𝑡

𝑗
) = 𝐾

𝑗
𝛿(0)𝑔(𝑡

𝑗
)𝑦(𝑡

𝑗
)

→ 0 as 𝑗 → ∞.Then, 𝑥(𝑡) → 0, 𝑦(𝑡) → 0 as 𝑡 → ∞ since
𝐴 is strictly stable, and

𝑥 (𝑡

+

𝑗+1
) = (𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
) 𝑥 (𝑡

𝑗+1
) = (𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
)

× (𝑒

𝐴 (𝑡
𝑗+1
−𝑡
𝑗
)
𝑥 (𝑡

+

𝑗
) + 𝑏𝐾

𝑗
𝛿 (0) 𝑔 (𝑡𝑗

) 𝑦 (𝑡

𝑗
))

= (𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
)

× (𝑒

𝐴 (𝑡
𝑗+1
−𝑡
𝑗
)
𝑥 (𝑡

+

𝑗
)

+𝑏𝐾

𝑗
𝛿 (0) 𝑔 (𝑡

𝑗
) (𝑐

𝑇
𝑥 (𝑡

𝑗
) + 𝑑𝑢 (𝑡

𝑗
)))

= (𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
)

× [𝑒

𝐴 (𝑡
𝑗+1
−𝑡
𝑗
)
(𝑥 (𝑡

𝑗
) + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) (1 + 𝛿 (0))

× (𝑐

𝑇
𝑥 (𝑡

𝑗
) + 𝑑𝑢 (𝑡

𝑗
)))] ,

𝑥 (𝑡

+

𝑗+1
) − 𝑥 (𝑡

𝑗
)

= ((𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
) 𝑒

𝐴(𝑡
𝑗+1
−𝑡
𝑗
)
− 𝐼) 𝑥 (𝑡

𝑗
)

+ (𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
) 𝑏𝐾

𝑗
𝛿 (0) 𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

+ (𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
)

× [𝑒

𝐴(𝑡
𝑗+1
−𝑡
𝑗
)
(𝑥 (𝑡

𝑗
) 𝑏𝐾

𝑗
𝑔(𝑡

𝑗
)

× (𝑐

𝑇
𝑥 (𝑡

𝑗
) + 𝑑𝑢 (𝑡

𝑗
)))] ,
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and, since 𝐾
𝑗
→ 0 and 𝑥(𝑡+

𝑗
) − 𝑥(𝑡

𝑗
) = 𝑏𝐾

𝑗
𝑔(𝑡

𝑗
)𝑦(𝑡

𝑗
) → 0

as 𝑗 → ∞, one concludes that

lim
𝑗→∞

[𝑥 (𝑡

+

𝑗+1
) − 𝑥 (𝑡

𝑗
)

− ((𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
) 𝑒

𝐴(𝑡
𝑗+1
−𝑡
𝑗
)
− 𝐼) 𝑥 (𝑡

𝑗
)]

= − lim
𝑗→∞

[((𝐼 + 𝑏𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑐

𝑇
) 𝑒

𝐴(𝑡
𝑗+1
−𝑡
𝑗
)
− 𝐼) 𝑥 (𝑡

𝑗
)]

= lim
𝑗→∞

[(𝐼 − 𝑒

𝐴(𝑡
𝑗+1
−𝑡
𝑗
)
) 𝑥 (𝑡

𝑗
)]

= lim
𝑗→∞

(𝑥 (𝑡

𝑗
) − 𝑥 (𝑡

𝑗+1
)) = 0.

(D.3)

Then, lim
𝑡
𝑗
→∞

[𝑥(𝑡

𝑗
) − 𝑥(𝑡

+

𝑗
)] = lim

𝑡
𝑗
→∞

[𝑥(𝑡

𝑗+1
) − 𝑥(𝑡

+

𝑗
)] =

0, so that there is a limit lim
𝑡
𝑗
→∞

𝑥(𝑡

+

𝑗
) = lim

𝑡
𝑗
→∞

𝑥(𝑡

+

𝑗
) =

𝑥

∗. Then lim
𝑡
𝑗
→∞

(𝐼 − 𝑒

𝐴(𝑡
𝑗+1
−𝑡
𝑗
)
)𝑥

∗
̸= 0 or it does not exist,

which would be contradiction, unless 𝑥∗ = 0. Then, 𝑥∗ =
lim
𝑡
𝑗
→∞

𝑥(𝑡

+

𝑗
) = lim

𝑡
𝑗
→∞

𝑥(𝑡

𝑗
) = 0 and, since 𝐴 is strictly

stable, and 𝑢(𝑡) → 0 as 𝑡 → ∞, 𝑥(𝑡) → 0 on [𝑡
𝑗
, 𝑡

𝑗+1
) as 𝑡
𝑗

→ ∞. Since 𝑥∗ = lim
𝑡
𝑗
→∞

𝑥(𝑡

+

𝑗
) = lim

𝑡
𝑗
→∞

𝑥(𝑡

+

𝑗
) = 0 then

𝑥(𝑡) → 0 on [𝑡
𝑗
, 𝑡

𝑗+1
] as 𝑡
𝑗
→ ∞. As a result and since 𝑡

𝑗
→

∞, 𝑥(𝑡) → 0 as 𝑡 → ∞. The same property follows for the
output so that 𝑦(𝑡) → 0 as 𝑡 → ∞, and 𝑢(𝑡

𝑗
) → 0 as 𝑡

𝑗
→

∞, since if card Im
∞
= 𝜒

0
, |𝑡
𝑗+1
− 𝑡

𝑗
| < ∞ and 𝑢(𝑡

𝑗
) → 0

as 𝑡
𝑗
→ ∞, then lim sup

𝑡
𝑗
→∞

∫

𝑡
𝑗+1

𝑡
+

𝑗

𝑢

2
(𝜏)𝑑𝜏 < ∞ so that 𝑢(𝑡)

→ 0 as 𝑡 → ∞ since 𝑢(𝑡) is almost everywhere piecewise
continuous on its definition domain. It also follows from (12)
and (C.3) that
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𝐾











∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 < ∞,

∞ > 2𝜋

𝛾

2
− 𝜀

𝑡
(𝑊)

𝛿 (𝑊)

(∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏) ,

























∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
)

























< ∞, ∀𝑡 ∈ R
+

(D.4)

so that (11) in Lemma 5 holds, in fact, if card Im
∞
≤ 𝜒

0
and

𝑑 ≥

̃

𝐾 ≥ 0. The boundedness of the state and the output
for all time follow directly from that of the input and the
strict stability of the feed-forward system. The boundedness
properties of the impulsive contributions (16) follow from
Lemma 2 and (8)-(9), for both properties (i)-(ii).

E. Outline of Proof of Theorem 13

Most of the proof is close to that of Theorem 10. It has to
be rearranged as the proof of the validity of (16). One has
from (20), the modified property of the boundedness of
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the input-output energy measure (8) and resulting modified
inequalities arising in the proof of Theorem 10 that

𝛾

2
≥











𝑑 −

̃

𝐾











∫

𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 + ∫

𝑡

0

𝑦 (𝜂, 𝜆, 𝜏) 𝑢 (𝜏) 𝑑𝜏

+ ∑

𝑡
𝑗
∈Im(𝑡)

𝐾

𝑗
𝑔 (𝑡

𝑗
) 𝑦 (𝑡

𝑗
) ≥ 𝑚 (𝑡) > 0, ∀𝑡 ∈ R

0+
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𝑡
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∈Im(𝑡)
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𝑗
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𝑗
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𝛾
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̃

𝐾
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𝑡

0

𝑢

2
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0+
]
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𝑡

0

𝑢

2
(𝜏) 𝑑𝜏 < ∞; ∀𝑡 ∈ R

0+
∧ lim
𝑡→∞

𝑢 (𝑡) = 0] .

(E.1)

Then, | ∑
𝑡
𝑗
∈Im(𝑡)𝐾𝑗𝑔(𝑡𝑗)𝑦(𝑡𝑗)| for all 𝑡 ∈ R
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is bounded

since sup
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𝑗
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+
.

(E.2)

The rest of the proof follows “mutatis-mutandis” correspond-
ingly to that of Theorem 10.
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[15] I. D. Landau, Systèmes Non linéaires, Notes de cours, Laboratoire
d’Automatique de Grenoble, ENSGP, Grenoble, France, 1975.

[16] V.-M. Popov, Hyperstability of Control Systems, Springer, New
York, NY, USA, 1973.

[17] R. Li, B. Liu, and C. Liu, “Absolute stability and master-slave
synchronization of systems with state-dependent nonlineari-
ties,” Mathematical Problems in Engineering, vol. 2013, Article
ID 326560, 6 pages, 2013.

[18] I. D. Landau, “A generalization of the hyperstability conditions
for model reference adaptive systems,” IEEE Transactions on
Automatic Control, vol. 17, pp. 246–247, 1972.

[19] F. Chen, R. Hou, and G. Tao, “Adaptive controller design for
faulty UAVs via quantum information technology,” Interna-
tional Journal of Advanced Robotic Systems, vol. 9, 2012.



14 Abstract and Applied Analysis

[20] X. Wang and J. Zhao, “Switching adaptive tracking control of
robot manipulators with friction and changing loads,” Interna-
tional Journal of Systems Science, 2013.

[21] F. Prause and J. Reuter, “A model reference adaptive approach
for state estimation in electromagnetic actuators,” inProceedings
of the 17th IEEE International Conference on Methods and
Models in Automation and Robotics (MMAR ’12), pp. 361–366,
2012.

[22] M. Khalilian, A. Abedi, and A. D. Zadeh, “Sensorless direct
torque control of hybrid steppermotor based onMRAS,”Energy
Procedia, vol. 14, pp. 1992–1997, 2012.

[23] V. Panwar, N. Kumar, N. Sukavanam, and J. Borm, “Adaptive
neural controller for cooperative multiple robot manipulator
system manipulating a single rigid object,” Applied Soft Com-
puting Journal, vol. 12, no. 1, pp. 216–227, 2012.

[24] S. Ulrich and J. Z. Sasiadek, “Modified simple adaptive control
for a two-link space robot,” in Proceedings of the 2010 American
Control Conference (ACC ’10), pp. 3654–3659, July 2010.

[25] Y. Niu, “Robust passivity and feedback design for nonlinear
stochastic systems with structural uncertainty,” Mathematical
Problems in Engineering, vol. 2013, Article ID 460348, 9 pages,
2013.

[26] C.-H. Lien, K.-W. Yu, L.-Y. Chung, and J.-D. Chen, “H-infinity
performance for uncertain discrete switched systems with
interval time-varying delay via switching signal design,”Applied
Mathematical Modelling, vol. 37, no. 4, pp. 2484–2494, 2013.

[27] X. Li, H. R. Karimi, and Z. Xiang, “Robust reliable control
of uncertain discrete impulsive switched systems with state
delays,”Mathematical Problems in Engineering, vol. 2013, Article
ID 197819, 8 pages, 2013.

[28] M. De la Sen, “Stability of switched feedback time-varying
dynamic systems based on the properties of the gap metric for
operators,” Abstract and Applied Analysis, vol. 2012, Article ID
612198, 17 pages, 2012.

[29] M. De la Sen and A. Ibeas, “Stability results for switched linear
systems with constant discrete delays,” Mathematical Problems
in Engineering, vol. 2008, Article ID 543145, 28 pages, 2008.

[30] Z. Tai, X. Wang, Y. Shi, and H. R. Karimi, “Input-to-state
stability of Lur’e hyperbolic distributed complex-valued param-
eter control systems: LOI approach,”Mathematical Problems in
Engineering, vol. 2013, Article ID 364057, 4 pages, 2013.
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