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This paper presents electrospin nanolithography (ESPNL) for versatile and low-cost fabrication of 

nanoscale patterns of polymer brushes to serve as templates for assembly of metallic nanoparticles. 

Here electrospun nanofibers placed on top of a substrate grafted with polymer brushes serve as 

masks. The oxygen plasma etching of the substrate followed by removal of the fibers leads to 

linear patterns of polymer brushes. The line-widths as small as ~50 nm can be achieved by precise 

tuning of the diameter of fibers, etching conditions and fiber-substrate interaction. Highly aligned 

and spatially defined patterns can be fabricated by operating in the near-field electrospinning 

regime. Patterns of polymer brushes with two different chemistries effectively directed the 

assembly of gold nanoparticles and silver nanocubes. Nanopatterned brushes imparted strong 

confinement effects on the assembly of plasmonic nanoparticles and resulted in strong localization 

of electromagnetic fields leading to intense signals in surface-enhanced Raman spectroscopy. The 

scalability and simplicity of ESPNL hold great promise in patterning of a broad range of polymer 

thin films for different applications.  
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Macromolecules that are end-grafted to solid substrates show great promise for a broad 

range of applications and scientific studies.1-4 The strong interest in end-grafted polymers (i.e. 

polymer brushes) results from the robust interface that can be precisely tuned by the structure and 

chemistry of the macromolecules which exhibit stimuli responsive behavior.5-7 A set of 

technologically important applications requires patterning of these materials at the nanometer 

length scale.8-10 An interesting case involves fabrication of plasmonic nanostructures by assembly 

of colloidal metallic nanoparticles11, 12 (NPs) on polymer brushes patterned at the length scale of 

the particles. The ability to assemble such plasmonic structures on patterned brushes allows for 

investigating the structure property relations at the single particle level and offers unprecedented 

capabilities in fabrication of devices.13-15 A variety of different approaches including electron-

beam lithography, dip-pen nanolithography and self-assembly has been used to fabricate nanoscale 

patterns of polymer brushes.16-22 Advanced lithography techniques are highly developed and allow 

for fabrication of polymer brushes with high levels of resolution and fidelity; however, these 

techniques typically require high capital and operation costs, and not suitable for some of the 

emerging applications where there is a need for patterning unusual materials and substrates which, 

for example, are nonplanar and flexible.23, 24 The requirement for specialized and expensive 

facilities also impose significant barriers to the broad research community who has limited access 

to these techniques. Self-assembled templates25 could be prepared at low-costs, but it remains a 

challenge to generate non-periodic patterns with independent control over the dimensions and 

periodicities of the patterns. All these issues motivate development of innovative approaches for 

fabrication of nanoscale patterns of polymer brushes using methods that are low-cost, simple and 

amenable for patterning of large surface areas. 
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 Here we present a simple and versatile approach for fabrication of chemically defined 

nanoscale patterns consisting of polymer brushes for templated assembly of colloidal NPs using 

electrospun nanofibers (NFs) as masks for selective material removal. The core idea in this work 

is to benefit from widely available electrospinners in nanopatterning of polymer brushes. 

Electrospinning is a low-cost, simple and widely available technique to generate NFs which are 

one dimensional structures with sub-micron diameters.26  The ability to vary the diameter of these 

fibers at nanoscopic length scales together with the rapid generation of such structures over large 

areas has great promise for nanofabrication; however, the direct use of NFs in surface patterning 

is challenging because of several reasons: i) NFs are only physically bound to the underlying 

substrate posing issues in the stability of fabricated structures, limiting subsequent processes such 

as chemical modification. ii) It is challenging to optimize the electrospinning process for different 

polymers, iii) Circular cross-section of the fiber may not be suitable in cases where there is a need 

for smooth and planar patterns. To fabricate ultra-smooth features with a molecular level thickness 

control and tunable chemistry, we use NFs as masks to pattern substrates modified with polymer 

brushes. NFs that are placed on top of the substrate prevent removal of the underlying brush 

material during oxygen plasma etching which leads to chemically defined linear patterns with 

widths that are smaller than the diameter of the fiber A particular challenge that relates to the 

process of electrospinning is random deposition of NFs due the whipping instabilities. To 

overcome this randomness and fabricate well-aligned nanoscale patterns, we used two approaches: 

conventional (i.e. far-field) electrospinning with a rotating substrate and near-field electrospinning. 

The former is advantageous, since it can be performed with a rotating drum that is present in almost 

all electrospinning systems. The latter, on the other hand, allows for precise alignment and spatial 

control of the fibers deposited on the substrate.  The versatility of the process is demonstrated 
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through patterns of polymer brushes with two different chemistries. The resulting patterns 

effectively direct the assembly of gold and silver NPs which exhibit specific and intense signals in 

surface-enhanced Raman scattering (SERS). 

Figure 1 schematically presents the method that we refer as electrospin nanolithography 

(ESPNL) for fabricating nanoscale patterns of polymer brushes. The process starts with a silicon 

wafer functionalized with end-grafted polymers. NFs are electrospun on top of this substrate using 

either far-field or near-field electrospinning. The subsequent oxygen plasma etching removes the 

polymer brushes that are not protected by the fibers. This step leads to linear patterns of polymer 

brushes with widths that depend on the diameter of the fiber, extent of etching and fiber-substrate 

interaction. NFs are then removed by sonication in a solvent that is good for the fiber, resulting in 

nanoscale patterns consisting of covalently bound polymer chains. The substrate is then treated 

with colloidal NPs which specifically interact with the grafted polymers. The immobilization of 

NPs, therefore, points to the presence of the grafted chains and informs about the chemical 

contrast25 and dimensions of the patterns.  

We first demonstrate ESPNL using poly(methyl methacrylate) (PMMA) fibers generated 

in far-field electrospinning on top of silicon substrates functionalized with poly(ethylene glycol) 

(PEG) brushes. We choose PMMA due to three reasons: the ability to generate NFs of varying 

diameter via electrospinning, well-known etching characteristics under oxygen plasma and ease of 

removal following the etching. Since PMMA is a commonly used resist in electron beam 

lithography,17 the last two conditions are inherently met. NFs of varying diameter could be 

obtained by electrospinning from solutions with different PMMA concentrations. PEG, on the 

other hand, can be grafted via one-step reaction through the hydroxyl end-groups.27 and serves as 
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a powerful  interface for tunable assembly21 of gold NPs to control their collective plasmonic 

properties through coupling between the individual particles  

 

Figure 1. ESPNL for patterning of polymer brushes. a-f) Schematic illustration of the 

process. a-b) NFs on top of a polymer grafted substrate by a) far-field  b) near-field electrospinning. 

c) A single fiber on the substrate. d) Removal of brushes that are not protected by the fiber via an 

oxygen plasma etching. e) Washing of the fiber. f) Immobilization of plasmonic NPs. g) An optical 

microscope view of a fiber during near-field electrospinning. h) A cross-sectional SEM image 

showing the PMMA fiber placed on top of the PEG grafted substrate. i) SEM images of the fiber 

(left) and gold NPs (40 nm) immobilized on the patterns. Scale bars are 200 nm. 
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 The fabrication of high quality linear nanoscale patterns of polymer brushes with different 

widths is possible with ESPNL. To demonstrate the ability to control the width of the patterns, we 

first explored the use of NFs with varying dimensions. The diameter of the electrospun fibers 

depends on several parameters that relate to the properties (viscosity, surface tension, electrical 

conductivity etc.) of the polymer solution and processing conditions (voltage bias, needle to 

collector distance etc.). We chose the concentration of the polymer solution to generate fibers with 

different diameters. Figure 2a-d presents the distribution of the diameters for fibers electrospun 

from solutions containing 5%-8% PMMA. Both the average fiber diameter and deviation in the 

diameter become large with the increase of the polymer concentration. The average diameter, for 

example, was 232±49 nm and 754±279 nm for the fibers electrospun from 5% and 8% PMMA 

solution, respectively. The increase of the fiber diameter with the polymer concentration in 

electrospinning is well-known and is attributed to the increase of the viscosity of the solution. The 

formation of beads at low polymer concentrations sets a lower limit in the diameter of the fibers 

for a given polymer/solvent pair. The diameter variation along an individual fiber is minimal; 

however, there is a distribution of fibers with different diameters. This distribution becomes broad 

at high polymer concentrations and this is mostly due to presence of some fibers with very large 

diameters (e.g.1400 nm for 7% PMMA). We think that the presence of such fibers is due to 

instantaneous inconsistencies in the flow of viscous solutions. The ability to tune the width of the 

patterned brushes through the use of fibers with different diameters is demonstrated by 

immobilization of gold NPs as shown in Figure 2e: The particles assembled on the linear patterns 

of PEG brushes with the number of particles per line width varying from one to tens of particles 

(see Supporting Information Figure S1 for other sizes of the particles). Note that the third, out of 

plane, dimension of the patterns is determined by the thickness of the brush which depends on the 
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molecular weight of the polymer and the grafting density. The height of the patterns in the present 

study was ~11 nm (see Supporting Information Figure S2) which is consistent with the 

ellipsometric thickness of the PEG brushes on homogenous substrates.   

 

Figure 2. Patterns of PEG brushes with different line-widths. a-d) The distribution of the 

diameters for fibers electrospun from solutions containing a) 5%, b) 6%, c) 7%, and d) 8% PMMA 

in DMF. e) SEM images of the NPs (60 nm) immobilized on the patterns of PEG brushes with line 

widths that vary from ~50 nm to ~500 nm.  

The extent of the etching and the fiber-substrate interaction are important for the contrast 

and lateral dimension of the patterns fabricated by ESPNL. We found out that the optilmal etching 
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should fully remove the brushes in the background regions without causing discontinuities in the 

patterns (see Supporting Information Figure S3 and related discussion). Another critical aspect 

that relates to the width of the chemical patterns is the length (Lfs) of the fiber-substrate interface. 

The cross-sectional SEM images (Figure 3a) revealed that Lfs depended on the diameter (Df) of 

the fiber. The systematic investigation of the cross-sectional SEM images of the fibers of varying 

diameter showed that the ratio of Lfs/ Df increases as a function of Df (Figure 3b). The ratio of Lfs/ 

Df becomes much smaller than one for fiber diameters smaller than ~550 nm. The large fibers, on 

the other hand, spread on the substrate resulting in the ratio of Lfs/ Df exceeding one. The variance 

of Lfs with Df likely arises from the dependence of the interfacial forces on the diameter of the 

fibers. This dependence may be related to the solvent content of the deposited fiber. Higher amount 

of solvent in the large fibers may results in spreading of the fibers on the substrate. This hypothesis 

is supported by a recent study28 where Lfs strongly depended on the exposure to solvent vapor. The 

significant reduction in Lfs with the decrease in Df enables high resolution patterning of polymer 

brushes with widths much smaller than the projected dimension of the fibers. The further reduction 

in the dimension of the polymer brushes during the plasma etching allows for fabrication of linear 

features as small as 50 nm using fibers that can be routinely generated via electrospinning. 
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Figure 3. Fiber-substrate interaction. a) Cross-sectional SEM images of fibers electrospun 

on top of a PEG brushes. b) The effect of fiber diameter on the length of fiber-substrate interface.  

To evaluate the alignment efficiency of the patterns that can be fabricated in far-field 

electrospinning, we investigated the alignment angle distribution of NFs electrospun on a PEG 

brush grafted substrate placed on a rotating drum. The examination of several hundreds of fibers 

showed that more than half of the fibers can be aligned in the desired direction within couple of 

degrees of accuracy. The alignment angle was defined as the angle between the long axis of the 

fiber and the direction perpendicular to the tangent of the rotating cylinder (see Supporting 

Information Figure S4). The mean alignment angle was 89.2o±28.5o. This alignment accuracy is 

sufficient to fabricate nanoscale patterns of polymer brushes over large areas with minimized 

crossing of the fibers that result in removal of the fiber-substrate interface, and therefore missing 

regions in the patterns. These nanoscale patterns can be useful for different studies such as the 
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effect of size on the assembly of nanomaterials and globular alignment of cells on substrates. The 

alignment accuracy can be improved by using modified electrospinning setups.29, 30 

To demonstrate fabrication of perfectly aligned patterns of polymer brushes with high 

levels of spatial control via ESPNL, we employed near-field electrospinning. Here the reduced 

nozzle-substrate distance together with movement of the substrate at high speeds completely 

eliminate the chaotic whipping instabilities resulting in perfectly aligned fibers. The controlled 

movement of the substrate placed on a two-axis stage allows for deterministic patterning of the 

fibers. We used aqueous solutions of high molecular weight poly(ethylene oxide) (PEO) to 

generate aligned arrays of fibers at a working distance of 500 m (see Supporting Information for 

details). An external instability was used to generate jetting at reduced voltages and the substrate 

was moved at a speed of 100 mm/s to perfectly align NFs. An array of NFs on PEG brushes (Figure 

4a) could be readily achievable by fast movement of the stage in one axis synchronized with 

controlled movements of the stage in the other. Highly uniform NFs with diameters that are smaller 

than 50 nm could be obtained by tuning the voltage bias (see Supporting Information Figure S5). 

The oxygen plasma etching followed by washing of the substrate and immobilization of the gold 

NPs resulted in arrays of linear assemblies of the particles (Figure 4b,c). Arrays of single gold NPs 

with a diameter of 40 nm over lengths of centimeters could be routinely obtained in this mode. 

The separation between the linear patterns can be further reduced (see Supporting Information 

Figure S6) depending on the accuracy of the stage. Fabrication of linear patterns with varying 

orientations is possible. A challenge here is that intersection points of fibers manifest themselves 

as gaps in the patterned brushes (see Supporting Information Figure S7), since the secondly 

deposited fiber loses contact with the underlying substrate near the intersection region. Strategies 

to expand the menu of patternable geometries with the ESPNL appear to be a promising research 
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direction for future studies. The presented approach can be readily applied to other types of 

plasmonic NPs. Such ability was demonstrated using silver nanocubes synthesized via polyol 

method31 on patterns of poly(2-vinylpyridine) prepared by ESPNL (see Supporting Information 

Figure S8).  

As a demonstrative use of the brush patterns fabricated by ESPNL, we investigated 

assembly of plasmonic nanostructures to serve as a substrate for SERS applications. SERS relies 

on localization of the electromagnetic fields in hot-spots which occur in between the particles 

placed in close-proximity. To generate such hot-spots, we sequentially immobilized the large (60 

nm) and small (20nm) gold NPs on the patterns of PEG brushes. Both sizes of NPs specifically 

assembled on the patterns with high levels of specificity and surface coverage leading to intense 

and specific SERS effects over the length of tens of microns (Figure 4d-e). Comparing the 

morphology and SERS response of NPs assembled on patterned and homogenous PEG brushes 

showed unique nanoscale confinement effects (Figure 4f,g). Nanopatterns of PEG brushes behaved 

like a chemical funnel to direct the assembly of NPs with much reduced inter-particle distances in 

comparison to homogenous substrates. Such confinement effects resulted in 12 fold increase in the 

intensity of signals received in SERS experiments.   
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Figure 4. Deterministic fabrication of brush patterns via near-field electrospinning and 

effect of nanoscale confinement on the assembly of gold NPs. a) An optical microscope image of 

an array of PEO nanofibers deposited on PEG brushes. b, c) SEM images of the array of 40 nm 

NPs assembled on the patterned brushes obtained by oxygen plasma etching and washing of the 

substrate shown in the part a. d) SEM and e) Raman mapping image of the patterned PEG brushes 

following sequential immobilization of 60 nm and 20 nm gold NPs. f) SEM image of the 

homogenous PEG brushes treated with the gold NPs at conditions that are identical with part d and 

e. g) Raman spectra of rhodamine 6G on arrays of gold NPs assembled on patterned (part d) and 

homogenous (part f) PEG brushes.  

This study presented ESPNL, a new approach in fabrication of nanoscale patterns of 

polymer brushes through the use of electrospun NFs as masks for selective material removal.  

ESPNL was demonstrated by patterning PEG and poly(2-vinylpyridine) brushes which allowed 
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for assembly of plasmonic nanostructures. ESPNL enabled generation of linear polymer brush 

patterns with line-widths that can be smaller than 50 nm. The width and height of the brush patterns 

can be tuned by varying the electrospinning, etching and grafting conditions. The simplicity, 

scalability, low-cost, accessibility of ESPNL together with the potential of utilizing flexible 

substrates show great promise in patterning of polymer thin films for areas such as plasmonics, 

directed-self-assembly, electronics and biotechnology.  
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