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Abstract 

The  foreign  body  reaction  (FBR)  is  the  first  reaction  of  the  nonspecific  immune  system 

against an implanted device and is characterized by the formation of a fibrotic tissue around 

the implant. In the case of interfaces for peripheral nerves, used to stimulate specific group 

of axons and to record different nerve signals, it has been shown that FBR could reduce its 

functionality  over  time  due  to  the  physical  separation  between  nerve  fibers  and  the 

interface caused by matrix deposition.  

In  order  to  understand  how  the  FBR  to  intraneural  interfaces  evolves,  polyimide  non‐

functional  devices  were  implanted  in  rat  peripheral  nerve.  First,  functional  studies  with 

electrophysiological, pain and locomotion tests demonstrate that implanted devices do not 

cause any alteration in nerve function. Besides, histological evaluation shows no alterations 

in myelinated axons or nerve architecture. Regarding the inflammatory response due to the 

implantation  surgery,  it  is decreased after 2 weeks, whereas  it  is  greater  in  the  implanted 

nerves and peaks after 2 weeks. With regard to tissue deposition surrounding the implant, a 

tissue capsule soon appears around the devices, acquiring  its maximum 2 weeks after and 

being  remodeled  subsequently.  Immunohistochemical  analysis  reveals  two  different  cell 

types  implicated  in  the  FBR  in  nerve:  macrophages  as  the  first  cells  in  contact  with  the 

interface and fibroblasts that appear later on in the edge of the capsule. 



   

1. Introduction 

Neuroprostheses aimed to restore the loss of motor and sensory function after a limb 

amputation try to link the peripheral nervous system with electromechanical prostheses by 

means of neural electrodes. Advanced neuroprostheses rely on the capability to interface 

specific groups of nerve fibers within the nerve for obtaining different motor signals and for 

stimulating selective populations of sensory afferents. Intraneural electrodes are considered 

as the most adequate type, as they allow for higher selectivity of recording and stimulation, 

lower intensity for stimulation and increased signal-to-noise ratio of recordings compared to 

extraneural electrodes  (1),(2). Several intraneural electrodes, such as multielectrode arrays (3)–

(7), longitudinal (LIFE) (8),(9) and transversal (TIME); (10),(11) intrafascicular electrodes have 

shown good performance for the bidirectional interface with the peripheral nerve. Intraneural 

electrodes should remain within the nerve for months or years and be able to record high 

quality motor nerve signals and to selectively stimulate small groups of afferent axons to 

evoke sensory activity for a successful performance over time Consequently, they have to 

show good biocompatibility and stability (12)–(15). 

However, during chronic implantations made in human subjects, it has been observed a 

reduction in the functionality of electrode active sites along time (13),(14),(16), thus limiting the 

prospective use of intraneural electrodes. Such failures have been attributed to 

electromechanical erosion of the metal sites and fatigue of the connections, and to the 

biological response of the nerve tissue against the electrode implant. Regarding the latter, 

experimental studies have reported that the implanted electrode becomes encapsulated by 

host cells, creating a separation between the electrode and the nerve fibers to be interfaced  

(9),(10),(17),(18).  

The foreign body reaction (FBR) is the first response of the nonspecific immune system 

against an implanted device. It is characterized by a primarily inflammatory phase triggered 

by macrophages and leukocytes, that is followed by a fibrotic phase in which fibroblasts are 

responsible for the formation of a fibrotic tissue around the implant (19). Despite the FBR has 



   

been widely studied and the progression of this response is well known in subcutaneous (20)–

(22), peritoneal (23),(24), and even central nervous system implants (25)–(27), few studies have 

focused in the peripheral nervous system (28)–(30) and a detailed description of the long-term 

response against implanted interfaces in peripheral nerves is still needed. In order to 

characterize the cellular processes participating in the FBR to an intraneural electrode, which 

may allow to identify new targets to modulate this response and enhance the interface 

functionality, we have studied from 1 day to 8 months the progression of the FBR to 

longitudinal nerve implants made of polyimide, a material widely used in the fabrication of 

peripheral nerve interfaces (9),(11),(18),(31) in the rat sciatic nerve.  



   

2. Material and Methods 

2.1 Animals and surgical procedures 

Female Sprague-Dawley rats weighing 250-300g were used (n=6-8/group). All surgeries 

were performed under ketamine and xylacine anaesthesia (90/10 mg/kg i.p.). The sciatic 

nerve was surgically exposed at the midthigh and carefully freed from adherences to 

surrounding tissues. Passive devices of polyimide 20 mm long, 200 µm wide and 10 µm thick  

(Fig. 1A) were inserted longitudinally in the tibial branch of the sciatic nerve with the help of a 

straight needle attached to a 10-0 loop thread (STC-6, Ethicon). The thread is passed 

between the two arms of the device and pulls the arrow-shaped center of the electrode strip 

(Fig. 1B-C), as previously described for the insertion of LIFEs (9). Longitudinal implant was 

chosen because of its better reproducibility in comparison with transversal implant, and to 

better study only the FBR inside the nerve. A group of animals underwent a sham operation 

with the same procedures but leaving no implant inside the nerve.  

Adequate measures were taken to reduce the number of animals used and to minimize pain 

and animal discomfort during surgery and in the postoperative follow-up. After surgeries 

animals were left to recover under a warm environment and were housed at 22±2ºC under a 

12:12h light cycle with food and water access ad libitum. All experimental procedures 

performed were approved by the Ethical Committee of the Universitat Autònoma de 

Barcelona in accordance with the European Communities Council Directive 2010/63/EU.  

After 1, 2, 4 days and 2, 4, 8, 16 and 32 weeks post implant, animals were deeply 

anesthetized with an overdose of pentobarbital and perfused transcardially with 4% PFA in 

phosphate buffer (PB). After the perfusion, the sciatic nerve segment including the implant 

was collected and kept in 30% sucrose in PB for immunohistochemistry, in 70% ethanol for 

paraffin embedding or in 3%glutaraldehyde-3% paraformaldehyde in PB for light and electron 

microscopy.  

 



   

2.2 Functional evaluation 

The functional properties of the nerves that had been implanted were evaluated by means of 

nerve conduction, algesimetry and locomotion tests along time after the implant. Nerve 

conduction test was performed by stimulating the sciatic nerve proximally with single 

electrical pulses and recording the compound muscle action potentials (CMAPs) of the 

gastrocnemius medialis (GM) muscle as previously described (18). The nociceptive threshold 

to mechanical stimuli was evaluated by means of an electronic Von Frey algesimeter 

(Bioseb, Chaville, France) following the same protocol described before (32). Rats were 

placed on a wire net platform in plastic chambers, and a metal tip applied to the sole of the 

hindpaw until the rat withdrew the paw in response to the stimulus. The walking track test 

was performed to assess locomotor function after the implant. The plantar surface of the 

hindpaws was painted with black ink and the rat was left to walk along a corridor. The print 

length, the distance between the 1st and 5th toes and between the 2nd and 4th toes were 

measured to calculate the Sciatic Functional Index (SFI) (33). 

 

2.3 Morphological evaluation  

In order to evaluate the microstructure of the implanted nerves and the myelinated nerve 

fibers, segments fixed in 3% glutaraldhyde-3% paraformaldehyde were postfixed in 2% OsO4 

for 2h, dehydrated through ethanol series and embedded in epon resin. Semithin sections 

(0.5 µm thick) were stained with toluidine blue and examined by light microscopy. The 

number of myelinated fibers in the implanted tibial nerve was counted in images taken at 

100x chosen by systematic random sampling of squares representing at least 30% of the 

nerve cross-sectional area. The cross-sectional area of the whole sciatic nerve was 

measured at 4x with a microscope BX51 (Olympus) and a DP73 digital camera (Olympus) 

and the total number of myelinated fibers estimated. The thickness of the deposited tissue 

around the implant was measured as the distance between each side of the device and the 

closest myelinated axon, using ImageJ software (34).   



   

Transmission electron microscopy (TEM) was used to evaluate the ultrastructure of the 

tissue and collagen deposition around the polyimide device in transverse nerve sections. 

Ultrathin sections of the entire nerve were cut, mounted on formvar 200 mesh copper grids 

and contrasted with uranyl acetate/lead citrate. A TEM microscope (JEM 1400) was used to 

take pictures of the area with the implanted device, to analyse the encapsulating tissue and 

the surrounding nerve fibers at different time points. 

 

2.4 Immunohistochemistry 

Nerve segments containing the implanted polyimide device were serially cut in 15 µm thick 

sections in 10 slides with 12 slices each with a cryostat (Leica CM190, Leica Microsystems). 

Nerve sections were blocked with normal donkey serum and incubated overnight at 4ºC with 

primary antibodies rabbit anti-iba1 (Wako, 191947, 1:500) and mouse anti-CD-68 clone ED1 

(abcam, ab31630, 1:500) for macrophages and mouse anti-CD90 clone OX-7 (BD 

Pharmingen, 554897, 1:150) for fibroblasts. Slides were then washed with 0.1% Tween 20 

buffer solution and incubated with AlexaFluor 594 donkey anti-rabbit (Invitrogen, A21207, 

1:200) and 488 donkey anti-mouse (Invitrogen, A21202, 1:200) secondary antibodies for 1 h 

at room temperature. Finally, sections were mounted with mowiol containing DAPI (0.1 

μg/ml, Sigma).  

To quantify the amount of infiltrating macrophages, images of the whole tibial nerve with iba1 

or ED1 immunostaining were taken with an epifluorescence microscope BX51 (Olympus) 

attached to a DP73 digital camera (Olympus) and equally treated to adjust brightness and 

contrast. Then, the background was subtracted and a threshold of detection and binarization 

was applied. Iba1 or ED1 positive cells were counted in the whole area of the tibial nerve, 

excluding the implant device and the tissue capsule using the command "Analyze Particles" 

of ImageJ.  

 



   

2.5 Paraffin embedding and hematoxylin-eosin staining 

To determine the amount of foreign body giant cells (FBGCs) around the implant, nerve 

segments containing the implanted device were dehydrated with increasing ethanol series, 

followed by increasing xylene series and finally embedded in paraffin. Then, 5 µm thick serial 

sections were cut with a microtome (Leica RM 2255). To study FBGCs, slides were 

deparaffinized using two xylene rinses of 15 min each and rehydrated with decreasing 

ethanol series and 5 min in water. Then, slides were immersed in hematoxylin Harris solution 

(Fluka, Sigma) for 7 min and washed in water followed by 1% HCl in ethanol solution for 20 

sec. Finally, sections were washed again with water and stained with Eosin Y (Merck 

Millipore) for 5 min. Sections were dehydrated with series of graded ethanol rinses and 

mounted with DPX (Sigma). Then, the number of FBGC was counted under the microscope 

in each stained section, and expressed as FBGC per mm of implant length. Moreover, 

pictures of every FBGC were taken and the diameter was measured with ImageJ. 

 

2.6 Statistical analysis 

Results are expressed as mean ± SEM. Means were compared with one or two-way ANOVA 

followed by Bonferroni post hoc test for differences between groups or times. To quantify the 

linear relationship between two variables, the Pearson's correlation coefficient and the P-

value of the Fisher test were calculated. All analysis were conducted by using GraphPad 

Prism software. Statistical significance was considered when p < 0.05. 

 

  



   

3. Results 

3.1 Longitudinal neural implants do not cause damage in the implanted nerves 

Functional studies performed along time (from week 1 up to month 8) postimplant did not 

show any changes in nerve conduction, pain thresholds or locomotion (Supplementary Fig. 

1). Histological evaluation of polyimide implanted nerves revealed that all the implanted 

devices were placed within the tibial nerve (Fig. 2A). Light microscopy observations showed 

a normal fascicular architecture and axonal morphology of both implanted and sham nerves, 

similar to intact sciatic nerves (Fig. 2A-B) and the number of myelinated fibres showed no 

differences between groups (Fig. 2C). Moreover, no signs of axonal degeneration or 

demyelination due to the surgery or the implanted device within the nerve were found, 

indicating that the implant model used was useful to assess the FBR to the polyimide device, 

without confounding factors that might be due to tissue damage. 

 

3.2 Nerve response and tissue capsule formation  

The tissue capsule formed around the implant was evaluated under light microscopy. 

Whereas in the sham nerves there was no evidence of wound or tissue aggregation at any 

time point (Fig. 3B), the surrounding of the implant was rapidly modified in the device 

implanted nerves (Fig. 3A). Quantification of tissue deposition thickness around the implant 

exhibited a gradual increase from 2 days to 2 weeks post-implant when it reached its 

maximum, and a slight decrease and compaction thereafter (Fig. 3C).  

Detailed analysis of the encapsulating tissue under light and transmission electron 

microscopy showed several changes in the surroundings of the device. Thus, at day one only 

some erythrocytes could be seen near the implant and axons were still in close contact with 

the polyimide. After 4 days, some amoeboid cells had already arrived to the polyimide device 

vicinity (Fig. 4A) and started to be organized creating a small gap between the implant and 

the axons. After 2 and 4 weeks post implant, the capsule that separated the axons and the 



   

polyimide implant appeared as a more compacted tissue containing mainly amoeboid-

shaped cells and the characteristic collagen deposition of the endoneurium can no further be 

distinguished in the surroundings of the implant (Fig. 4B&D). At 8 weeks, two zones could be 

differentiated in the encapsulating tissue, with an inner area stocked with amoeboid cells as 

in the previous time points and an outer region composed of layers of parallel spindle-shaped 

cells (Fig. 4C&E). While this disposition was very similar after 16 weeks, the presence of 

amoeboid cells seemed to slightly decline, but it was at 32 weeks post implant that only 

spindle-shape cells were seen in the capsule (Fig. 4F) with no presence of amoeboid cells. 

Moreover, these changes in the cellular type from 8 to 32 weeks also correlated with a 

further organization of the extracellular matrix of the capsule, with an increasing deposition 

and gradual organization of new collagen fibers that progressively invaded the area former 

occupied by spindle-shaped and amoeboid cells (Fig. 4D-F and insets).  

 

3.3 Cellular characterization of the FBR 

To evaluate the inflammatory response due to the surgery or the implant, we assessed the 

presence of Iba1 labeled macrophages in the whole tibial nerve. Whereas in intact nerves a 

few macrophages were seen, the number of Iba1 positive macrophages started to increase 

within the implanted nerves one day after surgery both in polyimide device and in sham 

groups (Fig. 5A-B). The inflammatory response caused solely by the surgery, evaluated in 

sham rats, peaked at 4 days and decreased noticeably at 2 and 4 weeks, reaching similar 

values than intact animals from week 8 onwards (Fig. 5C). In contrast, the inflammatory 

reaction due to the implanted device peaked at 2 weeks and took more time to resolve, with 

a slight decrease at 4 weeks that persisted 8 weeks after the implant. Finally, at week 16 and 

32, the number of macrophages showed a further decrease but with still significantly more 

Iba1+ cells than sham and intact animals (Fig. 5C). Moreover, to characterize these infiltrating 

macrophages, the amount of macrophages that presented positivity for the CD-68 ED1 

antigen (Supplementary Fig. 2A) was quantified. As expected, all the CD-68 positive cells 



   

were also stained with the Iba1 antibody, while several Iba1+ macrophages did not express 

the ED1 antigen, showing a similar pattern of evolution than Iba1 labeling (Supplementary 

Fig. 2B) with a peak at 2 weeks after the implantation and a gradual decline up to 8 months. 

Hence, the amount of CD-68+ and Iba1+ cells followed a direct relationship (supplementary 

Fig. 2C) with a slope statistically significant different from zero (F-test). 

To further investigate how the tissue capsule is formed around the implant, we focused on 

the two main cell populations involved in the FBR process: macrophages and fibroblasts (35). 

In the host response in the implanted peripheral nerves, macrophages were the first cells to 

arrive (Fig. 6A) and rapidly surround the device from day 2-4 up to 4 weeks after implant 

(Fig. 6B-E). Indeed, after 2 and 4 weeks, the capsule around the device was mainly formed 

by compacted macrophagic cells expressing Iba1 in close contact with the device, in a 

similar disposition of the round-shape cells observed by TEM in figure 4. By week 8, some 

CD90+ fibroblasts started to appear in the edge of the capsule, between the inner 

macrophage layer and the surrounding nerve fibres (Fig. 6F), confirming the observations of 

light and electron microscopy. After 16 weeks, although the number of cells in the capsule 

decreased, Iba1 positive macrophages were still in contact with the device and CD90 

positive fibroblasts were in the outer layer of the capsule, in contact with nerve fibres (Fig. 

6G). After 32 weeks of implant, most cells in the capsule were CD90 positive fibroblasts 

within a well-organized extracellular matrix (Fig 6H).  

Finally, the amount of FBGC was also measured as another hallmark of FBR. These cells 

resulting from macrophage fusion appeared soon after the polyimide device implantation and 

its number increased over time (Fig. 7A-B). The FBGC seen in this model had many nuclei 

mainly in the cellular periphery (36), as expected with the presence of foreign bodies. By week 

2 these cells were easily recognizable around the implant, becoming stabilized in number 

and size (Fig. 7B-C) up to 8 weeks. From week 16 onwards, the amount of these cells 

started to decline concomitantly with the emergence of fibroblasts and the decline of 

macrophages both in the nerve and the capsule.  



   

4. Discussion 

After the implant of any biomaterial in the body, early and chronic cellular and tissue 

responses occur (19),(37). These events include an inflammatory response, foreign body 

reaction, and fibrous encapsulation of the implanted devices (38),(39). The peripheral nervous 

system is not an exception (9) and it is a serious problem when the active sites of implanted 

intraneural interfaces have to be in intimate contact with nerve fibers to have a proper 

functionality. Although many studies have reported good results regarding stimulation and 

recording of nerve signals in short-term studies, a progressive loss of function of intraneural 

electrodes that reduce the useful life of the interface has been usually reported and 

attributed, at least in part, to the FBR (13),(14),(16),(29).  

Some reports have characterized the FBR to intraneural implants in cats (30) or in humans (28), 

but these studies were conducted after implantation of rigid multielectrode Utah slanted 

arrays and the stiffness of these electrodes has been reported to contribute to traumatic 

nerve injuries produced by mechanical tension and an increased FBR (40). However, here we 

describe in detail the progression of the FBR to longitudinal intraneural devices fabricated 

with polyimide, a flexible material that can deform in 3D and adapt with the nerve (41), widely 

used in the fabrication of nerve electrodes implanted in rats (18),(42),(43) and in humans(13)–(15). 

Therefore, the information in this study may help to design novel strategies for modulating 

the FBR against electrodes placed within the peripheral nerve. Besides, although the central 

nervous system reacts different to neural implants due to the different populations implicated 

in this response (26),(44),(45), the information provided here could also be used to understand 

and treat similar reactions in the CNS. 

Unlike other fibrotic responses in pathological conditions where scar tissue impairs proper 

function of the organ (46),(47), our results showed that the new tissue formation in the 

peripheral nerve does not have a negative impact on its function after careful implantation, as 

previously reported when implanting longitudinal (LIFE) (9) or even transversal (TIME) 

electrodes (10). Electrophysiological tests of the implanted nerves did not show alterations in 



   

the onset and the amplitude of the evoked compound action potentials along the 8 months of 

implantation. Besides, there were no functional alterations observed in nociceptive and in 

locomotion tests. These results were corroborated by histological observations of implanted 

and sham nerves, where the normal fascicular architecture was preserved, and no evidences 

of axonal damage and distal degeneration were observed at all the studied time points. This 

is an important point, since the longitudinal implant of the thin film polyimide device, 

mimicking the use of tf-LIFEs, allowed us to investigate the FBR against the device, without 

relevant contributions of tissue damage due to the surgical procedure or to the mechanical 

stress of connected wires.  

In order to understand how the FBR evolves, we first studied the infiltration of macrophages 

in the nerve as a sign of the immune response. Whereas in the sham group the inflammatory 

reaction was low and took short time to resolve, in the device implanted group there were 

more infiltrating macrophages and the inflammation was longer in time, becoming chronic. 

This evolution corresponds to the FBR widely studied in other tissues, which normally has an 

acute inflammatory phase that becomes chronic with time (19). Moreover, the evolution of 

ED1+ macrophages labelling suggests that there are no changes in the responsiveness of 

these cells with time as they appear and disappear following the same pattern of evolution 

than the pan macrophage marker Iba1(48). Hence, the linear correlation of ED1/Iba1+ cells 

indicates that after the implantation of PI longitudinal devices, there is not a differential rate of 

macrophage reactivity rather than an increase and a subsequent decrease of both Iba1+ and 

ED1+ macrophages.  

We also assessed the progressive formation of an encapsulating tissue around the polyimide 

device. One day after the implantation the body started to react against the foreign device 

with changes in the surrounding as seen by electron microscopy. Nevertheless, there was no 

real capsule until four days and the thickness peaked by 2 weeks. From week 4 to the end of 

the follow-up, the capsule was progressively decreasing in thickness until stabilization. This 

dynamic in the capsule formation is coincident in time with the infiltration of macrophages in 



   

the nerve due to the implant described here which also peaked after 2 weeks and started to 

decrease thereafter (49). It has been shown that macrophages and phagocytes are related 

with the nature of the material implanted and its degradation dynamics (50),(51). Thus, 

biodegradable materials would stimulate a more M1 and phagocytic environment to eliminate 

the implant. In contrast, non-biodegradable materials would stimulate a more M2, pro-fibrotic 

and tissue remodeling environment, with the contribution of FBGC and matrix deposition. In 

fact, fused macrophages forming FBGCs were found surrounding the implanted device as 

early as 1 day after the implant contributing to the FBR and their size did not change 

substantially throughout the study. The amount of these cells increased gradually to reach a 

maximum at 2 weeks, similar to the maximum of Iba1+ cells and capsule thickness but the 

number of these declined more slowly than macrophages in the nerve at 4 or 8 weeks. And it 

is only at 16 or 32 weeks, when macrophages have practically disappeared that the 

presence of these cells also decline as a hallmark of the chronic phase of the FBR (39). 

However, FBGCs are found only within the tissue capsule where tissue reactivity and 

inflammation is higher than within the nerve endoneurium, and these cells have been linked 

to the tissue formation around implants (52): Therefore, the subsequent decline of FBGC after 

macrophage drop could indicate an intermediate step between macrophage to fibroblast 

presence around the implant when the tissue capsule switches from a phagocytizing state to 

a barrier forming state due to the presence of a non-phagocytable foreign body. Taking our 

results into account, polyimide intraneural implants could be stimulating the second scenario, 

regarding the presence of FBGC and the early resolution of the inflammatory response in the 

nerve in comparison to the remodeling response. Nevertheless, a deeper analysis of the 

molecular environment and the degradation process of the different implanted devices would 

further increase the understanding of the relationship between the foreign body and the 

peripheral nerve.  

Moreover, the changes in the cellular and the molecular characteristics of the capsule in the 

nerve seem to follow a similar pattern as the FBR in subcutaneous implants (38) although the 



   

evolution may be different from what has been previously described for FBR in the 

nerve(42),(53). Thus, during the acute inflammatory phase of the FBR, macrophages and other 

immune cells, such as mast cells and neutrophils, start to surround the foreign body and to 

adsorbed proteins on the device surface in a process called biofouling that will stimulate the 

subsequent phases (38). The accumulation of these cells around the device would contribute 

to the pro-inflammatory environment which leads the subsequent chronic inflammation and 

tissue remodeling phase (19). During the first weeks after the intraneural implants, there is a 

marked presence of round-shaped Iba1+ macrophages surrounding the implanted device. 

Besides, no evidence of organized matrix or collagen production near the device can be 

seen under electron microscopy. Progressively over time, more macrophages surround the 

device and, from 8 weeks onwards, fibroblasts arise at the edge of the capsule. Later on, the 

occurrence of macrophages starts to decline while fibroblasts increase their presence at 16 

weeks. Finally, 8 months after the implantation, macrophages almost disappear from the 

encapsulating tissue and fibroblasts become more numerous and form a permanent 

connective capsule. These changes in the cellularity of the capsule correlate with an 

increase in collagen production and organization of the matrix. While other studies of the 

FBR to intraneural microelectrodes (29),(30) have shown the presence of macrophages 

surrounding the device but no alterations in the axons near the electrode, here we also 

demonstrate the implication of fibroblasts in the formation of the capsule and how it coincides 

in time with the increase in organization of the new extracellular collagen matrix.  

In conclusion, several efforts have been reported to improve biomaterial characteristics and 

to understand the underlying mechanisms of the FBR against implantable devices for other 

tissues than the nerve (50),(54),(55). Our results describe how the FBR against a polyimide 

implant in the peripheral nerve occurs and which are the main players. The understanding of 

these changes will let to a better development of new strategies that would reduce the FBR 

against intraneural implants and thus lengthen their lifespan.  
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Figure captions 

Figure 1. Surgical procedure. (A) Photograph of the longitudinal device implanted (bottom) 

and the implantation needle used (above). (B) Needle used for the implantation piercing 

(arrowhead) the sciatic nerve (arrow) of a rat. (C) Device implanted (arrow points to the 

triangle base) in the sciatic nerve. Scale bar in (B-C) = 1mm. 

 

Figure 2. Histological evaluation of implanted nerves. (A) Low and (B) high magnification 

images of semithin sections of sham (above) and implanted (below) nerves after 2 weeks. 

(C) Quantification of myelinated fibers in sham and implanted nerves. The dotted line 

indicates the mean number of intact tibial nerves. Scale bar in (A) = 200μm and (B) = 10μm. 

 

Figure 3. Histological progression of capsule tissue around the implants. (A) 

Representative images of time progression of the capsule around polyimide implants. (B) No 

signs of tissue aggregation can be observed in sham nerves. (C) Measurements of capsule 

thickness along time. *p<0.05 vs 2weeks. Scale bar = 50μm.  

 

Figure 4. Tissue capsule development around the implant (bottom). (A-F) Magnification 

of semithin sections showing changes in the capsule. At (A) day 1, erythrocytes (arrow) can 

be seen near the implant. After 4 days, 2 and 4 weeks (B-D) amoeboid cells (asterisks) are 

forming the capsule. After 8 and 16 weeks (E & F), the capsule is already compacted and 

spindle-shape cells (arrowheads) are seen within. (D-F) Representative transmission 

electron microscopy images taken at different time points with the amoeboid-shaped cells 

(asterisks) in the inner zone of the capsule at 2 weeks and the spindle-shaped cells 

(arrowheads) in the outer zone at 8 and 32 weeks. Insets of G-I show high-magnification 

view of changes in collagen matrix deposition at 2, 8 and 32 weeks. Scale bar = 10μm (A-F), 

5μm (G-I), 2μm (insets). 
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Figure 5. Inflammatory cells in the implanted nerves. Representative images of 

macrophages labelled with Iba1 at different times points in (A) implanted and (B) sham 

nerves. (C) Quantification of the number of Iba1 positive cells along time in implanted and 

sham animals. Dotted line indicates the mean of intact nerves.*p<0.05 vs sham. #p<0.05 vs 

2weeks. Scale bar = 100 µm.  

 

Figure. 6. Cellular events in the tissue capsule around the device. Representative 

confocal images of cells in the capsule from 1 day to 32 weeks. Macrophages (red) are in 

contact with the device until 16 weeks. Fibroblasts (green) appear at 4-8 weeks and are 

located in the periphery of the capsule, in contact with nerve fibres. Scale bar = 15 µm. 

 

Figure. 7. Foreign body giants cells as a hallmark of the FBR. (A) Presence of FBGC in 

the surface of the device observed with Hematoxilin-Eosin at different time points. (B) 

Number and (C) diameter of FBGC on the device along time. *p<0.05 vs 2weeks. Scale bar 

= 15 µm. 

 

Supplementary figure 1. Functional evaluation of implanted nerves. No alterations were 

found in the (A) amplitude or (B) initial latency of the gastrocnemius compound muscle action 

potential (CAMP) of implanted and sham animals. (C) Pain threshold assess by Von Frey 

mechanical algesimetry in the central area of the paw. (D) SFI of sham and implanted 

animals. Dotted lines indicate values from intact animals.  

 

Supplementary figure 2.  ED1-Iba1 macrophage staining over time. (A) Representative 

images of ED1 (green) and Iba1 (red) labeling after 2 weeks of implant, cell nuclei can be 

seen in blue after DAPI staining. (B) Quantification of the number of ED1 positive cells and 

Iba1 positive cells over time. (C) Correlation between ED1 and Iba1 positive cells. The solid 



   

grey line represents the linear regression (slope significantly different from zero, p<0,001), 

while the dotted line represents the 95% confidence interval. Scale bar = 200 µm. 


