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Abstract

Regression of pulmonary hypertension (PH) is often incomplete after successful left-sided valve replacement (LSVR). Proximal

pulmonary arterial (PPA) wall disease can be involved in patients with persistent-PH after LSVR, affecting the right ventricular

to pulmonary arterial (RV-PA) coupling. Fifteen patients underwent successful LSVR at least one year ago presenting PH by echo

(> 50 mmHg). Prosthesis-patient mismatch and left ventricular dysfunction were discarded. All patients underwent hemodynamic

and intravascular ultrasound (IVUS) study. We estimated PPA stiffness (elastic modulus [EM]) and the relative area wall thickness

(AWT). Acute vasoreactivity was assessed by inhaled nitric oxide (iNO) testing. RV-PA coupling was estimated by the tricuspid

annular plane systolic excursion to systolic pulmonary arterial pressure ratio. Patients were classified as isolated post-capillary PH

(Ipc-PH; pulmonary vascular resistance [PVR]� 3 WU and/or diastolic pulmonary gradient [DPG]< 7 mmHg) and combined post-

and pre-capillary PH (Cpc-PH; PVR> 3 WU and DPG� 7 mmHg). Both Ipc-PH and Cpc-PH showed a significant increase of EM

and AWT. Despite normal PVR and DPG, Ipc-PH had a significant decrease in pulmonary arterial capacitance and RV-PA coupling

impairment. Cpc-PH had worse PA stiffness and RV-PA coupling to Ipc-PH (P< 0.05). iNO decreased RV afterload, improving the

cardiac index and stroke volume only in Cpc-PH (P< 0.05). Patients with persistent PH after successful LSVR have PPA wall disease

and RV-PA coupling impairment beyond the hemodynamic phenotype. Cpc-PH is responsive to iNO, having the worse PA stiffness

and RV-PA coupling. The PPA remodeling could be an early event in the natural history of PH associated with left heart disease.
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Pulmonary hypertension associated with left heart disease
(PH-LHD) is the most common type of PH and is independ-
ently associated with higher hospitalizations and reduced
survival.1 PH affects virtually all patients with severe symp-
tomatic mitral valve disease and up to 65% of those with
symptomatic aortic stenosis.2 After successful correction of
left-sided valve disease, regression of PH is often incomplete

Corresponding author:

Juan C. Grignola, Department of Pathophysiology, Facultad de Medicina,

Hospital de Clı́nicas, Universidad de la República, Avenida Italia 2870, PC 11300

Montevideo, Uruguay.

Email: jgrig@fmed.edu.uy

*Equal contributors.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative

Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which

permits non-commercial use, reproduction and distribution of the work without further permission provided the original

work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

! The Author(s) 2018.

Article reuse guidelines:

sagepub.com/journals-permissions

journals.sagepub.com/home/pul

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/244532106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-1748-7217


despite normal left ventricular function and absence of pros-
thetic valve dysfunction. Persistent PH is a risk factor for
poor outcomes after left-sided valve replacement (LSVR).2–4

Over the years, different hemodynamic criteria to define
the hemodynamic phenotypes of PH-LHD have been used.5

Nowadays, despite the recent guidelines published on the
subject, the best combination of hemodynamic parameters
to define post-capillary PH phenotypes and its accuracy to
predict the severity and reversibility of pulmonary vascular
disease (PVD) in patients with PH-LHD continues to be a
matter of debate.6 PVD is initially characterized by enlarged
and thickened pulmonary veins and pulmonary capillary
dilatation, associated with interstitial edema, alveolar hem-
orrhage and lymphatic vessels enlargement, as a conse-
quence of the upstream transmission of elevated left atrial
pressure. In some cases, the pre-capillary circulation may
also be involved at the level of distal muscular pulmonary
arteries (PAs) (diameter� 500mm) characterized by different
degrees of obstructive remodeling such as medial hypertro-
phy and intimal fibrosis and proliferation.7,8

We have recently shown that the significant increase
of proximal elastic PA (diameter� 2mm) stiffness and the
relative area of wall thickness (AWT) can occur early at a
preclinical stage in chronic obstructive pulmonary disease
(COPD) and interstitial lung disease candidates for lung
transplantation, even when mean pulmonary arterial pres-
sure (mPAP) and pulmonary vascular resistance (PVR) are
normal.9 We hypothesized that proximal PAs are involved
in the PVD in patients with persistent PH after LSVR. We
aimed to assess the proximal PA stiffness and AWT, and its
role on the right ventricular to pulmonary arterial (RV-PA)
coupling according to the hemodynamic phenotypes in
patients with persistent PH after LSVR and to analyze the
acute effects of inhaled nitric oxide (iNO).

Methods

We included 15 consecutive stable adult outpatients
diagnosed with persistent PH at least one year after success-
ful mitral valve replacement and normal left ventricular
ejection fraction (LVEF; March 2012–October 2014).
Persistent PH was screened by follow-up echo (systolic
PAP [sPAP]> 50mmHg) and confirmed by catheterization
(mPAP� 25mmHg). The presence of other forms of PH
(PH related to diffuse lung disease and chronic thrombo-
embolic PH) were excluded (lung function tests, multidetec-
tor computed tomography [CT], ventilation-perfusion lung
scintigraphy, pulmonary angiography). The research proto-
col was approved by the Institutional Ethics Committee of
the Hospital Universitari Vall d’Hebron, Barcelona
(EudraCT no. 2009-012005-19). Written informed consent
was obtained from patients in accordance with the
Declaration of Helsinki.

Baseline data of the patients were compared with a
historical cohort of 10 control individuals who underwent
cardiac catheterization for investigation of dyspnea of

unknown origin or suspected PH who otherwise had no
apparent disease affecting the lungs or the heart following
diagnostic assessment.9

Echocardiography study

We used a Vivid 7 system (2.5–3.5MHz, GE, Spain).
We discarded hemodynamically significant residual prosthe-
sis dysfunction or patient-prosthesis mismatch according
to current practice guidelines.10 We obtained LVEF
(Simpson method, two-dimensional echocardiography in
apical four-chamber view) and left atrial area index. sPAP
was determined from the peak tricuspid regurgitation jet
velocity using the simplified Bernoulli equation and adding
this value with an estimate of the right atrial pressure by the
diameter and collapsibility of the inferior vena cava.11 We
evaluated RV-PA coupling by the ratio of tricuspid annular
plane systolic excursion (TAPSE) to sPAP.12

Hemodynamic and intravascular ultrasound
measurements

All patients underwent a routine right heart
catheterization (RHC; 7F Swan-Ganz catheter) and simul-
taneous intravascular ultrasound study (IVUS; Opticross-
40MHz, Boston, MA, USA) after echocardiography.
None of the patients received pulmonary vasodilators
at the time of the catheterization. Cardiac output (CO)
was determined by the Fick method. Pressure measurements
were taken at short breath-hold at end-expiration. We used
the end-expiratory automated digital mean measurements
across the cardiac cycle to estimate pulmonary arterial
occlusion pressure (mPAOP).13,14 Transpulmonary gradient
(TPG) was calculated as the difference between mPAP
and mPAOP. Diastolic pulmonary gradient (DPG) was
calculated by subtracting mPAOP from the diastolic
PAP (dPAP).

We estimated RV afterload by PVR, total pulmonary
resistance (TPR), effective arterial elastance (Ea), and pul-
monary arterial compliance (PAC) through the following
equations:13,15

PVR ¼
TPG

CO
ð1Þ

TPR ¼
mPAP

CO
ð2Þ

Ea ¼
mPAP

SV
ð3Þ

PAC ¼
SV

pPAP
ð4Þ

where pPAP and SV correspond to pulsatile pulmonary
arterial pressure and stroke volume, respectively.

2 | Pulmonary vasculopathy in PH associated with LHD Domingo et al.



The RC-time was estimated as the product of PVR and
PAC, and total systemic vascular resistance was assessed as
mean aortic pressure divided by CO.15

Local proximal PA stiffness (Peterson elastic modulus
[EM]) and AWT were assessed by the following equations:9,16

EM ¼
pPAP�Diastolic Area

ðSystolic Area�Diastolic AreaÞ
ð5Þ

AWT ¼
ðOuter Sectional Area� Intimal AreaÞ

Outer Sectional Area
� 100

ð6Þ

Both outer and intimal areas were measured at T-wave
onset on the electrocardiogram (diastolic phase) by the
external and luminal wall borders, respectively. The use of
the relative area wall thickness could allow a more accurate
assessment of the anatomical remodeling than the use of the
thickness-diameter ratio because of the section of the PA is
not necessarily circular. Intra- and inter-observer validation
of IVUS measurements in our laboratory have been previ-
ously published.17 Post-capillary PH (mPAP� 25mmHg,
mPAOP> 15mmHg) was classified as either isolated post-
capillary PH (Ipc-PH, DPG< 7mmHg and/or PVR� 3
Wu), or combined post- and pre-capillary PH (Cpc-PH,
DPG� 7mmHg and PVR> 3 Wu).13,18 Both hemodynamic
and IVUS measurements were made at baseline breathing
air and during breathing 20 ppm NO gas (iNO, INOMAX
DSIR system) for 10min.

Statistical analysis

Continuous data were expressed as the mean� standard
error (SE). Categorical data were expressed as numbers
and percentages. We determined the normal distribution
of the data by the Kolmogorov–Smirnov test. Independent
sample t-tests were used to examine differences between the
control and PH groups; paired t-tests were used to compare
the effects of iNO within each post-capillary PH group. The
Chi-squared test was used for comparing proportions of
patients. Intergroup variation was analyzed using one-way
analysis of variance (ANOVA). The strength and direction
of the association between continuous variables were mea-
sured with Pearson’s correlation coefficient. We used a four-
quadrant scatter plot to compare the concordance rate of
percent variation of mPAP and EM after iNO. The con-
cordance rate was defined as the percentage of the number
of data points that are in two of the four quadrants of
agreement (upper right and lower left). Although there is
no guidance on suitable exclusion zones, we applied an
exclusion zone when the percentage of change of data
was< 15%.19 The concordance rate is acceptable in the
range of 92–100%. A P value (two-tailed)< 0.05 was
regarded as significant. Statistical analyses were performed
with SPSS Statistics (Version 21.0 for Windows; SPSS Inc.,
Chicago, IL, USA).

Results

Clinical and demographic data are shown in Table 1. All
patients with persistent PH after LSVR had control rate
atrial fibrillation. Six patients (40%) had a concomitant
aortic valve replacement, two in the Ipc-PH group (33%)
and four in the Cpc-PH group (67%). All patients had> 3
years of their left-sided valve disease. LVEF and left atrial
area index were 61� 2% and 23.8� 1.8 cm2/m2, respect-
ively, without significant differences between the hemo-
dynamic phenotypes.

Both Ipc-PH and Cpc-PH patients were older than the
control group (P< 0.05), but with similar proportion of
women. The proportion of patients in World Health
Organization (WHO) functional class (FC) III–IV did not
show significant differences between both groups.

Pulmonary hemodynamics and pulmonary arterial wall
disease

Both Ipc-PH and Cpc-PH showed a significant increase of
EM and AWT. Cpc-PH had worse PA stiffness with respect
to Ipc-PH (P< 0.05). By contrast, there were no significant
differences in AWT between Ipc-PH and Cpc-PH patients

Table 1. Demographics and clinical data in patients with persistent

PH after left-sided valve replacement (according to the hemodynamic

phenotypes) and control individuals.

Ipc-PH

(n¼ 6)

Cpc-PH

(n¼ 9)

Control

(n¼ 10)

Baseline clinical data

Age (years) 72� 3 71� 5 51� 4*,y

Sex (female/male) 5/1 8/1 6/4

Body surface area (m2) 1.69� 0.08 1.71� 0.05 1.8� 0.04

WHO FC III–IV (n (%)) 3 (50) 7 (78) 0 (0)

MVR (mechanical/biological) 6/0 6/3 0

AVR (mechanical/biological) 2/0 3/1 0

Atrial fibrillation (n (%)) 6 (100) 9 (100) 0 (0)

Medical history (n (%))

Hypertension 2 (33) 2 (22) 3 (30)

Diabetes 1 (17) 2 (22) 0 (0)

Coronary arterial disease 0 (0) 0 (0) 0 (0)

Medication (n (%))

Oral anticoagulation 6 (100) 9 (100) 0 (0)

Loop diuretics 6 (100) 9 (100) 0 (0)

ACE inhibitors or ARBs 5 (83) 8 (77) 0 (0)

MR antagonists 2 (33) 5 (56) 0 (0)

Data are presented as mean� SE unless otherwise specified.

*P< 0.05 vs. Cpc-PH
yP< 0.05 vs. Ipc-PH.

AVR/MVR, aortic/mitral valve replacement; ACE, angiotensin-converting

enzyme; ARBs, angiotensin II receptor blockers; Cpc-PH/Ipc-PH, combined

pre- and post-capillary/isolated post-capillary pulmonary hypertension; MR,

mineralocorticoid receptor; WHO FC, World Health Organization functional

class.
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(Table 2). All hemodynamic criteria used to identify a rele-
vant pre-capillary component (DPG, TPG, PAC, and PVR)
were significantly associated with EM (Fig. 1). RC-time
was significantly shorter in both PH groups compared to
control individuals; Ipc-PH patients had the shortest
values (P< 0.05) (Table 2). Moreover, RC-time decreases
with increasing occlusion pressure in Ipc-PH and Cpc-PH
(r¼ –0.71, P< 0.05).

We obtained negative DPG values in 6/15 (40%) patients
(one Cpc-PH and five Ipc-PH patients).

Right ventricular to pulmonary arterial coupling

Of the patients with persistent PH after LSVR, 87% showed
severe impairment of RV-PA coupling (�0.36). The RV-PA
coupling was worse in Cpc-PH than Ipc-PH patients
(0.21� 0.02 vs. 0.32� 0.03; P< 0.05). Although all Ipc-PH
patients had a PVR� 3 WU and a DPG< 7mmHg, the RV-
PA coupling was impaired in association with an increase of
proximal PA wall stiffness and AWT, and a decrease of
PAC (P< 0.05). TAPSE/sPAP ratio was significantly corre-
lated with PAC (r¼ 0.62), PVR (r¼ –0.76), DPG (r¼ –0.8),
and EM (r¼ –0.6) (Suppl. Fig. 1). Patients with TAPSE/
sPAP values lower than the median (�0.23mm/mmHg)
had a higher RC-time than those who presented a more

preserved TAPSE/sPAP ratio (0.63 � 0.09 s vs.
0.34� 0.02 s, P< 0.01).

Response to iNO

Patients with Cpc-PH showed a significant decrease of RV
afterload (Ea decrease of 38� 10 %) during inhalation of
NO (Table 3). Moreover, they showed significant improve-
ments in cardiac index, SV, PAC, and TPR (Fig. 2, Table 3).
One Cpc-PH patient (11%) fulfilled the classic ‘‘hemody-
namic responder’’ criteria (mPAP dropped by � 10mmHg
and� 40mmHg without decrease of CO) and another Cpc-
PH patient had a fall in mPAP of � 10mmHg but not
� 40mmHg (non-classical response).13 The reduction of
total systemic vascular resistance (P< 0.05) despite mild
mean aortic pressure elevation is associated with the signifi-
cant increase of cardiac index (Table 3). In contrast, only an
isolated mild increase in cardiac index occurred in Ipc-PH
patients (P< 0.05) (Fig. 2).

Mean values of EM did not change during inhalation of
NO, either in Cpc-PH or Ipc-PH patients (Fig. 2).

The absolute change in mPAP, pPAP, SV, PAC, and
TPR after iNO administration correlated significantly with
baseline EM (Fig. 3). To analyze the influence of the dis-
tending pressure (mPAP) on PA stiffness, we plotted the

Table 2. Hemodynamic and IVUS data in patients with persistent PH after left-sided valve replacement (according to the hemodynamic

phenotypes) and control individuals.

All (n¼ 15) Ipc-PH (n¼ 6) Cpc-PH (n¼ 9) Control (n¼ 10) P1–2* P2–3
y P1–3

z P§

mPAP (mmHg) 39� 3 32� 2 44� 4 15� 2 0.016 0.000 0.000 0.000

pPAP (mmHg) 40� 5 30� 2 46� 8 11� 3 0.076 0.002 0.000 0.000

CI (L/min/m2) 2.1� 0.1 2.3� 0.2 2.0� 0.1 2.6� 0.1 0.3 0.006 0.18 0.01

SV (mL) 55� 3 62� 3 50� 4 65� 1 0.04 0.004 0.33 0.002

HR (bpm) 66� 3 62� 6 68� 4 73� 1 0.39 0.24 0.14 0.153

RAP (mmHg) 12� 2 12� 2 11� 2 5� 1 0.79 0.000 0.000 0.000

mPAOP (mmHg) 21� 0.8 23� 2 19� 0.5 8.3� 0.6 0.09 0.000 0.000 0.000

DPG (mmHg) 3.9� 2.2 �2.8� 1.2 9.1� 2.9 2.7� 1 0.004 0.054 0.003 0.003

TPG (mmHg) 20� 3 9� 1 27� 4 14� 2 0.003 0.001 0.11 0.000

TPR (WU) 12� 2 8.7� 1.1 14.2� 2.4 3.3� 0.3 0.048 0.002 0.003 0.000

PVR (WU) 6.2� 1.5 2.5� 0.3 9.0� 2.2 2.8� 0.3 0.018 0.022 0.528 0.004

PAC (mL/mmHg) 1.7� 0.2 2.1� 0.2 1.4� 0.2 6.2� 0.4 0.024 0.000 0.000 0.000

Ea (mmHg/mL) 0.77� 0.11 0.52� 0.03 0.95� 0.15 0.23� 0.05 0.024 0.002 0.000 0.000

RC-time (s) 0.45� 0.06 0.3� 0.03 0.56� 0.07 1.1� 0.1 0.009 0.003 0.000 0.000

EM (mmHg) 165� 19 114� 8 193� 26 21� 6 0.014 0.000 0.000 0.000

AWT (%) 22� 1 22� 0.9 22� 1.7 1.4� 1 0.96 0.000 0.000 0.000

Data are presented as mean� SE.

*P value between Ipc-PH and Cpc-PH.
yP value between Cpc-PH and control.
zP value between Ipc-PH and control.
§P value analyzed by one-way ANOVA.

AWT, relative area wall thickness; CI, cardiac index; Cpc-PH/Ipc-PH, combined pre- and post-capillary/isolated post-capillary pulmonary hypertension; DPG,

diastolic pressure gradient; Ea, effective arterial elastance; EM, elastic modulus; HR, heart rate; mPAP/pPAP, mean/pulsatile pulmonary arterial pressure; PAC,

pulmonary arterial compliance; mPAOP, mean pulmonary arterial occlusion pressure; PVR, pulmonary vascular resistance; RAP, right atrial pressure; SV, stroke

volume; TPG, transpulmonary pressure gradient; TPR, total pulmonary resistance.
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percentage of change of mPAP and the percentage of change
of EM after iNO administration. A poor concordance rate
was obtained (75%) without a significant correlation
(r¼ 0.44; P¼ 0.11) (Fig. 4).

Discussion

Persistent PH after successful LSVR shows different hemo-
dynamic phenotypes which cannot be identified by echo-
Doppler follow-up. All patients with persistent PH after
successful LSVR showed significant proximal elastic PA
wall disease regardless of the hemodynamic phenotypes.
Cpc-PH patients showed the lowest PAC, and the highest
PVR, RC-time, and PA stiffness which was associated with
the worst RV-PA coupling. The proximal PAs remodeling
already present in Ipc-PH patients would be related to the
decrease in PAC leading to the impairment of the RV-PA
coupling.

PVD in PH-LHD in patients with heart failure is asso-
ciated with a prevalence of pulmonary veins and capillary
remodeling.20 In addition, histological data support that
distal muscular PAs may also be involved.7 Accordingly,
Gerges et al. using the pulmonary artery occlusion technique
to analyze the PVR partitioning pattern in heart failure,
have reported that upstream resistance is significantly
lower in Cpc-PH than in Ipc-PH patients, consistent with
the presence of pre-capillary PVD in Cpc-PH.21 The devel-
opment of intravascular imaging modalities provides a real-
time in vivo characterization of proximal elastic PA wall
(�2–3mm in diameter) in the PH workup.22 We have
shown in COPD and interstitial lung disease candidates
for lung transplantation that patients with normal mPAP
have a significant increase of EM.9 Jorge et al. reported a
high thickness–diameter ratio (13� 1.6%) in patients with
severe mitral valve disease and with a predominantly Ipc-PH
phenotype.23 In the present study, we showed that even

Fig. 1. Scatter plot of transpulmonary pressure gradient, diastolic pulmonary gradient, pulmonary vascular resistance, and pulmonary arterial

compliance with elastic modulus.
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Ipc-PH patients with PVR and DPG within normal limits
have a significant anatomical (AWT) and functional (EM)
proximal PA wall disease, suggesting the presence of early
PVD and questioning the definition of ‘‘passive’’ PH-LHD.
Local arterial stiffness reflects the increase in arterial blood
pressure per relative increase in arterial area (strain).
Although EM (ratio between pressure to strain) is not
equivalent to the incremental (Young) elastic modulus
(ratio between stress to strain and the gold standard for
the assessment of the elastic properties of a vessel wall)
since it lacks thickness data, it is a valid approximation.16

Because the arterial wall exhibits a non-linear, viscoelastic
behavior, PA stiffening is often viewed as a consequence of
elevated mPAP (distended arterial pressure) and thus, of the
artery operating on a steeper part of its pressure–volume
relationship. However, chronic stiffening due to wall
thickening and vascular remodeling of the extracellular
matrix, with loss of elastin and increase in collagen content
may be involved.24 The significant increase of AWT and the
absence of correlation plus the poor concordance rate
between relative changes of mPAP and EM after iNO
administration may explain the proximal PA stiffening for
intrinsic wall remodeling.

Multiple hemodynamic factors with the underlying PVD
are involved in the RV-PA uncoupling in PH-LHD. It is
well known that PH is associated with an early and

Fig. 2. Changes in hemodynamic parameters and elastic modulus after inhaled nitric oxide (iNO) in combined post-capillary and pre-capillary

pulmonary hypertension (Cpc-PH) and isolated post-capillary pulmonary hypertension (Ipc-PH) patients. mPAP, mean pulmonary arterial pres-

sure; PA compliance, pulmonary arterial compliance; TPR, total pulmonary resistance. *P< 0.05 Ipc-PH vs. Cpc-PH within the same state;
&P< 0.05 baseline vs. iNO within the same group.

Table 3. Relative changes in hemodynamic and IVUS data after

vasodilator challenge in patients with persistent PH after left valve

replacement according to the hemodynamic phenotypes.

Ipc-PH (n¼ 6) Cpc-PH (n¼ 9)

�mPAo 14.6� 4.8 12� 4.2

�TSVR –2.9� 9.1* –29.3� 8.7

�mPAP 5.8� 9.9 –5.3� 6.3

�pPAP –15.9� 8.1 7.9� 11.1

�CI 26.7� 9.7* 77.7� 16

�SV 14.4� 8.9* 76.1� 21

�HR 7.7� 7.4 1.3� 3.6

�TPR –10� 11.7* –39.7� 8.4

�PAC 79� 29* 390� 164

�Ea –0.02� 0.11* –0.38� 0.1

�TPR/TSVR –8.3� 5.7 –15.7� 4.1

�EM –4.1� 8.6 3.8� 13

Data are presented as mean� SE of percent variation after vasodilator

challenge.

*P< 0.05 vs. Cpc-PH.

CI, cardiac index; Cpc-PH/Ipc-PH, combined pre and post-capillary/isolated

post-capillary pulmonary hypertension; DPG, diastolic pressure gradient; Ea,

effective arterial elastance; EM, elastic modulus; HR, heart rate; mPAP/pPAP,

mean/pulsatile pulmonary arterial pressure; mPAo, mean aortic pressure; PAC,

pulmonary arterial compliance; SV, stroke volume; TPR, total pulmonary resist-

ance; TSVR, total systemic vascular resistance.
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progressive decrease in PAC and that the impairment of
PAC occurs even when PVR is normal and is an independ-
ent predictor of mortality of patients with heart failure with
preserved ejection fraction.25,26 In the natural history of
PH-LHD, we can speculate that the presence of proximal
PA wall disease in addition with the abnormal pulsatile
loading component due to upstream transmission of ele-
vated left atrial pressure, may explain the significant lower
PAC and impairment of RV-PA coupling with normal PVR
and DPG in Ipc-PH patients. The elevation of PVR and
DPG would occur later with dramatic reductions in PAC
associated with distal PVD, as seen in Cpc-PH patients.
Current dogma suggests that distal changes in pulmonary
vasculature usually precede those associated with stiffening
in the proximal vessels, so decreased PAC in PH was
thought to be a consequence of small distal vessel prolifera-
tive vasculopathy leading to increased PVR and mPAP.
However, recent evidence suggests a loss of capacitance in
the proximal PAs may actually initiate and promote PH,
causing the distal proliferative vasculopathy by increasing
flow pulsatility and leading to intimal inflammation and
fibrosis, medial hypertrophy, muscularization of arterioles,
and adventitial thickening.24,27 The distal and proximal PAs
‘‘communicate’’ with one another in a cycle of positive

feedback leading to remodeling progression and stiffening
the arterial wall.28 It could be suggested that both the prox-
imal and distal involvement worsens from the Ipc-PH to the
Cpc-PH phenotype. Interestingly, the PA wall disease and
the hemodynamic profile of Cpc-PH patients are very simi-
lar compared to historical patients with PAH.22 Although
the cellular and molecular mechanisms that drive the inter-
actions of distal and proximal arterial remodeling in PH
remains unclear, the correlation between the changes of
the pulmonary hemodynamic parameters after iNO and
the baseline proximal PA stiffness could illustrate the close
cross-talk between the distal and proximal PAs.27

Finally, the early proximal PA wall remodeling asso-
ciated with the impairment of RV-PA coupling, together
with the parallel effect of the left ventricle to RV through
the interventricular septum function, could explain the
absence of association of the distal pulmonary vascular
remodeling with RV dysfunction in PH-LHD. Bosch et al.
reported that RV dysfunction is worse in heart failure with
reduced ejection fraction than heart failure with preserved
ejection fraction regardless of the degree of PH.29 Based on
the helical ventricular myocardial band model proposed by
Torrent-Guasp, they suggested a parallel effect of LV and
RV dysfunction through the loss of the oblique orientation

Fig. 3. Correlations between absolute changes in hemodynamic parameters and elastic modulus (EM) after iNO and baseline EM. Cpc-PH/Ipc-

PH, combined pre and post-capillary/isolated post-capillary pulmonary hypertension; mPAP/pPAP, mean/pulsatile pulmonary arterial pressure;

PAC, pulmonary arterial compliance; SV, stroke volume; TPR, total pulmonary resistance. Delta is computed as after NO minus before NO

administration (baseline) values. *P< 0.05 Ipc-PH vs. Cpc-PH.
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of the fibers of the apical loop of the helix that constitutes
the interventricular septum.30

Despite the successful valve surgery, the patients per-
sisted with high values of mPAOP, which can be explained
by the persistent venous and small vessel intimal thickening.
This is in accordance with a very recently comprehensive
quantitative histomorphometry of pulmonary vessels from
patients with diagnosed heart failure.20 The authors pro-
posed a preferential remodeling of pulmonary veins with a
pattern similar to patients with pulmonary veno-occlusive
disease which was associated with the severity of PH and the
presence of RV dysfunction.20

The hemodynamic response of an acute vasodilator chal-
lenge in heart failure has often been studied using systemic
infusions of nitrates.31,32 The major advantages of iNO to
assess acute vasoreactivity are rapid onset, pulmonary spe-
cificity, and short duration of action. We documented that
only Cpc-PH patients are responsive to iNO, showing sig-
nificant improvements in RV afterload (Ea, PAC, and TPR)
with a significant increase of SV and cardiac index. These
findings are in agreement with those of Gerges et al., who
showed that patients with Cpc-PH patients improved RV
afterload with a concomitant 8% of upstream PVR increase,
indicating a decrease of distal vascular resistance.21 It is well
known that the vasodilator effects of iNO are strictly limited
to small arterioles into which alveolar gas diffuses. Although
mean values of EM did not show changes after iNO regard-
less the hemodynamic phenotype, in the scatter plot some
individual patients showed changes in EM as large as 101
and –80mmHg. This apparent paradox can be explained by
the short-term arterial adaptation linked to the vasomotor
tone response to changes in transmural pressure (myogenic
response) and/or flow (shear stress) modified by iNO.33

This study has several limitations. One limitation relates
to the small sample size and, consequently, the reduced

study power, which increases the chance of incurring Type
II error in comparisons of Cpc-PH and Ipc-PH. However,
we only included valve heart disease patients. Those correl-
ations which seem to be driven by extreme data points
should be interpreted more conservatively. Assessment of
mPAOP is critical to define the hemodynamic phenotype
in PH-LHD patients. We used the end-expiratory auto-
mated digital mean measurements across the cardiac cycle
of mPAOP that may better estimate the pressure to which
the pulmonary circulation is submitted.6 Despite the absence
of mitral regurgitation, the presence of atrial fibrillation in
all patients could explain the negative values of DPG in
40% of patients, which is in accordance with other stu-
dies.12,26 Although we used a historical not age-matched
control group, the effect of aging in PA stiffness begins to
be significant from the age of �50 years.34 We did not
obtain the mPAOP during iNO; therefore, we could not
assess TPG, DPG, and PVR. However, based on previous
data, we can speculate an elevation of mPAOP after
iNO.21,35,36 Like Gerges et al. mPAP increased in Ipc-PH
and decreased in Cpc-PH patients, so that we could raise a
decrease of PVR in Cpc-PH during inhalation of NO with a
non-significant change in Ipc-PH.21

In summary, patients with persistent PH after successful
LSVR have proximal elastic PA wall disease and RV-PA
coupling impairment beyond the hemodynamic phenotype.
Increased RV afterload is driven not only by the
upstream transmission of elevated left atrial pressure but
also by a significant increase of proximal PA stiffness and
area of wall thickness in Ipc-PH patients with normal
PVR and DPG. Cpc-PH represents patients with the
worst PVR, PAC, and EM, aggravating the RV-PA cou-
pling. Substantial hemodynamic improvements were
observed in Cpc-PH patients after iNO administration.
This response is significantly correlated with proximal PA
stiffness.
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