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Abstract. We consider a design approach to reduce unwanted zero-order
intensity due to profile depth error in diffractive elements. Our method is based
on addition of local bias phase to a binary element phase, leading to the
introduction of a third phase level. We show theoretically and experimentally
that gratings obtained with such modifications are more tolerant to profile depth
error than conventionally designed binary or multilevel elements, thus reducing
the appearance of unwanted zero order.

1. Introduction
In the past few years diffractive optics has increasingly found its way into

practical applications in a wide range of fields [1, 2]. Following this development,
practical issues such as, for example, element alignment, stray light and tolerances
to typical fabrication errors with the most common fabrication methods have
received increasing attention. In the field of beam splitter and beam shaper design
several authors have recently investigated methods to develop algorithms that can
be used to realize designs with relaxed fabrication and alignment tolerances [3, 4].
The common feature between all these approaches, which are closely related to
methods proposed for design of multiple-colour diffractive optic elements (DOEs)
[5–8], is that they utilize diffractive element potential for multi-functionality, i.e.
the fact the diffractive optical elements can be designed to realize several optical
functions at once. The trade-off with such multi-functional design approaches is
the need for more design freedoms during the design procedure compared to
traditional approaches. Consequently, the proposed approaches work best when
the number of possible phase levels is relatively high; none of the authors
demonstrate their approach with elements with only a few phase levels.

With most modern techniques used in fabrication of diffractive elements the
surface profile can be typically realized with high lateral precision. However,
vertical profile errors are more difficult to control. Moreover, fabrication errors in
replication processes such as injection moulding used to realize large series of
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diffractive elements typically also lead to variations in the profile depth. In general,
and especially in the case of binary diffractive elements, surface depth errors result
in an increase of the zero-order efficiency [9, 10]. If the signal cannot be moved off-
axis, as is often the case, such an increase is highly undesirable in applications, for
example, in material processing or optical interconnections, where precise control
of the efficiency of individual diffraction orders is required.

In this paper we consider a design approach that can be used to relax the
fabrication tolerances of diffractive elements based on a binary phase profile,
focusing especially on suppressing unwanted light in the zeroth order due to etch
depth errors. It should be immediately noted that even though the considered
elements are initially binary phased, the approach we propose to relax the
fabrication tolerances leads, as a trade-off, to the introduction of a third phase
level. Thus it should be stressed that we are not claiming to design binary elements
with relaxed fabrication tolerances. However, since our approach uses a binary
solution as a starting point, the elements proposed have some of the key beneficial
properties of binary diffractive elements along with the added tolerance to profile
depth error at the cost of a third phase level.

The paper is organized as follows. The basic concept of the proposed approach
is presented in sections 2 and 3. In section 4 some example designs are considered
as we present a numerical verification of the usefulness of the proposed method,
followed by experimental verification in section 5. Finally, possible validity of the
approach in light of rigorous diffraction theory as well as possible extensions are
discussed in section 6.

2. Basic approach
It is generally known that phase functions which are identical in terms of the

thin element approximation when no surface depth errors are present can have
quite different behaviour when errors are taken into account. Ehbets et al. used
this to minimize the uniformity error sensitivity of continuous-relief fan-out
elements by introducing a constant bias to the element phase and then re-wrapping
it to the interval ½0 . . . 2p�, i.e. by effectively shifting the positions of 0–2p
transitions within the grating period [11]. In the case of binary gratings, such an
approach does not work, as the introduction of a constant bias phase cannot shift
the surface transitions or change the relative phase difference between the levels
even when depth errors are taken into account. It is, however, possible to intro-
duce a local bias phase in a way that does change the element performance in
connection to surface depth errors.

Let us consider a binary grating with phase levels 0 and p. According to thin
element approximation, parts of the grating can be lowered (or raised) by 2p to
introduce a third phase level, as shown in figure 1, without changing the perform-
ance of the perfectly fabricated grating. The same is also true for the case where
the local bias phase of 2p is added to the grating in such a way that two new phase
levels are introduced. However, as we will later show, the latter case has no
beneficial effect with regard to surface depth errors. In figure 2 the complex-
amplitudes connected to the phase levels of the element are presented in the
complex plane. For clarity it should be noted that for three-level elements the point
at the intersections of the negative part of the real axis and the unit circle actually
represents two separate complex amplitudes with different phase values, indicated
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next to the axis, while for four level elements both intersections have two phase
values, again indicated next to the axis. When a linear depth error in the form
hactual ¼ ð1þ cÞhideal is introduced, the complex amplitudes move on the unit circle
as indicated by the arrows. If we consider the three different cases, i.e. binary,
three and four level gratings, we see from figure 2 that the movement of the
complex amplitudes due to depth error has inherent symmetry in the case of a
three-level element, while with both binary and four elements no such symmetry
can be seen. Intuitively this suggests that the zero-order efficiency, which is
effectively the weighted average (with weights given by relative areas of each
complex amplitude in the grating period) of the available complex amplitudes
should be less sensitive to depth errors in the case of a three-level element than
with binary or four level cases if the symmetry is properly utilized. We will now
show that this is indeed true.

3. Mathematical formulation
For simplicity we consider a grating which is designed to have non-zero

intensity only in the odd diffraction orders, i.e. so-called even orders missing
(EOM) grating, with the understanding that the following can be easily generalized
for an arbitrary binary grating with phase values 0 and p. An EOM grating exhibits
symmetry which ensures that the total area of grating regions with a phase value of
p is equal to the area with value 0, and consequently the zero-order efficiency of a
perfectly fabricated element is zero [12]. Assuming illumination with a unit-
amplitude plane wave and taking linear depth error into account, the efficiency

Figure 1. Schematic figure of the basic concept. Parts of the grating are lowered
by 2p to introduce a third phase level.

(a) (b) (c)

Figure 2. Effect of linear depth error in the complex plane with (a) two, (b) three
and (c) four phase levels.
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for the zeroth order of such an element is then, according to thin element
approximation, given by
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where c is the linear depth error factor in hactual ¼ ð1þ cÞhideal. Note that this result
is independent of the actual grating profile. We now proceed to introduce a third
grating level by lowering some percentage of the grating areas with phase value p
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where M is a constant indicating what percentage of the grating regions with phase
value p was lowered. From equation (2) we immediately see that by selecting
M ¼ 1=2, i.e. by lowering exactly half of the grating regions in question, we can
reduce the unwanted zero order by a power of two compared to the binary case.

We next consider the case where some percentage of the whole grating is
lowered by 2p to introduce 2 new phase levels. In this case equation (1) becomes
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where M is now a constant indicating how large a portion of the entire grating was
lowered. Again we see that the minimum is obtained by selection of M ¼ 1=2, in
which case the zero order is reduced by multiplication with factor cos2 ðcpÞ
compared to the original binary case. With small depth errors this reduction is
insignificant, as cos2 ðcpÞ � 1. Thus we have confirmed through equations (1)–(3)
that by introducing a third phase level and properly utilizing the symmetry seen in
complex-amplitude change due to linear depth error, it is possible to significantly
reduce the unwanted light in the zeroth order compared to both the binary and
four level cases.

In the previous we considered only the zeroth order in connection with profile
depth error. For binary elements this is sufficient, as depth error does not change
the relative efficiency of the other diffraction orders. However, when additional
phase level is introduced by lowering parts of the grating, this is no longer true and
the change in relative efficiency of the other diffraction orders must be determined
by taking into account both the amount of depth error and the grating profile
considered. Therefore, in terms of uniformity, the optimal way to introduce the
third phase level varies from grating to grating. It is, nevertheless, possible to
outline some general rules. The three-level grating can be seen as a superposition
of two binary gratings, one with depth corresponding to a phase of p and the other
with depth matching a phase of 2p. The latter only appears when depth errors are
present and deflects light from the zeroth order to higher orders. Thus the second
grating, i.e. the parts of the original grating modified which are lowered, should be
chosen so that the the light from the zeroth order is not deflected to any of the
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signal orders. The easiest way to ensure this is to introduce local modifications
with higher frequency than the main grating. Additionally, if the original grating is
modulated only in one dimension, the second grating can be added in a perpen-
dicular direction to further separate the signal and noise orders. Finally, it should
be noted that since the local modifications are added to the original grating in a
separate straightforward step, different strategies can be easily evaluated to find the
optimum without a costly re-design step.

4. Theoretical results
We will now test the approach presented in the previous sections by consider-

ing some simple beam splitting designs. In the selected examples the incidence
beam is split into 16 equal-intensity beams that are arranged in one (1 7!16) or two
(1 7!4� 4) dimensional equally spaced array by means of a binary or a 16-level
diffractive element. In all cases the designs were made using an iterative Fourier
transform algorithm (IFTA) [13], and optimized in terms of both efficiency
and uniformity error. Symmetries required to suppress all even orders were
enforced during the design procedure, and consequently all designs have ideal
zeroth order efficiency of 0%. The design values with binary elements for efficiency
and uniformity error in the case of a one-dimensional array are � ¼ 80:8% and
�U ¼ 0:3%, respectively, while for a two-dimensional case � ¼ 77:6% and �U ¼

0:04%. For 16-level designs we have � ¼ 92:8%, �U ¼ 0:05% and � ¼ 91:4%,
�U ¼ 0:03% for the 1D and 2D cases, respectively.

Figure 3 shows the grating profiles obtained from the binary designs by
introduction of local bias phase, i.e. after the third phase level was introduced.
In both cases the additional phase level was used to form a one-dimensional
grating which has a frequency several times higher than the main grating.
Additionally, in the case of the one-dimensional array, the main grating and the
second grating formed by the addition of the third phase level were oriented
perpendicularly to each other.

Performance of the three-level gratings was first evaluated by calculating the
zeroth order efficiency, uniformity error and the diffraction efficiency as a function
of the depth error coefficient c and comparing them to values obtained with the
corresponding binary solution. Figures 4 and 5 show the results for the 1 7! 16 and
the 1 7! 4� 4 designs, respectively. We see that in terms of zeroth order intensity,
the three-level gratings created by introducing a local bias phase of 2p are superior
compared to the corresponding binary elements. The trade-off of this performance
improvement is the reduced performance in terms of diffraction efficiency in both
cases and in terms of uniformity in the case for the two-dimensional array.
However, for most applications utilizing beam splitters in the fields of material
processing, optical interconnections or spatial filtering, the reductions in optical
performance with the three-level element would be within acceptable specifica-
tions, whereas the rapid increase in the zeroth order efficiency seen in the case of
the binary design would constitute a serious problem. Furthermore, it should be
noted that the reduction in optical performance, especially in terms of the loss of
uniformity, can be minimized by properly selecting the way the third phase level is
introduced. Thus it can be concluded that optical performance of the three-level
designs is more tolerant to surface profile depth error than the conventional binary
solution.
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Since fabrication of three-level gratings requires techniques that can be used
with only little additional complexity to fabrication of elements with a higher
number of phase levels, it is of interest to also compare these two approaches.
Again the evaluation was done by calculating the zeroth order efficiency, uni-
formity error and the diffraction efficiency as a function of the depth error
coefficient c. It should be noted that optimized global bias phases were added to
the 16-level designs obtained with IFTA prior to the evaluation in order to
increase the depth error tolerance of the designs in a manner suggested in [11].
The curves in the case of the 16-level designs can also be seen in figures 4 and 5 for
the 1 7! 16 and the 1 7! 4� 4 designs, respectively. We again see that in terms of
zeroth order intensity, the three-level gratings created by introducing a local bias
phase of 2p are superior. The figures also show that, contrary to the comparison

Figure 3. Considered three-level grating profile in the case of (a) 17!16 and (b) 1 7!4� 4
beam splitter. Phase levels: 0 (white), p (dark grey) and �p (light grey).
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(a)
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with binary gratings, the uniformity error of the three-level elements remains
significantly smaller than that of the 16-level designs when profile depth errors are
present in the element. This indicates that the important property of the depth
errors affecting only the zero order, with other orders remaining unchanged in
terms of the relative efficiency associated with binary gratings, is at least partially
preserved when the additional phase level is introduced, making the elements more
tolerant to surface profile depth errors. As expected, in terms of efficiency, the 16-
level designs are greatly superior. Thus it can be concluded that for applications
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Figure 4. (a) Zeroth order efficiency, (b) uniformity error and (c) diffraction efficiency
of the design as a function of depth error c for a three-level 1 7! 16 beam splitter.
Corresponding binary and 16-level designs are shown with dashed and dotted lines,
respectively, for comparison.
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sidewalls than in the case where the profile is realized using a single resist mask

and proportional etching into the substrate. The size of the elements was

2:5mm� 2:5mm and the period was 640 mm� 640 mm with a pixel size of 5 mm,

hence, the elements operated well in the paraxial domain.

Each of the elements was of different depth with the depth errors selected to be

within the range of �20%. To characterize the effect of the depth error on the

signal, the optical function of the elements was determined by illuminating them

with an expanded beam of a HeNe laser (�¼ 633 nm). The intensities of the

generated diffraction orders were measured with an optical power meter in the far

field and the results are shown in figure 6.

The experiments show excellent agreement with the theory for the zeroth

order both in the case of the binary and the three-level elements, confirming that

the zero order can indeed be reduced by introducing a third level into a binary

grating in the manner described earlier in the paper. For the diffraction efficiency

the match is less perfect, especially in the case of the binary elements, but the

measured results still generally support the conclusion that suppression of the

zeroth order is obtained at the cost of slightly lowered diffraction efficiency. In

the case of the uniformity, the theoretical and measured results show weakest

agreement which each other. This can be, however, attributed to the presence of

other fabrication errors such as rounding of the surface profile, slight slanting of

the vertical sidewalls due to anisotropic etching and small random variations in

the filling factor due to positioning errors in the transition points defining the

element. For example, the contribution of the latter to the uniformity error

can be estimated to be nearly one percentage point even though the error itself
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Figure 6. Measured (a) zeroth order efficiency, (b) uniformity error and (c) diffraction
efficiency of the binary (boxes) and three-level (bullets) design as a function of depth
error c for the 1 7! 4� 4 beam splitter. Theoretical curves for binary and three-level
designs are shown with dashed and solid lines, respectively.
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is on average below 100 nm [9]. In the case of the three-level elements a small
misalignment between the two masks and error in the relative height of the
three-levels also contribute.

6. Discussion
It is generally accepted that with the modern techniques used in the fabrication

of diffractive elements, the surface profile can be typically realized with high lateral
precision, but such high precision cannot be achieved in the vertical direction.
Therefore any method that significantly relaxes the requirements on the precision
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Figure 6. Continued.
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needed to control the profile depth is, in general, valuable. This is especially true in
the case of elements designed for the deep UV region, where an absolute error of a
few nanometres is already proportionally significant with respect to the optical
wavelength. We can also envision that a method such as the one proposed in
this paper could be of interest for master elements used in mass production of
diffractive elements. This is due to the fact that in mass production approaches,
such as injection moulding, the tolerances of the replication process typically lead
to profile depth variations from element to element, and a master with relaxed
profile depth precision requirement could therefore directly influence the number
of elements that either pass or fail the specified acceptance criteria. In other words,
relaxing the fabrication tolerances of the master could lead to a direct increase
in the yield of the process.

In terms of validity the proposed approach as discussed here is clearly
dependent on the accuracy of the thin element approximation, i.e. it is only
valid when the thin element approximation can be used for the modelling of the
surface response. Since perturbation effects in the regions near the vertical surface
transitions, shown to have a significant contribution in the break-down of thin
element approximation in the non-paraxial domain [15], are ignored, the proposed
approach also begins to fail when moving into the non-paraxial domain. Never-
theless, some zeroth order suppression can be obtained even when the minimum
feature size of the element is only a few wavelengths, i.e. the design is deep inside
the resonance domain. Furthermore, it should be possible to expand the proposed
approach at least case by case to non-paraxial designs.

If one considers the trade-offs in terms of fabrication of proposed three-level
elements, it is clear that the addition of the third level does increase the difficulty in
fabrication. However, in the case of fabrication methods were the desired surface
profile is produced in a single lithography step, e.g. electron-beam or laser beam
writing or grey scale lithography, the increase does not present a significant
problem. On the other hand, fabrication using optical lithography becomes a
two mask process and other errors such as mask misalignment appear. The benefits
gained using this approach in terms of zeroth order suppression must then be
weighted against losses in diffraction efficiency and uniformity error due to other
fabrication errors. A more detailed analysis of the fabrication trade-offs remains
a subject for further study.

Previously discussion has been limited originally to gratings with a binary
surface profile. We do not envision that the proposed approach could be straight-
forwardly expanded to multilevel or continuous gratings without increasing the
phase range beyond 2p, i.e. without increasing the grating depth. Nevertheless
expansion of the proposed method to multilevel or continuous profiles might be
a useful alternative to the existing methods for design of fabrication error resistant
diffractive elements.

7. Conclusions
We have shown theoretically and experimentally that the introduction of

a third phase level to the original binary grating profile through a locally added
bias phase of 2p can significantly reduce the design sensitivity to profile depth
error and successfully suppress unwanted zeroth order light. Designs made using
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the proposed method were found to be significantly improved compared to their
binary counterparts.
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