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Abstract. A macroscopic model is proposed to describe the dynamics of electron cyclotron current
drive (ECCD). This model depends on the adoption of a suitable distribution function for the
energetic current-carrying electrons. The model is readily applied to examine the current drive
efficiency of high-power ECCD experiments, reproducing the main experimental features.
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INTRODUCTION

Localized current drive by electron cyclotron waves is a powerful technique that has
received extensive experimental treatment [1, 2, 3, 4]. Overall, the experimental results
are in good agreement with simulations using three-dimensional quasi-linear Fokker-
Planck codes [3]. However, these cumbersome codes are not convenient for modeling
comprehensive tokamak systems or time dependent scenarios. As an alternate, this
paper describes a macroscopic model of ECCD. It is based on a previous work [5],
improving the form of the distribution function for the magnetized relativistic electron
stream. Simplified expressions of power and force densities are derived from quasi-
linear diffusion. The results of the model are compared to experimental measurements
of current drive on the DIII-D and TCV tokamaks.

MOMENTS OF THE FOKKER-PLANCK EQUATION

Neglecting radial transport effects the Fokker-Planck equation for streaming electrons is

∂ f
∂ t

= ¡∇p ¢
‡¡!

Γ c +
¡!
Γ E +

¡!
Γ RF

·
= ¡∇p ¢¡!Γ ; (1)

where
¡!
Γ c is the collisional flux, and the driving fluxes due to both a slow varying

inductive electric field and diffusion by RF waves are given, respectively, by

¡!
Γ E = ¡eEk f bek;¡!

Γ RF = ¡DRF ¢ ∇p f ;
(2)

where e is the electron charge, bek is the unit vector in the direction of the magnetic field,

and DRF is the quasi-linear RF diffusion dyadic.
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A general moment is obtained multiplying the Fokker-Planck equation by a
momentum-dependent quantity Φ(¡!p ) and integrating over all momentum space

∂
∂ t

(nhΦi) =
Z ¡!

Γ ¢ ∇pΦ(¡!p )d3 p: (3)

The rates of change of the kinetic energy Φ = mec2 (γ ¡ 1) and momentum
¡!
Φ = ¡!p =

mecγ
¡!
β , where γ =

p
1 + p2=(m2

ec2) = 1=
p

1 ¡ β 2, give the equations of motion

∂
∂ t hγ ¡ 1i = ¡νc

¿
γ

(γ2¡1)
1=2

À
+ Pd

nmec2 ;

∂
∂ t

D
γ
¡!
β

E
= ¡νc

¿
(1+Z+γ)γ2

(γ2¡1)
3=2

¡!
β

À
+

¡!
F d

nmec ;
(4)

where νc is the collision frequency (normalized to the speed of light) of energetic
electrons colliding with a thermal background of electrons and ions of charge Z

νc =
nee4 lnΛe0e
4πε2

0 m2
ec3 ; (5)

and where e0 and e designate the energetic and plasma electrons, respectively. The
volumetric densities of driven power, Pd , and force,

¡!
F d , are given in terms of the driving

fluxes by:
Pd = ¡neEkc

›
βk

fi¡ c
R ‡¡!

β ¢ DRF ¢ ∇p f
·

d3 p;
¡!
F d = ¡neEkbek ¡ R ‡

DRF ¢ ∇p f
·

d3 p:
(6)

These quantities must satisfy the electrodynamic constraint

Pd = c
¡!
F d ¢

D¡!
β

E
; (7)

which gives the rate at which the RF energy is being converted to kinetic energy per unit
volume. The equations of motion (4) correspond, assuming a mono-energetic stream and
neglecting the external sources, to the Langevin equations which describe the slowing
down of energy and momentum of test electrons.

QUASI-LINEAR RF DIFFUSION DYADIC

In cylindrical coordinates in momentum space the gyro-averaged quasi-linear diffusion
dyadic is

DRF = D?be?be? + D^
¡be?bek + bekbe?

¢
+ Dkbekbek: (8)



Substituting in the expressions of the power and force per unit volume (6) yields

Pd = ¡neEkc
›
βk

fi¡ nc
D¡

β?D? + βkD^
¢ ∂

∂ p?
ln f +

¡
β?D^ + βkDk

¢ ∂
∂ pk

ln f
E

;
¡!
F d = ¡neEkbek ¡ n

D
D? ∂

∂ p?
ln f + D^ ∂

∂ pk
ln f

E
be? ¡ n

D
D^ ∂

∂ p?
ln f + Dk ∂

∂ pk
ln f

E
bek

= F?be? + Fkbek:
(9)

In the small gyroradius limit k?v?=(Ωe=γ) ¿ 1, with Ωe = eB=me, the diffusion
coefficients for the fundamental resonance of electron cyclotron waves are given by

D? »= D0
jβkj

‡
Ωe
γω

·2
∆(ξ ) ;

D^ »= D0
jβkj

‡
1 ¡ Ωe

γω

·
Ωe
γω

β?
βk

∆(ξ ) ;

Dk »= D0
jβkj

‡
1 ¡ Ωe

γω

·2 β 2
?

β 2
k

∆(ξ ) ;

(10)

where D0 = πe2E2
?=ω is the diffusion coefficient strength expressed in terms of the

effective perpendicular wave amplitude, and ξ = [1 ¡ Ωe=(γω)]=βk is the refractive in-
dex variable along the wave spectrum. For a narrow spectrum centered at the refracting
index nk, within a small range ∆nk, the dimensionless function ∆(ξ ) has the character-
istics of a delta-function with unit area and amplitude proportional to 1=∆nk at ξ = nk,
i.e. ∆(ξ ) » δ

¡
ξ ¡ nk

¢
.

Performing the transformation
¡
ξ ;βk

¢ ! ¡
π p2

?; pk
¢

defined by

π p2
? = πm2

ec2
•‡

Ωe
ω

·2 1¡β 2
k

(1¡βkξ)
2 ¡ 1

‚
;

pk = mecΩe
ω

βk
1¡βkξ ;

jJj = 2πm3
ec3

‡
Ωe
ω

·3 jβkj
(1¡βkξ)

4 ;

(11)

where jJj is the Jacobian determinant, the moments of the Fokker-Planck equation are
expressed in the variables

¡
ξ ;βk

¢
by

hΦ(¡!p )i =
2πm3

ec3

n

µ
Ωe

ω

¶3 Z
f
¡
ξ ;βk

¢ Φ
¡
ξ ;βk

¢
∆(ξ )

flflβk
flfl

¡
1 ¡ βkξ

¢4 dξ dβk: (12)

In the limit ∆nk ! 0 the function ∆(ξ ) becomes a delta function, giving the leading
terms in the asymptotic expansions of integrals over the wave spectrum for

flflnk
flfl < 1:

›
Φ

¡
ξ ;βk

¢fi
ξ=nk

» 2πm3
ec3

n

µ
Ωe

ω

¶3 Z
f
¡
nk;βk

¢ Φ
¡
nk;βk

¢flflβk
flfl

¡
1 ¡ nkβk

¢4 dβk: (13)



-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Βþ

Β
¦

FIGURE 1. Resonance lines in velocity space normalized to the speed of light for ω = 0:982Ωe. The
curves correspond to values of the refractive index nk = 0, 0.15, 0.3, 0.5, 0.9 from center to edge. The
dashed lines represent the trapped particle region for a mirror ratio 2/3, although the present model does
not include its effect.

The leading terms in the expressions of the power and force densities are

Pd » ¡neEkc
›
βk

fi¡ nD0
me

¿
β 2

?
jβkj

‡
Ωe
ω 2m2

ec2 ∂
∂ p2

?
ln f + nkmec ∂

∂ pk
ln f

·À

ξ=nk
= ¡neEkc

›
βk

fi
+ PRF ;

F? » ¡nD0
mec

¿
β?
jβkj

¡
1 ¡ nkβk

¢‡
Ωe
ω 2m2

ec2 ∂
∂ p2

?
ln f + nkmec ∂

∂ pk
ln f

·À

ξ=nk
;

Fk » ¡neEk + nk
PRF

c ;

(14)

where

β 2
? = 1 ¡ β 2

k ¡
µ

ω
Ωe

¶2 ¡
1 ¡ nkβk

¢2 (15)

corresponds to the resonance lines shown in Fig. (1). The integration limits in (14) are
defined by the two roots of β 2

?:

β§ =
nk § (Ωe=ω)

q
(Ωe=ω)2 + n2

k ¡ 1

(Ωe=ω)2 + n2
k

: (16)

The expressions (14) give the macroscopic manifestations of interaction between the
energetic particles and both the inductive electric field and a narrow spectrum of su-
perluminous parallel phase velocity electron-cyclotron waves in the first harmonic EC
regime.

DISTRIBUTION FUNCTION OF THE ELECTRON STREAM

A suitable form of the distribution function for the energetic electrons is necessary to
evaluate moments of the Fokker-Planck equation, giving the macroscopic rates of change



of momentum and energy. As shown in Ref. [6], the distribution function of a weakly
collisional, strongly magnetized relativistic electron stream can be written as a sum of
Dory-Guest-Harris components of the form

f‘ =
n‘

q
1 ¡›

βk
fi2

4πm3
ec3 C‘

µ
0
T ;

0
Tk

¶0
@ p2

?

2me
0
T

1
A

‘

exp

0
B@mec2

0
Tk

¡ γmec2 ¡ c
›
βk

fi
pk

0
Tk

q
1 ¡›

βk
fi2

¡ p2
?

2me
0
T

1
CA ;

(17)
where n‘ is the number density of the component ‘, c

›
βk

fi
is the average velocity of the

streaming electrons in the direction of the magnetic field
¡!
B = Bbek, and

0
Tk is the parallel

temperature expressed in energy units in the rest frame of the stream. The parameter
0
T

determines the degree of magnetization and the index ‘ = 0;1;2 : : : gives a measure of the
anisotropy in the perpendicular direction. The bi-Maxwellian distribution corresponds
to ‘ = 0. The density and temperature parameters satisfy the Lorentz transformation
properties

0
n‘ = n‘

q
1 ¡›

βk
fi2

;
0

Tk =
Tkq

1¡hβki2
and

0
T = T; (18)

so that the parallel pressure associated with the component ‘,

0
Pk;‘ =

0
n‘

0
Tk; (19)

follows the perfect gas law and becomes a Lorentz invariant. The normalization coeffi-

cient C‘

µ
0
T ;

0
Tk

¶
is given as the inverse of a series in terms of modified Bessel functions

of the second kind Kν (z)

C‘

µ
0
T ;

0
T k

¶
=

2
4

ˆ
0
T k

mec2

!
exp

ˆ
mec2

0
T k

!ˆ
0
T k
0
T

!‘

∑∞
k=0

(‘+k)!
k!

ˆ
¡

0
T k
0
T

!k

K‘+k+2

ˆ
mec2

0
T k

!3
5

¡1

:

(20)

This series is appropriate for calculations with
0
T k ¿ 0

T . A power series expansion to sec-

ond order in
0
T k=

¡
mec2¢

valid for 0 <
0
T < ∞ is given in [6]. Taking ‘ = 0,

0
T ! ∞ and›

βk
fi

= 0 in (17) recovers the Jüttner distribution for an isotropic relativistic electron gas.
Using the distribution function in the form (17), the thermodynamic quantities and equa-
tions of state pertaining to an anisotropic relativistic electron stream can be obtained. In
particular, the Chew-Goldberger-Low double adiabatic equations are recovered in the

warm plasma limit
0
T k ¿ ¡

mec2¢
.



The energy density, the magnetization, and the enthalpy density of the component ‘
are defined in the rest frame of the electron stream by, respectively,

0
U‘ =

0
n‘mec2 hγi ;

0
M‘ = ¡0

n‘

D
p2

?
2meB

E
;

0
H‘ =

0
U‘ +

0
Pk;‘ ¡ B

0
M‘ ¡ ‘

0
Pk;‘

¿
ln

µ
p2

?
2me

0
T

¶À
:

(21)

These quantities can be calculated in the laboratory frame applying a boost with velocity
c
›
βk

fi
. The Lorentz invariant perpendicular pressure of component ‘ is

0
P?;‘ =

0
@1 + ‘+

B
0
M‘

0
n‘

0
T

1
A 0

Pk;‘: (22)

Now, the electron stream distribution function in ECCD is written as a sum of compo-
nents of type (17). In particular, as a sum of ‘ = 0 (bi-Maxwellian) and ‘ = 1 DGH-like
components

f = ∑
‘

f‘ = f0 + f1: (23)

This form of the distribution function corresponds to an excited state that can be taken
only as a model. The actual distribution will depend, in general, on the detailed drive
mechanism of high-energy electrons and the equilibration time. Also, depending on the
degree of anisotropy this distribution is prone to the Weibel instability that possibly
occurs in ECCD. Nevertheless, the main objective of this paper is to show that the
proposed form of the distribution function gives consistent macroscopic results for
ECCD.

The total parallel pressure follows Dalton’s law with the same parallel temperature
for each component

0
Pk = ∑

‘

0
Pk;‘ =

0
n

0
T k; (24)

and the total perpendicular pressure depends on the degree of magnetization according
with

0
P? = ∑

‘

0
P?;‘ =

0
@1 + F +

B
0
M

0
n

0
T

1
A 0

Pk =
0
n

0
T ?; (25)

which introduces the total magnetization
0
M = ∑

‘

0
M‘ and defines the perpendicular tem-

perature
0
T ?, and where F =

0
n1=

0
n = n1=n is a Lorentz invariant giving the ratio between

the density of the ‘ = 1 component and the total electron stream density. All components

have the same degree of magnetization specified by the parameter
0
T = T (the compo-

nents with ‘ > 0 intrinsically correspond to states of higher magnetic susceptibility). It
is also assumed that the average velocity c

›
βk

fi
is the same for all components.



One verifies that for a strongly magnetized electron stream the perpendicular tem-

perature vanishes, that is,
0
T ? » 0 as

0
T ! 0, and attains a maximum

0
T ? » (1 + F)

0
T k

when
0
T ! ∞, corresponding to the state of highest demagnetization. Indeed, for a warm

electron stream, i.e.
0
T k ¿ mec2, the perpendicular temperature is given approximately

by

0
T ? »= (1 + F)

0
T

0
T k

0
T +

0
T k

; (26)

and the magnetic susceptibility of the stream is

0
χm =

µ0
0
M

B
»= ¡(1 + F)

0
T

0
T +

0
T k

0
Pk

B2=µ0
: (27)

Also, in the warm stream limit, the energy density becomes

0
U = ∑

‘

0
U‘

»= 0
nmec2 +

0
Pk

γp ¡ 1
; (28)

where γp is the “polytropic” index

γp =
2

0
T ? + 3

0
T k

2
0
T ? +

0
T k

: (29)

The proposed form (23) of the distribution function of the streaming electrons is

characterized by the average velocity
›
βk

fi
plus the three parameters F ,

0
T k and

0
T that

enter the rest frame equations of state for
0
U ,

0
M and

0
H. In general, the total enthalpy

density in the rest frame of the electron stream can be written as

0
H = ∑

‘

0
H‘ =

0
U +

0
Pk +

µ
0
Pk ¡ 0

P?
¶

+ F
0
Pk

2
41 ¡

*
ln

0
@ p2

?

2me
0
T

1
A

+3
5 (30)

which becomes, in the warm stream limit,

0
H »= 0

nmec2 +
5
2

0
Pk + F

0
Pk

2
4γE + ln

0
@

0
T +

0
T k

0
T k

1
A

3
5 ; (31)

where γE »= 0:577 is the Euler gamma.



MACROSCOPIC MODEL OF ECCD DISCHARGES

Using the electron stream distribution function specified by (17) and (23) one evaluates
the macroscopic quantities needed in the equations of motion (4), namely, the average
rates of energy and parallel momentum loss by collisions, given in normalized form
respectively by ¿

γ

(γ2¡1)
1=2

À
and

¿
(1+Z+γ)γ2

(γ2¡1)
3=2 βk

À
; (32)

and the average perpendicular velocity hβ?i, which satisfies the electrodynamic con-
straint (7)

hβ?i »
¡
1 ¡ nk

›
βk

fi¢
PRF

cF?
: (33)

Furthermore, the second law of thermodynamics can be written for each component ‘ in
the form [6]

1
kB

d
0
s‘ +

d
0
Pk;‘

0
Pk;‘

= d ln

2
664

0
T k=

¡
mec2¢

C‘

µ
0
T ;

0
T k

¶ exp

0
BB@

me

µ
0
h‘ ¡ c2

¶

0
T k

1
CCA

3
775 ; (34)

where kB is Boltzmann’s constant,
0
s‘ = s‘ is the specific entropy and

0
h‘ =

0
H‘=

‡
0
n‘me

·
is

the specific enthalpy of the component ‘. The electron stream in ECCD does not perform
work and there is no heat addition if the RF power is balanced by power lost through
collisions with the background plasma. Therefore, one may take the left-hand side of
equation (34) equal to zero putting a constraint on the specific enthalpy of the electron
stream (T0 is a constant):

(1 ¡ F)
0
h0 + F

0
h1 = c2 +

0
T k
me

(1 ¡ F) ln

"‡
T0

mec2

·3=2 T0
0
T k

C0

µ
0
T ;

0
T k

¶#

+

0
T k
me

F ln

"‡
T0

mec2

·3=2 T0
0
T k

C1

µ
0
T ;

0
T k

¶#
:

(35)

For a demagnetized stream, i.e.
0
T ! ∞, this thermodynamic constraint corresponds to an

isenthalpic flow. The equations of energy and parallel momentum conservation, and the
electrodynamic and thermodynamic constraints give four equations depending on the

parameters F ,
›
βk

fi
,

0
T k and

0
T that characterize the distribution function of the energetic

current-carrying electrons.
The expression of the parallel force density, Fk » ¡neEk + nkPRF=c in Eqs. (14),

clearly shows that the RF driven current vanishes when nk ! 0. For a fully RF driven
tokamak plasma the inductive electric field is put equal to zero. In this case the steady-



state global figure of merit is defined by

ζRF =
IRF

WRF
=

nec
›
βk

fi
Ap

PRFVp
; (36)

where IRF = nec
›
βk

fi
∆Ap is the total RF driven current, WRF = PRFVp∆Ap=Ap is the

total input power, Ap = πa2κ
¡
1 ¡ δ 2=8

¢
is the area of the poloidal plasma cross-section,

Vp = 2π (R0 ¡ aδ=4)Ap is the volume of the plasma, and ∆Ap is the effective area of the
poloidal plasma cross-section over which the RF power is deposited. The geometrical
parameters of the plasma cross-section are: major radius R0, minor radius a, elongation
κ , triangularity δ .

RESULTS AND CONCLUSIONS

Using the macroscopic model a series of equilibrium solutions was determined for the
DIII-D tokamak operating conditions. A detailed theoretical scan in nk was made for
fixed input power WRF = 1:5 MW. The following geometrical parameters were con-
sidered to characterize the DIII-D tokamak: R0 = 1:7 m, a = 0:6 m, κ = 1:8, δ = 0
[2, 3]. A typical inductive DIII-D discharge with ECCD produces a RF driven cur-
rent IRF = 75 kA, with total plasma current Ip = 900 kA, central plasma density ne =

0:2 £ 1020 m¡3, temperature Te = 2:7 keV, and Ze f f = 1:4. The RF power is produced
by four gyrotrons operating at 110 GHz, second-harmonic resonance for a central mag-
netic induction B0 = 2:0 T. In the present model the simplified diffusion coefficient for
electron cyclotron fundamental resonance was considered with ω = 0:982Ωe. A refer-
ence case corresponding to a toroidal angle of incidence ϕT = 20– (nk = sinϕT = 0:342)
and width of the spectrum ∆nk = 0:02 was defined to calibrate the model. The calculation
procedure is as follows. The collisional equations of conservation of energy and parallel
momentum (4), and the electrodynamic constraint (7) can be used to find the distribu-

tion function parameters F ,
›
βk

fi
,

0
T k and

0
T , and the normalized diffusion coefficient

strength bD0 = D0=
¡
m2

ec2νc
¢
, resulting in the experimental figure of merit ζRF for the

given values of the input power WRF , refractive index nk and deposition profile ∆Ap=Ap
(five equations in five unknown quantities). It was found that equilibrium solutions could
be determined, corresponding to the input power WRF = 1:5 MW and the experimental
global figure of merit ζRF = 0:05 A/W, for values of the relative power deposition area
0:134 < ∆Ap=Ap < 0:151 and the normalized diffusion coefficient strength in the range
0:662 < bD0 < 2:24. Both these quantities can be evaluated, ideally, using a ray-tracing
code and the global figure of merit obtained from them. Nevertheless, the values ob-
tained for bD0 can be considered as effective values of the diffusion coefficient for the
given efficiency, possibly including instabilities (Weibel), trapped particles, and radial
transport effects. Note that the obtained range of values of ∆Ap=Ap closely matches the
published measured and simulated results [3]. This method of scanning the quantities
in the model is partly justified since all the physics that leads to diffusion is not fully
understood.



TABLE 1. Equilibrium parameters for the DIII-D tokamak conditions with ω = 0:982Ωe, ∆nk = 0:02,
fixed input power WRF = 1:5 MW, and normalized diffusion coefficient strength D0=

¡
m2

ec2νc
¢

= 1.

ϕT F
›
βk

fi 0
T k

mec2

0
T

mec2
n
ne

∆Ap
Ap

PRF
nmec2νc

F?
nmecνc

hβ?i
0
T ?

mec2

0– 0.628 0 0.252 0.0174 0.0241 0.0447 2.97 16.2 0.183 0.0232
20– 0.562 0.0303 0.100 0.173 0.00901 0.141 2.53 6.93 0.361 0.0918
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FIGURE 2. Relative density of high-energy electrons in DIII-D. The vertical line indicates the reference
value nk = 0:342. The thick grey line corresponds to a RF wave frequency ω = 0:975Ωe, the thick dark
line to ω = 0:982Ωe (reference solution) and the thin dark line to ω = 0:985Ωe.

Conversely, one can fix bD0 and determine ∆Ap=Ap, which is the procedure adopted in
the following. Taking bD0 = 1, Table (1) lists the parameters of simulations for steady-
state ECCD discharges in the DIII-D tokamak conditions with toroidal launching angles
ϕT = 0– and 20–. With the equilibrium parameters calculated for the reference launching
angle ϕT = 20– one evaluates the constant T0=(mec2) = 0:310 which satisfies the ther-
modynamic constraint (35). Afterwards, the refractive index can be scanned backwards
or forwards solving the equations of motion (4), and the electrodynamic and thermody-
namic constraints (7) and (35), respectively, maintaining the diffusion coefficient bD0 and
the input power WRF fixed (again five equations in five unknown quantities). The varia-
tion of the refractive index nk must be adiabatic to satisfy the thermodynamic constraint.
Note that the calculations involving the equations of motion (4), the electrodynamic
constraint (7), and the thermodynamic constraint (35) are independent of the density of
resonant electrons. This density appears in the evaluation of the input power WRF and
of the total current IRF , in the form of a product of the relative stream density, the width
of the spectrum ∆nk and the effective area of power deposition ∆Ap (the global figure of
merit ζRF is independent of the stream density). Table (1) shows the variation of ∆Ap=Ap
assuming fixed ∆nk, but the same results are obtained assuming fixed ∆Ap=Ap and vary-
ing ∆nk accordingly. Figure (2) shows the relative density of high-energy electrons in
DIII-D, illustrating the rapid decrease in the resonant population for large values of the
refractive index nk.

Logarithmic plots of the total electron distribution function for the DIII-D conditions
are shown in Fig. (3) for ϕT = 0– and ϕT = 20– at pitch angles of 0–, 90– and 180–. The
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FIGURE 3. Logarithmic plot of the total electron distribution function for (a) ϕT = 0– and (b) ϕT = 20–.
The solid, dashed and dotted lines correspond to pitch angles of 0–, 90– and 180–, respectively.

contribution of the high-energy electrons (» 128 keV) in the tail of the distribution and
along the field lines is clearly seen in the logarithmic plot in Fig. (3a). Obviously, the
lines corresponding to pitch angles 0– and 180– are superimposed for nk = 0. The energy
in the perpendicular direction in momentum space (pitch angle 90–) is much lower,
less then 12 keV. Now, for ϕT = 20–, Fig. (3b) shows that the high-energy electrons
(» 50 keV) have about the same energy in the parallel and perpendicular directions
in momentum space. The small asymmetry between the forward (pitch angle 0–) and
backward (pitch angle 180–) directions corresponds to the drift motion with

›
βk

fi »= 0:03.
This average stream velocity in the parallel direction increases with nk as expected from
equation (14) for the parallel force.

A few results of the refractive index scan performed for the DIII-D conditions is
shown in Fig. (4) with ∆nk = 0:02, fixed input power WRF = 1:5 MW, and normalized
diffusion coefficient strength D0=

¡
m2

ec2νc
¢

= 1. The grey circles correspond to ω =
0:975Ωe, the black circles to ω = 0:982Ωe (reference solution), and the dots to ω =
0:985Ωe. The vertical line indicates the reference value nk = 0:342. Equilibrium can
not be achieved in the present model for values of the refractive index larger than
shown in the graphics. Presumably, runaway electrons are excited for larger values of nk,
invalidating the fluid model. The global figure of merit shown in Fig. (4a) closely follows
the increase in the average parallel velocity of the streaming electrons. The perpendicular
temperature shown in Fig. (4b) increases and attains the maximum level approximately

given by Eq. (26) for
0
T ! ∞, implying demagnetization of the high-energy stream.

This demagnetization process is accompanied by a cooling of the electron stream in the
parallel direction. The increase in the perpendicular temperature, from the 12 keV to the
60 keV level (mec2 »= 511 keV) as the toroidal launching angle increases from 0– to 25–,
reproduces the results obtained with a hard X-ray (HXR) pinhole camera in the toroidal
injection angle sweeping experiment performed in TCV [4]. Although the present results
refer to the DIII-D tokamak conditions, very similar results are obtained for TCV. The
main differences are the much larger relative stream density and significantly larger
effective area of power deposition in the TCV case, taking into account the large power
input (same level as in DIII-D) over a much smaller plasma volume.
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FIGURE 4. Global figure of merit (a) and normalized perpendicular temperature of the electron stream
(b) as functions of the parallel refractive index (note that mec2 »= 511 keV).

In conclusion, a macroscopic model based on a suitable distribution function of the
current-carrying electrons has been developed which reproduces the main features of
ECCD experiments. By choosing an effective value of the diffusion coefficient strength,
the experimental value of the global figure of merit is obtained at input power levels
and power deposition areas equivalent to the measured ones. A theoretical sweep of the
toroidal angle of injection reproduces both the variation of the global figure of merit
and the signature of the high-energy electrons in the perpendicular plane, as detected
by HXR measurements. In this way, the proposed form of the distribution function may
become an useful tool for fitting ECCD experimental results. It may also become useful
for studying the time evolution of ECCD and the possible occurrence of instabilities. The
model can be improved in several ways, mostly by including trapped particle effects.
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