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Abstract

This paper proposes a novel Lasso-based approach to handle unobserved parameter hetero-

geneity and cross-section dependence in nonstationary panel models. In particular, a penalized

principal component (PPC) method is developed to estimate group-specific long-run relationships

and unobserved common factors and jointly to identify the unknown group membership. The PPC

estimators are shown to be consistent under weakly dependent innovation processes. But they suf-

fer an asymptotically non-negligible bias from correlations between the nonstationary regressors

and unobserved stationary common factors and/or the equation errors. To remedy these short-

comings we provide three bias-correction procedures under which the estimators are re-centered

about zero as both dimensions (N and T) of the panel tend to infinity. We establish a mixed

normal limit theory for the estimators of the group-specific long-run coefficients, which permits

inference using standard test statistics. Simulations suggest the good finite sample performance

of the proposed method. An empirical application applies the methodology to study international

R&D spillovers and the results offer a convincing explanation for the growth convergence puzzle

through the heterogeneous impact of R&D spillovers.
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1 Introduction

Nonstationary panel models have been extensively used in empirical analyses. Their asymptotic

properties are well explored in classical settings when assumptions of common coefficients and inde-

pendence across individuals are in place. Although these assumptions offer efficient estimation and

simplify asymptotic theory, they are often hard to meet in real-world economic problems. On the one

hand, researchers often face the issue of unobserved parameter heterogeneity in empirical models; see

the study of the “convergence clubs” (e.g., Durlauf and Johnson (1995), Quah (1997), Phillips and

Sul (2009)), the relation between income and democracy (e.g., Acemoglu et al. (2008) and Lu and

Su (2017)), and the “resource curse” (e.g., Van der Ploeg (2011)). On the other hand, globalization

and international spillovers give rise to a new challenge — the presence of cross-section dependence.

In general, ignoring these two features may lead to biased or even inconsistent estimators in nonsta-

tionary panels, which can seriously distort the reliability of classical methods. The goal of this paper

is to study efficient estimation and inference in nonstationary panel data models by allowing for the

presence of both unobserved parameter heterogeneity and cross-section dependence.

Specifically, we consider a nonstationary panel data model with latent group structures and

unobserved common factors. First, we assume that the long-run cointegration relationships are

heterogeneous across different groups and homogeneous within a group. The latent grouped patterns

offer flexible parameter settings by allowing for different slope coefficients across groups and remain

parsimonious and efficient by pooling the cross-section observations within a group in the estimation

procedure. Moreover, there is often economic intuition for considering grouped patterns in long-

run relationships. For example, long-run equilibria in the growth regressions typically share some

common features within a subsample such as developing or developed countries but reveal distinct

patterns across subsamples. Second, we employ factor structures to model cross-section dependence.

In our nonstationary panel model we consider both unobserved stationary and nonstationary common

factors. For example, both oil price shocks and global technology innovations affect GDP levels in

all countries in the world. Similarly, both stock market shocks and macro-economic news affect

security prices. But it is hard to decide whether these shock processes are stationary or not. In

general, our framework allows us to fit more complex features to the data in empirical applications

and offers flexibility so that the methods encourage the data to reveal latent features that may not

be immediately apparent.

We take advantage of a growing literature on the Classifier-Lasso (C-Lasso) techniques and

models with interactive fixed effects (IFEs); see, e.g., Bai (2009), Su, Shi, and Phillips (2016a, SSP

hereafter), Qian and Su (2016), Moon and Weidner (2017), Su and Ju (2018), among others. We
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propose a penalized principal component (PPC) method, which can be regarded as an iterative

procedure between penalized regression and principal component analysis (PCA). In the first step,

we introduce the unobserved nonstationary common factors into the PPC-based objective function

and iteratively solve a least squares problem and an eigen-decomposition problem to obtain the C-

Lasso estimators of the group-specific long-run coefficients and the nonstationary factors and factor

loadings. We can do this simply because the presence of unobserved stationary common factors

will not affect the consistency of the long-run coefficient estimators, while neglecting the unobserved

nonstationary factors would lead to inconsistency of such estimators due to the induced spurious

regression. Note that the individual’s group membership is also estimated in this stage. In the

second step, we can explore the first-stage residuals to estimate the unobserved stationary factors

and factor loadings. In the third step, we introduce three bias-correction procedures to obtain the

bias-corrected estimators of the group-specific coefficients.

Our theoretical results are concerned with developing a limit theory for our Lasso-type estima-

tors. The presence of unobserved common factors complicates our asymptotic analysis in several

ways. First, we establish the preliminary rates of convergence for the estimators of the group-specific

long-run coefficients and the unobserved nonstationary common factors. To show classification consis-

tency, we also prove several uniform convergence results with the involvement of unobserved common

factors. Given these uniform results, we show that all individuals are classified into the correct group

with probability approaching one (w.p.a.1). In addition, our group-specific estimators enjoy the

oracle property in the latent group literature, which essentially says that the three bias-corrected

estimators are asymptotically equivalent to the corresponding infeasible ones that are obtained with

the knowledge of exact individual’s group identity.

Since we allow for both contemporaneous and serial correlation in the errors, nonstationary regres-

sors, and unobserved common factors, we have the usual endogeneity bias in nonstationary panels,

which originates in two primary sources. The first bias is commonly noted in nonstationary panels due

to the weak dependence between the errors and nonstationary regressors (e.g., Phillips and Moon

(1999)). As expected, the unobserved nonstationary common factors enter into the bias formula.

The second bias arises from the presence of unobserved stationary common factors that can be cor-

related with the nonstationary regressors. We show that stationary common factors complicate the

asymptotic biases and covariance structures but do not affect consistency of the long-run coefficient

estimators. Based on the bias formula we can employ the Phillips and Hansen (1990) fully-modified

OLS (FM-OLS) procedure to achieve bias correction. In addition, we explore a continuous-updating

mechanism to obtain continuously updated Lasso (Cup-Lasso) estimators of the group-specific pa-

rameters, in which procedure we update the estimators of the individual’s group membership, and
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the unobserved nonstationary and stationary common factor components. With these modifications

our estimators are centered on zero and achieve the
√
 consistency rate that usually applies in

homogeneous nonstationary panel models. Lastly, we establish mixed normal limit theory for the

bias-corrected group-specific long-run estimators, which validates the use of t, Wald, and F statistics

for inference.

In the above analyses we assume the numbers of groups and common factors are known. For

practical work we propose three information criteria to determine the number of groups, the total

number of common factors, and the number of nonstationary common factors. These information

criteria are shown to select the correct numbers of groups and common factors w.p.a.1.

We illustrate the use of our methods by studying potentially heterogeneous behavior in the

international R&D spillover model using a sample of OECD countries for the period 1971-2004. As

in earlier work by Coe and Helpman (1995) we regress total factor productivity (TFP) on domestic

R&D capital stock and foreign R&D capital stock. Coe and Helpman assume all countries obey a

common linear specification and ignore the presence of common shocks across countries. In seeking

greater flexibility, our methods allow the parameters to vary across countries but with certain latent

group structures and model the common shocks through the use of IFEs. Our latent group structural

model is consistent with the fact that cross-country productivities may exhibit multiple long-run

steady states. As a result, our methods reveal different spillover patterns than those discovered in Coe

and Helpman (1995). Specifically, our empirical analysis yields two key findings. First, we confirm

positive technology spillovers in the pooled sample by allowing for the presence of common shocks.

This finding implies overall convergence behavior in technology growth through direct R&D spillovers

when controlling for the unobserved global technology trend. Second, the group-specific estimates

identify heterogeneous spillover patterns across countries and indicate the existence of two types of

R&D spillovers — positive technology spillovers and negative market rivalry effects in the country-

level data. This corroborates the findings of Bloom et al. (2013) who also found two types of R&D

spillovers. Based on the empirically determined group patterns, we classify the OECD countries into

three groups designated as Convergence, Divergence, and Balance. The major sources of technology

change in the Convergence group come from positive technology diffusion and, as a result, the catch-

up effects through technology diffusion favor the growth convergence hypothesis. Conversely, when

market rivalry effects dominate technology spillovers, we observe overall negative R&D spillovers. For

these countries, technology growth relies on domestic innovations and exhibits divergence behavior.

Our findings therefore explain the growth convergence puzzle through heterogeneous behavior in

R&D spillovers.

A major contribution of this paper is to offer a practical approach that accommodates both un-
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observed heterogeneity and cross-section dependence in nonstationary panels. We provide consistent

and efficient estimators of group-specific long-run relationships even when individual group member-

ship is unknown. The penalization method borrows from the C-Lasso formulation in SSP, but is

modified here by using the principal component method to simultaneously account for cross-section

dependence. There are various papers that account for unobserved heterogeneity in large dimensional

panel models by clustering and grouping; see, e.g., Bonhomme and Manresa (2015) on grouped fixed

effects, Qian and Su (2016) on structural changes, and Ando and Bai (2016) on grouped factor

models. But almost all the literature focuses on stationary panel data models. Recently, Huang et

al. (2018) have considered latent group patterns in cointegrated panels but they do not allow for

cross-section dependence.

Our theoretical results also contribute to two strands of the literature on cointegrated panels and

factor models. First, it is noted that the average and common long-run estimators permit normal

asymptotic distributions, whereas the heterogeneous and time-series long-run estimators have non-

standard limit theory; see, e.g., Phillips and Moon (1999), Kao and Chiang (2001), and Pedroni

(2004). In this context, we maintain the simplicity of asymptotic normality under grouped parameter

heterogeneity. Second, there is a growing literature using factor models to capture cross-section

dependence under the large  and large  settings; see, Bai and Ng (2002, 2004), Phillips and

Sul (2003), Pesaran (2006), Bai (2009), and Moon and Weider (2017). Compared with existing

work, our approach accommodates both stationary and nonstationary common factors and provides

corresponding limit theory for inference. Our asymptotic theory therefore applies to more general

forms of nonstationary panel data models with internally grouped but unknown patterns of behavior

and to models of this type with both stationary and nonstationary common factors.

The rest of the paper is structured as follows. Section 2 introduces a nonstationary panel

model with latent group structures and cross-section dependence and proposes a penalized prin-

cipal component method for estimation. Section 3 explains the main assumptions and establishes

the asymptotic properties of the three Lasso-type estimators. Section 4 reports Monte Carlo sim-

ulation results. Section 5 applies the methodology to study heterogeneous cross country behavior

in R&D spillovers. Section 6 concludes. The proofs of the main results are given in Appendix

A. Further technical details can be found in the additional online supplement that is available at

http://www.mysmu.edu/faculty/ljsu/Publications/HPS19_suppl.pdf.

NOTATION. We write integrals such as
R 1
0  () more simply as

R
 and define Ω12 to be

any matrix such that Ω = (Ω12)(Ω12)0 (Ω) denotes Brownian motion with covariance matrix

Ω. For any ×  real matrix , we write its Frobenius norm, spectral norm and transpose as kk
kk, and 0 respectively. When  is symmetric, we use max() and min() to denote its largest
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and smallest eigenvalues, respectively. Let  = (0)−10 and  =  −  where 
0 is of

full rank, and  is an identity matrix. Let 0×1 denote a  × 1 vector of zeros,  a  ×  identity

matrix, and 1{·} an indicator function. Let  denote a generic positive constant whose values can

vary in different locations. We use “p.d.” and “p.s.d.” to abbreviate “positive definite” and “positive

semidefinite,” respectively. The operator
→ denotes convergence in probability,⇒ weak convergence,

 almost surely, and the floor function bc to denote the largest integer less than or equal to .

Unless indicated otherwise, we use ( )→∞ to signify that  and  pass to infinity jointly.

2 Model and Estimation

This section introduces a nonstationary panel model with latent group structures and unobserved

common factors. A penalized principal component method is then proposed to estimate the parame-

ters of the model and the group structure.

2.1 A nonstationary panel with latent grouping and cross-section dependence

Suppose that ( ) are generated as follows⎧⎪⎨⎪⎩ = 00  + 

 = −1 + 

 (2.1)

where  is a scalar,  is a × 1 vector of nonstationary regressors of order one ((1) process) for
all ,  is assumed to have zero mean and finite long-run variance, and the 

0
 are × 1 vectors of

parameters that denote long-run cointegration relationships. We assume that the error terms  are

cross-sectionally dependent due to the presence of some unobserved common factors, specified as

 = 00 
0
 +  = 001

0
1 + 002

0
2 +  (2.2)

where 0 is an ×1 vector of unobserved common factors that contains an 1×1 vector of nonstation-
ary factors 01 of order one (I(1) process) and an 2×1 vector of stationary factors 02 (I(0) process),
0 = (001 

00
2)
0 is an  × 1 vector of factor loadings, and  is the idiosyncratic component of 

with zero mean and finite long-run variance. For simplicity, we assume that  is cross-sectionally

independent so that the cross-section dependence among the  only arises from the common fac-

tors 0 , and E() = E(00 0 00 0 ) 6= 0 in general. In addition, following the group formulation
in SSP, we assume that the cointegrating vectors 0 are heterogeneous across different groups and
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homogeneous within a group:

0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
01 if  ∈ 01
...

...

0 if  ∈ 0

 (2.3)

where 0 6= 0 for any  6= ,
S
=1

0
 = {1 2    }, and 0

T
0 = ∅ for any  6= . Let

 = # denote the cardinality of the set 
0
. For the moment in this section, we assume that the

number of groups,  is known and fixed, but each individual’s group membership is unknown. In

Section 3.6, we propose an information criterion to determine the number of groups.

If  contains only stationary common factors, we may still obtain consistent but typically biased

estimators of the long-run relationships involving  by the penalized least squares (PLS) method

proposed by Huang et al. (2018) without considering the cross-section dependence issue. The bias

may arise from the contemporaneous and serial correlations between the innovation processes of

the nonstationary regressors  and the unobserved stationary factors. In contrast, if  contains

nonstationary factors, the PLS method does not in general yield consistent estimators of  due to

the presence of spurious regression effects. This complication calls for new estimation methodology.

To proceed, let

α ≡ (1  ) β ≡ (1   ) Λ ≡ (1   )0 Λ ≡ (1  )0
 ≡ (1   )

0 and  ≡ (1   )0 where  = 1 2

The true values of α β Λ Λ  , and  are denoted α
0 β0 Λ0 Λ0  

0, and  0 , respectively.

We also use 0 
0
  

0
 = (001 

00
2)
0 and 0 = (001  002)0 to denote the true values of    =

(01 
0
2)
0 and  = ( 01  02)0 Interest focuses primarily on establishing each individual’s group

identity and on consistent estimation of the group-specific long-run relationships  in the presence

of both unobserved stationary and nonstationary common factors.

2.2 Penalized principal component estimation

In this subsection we propose an iterative PPC-based procedure to jointly estimate the long-run

cointegrating coefficients  and unobserved common factors  and to identify the group structure

of these long-run relationships.

Combining (2.1)-(2.2) yields

 = 00  + 00 
0
 +  = 00  + 001

0
1 + 002

0
2 +  (2.4)
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or in vector form:

 = 
0
 +  00 +  = 

0
 +  01 

0
1 +  02 

0
2 +  (2.5)

where  = (1   )
0 and , 

0
1 , 

0
2 and  are similarly defined.

Ideally, one might attempt to estimate both the stationary and nonstationary common compo-

nents along with the parameters of interest,  But due to the fact that the stationary factors and

nonstationary factors behave differently and require different normalization rules, it is difficult to

study the asymptotic properties of the resulting joint estimators. Nevertheless, as mentioned above,

one can still obtain consistent estimates of  by taking into account the nonstationary factor compo-

nent and ignoring the stationary factor component. This motivates the following sequential approach

to estimate the unknown parameters in the model. We first estimate the nonstationary factor com-

ponent along with  and then estimate the stationary factor component from the resultant residuals.

The stepwise procedure is as follows.

Step 1. We estimate (β 1Λ1) by minimizing the following least squares (LS) objective function:

SSR(β 1Λ1) =
X
=1

( −  − 11)
0( −  − 11) (2.6)

under the constraints that 1
 2
 011 = 1 and Λ

0
1Λ1 is diagonal. It is well known that the LS

estimator (̃ ̃1) is the solution to the following set of nonlinear equations:

̃ =
³
0̃1



´−1
0̃1

 (2.7)

̃1̃1 =

"
1

 2

X
=1

( − ̃)( − ̃)
0
#
̃1 (2.8)

where ̃1
=  − 1

2
̃1̃

0
1

1
 2
̃ 01̃1 = 1  and ̃1 is a diagonal matrix consisting of the

1 largest eigenvalues of the matrix inside the square brackets in (2.8), arranged in decreasing

order. The LS estimator of Λ1 = (11  1)
0 is given by Λ̃1 = (̃11  ̃1)

0 where ̃
0
1 =

1
 2
(−̃)0̃1 It is easy to verify that 1


Λ̃01Λ̃1 = −2̃ 01[

1
 2

P
=1(−̃)(−̃)0̃1] =

−2̃ 01̃1̃1 = ̃1 

Step 2. Using the initial estimates of ̃ and ̃1 as starting values, we employ the methodology of SSP

minimizing the following PPC criterion function to obtain estimates of (βα 1) :



 (βα 1) =  (β 1) +





X
=1

Y
=1

k − k  (2.9)
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where  (β 1) =
1

 2

P
=1 ( − )

01 ( − )  and  = ( ) is a tuning pa-

rameter. Minimizing the PPC criterion function in (2.9) produces the C-Lasso estimators

(̂ ̂ ̂1) of (  1) where ̂1 = (̂11  ̂1 )
0 Note that

̂11 =

"
1

 2

X
=1

( − ̂)( − ̂)
0
#
̂1 (2.10)

where 1
 2
̂ 01̂1 = 1 and 1 is a diagonal matrix consisting of the 1 largest eigenvalues

of the matrix inside the square brackets in (2.10), arranged in decreasing order. The PPC

estimator of Λ1 = (11  1 )
0 is given by Λ̂1 = (̂11  ̂1 )0 where ̂

0
1 =

1
 2
( − ̂)

0̂1

Define the resulting estimated groups

̂ = { ∈ {1 2  } : ̂ = ̂} for  = 1  (2.11)

Step 3. Given the estimates ̂ ̂ and ̂1 we obtain the estimator of the stationary factor 2 by ̂2

which solves the following eigen-decomposition problem:

̂22 =

⎡⎣ 1



X
=1

X
∈̂

( − ̂ − ̂1̂1)( − ̂ − ̂1̂1)
0
⎤⎦ ̂2 (2.12)

where 1

̂ 02̂2 = 2 and 2 is a diagonal matrix consisting of the 2 largest eigenvalues of

the matrix inside the square brackets in (2.12), arranged in decreasing order.

Let β̂ ≡ (̂1  ̂) and α̂ ≡ (̂1  ̂)We will study the asymptotic properties of ̂ ̂ and
̂1 in Section 3.2 and the classification consistency of the group structure in Section 3.3. Noting that

̂ has an asymptotic bias, we will propose various methods to correct its bias in Section 3.4.
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3 Asymptotic Theory

3.1 Main assumptions

We introduce the main assumptions used to study the asymptotic properties of our estimators β̂ α̂

and ̂1. Let (1) =
1
 2
01, 1(1) = diag(1(1)  (1)) and

2(1) =

⎛⎜⎜⎜⎜⎜⎜⎝
1

 2
011111

1
 2

011212 · · · 1
 2

0111

1
 2

021121
1

 2
021222 · · · 1

 2
0212

...
...

. . .
...

1
2

0111
1

 2
0122 · · · 1

 2
01

⎞⎟⎟⎟⎟⎟⎟⎠ 

where 1 satisfies
1
2
 011 = 1 . Note that 2(1) is an  × matrix. Let C = (Λ0  0) the

sigma algebra generated by the common factors and factor loadings. Let denote a generic constant

that may vary across places. Let  = ( 
0
∆

00
1 

00
2 )

0 Let Ω =
P∞

=−∞ E(
0
0) the long-run

covariance matrix of  We also define the contemporaneous variance matrix Σ = E(0
0
0) and

the one-sided long-run covariance matrix ∆ =
P∞

=0 E(0
0
) = Γ+Σ of {} Conformably with

 Ω and ∆ can be partitioned as follows

Ω = Γ
0
 + Γ +Σ =

⎛⎜⎜⎜⎜⎜⎝
Ω11 Ω12 Ω13 Ω14

Ω21 Ω22 Ω23 Ω24

Ω31 Ω32 Ω33 Ω34

Ω41 Ω42 Ω43 Ω44

⎞⎟⎟⎟⎟⎟⎠ and ∆ =

⎛⎜⎜⎜⎜⎜⎝
∆11 ∆12 ∆13 ∆14

∆21 ∆22 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44

⎞⎟⎟⎟⎟⎟⎠ 

Let 1 2 3, and 4 denote, respectively, the 1× (1 + + ) × (1 + + ) 1 × (1 + + ) and

2 × (1 + + ) selection matrices for which 1 =  2 =  3 = ∆
0
1 and 4 = 02.

Let 23 = (
0
2 

0
3)
0 a (+ 1)× (1 + + ) selection matrix.

We make the following assumptions on {} and {} 

Assumption 3.1 (i) For each , {  ≥ 1} is a linear process:  = () =
P∞

=0 −,

where  = (

 

0
  

10
  

20
 )

0 is a (1 + + 1 + 2)× 1 random vector that is i.i.d. over  with zero

mean and variance matrix 1++; sup≥1max1≤≤ E(kk2+)   where   4 and  is an

arbitrarily small positive constant;  

 

1
  and 

2
 are mutually independent; and ( 

0
)
0 are

independent across 

(ii) sup≥1max1≤≤
P∞

=0 
kk ∞ for some  ≥ 2 and 23Ω

0
23 has full rank uniformly

in .

(iii) ( ) are independent across  conditional on C.
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(iv) 0 is independent of  for all  and .

Following Phillips and Solo (1992; PS), we assume that {  ≥ 1} is a linear process in As-
sumption 3.1(i). For later reference, we partition the matrix operator () conformably with  as

follows:

() =

⎛⎜⎜⎜⎜⎜⎝
 ()  () 

1
 () 

2
 ()

 ()  () 
1
 () 

2
 ()

1() 1() 11() 12()

2() 2() 21() 22()

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
 ()  () 

1
 () 0

 ()  () 
1
 () 

2
 ()

0 0 11() 12()

0 0 21() 22()

⎞⎟⎟⎟⎟⎟⎠ 

(3.1)

Since nonstationary and stationary common factors do not depend on , we have 1() = 1() =

2() = 2() = 0 Moreover, we assume that 2 () = 0 This assumption indicates that there

exists no serial correlation or contemporaneous correlation between the regression error  and the

unobserved stationary common factors 02 and it ensures the consistency of our initial estimators.

The moment condition in Assumption 3.1(i) is needed to ensure the validity of the functional central

limit theorem for the weakly dependent linear process {}. We apply the Beveridge and Nelson
(1981, BN, PS) decomposition

 = (1) + ̃−1 − ̃

where ̃ =
P∞

=0 ̃− and ̃ =
P∞

=+1 . Assumption 3.1(ii) imposes a uniform summability

condition on the coefficient matrix  that ensures
P∞

=0 k̃k  ∞ by Lemma 2.1 in PS (1992).

This condition further implies that ̃ behaves like a stationary process with a finite th moment.

The second part of Assumption 3.1(ii) rules out potential cointegration relationships among the

variables in (0 001)0. Assumption 3.1(iii) allows ( ) to be cross-sectionally dependent but

they become independent across  given C. Assumption 3.1(iv) ensures that the factor loadings are
independent of the generalization of the error processes over  and across . Assumption 3.1 validates

the following multivariate invariance principle for partial sums of 

1√


b ·cX
=1

 ⇒ (·) ≡ (Ω) as  →∞ for all 

where  = (1 
0
2 

0
3 

0
4)
0 is a (1 +  + 1 + 2) × 1 vector Brownian motion with covariance

matrix Ω.

Assumption 3.2 (i) As  → ∞, 1

Λ00Λ0 → Σ  0 sup≥1max1≤≤ Ek0 k2 ≤  for some

 ≥ 4 and Λ001 Λ02 = 

¡
12

¢
.

(ii) Ek∆01k2+ ≤  and Ek02k2+ ≤  for some   0  ≥ 4 and for all . As  → ∞,
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1
 2

P
=1 

0
1

00
1

→ R
3

0
3 and

1


P
=1 

0
2

00
2

→ Σ44  0, where 3 is an 1-vector of Brownian

motions with a long-run covariance matrix Ω33  0

(iii) Let ( ) =
1


P
=1 E() and  =

1


P
=1[−E()] Then sup≥1 sup≥1

max1≤≤ 2E||4 ≤ and sup≥1 sup≥1 −1
P

=1

P
=1 k ( )k2 ≤

(iv) There exists a constant min  0 such that  (min1≤≤ inf1 min (1(1)−2(1)) ≥ min)

= 1− (−1) where the inf is taken with respect to 1 such that
1
2
 011 = 1 .

Assumption 3.2(i)-(iii) imposes the standard moment conditions in the factor literature; see, e.g.,

Bai and Ng (2002, 2004). The last condition in Assumption 3.2(i) indicates that the stationary

factor loadings and the nonstationary factor loadings can only be weakly correlated, which will

greatly facilitate the derivation. Assumption 3.2(iii) imposes conditions on the error process {},
which are adapted from Bai (2003) and allow for weak forms of cross-section and serial dependence in

error processes. Assumption 3.2(iv) assumes 1(1)−2(1) is positive definite in the limit across

 when 1 satisfies the restriction
1
 2
 011 = 1 . This assumption is the identification condition for

, which is related to ASSUMPTION A in Bai (2009, p.1241). Since 1 is to be estimated, the

identification condition for  is imposed on the set of 1 satisfying the restriction
1
 2
 011 = 1 .

Assumption 3.3 (i) For each  = 1 0  →  ∈ (0 1) as  →∞.
(ii) min1≤ 6=≤

°°°0 − 0

°°° ≥  for some fixed   0

(iii) As ( )→∞  2 → 1 ∈ [0∞) and 2 → 2 ∈ [0∞)
(iv) Let  = log log As ( )→∞  → 0 −1−2  (log  )1+ →∞ and 2

1−1

× (log  )1+ → 0

Assumptions 3.3(i)-(ii) were used in SSP. Assumption 3.3(i) implies that each group has an

asymptotically non-negligible number of individuals as  →∞ and Assumption 3.3(ii) requires the

separability of group-specific parameters. Similar conditions are assumed in the panel literature with

latent group patterns, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), Su et al. (2017),

and Su and Ju (2018). Assumptions 3.3(iii)-(iv) impose conditions to control the relative rates at

which  and  pass to infinity. They require that  pass to infinity at a rate faster than  12

but slower than  2 The involvement of the factor  is due to the law of iterated logarithm. One

can verify that the permissible range of values for  that satisfy Assumption 3.3(iv) is  ∝ − for

 ∈ (0 −1

).

3.2 Preliminary rates of convergence

Let ̂ = ̂ − 0 ,  = min(
√
 ),  = min(

√

√
 ), 2 = 1



P
=1

°°°̂°°°2, and 1 =

( 1

Λ001 Λ01)(

1
2
 001 ̂1)

−1
1 . The following theorem establishes consistency of ̂ and ̂1
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Theorem 3.1 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1


P
=1

³
̂ − 0

´0
1
 2
0̂1



³
̂ − 0

´
=  (1)

(ii)
°°°̂1 −  01

°°° =  (1)

(iii) 1


P
=1 k̂ − 0 k2 =  (1),

(iv) 1

k̂1 −  011k =  ( ) +

1√

 (

−1
 ).

Theorem 3.1(i) establishes the weighted mean-square consistency of {̂}. Theorem 3.1(ii) shows

that the spaces spanned by the columns of ̂1 and 
0
1 are asymptotically the same. Given the weighted

mean-square consistency and Assumption 3.2(iv), we can further establish the non-weighted mean-

square consistency of  in Theorem 3.1(iii). As expected, Theorem 3.1(iv) indicates that the true

factor  01 can only be identified up to a nonsingular rotation matrix 1. Compared with Bai and Ng

(2004) and Bai et al. (2009), our results allow for heterogeneous slope coefficients and unobserved

stationary and nonstationary common factors.

The following theorem establishes the rate of convergence for the individual and group-specific

estimators, as well as for the estimated factors up to rotation.

Theorem 3.2 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1


P
=1 k̂ − 0 k2 =  (

−2),

(ii) ̂ − 0 =  (
12
 −1 + ) for  = 1 2   ,

(iii) (̂(1)  ̂())− (01  0) =  (
−1) for some suitable permutation (̂(1)  ̂()) of

(̂1  ̂),

(iv) −1k̂1 −  011k2 =  (
−1 + 2

−1)

Theorem 3.2(i)-(ii) establish the mean-square and point-wise convergence of the slope coefficients

. The usual super consistency of nonstationary estimators ̂ is preserved if  = (−1) despite

the fact that we ignore unobserved stationary common factors and allow for correlation between 

and
¡
 

0
1

¢
. Theorem 3.2(iii) indicates that the group-specific parameters, 01  

0
  can be con-

sistently estimated. Theorem 3.2(iv) updates the convergence rate of the unobserved nonstationary

factors in Theorem 3.1(iv). For notational simplicity, hereafter we simply write ̂ for ̂() as the

consistent estimator of 0.

3.3 Classification consistency

We now study classification consistency. Define

̂ = { 6∈ ̂| ∈ 0} and ̂ = { 6∈ 0| ∈ ̂}
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where  = 1  and  = 1  Let ̂ = ∪∈̂
̂ and ̂ = ∪∈̂

̂. The events

̂ and ̂ mimic type I and type II errors in statistical tests. Following SSP, we say that a

classification method is individual consistent if  (̂) → 0 as ( ) → ∞ for each  ∈ 0 and

 = 1 , and  (̂) → 0 as ( ) → ∞ for each  ∈ 0 and  = 1 . It is uniformly

consistent if  (∪=1̂ )→ 0 and  (∪=1̂ )→ 0 as ( )→∞.

The following theorem establishes uniform classification consistency.

Theorem 3.3 Suppose that Assumptions 3.1-3.3 hold. Then

(i)  (∪0
=1̂ ) ≤

P0
=1  (̂ )→ 0 as ( )→∞

(ii)  (∪0
=1̂ ) ≤

P0
=1  (̂ )→ 0 as ( )→∞

Theorem 3.3 implies uniform classification consistency — all individuals within a certain group,

say 0 can be simultaneously and correctly classified into the same group (denoted ̂) w.p.a.1.

Conversely, all individuals that are classified into the same group, say ̂, simultaneously belong to

the same group (0) w.p.a.1. Let ̂ = #̂ One can easily show that  (̂ = 0) → 1 so that

 (̂ = )→ 1.

Note that Theorem 3.3 is an asymptotic result and it does not ensure that all individuals can be

classified into one of the estimated groups when  is not large or  is not sufficiently big if we stick to

the classification rule in (2.11). In practice, we classify  ∈ ̂ if ̂ = ̂ for some  = 1  and

 ∈ ̂ for some  = 1  if ||̂− ̂|| = min{||̂− ̂1||  ||̂− ̂ ||} and
P

=1 1{̂ = ̂} = 0
Since Theorem 3.3 ensures

P
=1  (̂ = ̂)→ 1 as ( )→∞ uniformly in  we can ignore such

a modification in large samples in subsequent theoretical analyses and restrict our attention to the

classification rule in (2.11) to avoid confusion.

3.4 Oracle properties and post-Lasso and Cup-Lasso estimators

We examine the oracle properties of the three Lasso-type estimators. To proceed, we add some

notation. For  = 1  we define

 =
1√


X
∈0



0 01

⎛⎝¡ +  02 
0
2

¢− 1



X
=1

¡
 +  02 

0
2

¢


⎞⎠ 

1 =
X
=1

1 =
1√


X
∈0



Ã
X
=1

X
=1

1 { = }− κ1 { ≤ }
!
∆21

2 =
X
=1

2 =
1√


X
∈0



EC ()0 01
 02

⎛⎝02 −
1



X
=1

02

⎞⎠ 
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 =
1√


X
∈0




†
 (1)

X
=1

X
=1

©
κ̄

¡
 
 0

¢− [1 { = }− κ1 { ≤ }] 1+
ª

†
 (1)

00

+
1√


X
=1

⎧⎨⎩EC ¡0¢1© ∈ 0
ª− 1



X
∈0



EC(0)

⎫⎬⎭ 01


+
1√


X
∈0



[ − EC ()]001
 02 

0
2

where  = 001( 1Λ
00
1 Λ

0
1)
−101  κ = 001( 001  01 )−101 κ̄ = 1 { = }−κ  = ( 0)0,  

 =P
=1 


  EC (·) = E (·|C), † () =

⎛⎝ 
†
 ()


†
 ()

⎞⎠ =

⎛⎝  ()  ()

 ()  ()

⎞⎠   = (1 01×)  and

 = (0×1 )  Let 1 =diag
³

1
1 2

P
∈01 

0
 01

    
1

2

P
∈0


0 01



´
and 2 =⎛⎜⎜⎜⎝

211 · · · 21

...
. . .

...

21 · · · 2

⎞⎟⎟⎟⎠  where2 =
1

 2

P
∈0



P
∈0


0 01

 for   = 1 

Let

 = 1 −2 and 0 =

⎛⎜⎜⎜⎜⎜⎜⎝
11 −211 −212    −21
−221 12 −222    −22
...

...
. . .

...

−21 −22    1 −2

⎞⎟⎟⎟⎟⎟⎟⎠ 

where1 = lim→∞ 1


P
∈0


EC
³R

̃2̃
0
2

´
 2 = lim→∞ 1



P
∈0



P
∈0


EC

³R
̃2̃

0
2

´


and ̃2 = 2 −
R
2

0
3

¡R
3

0
3

¢−1
3

Let α̂ = (̂1  ̂). Let  = ( 01      
0
 )

0
  = (01      

0
 )

0
  =

( 01      
0
 )

0 and  = 1 +2. The following theorem reports the Bahadur-type

representation and asymptotic distribution of vec(α̂−α0).

Theorem 3.4 Suppose that assumptions 3.1-3.3 hold. Let ̂ be obtained by solving (2.9). Then

(i)
√
vec(α̂−α0) = √

−1
 +  (1) =

√


−1
 ( + ) +  (1)

(ii)
√
vec(α̂−α0)−√

−1
 ⇒MN (0 0−10 Ω0−10 ) as ( )→∞

where  =diag
³


1

  


´
⊗  0 =diag

³
1
1
  1



´
⊗  Ω0 = lim( )→∞Ω  and Ω =

Var( |C) 

Theorem 3.4 indicates that  and  are associated with the asymptotic variance and bias

of the ̂. The decomposition  = 1 + 2 indicates two sources of the bias. The

first bias term 1 results from the contemporaneous correlation between ( 1) and  and
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the serial correlation among the innovation processes {}. Apparently, the presence of unobserved
nonstationary factors 01 complicates the formula for 1 through the term κ. The second bias

term 2 is due to the presence of the unobserved stationary factors 
0
2. In the special case where

neither 01 nor 
0
2 is present in the model, we have  = 1 =

1√


P
∈0


∆21. This is

the usual asymptotic bias term for panel cointegration regression that is associated with the effects

of the one-sided long-run covariance (c.f., Phillips (1995) and Phillips and Moon (1999)). The th

element of  is independent across  conditional on C and EC ( ) = 0 This makes it possible

for us to derive a version of the conditional central limit theorem for  and establish the limiting

mixed normal (MN ) distribution of our estimators α̂ in Theorem 3.4(ii).

As we show in the proof of Theorem 3.4, the asymptotic bias term  is  (
√
), which

implies the  -consistency of the C-Lasso estimators ̂. To obtain the
√
 -rate of convergence, we

need to remove the asymptotic bias by constructing consistent estimates of  .

3.4.1 Bias correction, fully modified and continuous updating procedures

Three types of bias-corrected estimators are considered: the bias-corrected post-Lasso estimator ̂
̂
,

the fully-modified post-Lasso estimator ̂


̂

 and the fully-modified continuously updated post-Lasso

(Cup-Lasso) estimator ̂


̂

, whose definitions are given below.

Following Phillips and Hansen (1990) and Phillips (1995), we first construct consistent time series

estimators of the long-run covariance matrix Ω and the one-sided long-run covariance matrix ∆ by

Ω̂ =
−1X

=−+1


µ




¶
Γ̂() and ∆̂ =

−1X
=0



µ




¶
Γ̂()

where (·) is a kernel function,  is a bandwidth parameter, and Γ̂() = 1


P−
=1 ̂+̂

0
 with

̂ = (̂∆
0
∆̂

0
1 ̂

0
2)
0. We partition Ω̂ and ∆̂ conformably with Ω For example, ∆̂ denotes

a submatrix of ∆̂ given by ∆̂
0
 for   = 1  4

We make the following assumption on the kernel function and bandwidth.

Assumption 3.4 (i) The kernel function (·):  → [−1 1] is a twice continuously differen-
tiable symmetric function such that

R∞
−∞ ()2 ≤ ∞ (0) = 1 () = 0 for || ≥ 1, and

lim||→1 ()(1− ||) =   0 for some  ∈ (0∞).
(ii) As ( )→∞ 2 → 0 and  → 0

We modify the variable  with the following transformation to correct for endogeneity:

̂+ =  − Ω̂12Ω̂−122∆ (3.2)
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This would lead to the modified equation ̂+ = 00  + 00101 + 00202 + ̂+  where ̂+ =  −
Ω̂12Ω̂

−1
22∆. Define

∆̂+12 = ∆̂12 − Ω̂12Ω̂−122∆̂22 (3.3)

Note that (3.2) and (3.3) help to correct for endogeneity and for serial correlation, respectively. Let

̂+ = (̂
+
1  ̂

+
 )

0 and ∆̂+21 = ∆̂
+0
12

We can obtain the bias-corrected post-Lasso estimator α̂

̂
 the fully modified post-Lasso esti-

mator ̂


̂

, and the continuous updated estimators of ̂1 and ̂2 by iteratively solving (3.5) to (3.7),

such that

vec
³
α̂

̂

´
= vec (α̂)− 1√



p
̂

−1


³
̂1 + ̂2

´
 (3.4)

̂


̂

=

⎛⎝X
∈̂

0̂1


⎞⎠−1⎧⎨⎩X
∈̂

0̂1
̂+ − 

p


³
̂+1 + ̂2

´⎫⎬⎭  (3.5)

̂11 =

⎡⎣ 1

 2

X
=1

X
∈̂

(̂ − ̂


̂

)(̂ − ̂


̂

)0
⎤⎦ ̂1 (3.6)

̂22 =

⎡⎣ 1



X
=1

X
∈̂

(̂ − ̂


̂

− ̂1̂1)(̂ − ̂


̂

− ̂1̂1)
0

⎤⎦ ̂2 (3.7)

where ̂ = (̂01  ̂
0
)

0 for  = 1 2 ̂1 =
1√
̂

P
∈̂

³P
=1

P
=1

ˆ̄κ
´
∆̂21

̂2 =
1√
̂

P
∈̂

³P
=1

P
=1

ˆ̄κ
´
∆̂24

ˆ̄2 ̂
+
1 =

1√
̂

P
∈̂

³P
=1

P
=1

ˆ̄κ
´
∆̂+21

ˆ̄κ = 1 { = } − κ̂ κ̂ = ̂ 01(̂ 01̂1)−1̂1 = ̂ 01̂1 2
ˆ̄2 = ̂2 − 1



P
=1 ̂2 ̂ , and ̂ =

̂
0
1(

1

Λ̂01Λ̂1)−1̂1  Here the definitions of ̂1 1  ̂2 and 2 are similar to those defined

above.

We obtain the fully modified Cup-Lasso estimators ̂


̂

by iteratively solving (2.9), and (3.5) to

(3.7), where we also update the group structure estimates {̂} Note that ̂1 1  ̂2 2 , and

the factor loading estimates {̂1 ̂2} are also updated continuously in the procedure to obtain ̂
̂



Let α̂

̂
= (̂

̂1
  ̂



̂
) and α̂

̂
= (̂

̂1
  ̂



̂
). We establish the limiting distribution of

the bias-corrected post-Lasso estimators α̂

̂
 the fully modified post-Lasso estimators α̂

̂
 and the

Cup-Lasso estimators α̂

̂
in the following theorem.

Theorem 3.5 Suppose that assumptions 3.1-3.4 hold. Let α̂

̂
be obtained by iteratively solving

(3.4), (3.6)-(3.7); let α̂

̂
be obtained by iteratively solving (3.5)-(3.7); and let α̂

̂
be obtained by

iteratively solving (2.9) and (3.5)-(3.7). Then as ( )→∞,
(i)
√
vec(α̂

̂
−α0)⇒MN (0 0−10 Ω0−10 )
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(ii)
√
vec(α̂

̂
−α0)⇒MN (0 0

−1
0 Ω

+
0 

−1
0 )

(iii)
√
vec(α̂

̂
−α0)⇒MN (0 0

−1
0 Ω

+
0 

−1
0 )

where Ω+0 = lim→∞Ω+  Ω
+
 =Var

¡
 + |C

¢
 and  + is defined in the proof of Theorem 3.5.

Theorem 3.5 indicates that all three types of estimators achieve the
√
 -rate of convergence

and have a mixed normal limit distribution. Asymptotic t-tests and Wald tests may be constructed

as usual, provided that one can obtain suitable estimates of 0 Ω , and Ω
+
  We can estimate

0 by ̂0 = ̂1 − ̂2 where ̂1 and ̂2 are analogously defined as 1 and 2 with

 
0
 

0
1  and Λ

0
1 replaced by ̂ ̂ ̂1 and Λ̂1 respectively. We can also show that Ω and

Ω+ can be consistently estimated by

Ω̂ =
̂

 2

X
=1

X
=1

X
=1

X̂X̂
0
̂

∗
̂
∗
 −

X
=1

̂ ̂
0
 

Ω̂+ =
̂

 2

X
=1

X
=1

X
=1

X̂X̂
0
̂

∗+
 ̂

∗+
 −

X
=1

̂+ ̂
+0
 

where X̂ = (X̂
0
1  X̂

0
)

0 X̂0 is the th row of X̂ X̂ =
̂1
1{ ∈ ̂}− 1



P
∈̂

̂̂1
 ,

̂ =diag(


̂1
  

̂
)⊗  ̂ = (̂

0
1   ̂

0
 )

0 ̂ = ̂1+ ̂2 ̂1 =

1√
̂

³P
=1

P
=1

ˆ̄κ
´
∆̂211{ ∈ ̂} ̂2 =

1√
̂

³P
=1

P
=1

ˆ̄κ
´
∆̂24

ˆ̄21{ ∈ ̂},
̂∗ =  − ̂

0
  − ̂

0
1̂1 for  ∈ ̂, ̂

+
 = (̂

+0
1   ̂

+0
 )

0 ̂+ = ̂+1 + ̂2

̂+1 =
1√
̂

³P
=1

P
=1

ˆ̄κ
´
∆̂+211{ ∈ ̂}, and ̂∗+ = ̂+ − ̂

0
  − ̂

0
1̂1 for  ∈ ̂. See

the proof of Lemma A.11(ix) in the Online Supplement. Given these estimates, it is standard to

conduct inference on elements of α0

3.5 Estimating the number of unobserved factors

Our analysis has so far assumed that the numbers of nonstationary and stationary factors, 1 and 2,

are known. We now introduce two information criteria to determine the number of unobserved factors

before the PPC estimation procedure. Let 1 denote a generic number of nonstationary factors. and

 a generic total number of nonstationary and stationary factors. We use 01 and 0 to denote their

true values and assume that 0 is bounded above by a finite integer max.

Bai et al. (2009) find that it is not necessary to distinguish I(0) and I(1) factors when one tries to

determine the total number of factors based on the first-differenced model. After first differencing,

(2.4) takes the form:

∆ = 00 ∆ + 00 ∆
0
 +∆  = 2   (3.8)

where, e.g., ∆ =  − −1. Since the true dimension 0 is unknown, we start with a model with
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 unobservable common factors. We write the factors as  and factor loadings as 

 , where the

superscript  denotes the dimension of the underlying factors or factor loadings. Let  ≡ ∆  =

(
2  


 )
0 where 

 ≡ ∆   We consider the following minimization problem:

n
̂ Λ̂

o
= arg min

Λ

1



X
=1

X
=2

(∆ − ̂
0
∆ − 0 


 )
2

s.t. 0 =  and Λ
0Λ is diagonal,

where ̂ = (̂
2  ̂


 )
0 Λ̂ = (̂



1  ̂


 )
0 and the ̂ are obtained from the model with 1 = max

nonstationary factors. It is easy to show that the ̂ are  -consistent, which suffices for our purpose.

It is well known that given ̂ we can solve Λ̂ = Λ̂(̂) from the least squares regression as a

function of ̂ Then we can define 1( ̂
) = 1



P
=1

P
=2(∆ − ̂

0
∆ − ̂

0
 ̂


 )
2 Following

Bai and Ng (2002) we consider the information criterion

1() = log 1( ̂
) + 1( ) (3.9)

where 1( ) is a penalty function. Let ̂ = argmin0≤≤max 1(). We add the next assumption.

Assumption 3.5 As ( )→∞ 1( )→ 0 and 2 1( )→∞ where  = min(
√

√
 ).

Assumption 3.5 is common in the literature. It requires that 1( ) pass to zero at a certain

rate so that both over- and under-fitted models can be eliminated asymptotically.

The following theorem demonstrates that we can apply 1() to estimate 
0 consistently.

Theorem 3.6 If Assumptions 3.1-3.3 and 3.5 hold, then  (̂ = 0)→ 1 as ( )→∞.

Theorem 3.6 shows that the total number of factors 0 can be determined consistently by mini-

mizing 1()

As discussed in Section 3.4, ignoring the unobserved stationary factors will not affect the consis-

tency of the long-run estimators but it does generate a bias term that is asymptotically non-negligible.

For this reason, it is important to distinguish between nonstationary and stationary factors. For-

tunately, it is possible to estimate the number of unobserved nonstationary factors, 01 consistently

based on the level data. Once we obtain a consistent estimate of 01 we can also obtain a consistent

estimator of the number of unobserved stationary factors, 02, based on Theorem 3.6.

Let  1
1 be a matrix of  × 1 nonstationary factors and 11 be an 1 × 1 vector of nonstation-

ary factor loadings. Given the preliminary  -consistent estimators ̂ based on max nonstationary
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factors, we consider the following minimization problem:

n
̂ 1
1  Λ̂1

o
= arg min

Λ1 
1
1

1



X
=1

X
=1

( − ̂
0
 − 10  11 )

2

s.t.  10
1  1

1  2 = 1 and Λ
10Λ1 is diagonal.

Given ̂ 1
1 = (̂ 111   ̂

1
1 )

0 we can solve for Λ̂1 = (̂
1
11  ̂

1
1)

0 as a function of ̂ 1
1 by least squares

regression. We suppress the dependence of Λ̂1 on ̂ 1
1 and define 2(1 ̂

1
1 ) =

1


P
=1

P
=1(−

̂
0
 − ̂

10
 ̂11 )

2 Then we consider the information criterion:

2(1) = log 2(1 ̂
1
1 ) + 12( ) (3.10)

where 2( ) is a penalty function. Let ̂1 = argmin0≤1≤max 2(1). We add the following

condition.

Assumption 3.6 As ( )→∞ 2( ) log log( )


→ 0 and 2( )→∞.

Apparently, the conditions on 2( ) differ from the conventional conditions for the penalty

function used in information criteria in the stationary framework (e.g., 1( ) in Assumption 3.5).

In particular, we now require that 2( ) diverge to infinity rather than converge to zero. The

intuition for this requirement is that the mean squared residual, 2(1 ̂
1
1 ) does not have a finite

probability limit when the number of nonstationary common factors is under-specified. We can show

that log log


2(1 ̂
1
1 ) converges in probability to a positive constant when 0 ≤ 1  01. By contrast,

we have 2(1 ̂
1
1 )− 2(

0
1 ̂

01
1 ) =  (1) when 1  01

The following theorem shows that use of 2(1) determines 
0
1 consistently.

Theorem 3.7 If Assumptions 3.1-3.3 and 3.6 hold, then  (̂1 = 01)→ 1 as ( )→∞.

In the simulations and applications, we simply follow Bai and Ng (2002) and Bai (2004) and set

1( ) =
 + 


ln
¡
2

¢
and 2( ) =  1( )

where  =


5 log log . We first estimate the total number of unobserved factors by ̂ based on the

first-differenced model, and next estimate the number of unobserved nonstationary factors by ̂1

based on the level model. A consistent estimator of 02 is then given by ̂2 ≡ ̂ − ̂1
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3.6 Determination of the number of groups

We propose a BIC-type information criterion to determine the number of groups, . We assume

that the true number of groups, 0 is bounded from above by a finite integer max.

By minimizing the criterion function in (2.9), we obtain estimates ̂() ̂() ̂1()

and ̂1() of 0  
0
 

0
  and 01 in which notation the dependence of the estimates ̂ ̂ ̂1,

and ̂1 on () explicit. Let ̂() = { ∈ {1 2 } : ̂() = ̂()} for  = 1 

and ̂() = {̂1()  ̂()}. Let ̂
̂()

denote the Cup-Lasso estimate of 0. Define

3() =
1



X
=1

X
∈̂()

X
=1

h
 − ̂

0
̂()

 − ̂1()0̂1()
i2


Following SSP and Lu and Su (2016), we consider the following information criterion:

3() = log3() + 3( ) (3.11)

where 3( ) is a penalty function. Let ̂() = argmin1≤≤max 3().

Let G() = (1  ) be any -partition of the set of individual index {1 2  }. De-
fine ̂2G() =

1


P
=1

P
∈

P
=1[− ̂

0


− ̂1(G())0̂1(G())]2, where {̂
 ̂1(G())

̂1(G())} is analogously defined as {̂
̂()

 ̂1() ̂1()} with {̂()} being replaced
by {}. Let 20 =plim( )→∞ 1



P
=1

P
∈0



P
=1[ − 00  − 00101]2 Define

 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( )−12 when there is no unobserved common factor,

−1 when there are only unobserved nonstationary common factors,

−1 when there are unobserved nonstationary and stationary common factors.



and note that  indicates the effect of estimating the nonstationary panel on the use of 3()

under three different scenarios.

We add the following assumption.

Assumption 3.7 (i) As ( )→∞ min1≤0 inf()∈G ̂2G()
→ 2  20

(ii) As ( )→∞, 3( )→ 0 and 3( )2 →∞

Assumption 3.7(i) requires that all under-fitted models yield asymptotic mean square errors larger

than 20, which is delivered by the true model. Assumption 3.7(ii) imposes typical conditions on the

penalty function 3( ) requiring that it cannot shrink to zero too fast or too slowly.

The following theorem justifies the validity of using 3 to determine the number of groups.
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Theorem 3.8 Suppose that Assumption 3.1-3.4 and 3.7 hold. Then  (̂() = 0)→ 1 as ( )→
∞.

Theorem 3.8 indicates that as long as  satisfies Assumption 3.3(iv) and 3( ) satisfies As-

sumption 3.7(ii), we have inf1≤≤max 6=0 3()  3(0 ) as ( )→∞. Consequently,
the minimizer of 3() with respect to  equals 0 w.p.a.1 for a variety of choices of . In

practice, we can further choose  over a finite grid of values to minimize 3(̂() ) The next

section provides details.

4 Monte Carlo Simulations

The simulations reported in this section are designed to evaluate the finite sample performance of

the C-Lasso selection, the bias-corrected post-Lasso, the fully-modified post-Lasso regression, and

the Cup-Lasso estimators, as well as the performance of the information criteria for determining the

numbers of groups and common factors.

4.1 Data generating processes

We consider four data generating processes (DGPs) with stationary and/or nonstationary unobserved

common factors. The observations in each of these DGPs are drawn from three groups with 1 : 2 :

3 = 03 : 04 : 03. There are four combinations of sample sizes, with  = 50 100 and  = 40 80.

In all cases, the number of replications is 500.

DGP1 (Contemporaneous correlation among the errors, nonstationary regressors, and unobserved

stationary common factors). The observations ( 
0
) are generated from the model⎧⎪⎨⎪⎩ = 0 + 2
0
22 + 

 = −1 + 

 (4.1)

where  = (1 2)
0 is a 2 × 1 vector of nonstationary regressors, and 2 is a 2 × 1 vec-

tor of stationary common factors. The idiosyncratic errors  = ( 
0
 

0
2)
0 = Ω12, where

Ω12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

05 02 02 0 0

02 1 02 02 02

02 02 1 02 02

0 0 0 1 02

0 0 0 02 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,  = (0  

20
 )

0,  ∼ i.i.d. (0 3) for  = 1   , and


2
 ∼ i.i.d. (0 2). The factor loadings 2 are i.i.d. ((01 01)0 2) for  = 1  . We set
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2 = 05 to control the relative contribution of the unobserved common factors. The long-run slope

coefficients  exhibit the group structure in (2.3) for  = 3 and the true values for the group-specific

parameters are

(01 
0
2 

0
3) =

⎛⎝⎛⎝04
16

⎞⎠ 

⎛⎝1
1

⎞⎠ 

⎛⎝16
04

⎞⎠⎞⎠ 

DGP2 (Weak dependence among the errors, nonstationary regressors, and unobserved nonstationary

common factors). The observations ( 
0
 

0
1) are generated from the model

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 = 0 + 011 + 

 = −1 + 

1 = 1−1 + 

 (4.2)

where  = (1 2)
0 is a 2 × 1 vector of nonstationary regressors, and 1 is a 2 × 1 vector of

nonstationary common factors. The idiosyncratic errors  = ( 
0
∆

0
1)
0 are generated from a

linear process:  =
P∞

=0 − , where  = −35Ω12, and Ω12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

05 02 02 0 0

02 1 02 02 02

02 02 1 02 02

0 0 0 1 02

0 0 0 02 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

 = (
0
  

10
 )

0,  ∼ i.i.d. (0 3) for  = 1   , and 1 ∼ i.i.d. (0 2). The factor loadings of
nonstationary common factors are i.i.d. 1 ∼ ((01 01)0 2) for  = 1   . The true coefficients

of  are the same as in DGP1.

DGP3 (Weak dependence among the errors, nonstationary regressors, and unobserved mixed com-

mon factors). The observations ( 
0
 

0
1 

0
2) are generated from the following model

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 = 0 + 1(

0
11) + 2(

0
22) + 

 = −1 + 

1 = 1−1 + 

 (4.3)

where  = (1 2)
0 is a 2×1 vector of nonstationary regressors, 1 is a 2×1 vector of nonstationary

common factors, and 2 contains one stationary common factor. The idiosyncratic errors  =

( 
0
∆

0
1 

0
2)

0 are generated from the linear process  =
P∞

=0 −  where  = −35Ω12,
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Ω12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

05 02 02 0 0 0

02 1 02 02 02 02

02 02 1 02 02 02

0 0 0 1 02 02

0 0 0 02 1 02

0 0 0 02 02 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,  = (

0
  

10
  

20
 )

0,  ∼ i.i.d. (0 3) for  = 1   ,

and (10  
20
 )

0 ∼ i.i.d. (0 3). Let 1 = 1 and 2 = 05. The factor loadings  = (01 
0
2)
0 are

i.i.d.  ∼ ((01 01 01)0 3). The true coefficients of  are the same as in DGP1.

DGP4 (Weak dependence among the errors, nonstationary regressors, and unobserved mixed com-

mon factors). The settings of DGP4 are the same as those of DGP3, except that there is weak correla-

tion among the factor loadings with  ∼ i.i.d.((01 01 01)0 Ω2), where Ω2 =

⎛⎜⎜⎝
1 0 2

√


0 1 2
√


2
√
 2

√
 1

⎞⎟⎟⎠.
4.2 Estimate the number of unobserved factors

We assess the performance of two information criteria proposed in Section 3.5 before determining

the number of groups and running the PPC-based estimation procedure. We choose the BIC-type

penalty function 1( ) = +


log(min( )) to determine the total number () of unobserved

factors and 2( ) = 
5 log log 1( ) to determine the number (1) of unobserved nonstationary

factors. Note that 0 = 2 2 3, and 3 for DGPs 1-4, respectively, and 01 = 0 2 2, and 2 for DGPs

1-4, respectively.

Table 1 displays the probability that a particular factor number from 0 to 5 is selected according

to the information criteria proposed for the differenced and level data based on 500 replications. For

the differenced data, the probabilities for selecting the total number of unobserved factors are higher

than 99% in all DGPs when  = 50 and reach the unity when  increases to 100 in all cases under

investigation. For the level data, the precision for selecting the number of nonstationary factors is

not as good as that for selecting the total number of factors based on the differenced data, especially

when  = 100 and  = 40 for DGP1 and when  = 50 and  = 80 for DGPs 2-4. But when 

and  increase, the probabilities of selecting the true number of nonstationary factors approach 99%

in all DGPs. In general, the simulation results show that the information criteria for the differenced

data and level data work fairly well in finite samples.
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Table 1: Frequency for selecting  = 1 2  5 total factors and 1 = 0 1  4 nonstationary factors

Differenced Data Level Data

N T  = 1  = 2  = 3  = 4  = 5 1 = 0 1 = 1 1 = 2 1 = 3 1 = 4

DGP1 50 40 0 1 0 0 0 0.992 0.008 0 0 0

50 80 0 1 0 0 0 1 0 0 0 0

100 40 0 1 0 0 0 0.950 0.050 0 0 0

100 80 0 1 0 0 0 0.998 0.002 0 0 0

DGP2 50 40 0 1 0 0 0 0 0.010 0.990 0 0

50 80 0 1 0 0 0 0.026 0.006 0.968 0 0

100 40 0 1 0 0 0 0 0 1 0 0

100 80 0 1 0 0 0 0.006 0 0.994 0 0

DGP3 50 40 0 0 1 0 0 0.006 0.068 0.922 0.004 0

50 80 0 0 0.994 0.006 0 0.038 0.062 0.900 0 0

100 40 0 0 1 0 0 0 0.004 0.934 0.062 0

100 80 0 0 1 0 0 0.002 0.006 0.990 0.002 0

DGP4 50 40 0 0 1 0 0 0.006 0.058 0.932 0.004 0

50 80 0 0 0.996 0.004 0 0.034 0.056 0.910 0 0

100 40 0 0 1 0 0 0 0.002 0.960 0.038 0

100 80 0 0 1 0 0 0.002 0.006 0.990 0.002 0

4.3 Determination of the number of groups

The results above show that the information criteria (1() and 2(1)) in Section 3.5 are use-

ful in determining the number of nonstationary and stationary factors. We emphasize that these

information criteria do not require knowledge of the latent group structure or even the number of

groups.

Next, we focus on the performance of the information criterion (3()) for determining the

number of groups by assuming that the number of unobserved factors is known. We follow SSP and

set 3( ) = 2
3 log(min( ))min( ) and  = 

−34 with  = 005 01 0.2, 0.4. Note that

3( ) satisfies the two restrictions in Assumption 3.7. Due to space limitations, we only report

the outcomes for  = 01 based on 500 replications for each DGP in Table 2 as the other choices of

 produce similar results. Recall that the true number of groups is 3 in all DGPs. Table 2 displays

the probability that a particular group number from 1 to 6 is selected according to 3. The true

number of groups is 3. The probabilities are higher than 98% in all cases and tend to the unity when

 increases to 80. This indicates good finite sample performance of the criterion 3 in determining

the number of groups.
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Table 2: Frequency for selecting  = 1 2  6 groups

N T 1 2 3 4 5 6

DGP1 50 40 0 0 0.992 0.008 0 0

50 80 0 0 1 0 0 0

100 40 0 0 0.996 0.004 0 0

100 80 0 0 1 0 0 0

DGP2 50 40 0 0 0.996 0.002 0.002 0

50 80 0 0 0.996 0.002 0.002 0

100 40 0 0 0.996 0.004 0 0

100 80 0 0 1 0 0 0

DGP3 50 40 0 0 0.986 0.014 0 0

50 80 0 0 0.992 0.008 0 0

100 40 0 0 0.996 0.004 0 0

100 80 0 0 1 0 0 0

DGP4 50 40 0 0 0.990 0.010 0 0

50 80 0 0 0.992 0.008 0 0

100 40 0 0 0.996 0.004 0 0

100 80 0 0 1 0 0 0

4.4 Classification and point estimation

We now examine the performance of classification and estimation when we have a priori knowledge

of the numbers of groups and unobserved common factors. Tables 3 and 4 report classification and

point estimation results from 500 replications for each DGP. As above, we set  = 
−34 with

 = 005 01 02 04 to check the sensitivity of classification and estimation performance. Due to

space constraints, we only report results for  = 01 and 02 in Tables 3-4 and for  = (1 2)
0

we only report results for the estimation of the first coefficient 1 in each DGP.

Columns 4 and 8 in Tables 3-4 report the percentage of correct classification over the  cross sec-

tional units, calculated as 1


P0
=1

P
∈̂

1{0 = 0}, averaged over the 500 replications. Columns
5 to 7 and 9 to 11 summarize estimation performance in terms of root-mean-squared error (RMSE),

bias (Bias), and 95% coverage probability (% coverage). For simplicity, we define the weighted aver-

age RMSE as 1


P
=1RMSE(̂1) with ̂1 being the estimate of 1. We define the weighted

average bias and 95% coverage probability analogously. The estimates of the long-run covariance

matrix are obtained by using the Fejér kernel with bandwidth  = 10. Findings based on other

kernels (the quadratic spectral kernel and Parzen kernel) and other choices of  are similar and are

not reported. For comparison, we report estimation and inference results based on the estimates of

the C-Lasso, bias-corrected post-Lasso, fully-modified post-Lasso and Cup-Lasso methods defined in

Section 3.4. For comparison we also report estimation and inference results for the oracle estimates
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that are obtained by utilizing the true group structures {0}.
We summarize the general pattern of the findings on classification and estimation reported in Ta-

bles 3-4. First, the results with different ’s are similar, indicating some robustness in our algorithm

to the choice of the tuning parameter . Second, for the classification results, the correct classification

percentage approaches 100% when  increases. In particular and as expected, the correct classifica-

tion percentages for the Cup-Lasso estimates are higher than those of the C-Lasso and post-Lasso

estimates in all cases. This outcome suggests that iteration helps in finite samples to achieve better

classification. Third, regarding parameter estimation Tables 3-4 show that the fully-modified proce-

dure works slightly better than the direct bias-correction procedure. Therefore, we only provide the

results for the Cup-Lasso estimates based on the fully-modified method. For DGP1, the endogene-

ity bias issue is not very serious in the C-Lasso estimate since we only introduce contemporaneous

correlation among the errors, nonstationary regressors, and stationary common factors. The two

post-Lasso and the Cup-Lasso estimates are found to perform as well as oracle estimation in terms

of the reported RMSE, bias and coverage probability. For DGPs 2-4, the performance of the C-Lasso

estimate is poorer due to the presence of unobserved nonstationary common factors. In addition, the

Cup-Lasso estimates generally outperformed the two post-Lasso estimates due to the updated group

classification results. In general, the finite sample performance of the Cup-Lasso estimators is close

to that of the oracle estimates, which corroborates the oracle efficiency of the Cup-Lasso estimates.

Accordingly, we recommend for practical implementation the use of Cup-Lasso estimates for both

estimation and inference.

5 An Empirical Application to the Growth Convergence Puzzle

A longstanding leading question in the economic growth literature is whether national economies

exhibit convergence across countries over time. A benchmark model in the literature is the interna-

tional R&D spillover model proposed by Coe and Helpman (1995) who empirically identified positive

technology spillover effects. Since technological progress is a primary source of economic growth,

positive R&D spillovers are regarded as a force of convergence that activates through the channel

of technology catch-up. Notwithstanding the strength and relevance of this argument, two potential

problems have been identified in the Coe and Helpman study. First, the study fails to distinguish

two distinct types of spillover effect: positive technology spillovers and negative market rivalry effects

(Bloom et al., 2013). Second, the research does not account for unobserved common patterns across

countries, such as financial crisis shocks and technological progress. These two issues may lead to

biased or even inconsistent estimates for the parameters of interest — see, e.g., Griffith and Reenen
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Table 3: Classification and point estimation of 1 for DGP1 and DGP2

 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias %Coverage

classification classification

DGP1

50 40 C-Lasso 99.98 0.0098 0.0054 83.42 99.97 0.0092 0.0051 83.72

50 40 post-Lasso 99.98 0.0081 0.0004 91.12 99.97 0.0080 0.0004 91.12

50 40 post-Lasso 99.98 0.0080 0.0005 91.00 99.97 0.0079 0.0005 91.00

50 40 Cup-Lasso 99.98 0.0080 0.0005 91.00 99.97 0.0079 0.0005 91.00

50 40 Oracle - 0.0079 0.0005 91.00 - 0.0079 0.0005 91.00

50 80 C-Lasso 100.00 0.0048 0.0026 84.12 100.00 0.0046 0.0025 84.22

50 80 post-Lasso 100.00 0.0039 0.0001 91.32 100.00 0.0039 0.0001 91.32

50 80 post-Lasso 100.00 0.0038 0.0002 92.04 100.00 0.0038 0.0002 92.04

50 80 Cup-Lasso 100.00 0.0038 0.0002 92.04 100.00 0.0038 0.0002 92.04

50 80 Oracle - 0.0038 0.0002 92.04 - 0.0038 0.0002 92.04

100 40 C-Lasso 99.97 0.0075 0.0050 79.48 99.97 0.0071 0.0047 81.90

100 40 post-Lasso 99.97 0.0056 0.0002 92.30 99.97 0.0055 0.0002 92.36

100 40 post-Lasso 99.97 0.0055 0.0003 92.60 99.97 0.0055 0.0003 92.72

100 40 Cup-Lasso 99.97 0.0055 0.0003 92.60 99.97 0.0055 0.0003 92.72

100 40 Oracle - 0.0054 0.0002 92.60 - 0.0054 0.0002 92.60

100 80 C-Lasso 100.00 0.0037 0.0024 80.04 100.00 0.0036 0.0023 80.90

100 80 post-Lasso 100.00 0.0028 0.0000 92.24 100.00 0.0028 0.0000 92.24

100 80 post-Lasso 100.00 0.0027 0.0001 92.60 100.00 0.0027 0.0001 92.60

100 80 Cup-Lasso 100.00 0.0027 0.0001 92.60 100.00 0.0027 0.0001 92.60

100 80 Oracle - 0.0027 0.0001 92.60 - 0.0027 0.0001 92.60

DGP2

50 40 C-Lasso 98.42 0.0420 0.0155 65.36 98.26 0.0443 0.0143 65.88

50 40 post-Lasso 98.42 0.0305 0.0028 91.62 98.26 0.0311 0.0029 91.74

50 40 post-Lasso 98.42 0.0305 0.0028 92.20 98.26 0.0311 0.0030 92.14

50 40 Cup-Lasso 100.00 0.0112 0.0021 90.28 99.98 0.0112 0.0021 90.28

50 40 Oracle - 0.0110 0.0021 90.28 - 0.0110 0.0021 90.28

50 80 C-Lasso 99.34 0.0283 0.0072 60.60 99.31 0.0285 0.0073 60.44

50 80 post-Lasso 99.34 0.0188 0.0009 91.34 99.31 0.0173 0.0014 91.74

50 80 post-Lasso 99.34 0.0188 0.0014 91.28 99.31 0.0172 0.0018 91.62

50 80 Cup-Lasso 100.00 0.0050 0.0009 90.44 100.00 0.0050 0.0009 90.44

50 80 Oracle - 0.0050 0.0009 90.44 - 0.0050 0.0009 90.44

100 40 C-Lasso 98.66 0.0281 0.0135 52.88 98.49 0.0300 0.0125 54.64

100 40 post-Lasso 98.66 0.0225 0.0027 89.72 98.49 0.0222 0.0033 89.86

100 40 post-Lasso 98.66 0.0226 0.0027 90.10 98.49 0.0223 0.0034 90.26

100 40 Cup-Lasso 100.00 0.0073 0.0025 89.78 99.98 0.0073 0.0025 89.78

100 40 Oracle - 0.0073 0.0025 89.78 - 0.0073 0.0025 89.78

100 80 C-Lasso 99.41 0.0184 0.0069 49.68 99.38 0.0194 0.0064 48.78

100 80 post-Lasso 99.41 0.0188 0.0009 92.72 99.38 0.0190 0.0009 92.84

100 80 post-Lasso 99.41 0.0188 0.0014 93.08 99.38 0.0190 0.0013 93.20

100 80 Cup-Lasso 100.00 0.0035 0.0010 93.12 100.00 0.0035 0.0010 93.12

100 80 Oracle - 0.0035 0.0010 93.12 - 0.0035 0.0010 93.12
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Table 4: Classification and point estimation of 1 for DGP3 and DGP4

 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias %Coverage

classification classification

DGP3

50 40 C-Lasso 97.93 0.0500 0.0148 72.98 97.73 0.0543 0.0141 71.40

50 40 post-Lasso 97.93 0.0379 0.0009 91.20 97.73 0.0405 0.0014 90.86

50 40 post-Lasso 97.93 0.0380 0.0012 91.30 97.73 0.0405 0.0017 90.86

50 40 Cup-Lasso 99.96 0.0141 0.0011 90.00 99.91 0.0140 0.0012 89.84

50 40 Oracle - 0.0139 0.0011 89.98 - 0.0139 0.0011 89.98

50 80 C-Lasso 99.07 0.0446 0.0080 67.44 99.07 0.0451 0.0075 66.46

50 80 post-Lasso 99.07 0.0300 0.0003 92.04 99.07 0.0300 0.0002 92.10

50 80 post-Lasso 99.07 0.0299 0.0007 92.16 99.07 0.0299 0.0007 92.22

50 80 Cup-Lasso 100.00 0.0066 0.0005 91.46 100.00 0.0066 0.0005 91.46

50 80 Oracle - 0.0066 0.0005 91.46 - 0.0066 0.0005 91.46

100 40 C-Lasso 98.33 0.0320 0.0150 62.52 98.18 0.0352 0.0140 62.44

100 40 post-Lasso 98.33 0.0286 0.0024 91.56 98.18 0.0286 0.0024 91.78

100 40 post-Lasso 98.33 0.0287 0.0026 90.88 98.18 0.0286 0.0026 90.96

100 40 Cup-Lasso 99.96 0.0096 0.0020 91.98 99.93 0.0097 0.0020 91.86

100 40 Oracle - 0.0095 0.0020 91.90 - 0.0095 0.0020 91.90

100 80 C-Lasso 99.38 0.0201 0.0074 56.96 99.34 0.0218 0.0070 57.54

100 80 post-Lasso 99.38 0.0165 0.0002 93.40 99.34 0.0169 0.0001 93.40

100 80 post-Lasso 99.38 0.0164 0.0007 93.34 99.34 0.0169 0.0006 93.44

100 80 Cup-Lasso 100.00 0.0046 0.0004 93.82 100.00 0.0046 0.0004 93.82

100 80 Oracle - 0.0046 0.0004 93.82 - 0.0046 0.0004 93.82

DGP4

50 40 C-Lasso 98.22 0.0479 0.0145 70.70 98.07 0.0511 0.0133 71.44

50 40 post-Lasso 98.22 0.0337 0.0022 91.64 98.07 0.0335 0.0020 91.48

50 40 post-Lasso 98.22 0.0338 0.0024 91.44 98.07 0.0335 0.0022 91.18

50 40 Cup-Lasso 99.97 0.0137 0.0015 89.98 99.93 0.0137 0.0015 90.10

50 40 Oracle - 0.0136 0.0015 89.96 - 0.0136 0.0015 89.96

50 80 C-Lasso 99.10 0.0454 0.0089 67.04 99.09 0.0451 0.0082 65.94

50 80 post-Lasso 99.10 0.0310 0.0008 91.52 99.09 0.0313 0.0007 91.40

50 80 post-Lasso 99.10 0.0310 0.0012 91.14 99.09 0.0313 0.0012 91.02

50 80 Cup-Lasso 100.00 0.0065 0.0007 90.58 100.00 0.0065 0.0007 90.58

50 80 Oracle - 0.0065 0.0007 90.58 - 0.0065 0.0007 90.58

100 40 C-Lasso 98.44 0.0319 0.0140 62.60 98.28 0.0355 0.0130 62.82

100 40 post-Lasso 98.44 0.0277 0.0024 91.16 98.28 0.0282 0.0021 90.92

100 40 post-Lasso 98.44 0.0279 0.0026 90.94 98.28 0.0283 0.0023 90.72

100 40 Cup-Lasso 99.97 0.0095 0.0021 91.12 99.94 0.0096 0.0021 91.22

100 40 Oracle - 0.0095 0.0021 91.12 - 0.0095 0.0021 91.12

100 80 C-Lasso 99.45 0.0198 0.0073 56.66 99.43 0.0216 0.0070 56.32

100 80 post-Lasso 99.45 0.0167 0.0007 92.62 99.43 0.0165 0.0006 92.66

100 80 post-Lasso 99.45 0.0167 0.0011 92.70 99.43 0.0165 0.0011 92.88

100 80 Cup-Lasso 100.00 0.0047 0.0006 93.00 100.00 0.0047 0.0006 93.00

100 80 Oracle - 0.0047 0.0006 93.00 - 0.0047 0.0006 93.00
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(2004), Coe et al. (2009), and Ertur and Musolesi (2017).

In this section we apply our model and methodology to reinvestigate this issue by allowing for

heterogeneous convergence behavior through the channel of technology diffusion and unobserved

common patterns across countries. In particular, we impose latent group structures on the long-run

relationships between technological change, domestic R&D stock, foreign R&D stock, and human

capital, at the same time capturing any common patterns of behavior via the use of unobserved

factors. Interestingly, we find two directions of R&D spillover — positive technology spillovers and

negative market rivalry effects, which help to explain the economic convergence puzzle through the

channel of technology growth.

5.1 International R&D spillover model

We introduce two linear specifications for the international R&D spillover model. Following the

standard growth literature, we define TFP as the Solow residual, which is often regarded as a measure

of technology change. That is, log( ) = log( )− log()−(1−) log() where  is final output,
 is labor force,  is capital stock, and  is the share of capital in GDP. In the first place, domestic

R&D investment is a major source of technology change that stimulates innovation. Second, trade

in intermediate goods enables a country to gain access to inputs available throughout the rest of

the world. In this respect, foreign R&D stocks from a country’s trading partners affect TFP by

directly enhancing the transfer of R&D. Coe and Helpman (1995) empirically identify two sources of

technology growth — innovation and catch-up effects — by running the following regression:

log() =  +  log() +  log() + 

where  is the country index,  is the year index,  are the unobserved individual fixed effects,

 is total factor productivity,  is real domestic R&D capital stock, and  is real foreign R&D

capital stock. We follow their specification on the international R&D spillover model and introduce

unobserved common patterns to obtain

log() =  log(

) + 


 log(


) + 0 +  (5.1)

where  denotes the unobserved technology trends or global financial shocks, and the fixed effects 

are absorbed into the factor structure. We shall assume that the slope vector  = (

  


 )
0 exhibits

the latent group structures studied in this paper. This specification is important because the latent

group structures on 

 allow us to study the two types of spillover effects discussed above — positive

technology spillovers and negative market rivalry effects, respectively.
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In addition, we consider the following specification

log() =  log(

) + 


 log(


) +  log() + 0 +  (5.2)

where  denotes human capital for country  in year  Human capital accounts for innovation

outside the R&D sector and other aspects of human capital not captured by formal R&D. Engelbrecht

(1997) finds that human capital affects TFP directly as a factor of production and as a channel for

international technology diffusion associated with catch-up effects across countries. As above, we

allow the slope vector  = (

  


  


 )
0 to exhibit latent group structures.

5.2 Data

We use the same dataset used by Coe et al. (2009, CHH2009 hereafter). The dataset is similar to

that used in Coe and Helpman (1995) and is expanded to include two more countries and annual

observations. It contains observations for log() log(

) log(


) and log() for 24 OECD coun-

tries from 1971-2004. The bilateral import-weighted R&D variable − from trading partners is

a measure of foreign R&D stock. Human capital is measured by years of schooling. We refer the

readers directly to CHH2009 for details on the definitions and constructions of these variables, and

summary statistics of the data.

5.3 Empirical results

We first determine the number of unobserved factors and the number of groups as was done in the

simulation exercises. Then we report the results for the estimation of the group structures and

group-specific parameters.

5.3.1 Estimation of the number of factors

Before running the PPC-based estimation procedure, we employ the information criteria 1 and

2 in Section 3.5 to estimate the number of unobserved factors. Following the simulation design,

we set 1( ) = +


log(min( )) and 2( ) = 
5 log log 1( ) Based on the results for

the differenced and level data, we obtain the estimates ̂ = 1 and ̂1 = 1 That is, we find a single

nonstationary common factor and zero stationary common factors in the data. We fix 1 = 1 and

2 = 0 in the ensuing empirical analysis.
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Table 5: Information criterion for the determination of the number of groups

Model (5.1) Model (5.2)

 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8

K=1 -4.830 -4.807 -4.790 -4.776 -4.773 -4.680 -4.668 -4.671 -4.671 -4.669

K=2 -6.387 -5.545 -5.366 -5.234 -5.210 -4.671 -4.655 -4.430 -4.430 -4.429

K=3 -6.259 -6.235 -6.229 -6.206 -6.213 -4.871 -5.058 -4.869 -4.835 -4.218

K=4 -6.072 -6.099 -6.090 -6.177 -6.116 -4.865 -4.759 -4.783 -4.572 -4.784

K=5 -5.957 -5.974 -5.896 -5.951 -5.861 -4.528 -4.631 -4.526 -4.720 -4.137

K=6 -5.785 -5.706 -5.757 -5.814 -5.807 -4.255 -4.398 -4.261 -4.158 -3.701

5.3.2 Determination of the number of groups

As in the simulations, we set 3( ) = 2
3 log(min( ))min( ) and  = 

−34 We use the

following tuning parameter settings:  = 01 02 04 06 08. Table 5 reports the information

criterion 3 as a function of the number of groups under these tuning parameters. Following the

majority rule, we find that the information criterion suggests three groups for both model (5.1) and

model (5.2). Note that 3 achieves the minimal values for both model specifications when  = 02

Therefore, we set  = 3 and  = 02 in subsequent analyses.

5.3.3 Estimation results

For both model specifications, we employ the pooled fully modified OLS (FM-OLS) estimates un-

der the homogeneity assumption and the Cup-Lasso estimates with one unobserved nonstationary

common factor. Note that we also allow for one unobserved nonstationary factor to obtain the FM-

OLS estimates. Table 6 reports the main results for these two estimates along with the fixed effects

estimates of CHH2009.

In model (5.1), we have two explanatory variables (log() and log( )). We summarize some of

the more interesting findings from Table 6. First, a comparison between the estimates in CHH2009

and those obtained by pooled FM-OLS suggests that the estimate of the coefficient of log() in

CHH2009 is qualitatively similar to our pooled FM-OLS estimate, whereas the estimate of the coeffi-

cient of log( ) decreases substantially after introducing one unobserved nonstationary factor in the

model. This seems to suggest that direct spillover effects are partially offset by unobserved global

technology patterns. Noting that our asymptotic variance estimation allows for both serial corre-

lation and heteroskedasticity and appears more conservative than that of CHH2009, this difference

explains why the standard errors (s.e.’s) of our estimates are much larger than those in CHH2009.

Second, once we allow for latent group structures among the slope coefficients, our PPC estimation

helps to identify quite different behavior in the estimates of the effects of both domestic R&D stock
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Table 6: PPC estimation results

Model (5.1)

Slope coefficients Pooled Pooled Group 1 Group 2 Group 3

CHH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso

log() 0.095*** 0.099*** 0.289*** 0.101*** 0.058**

(0.005) (0.027) (0.046) (0.023) (0.028)

log( ) 0.213*** 0.121*** -0.147*** 0.120 0.086

(0.014) (0.044) (0.057) (0.099) (0.068)

Model (5.2)

Slope coefficients Pooled Pooled Group 1 Group 2 Group 3

CHH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso

log() 0.098*** 0.054** 0.464*** 0.055*** -0.104***

(0.016) (0.023) (0.064) (0.021) (0.027)

log( ) 0.035*** 0.121** -0.413** 0.022 0.219***

(0.011) (0.048) (0.138) (0.061) (0.063)

log() 0.725*** 0.615*** 1.405** 0.550*** 0.567***

(0.087) (0.138) (0.564) (0.158) (0.130)

Note: Standard errors are in parentheses. ***, **, and * denote significance at the 1%, 5%,

and 10% levels, respectively.

and foreign R&D stock: for Group 1, we observe the largest effect of domestic R&D stock, but the

estimate on foreign R&D is negative; for Groups 2 and 3, the coefficient estimates on both domestic

and foreign R&D stocks are positive. In addition, both estimates on Group 2 are larger than those

for Group 3, but the estimates of the coefficient of foreign R&D stocks in Groups 2 and 3 are not

statistically significant even at the 10% level.

The above findings from our PPC estimate have some interesting implications. First, the negative

estimate on foreign R&D in Group 1 indicates that negative market rivalry effects dominate the

technology spillovers for countries inside Group 1. Therefore, technology change in those countries

relies mainly on innovations from domestic R&D stock. Moreover, this result implies that countries

in Group 1 do not favor convergence through the technological change channel. We call this the

“Divergence” group. Second, technology change for countries in Group 2 comes from balanced sources

— the innovation effects from domestic R&D stock and the catch-up effects from technology spillovers,

and interestingly, the magnitudes of those estimates are similar. From this perspective, countries in

Group 2 favor the growth convergence hypothesis. We refer to this group as the “Balance” group.

Last, the technology change in Group 3 is mainly determined by foreign R&D stock and we refer to

Group 3 as the “Convergence” group, which also favors the growth convergence hypothesis.

In model (5.2), we introduce an additional regressor — human capital, which is regarded as another
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Table 7: Group classification results

Model (5.1)

Group 1 “Divergence” (1 = 7)

Austria Denmark France Germany New Zealand

Norway United States

Group 2 “Balance” (2 = 7)

Canada Ireland Israel South Korea Netherlands

Portugal United Kingdom

Group 3 “Convergence” (3 = 10)

Australia Belgium Finland Greece Iceland

Italy Japan Spain Sweden Switzerland

Model (5.2)

Group 1 “Divergence ” (1 = 2)

Ireland United States

Group 2 “Balance—Human capital ” (2 = 16)

Austria Belgium Denmark Finland Iceland

Israel Italy Japan South Korea Netherlands

New Zealand Norway Portugal Spain Sweden

Switzerland

Group 3 “Convergence” (3 = 6)

Australia Canada France Germany Greece

United Kingdom

source of technology change. Our results from the pooled FM-OLS estimates confirm that human

capital is one of the main sources of productivity growth and there exist direct technology spillovers in

the full sample. When using our PPC estimation methods, we find similar heterogeneous behavior for

model (5.2) as that for model (5.1). We can still classify countries into three groups and define them

as groups of Divergence, Balance-Human capital, and Convergence, respectively. For the Divergence

group (Group 1), technology growth relies on innovations and human capital and countries in Group 1

suffer from strong negative market rivalry effects. For Group 2, referred to as Balance-Human capital,

the estimates of the effect of foreign R&D are not significant at the 10% level, and technology growth

still benefits from the innovations and indirect catch-up effects from human capital. For Group 3,

referred to as Convergence, countries benefit directly from the dominating technology spillovers. In

general, the divergence behavior is more statistically significant than the convergence behavior.

5.3.4 Classification results

Table 7 reports the group classification results. We summarize several interesting findings. First,

based on the results for model (5.1), there are typically two types of countries in the Divergence

group — “Leaders”and “Losers”. Countries like France, Germany, the United States are already at

34



the global technology frontiers, and they own 61.1% of global R&D stock. By contrast, the remaining

countries in Group 1 account for only 1.5% of global R&D stock. Second, most OECD countries

are classified into Groups 2 and 3 when model (5.2) is used. We also notice that four of the seven

countries in the G7 are classified in the convergence group, viz., Canada, France, Germany and

United Kingdom. These findings confirm those in Keller (2004) who finds that the major sources of

technical change leading to productivity growth in OECD countries are not domestic but come from

aboard through the channel of international technology diffusion.

In summary, we re-estimate Coe and Helpman’s model by using the pooled FM-OLS and the

PPC-based method with one unobserved global nonstationary factor. The pooled FM-OLS esti-

mates confirm the international R&D spillovers after allowing for an unobserved global factor. In

addition, our Cup-Lasso estimates show heterogeneous behavior in innovations and catch-up effects.

To the best of our knowledge, this finding is the first to empirically identify two types of technol-

ogy spillovers at the country level. Further, these results build an empirical connection between

the “Club convergence” theory (Quah (1996, 1997)) and the conditional convergence model (Barro

and Sala-i-Martin (1997)). Consequently, economic growth patterns do vary across countries— some

exhibit convergence while others do not.

6 Conclusion

The primary theoretical contribution of this paper is to develop a novel approach that handles un-

observed parameter heterogeneity and cross-section dependence in nonstationary panel models with

latent cointegrating structures. We assume that cross-section dependence is captured by unobserved

common factors which may be stationary and nonstationary. In general, penalized least squares es-

timators are inconsistent due to variable omission and the induced spurious regression problem from

the presence of unobserved nonstationary factors. We propose an iterative procedure based on the

penalized principal component method, which provides consistent and efficient estimators for long-

run cointegration relationships under cross-section dependence. Lasso-type estimators are shown to

have a mixed normal asymptotic distribution after bias correction. This property facilitates the use

of the conventional testing using t, Wald, and F statistics for inference. The use of these methods

in the empirical application provides new results that help to explain the growth convergence puzzle

through the heterogeneous behavior of R&D spillover effects.
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This Appendix provides proofs of Theorems 3.1-3.8 in the paper. These results rely on subsidiary
technical lemmas whose proofs are provided in the Additional Online Supplement (Appendix B).

A Proof of the Main Results in Section 3

To proceed, we define some notation:

(i) Let 1 =
¡
1

Λ001 Λ01

¢ ³
1
 2
 001 ̂1

´
 −11 and 2 =

¡
1

Λ002 Λ02

¢ ³
1

 002 ̂2

´
 −12 .

(ii) Let b = (1  ) and  =vec(b), where  =  − 0 for  = 1   . Let b̂ = (̂1  ̂)

and ̂ =vec(b̂) where ̂ = ̂ − 0 .

(iii) Let 2 = 1


P
=1 k̂k2, 2 = 1



P
=1

°°̂ − 0
°°2   = min(

√

√
 ),  =

min(
√
 ), and  = 1−1(log )1+ for some   0.

(iv) Let ̂ =
1
 2
0̂1

,  (1) =
1
2
01, and 0 = (

0
1 ).

(v) Without loss of generality, we set 0 = 0 throughout the proof of the main results and
supplementary Appendix.

To prove Theorem 3.1, we make use of the following four lemmas.

Lemma A.1 Suppose that Assumption 3.1 hold. Then for each  = 1 

(i) 1
 2
0 01

 ⇒
R
̃2̃

0
2,

(ii) 1

0 01

 ⇒
R
(2 − 03) 1 + (∆21 − 0∆31),

where ̃2 = 2 −
R
2

0
3

¡R
3

0
3

¢−1
3 and  =

¡R
3

0
3

¢−1 R
3

0
2.

Lemma A.2 Suppose that Assumptions 3.1-3.2 hold. Let  =
¡
 

0
1

¢
and  = log log  as in

Assumption 3. Then for any fixed small constant  ∈ (0 12)
(i) lim sup→∞ max

³
1

 2
 0



´
≤ (1 + )max a.s.,

(ii) lim inf→∞ min

³

 2
 0



´
≥ min a.s.,

(iii) lim sup→∞ max

³
1

 2
0 01



´
≤ (1 + )max a.s.,

(iv) lim inf→∞ min

³

 2
0 01



´
≥ min2 a.s..

Lemma A.3 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1


P
=1

°°° 1
 2
0 01



°°°2 =  (
2


−2)

(ii) 1


P
=1

°°° 1
 2
0 01

∗
°°°2 =  (

2


−2)

(iii)
°°° 1
2

P
=1 

0
 01



°°° =  (
−1)

(iv) 1


P
=1

°°° 1
 2
0 01



°°° =  ( )

1



where ∗ =  +  02 
0
2.

Lemma A.4 Suppose that Assumptions 3.1-3.2 hold. Then

(i) sup1 sup−1kbk2≤
°°° 1
 2

P
=1 

0

0
1

∗


°°° =  (
−3
 ),

(ii) sup1

°°° 1
2

P
=1 

00
1

00
1 1

∗


°°° =  (
−3
 ),

(iii) sup1

°°° 1
 2

P
=1 

∗0
 1

∗


°°° =  (
−3
 ),

where the sup is taken with respect to 1 such that
 011
2

= 1 and ∗ is defined in Lemma A.3.

Proof of Theorem 3.1. (i) Let  ( 1) =
1
 2
(−)01(−) and 

 (  1) =

 ( 1) + 
Q

=1 k − k Then 

 (βα 1) =

1


P
=1


 (  1). Noting that

 −  = − +  01 
0
1 + ∗  we have

 ( 1)− (
0
  

0
1 ) =

1

 2
(0

0
1 + 001

00
1 1

0
1 

0
1 − 2001

0
1 

0
1)

+
1

 2

³
2001

00
1 1

∗
 − 2001

∗
 − ∗0 (1 −  01

)∗
´
 (A.1)

where ∗ =  +  02 
0
2. Let  ( 1) =

1
 2

¡
001 + 001 001 1

0
1 

0
1 − 2001

0
1 

0
1

¢
.

Then we have

 (β 1)− (β
0  01 )

=
1



X
=1

 ( 1) +
1

 2

X
=1

³
2001

00
1 1

∗
 − 2001

∗
 − ∗0 (1 −  01

)∗
´

=
1



X
=1

 ( 1) +  (
−3
 ) (A.2)

where the last three terms on the right side of (A.2) are  (
−3
 ) uniformly in {} and 1 such that

 011
 2

= 1 and
1


P
=1 kk2 ≤  by Lemma A.4(i)-(iii) and the fact that 1

 2

P
=1 

∗0
  01

∗ =
 (

−3
 ) Then we have



 (β α̂ 1)−


 (β

0α0  01 ) =
1



X
=1

[( 1)−(
0
  

0
1 )] +





X
=1

Y
=1

k − ̂k

≥ (β 1) +  (
−3
 ) (A.3)

where  (β 1) =
1


P
=1  ( 1). Then by (A.2) and (A.3) and the fact that


 (β̂ α̂ ̂1)−



 (β

0α0  01 ) ≤ 0, we have

 (β̂ ̂1) =
1

 2

X
=1

h
̂0

0
̂1

̂ + 001
00
1 ̂1

 01 
0
1 − 2̂00̂1

 01 
0
1

i
=  (

−3
 ) (A.4)

2



Similarly, by (A.2), (A.3) and Lemma A.4(i)-(iii), we have



 (β α̂ ̂1)−


 (β

0α0 ̂1) =
1



X
=1

[( ̂1)−(
0
  ̂1)] +





X
=1

Y
=1

k − ̂k

≥ 1

 2

X
=1

h
0

0
̂1

 − 200̂1
 01 

0
1

i
+  (

−3
 ) (A.5)

This, in conjunction with the fact that 

 (β̂ α̂ ̂1)−


 (β

0α0 ̂1) ≤ 0, implies that

1

 2

X
=1

h
̂0

0
̂1

̂ − 2̂00̂1
 01 

0
1

i
≤  (

−3
 ) (A.6)

Combining (A.4) and (A.6) yields that  (
−3
 ) =

1
 2

P
=1 

00
1

00
1 ̂1

 01 
0
1 =tr[(

1
 2
 001 ̂1

 01 )(
1

Λ001 Λ01)]

≥tr( 1
 2
 001 ̂1

 01 )min(
1

Λ001 Λ01) It follows that tr(

1
 2
 001 ̂1

 01 ) =  (
−3
 ) as min(

1

Λ001 Λ01) is

bounded away from zero in probability by Assumption 3.2(i). As in Bai (2009, p.1265), this implies
that

 001 ̂1
 01

 2
=

 001  01
 2

−  001 ̂1
 2

̂ 01 01
 2

=  (
−3
 ) (A.7)

and 1
 2
 001 ̂1 is asymptotically invertible by the fact that

1
 2
 001  01 is asymptotically invertible from

Assumption 3.2(ii). (A.7) implies that 1
 2
̂ 01 01 ̂1 − 1 =  (

−3
 ), which further implies that°°°̂1 −  01

°°°2 = 2tr³1 − 1
 2
̂ 01 01 ̂1

´
=  (

−3
 ) By the Cauchy-Schwarz inequality and (A.6),

 (
−3
 ) ≥

1

 2

X
=1

̂0
0
̂1

̂−2
(

1

 2

X
=1

̂0
0
̂1

̂

)12½
1

 2
001

00
1 ̂1

 01 
0
1

¾12
 (A.8)

This result, in conjunction with (A.7), implies that 1
2

P
=1 ̂

0

0
̂1

̂ =  (
−3
 ). So we have

shown parts (i) and (ii) in the theorem.
(iii) By the results in parts (i) and (ii) and Lemma A.2(i) and (iv), we have

 (
−3
 ) =

1



X
=1

̂0

µ
1

 2
0̂1



¶
̂

=
1



X
=1

̂0

µ
1

 2
0 01



¶
̂ +

1



X
=1

̂0

µ
1

 2
0(̂1

− 01
)

¶
̂

≥ 1


min
1≤≤

min

µ


 2
0 01



¶
1



X
=1

k̂k2 − max
1≤≤

kk2
 2

k 01 − 
̂1
k 1


X
=1

k̂k2

≥ 1



µ
1

2
min −  (

−1
 )

¶
1



X
=1

k̂k2

3



where the second inequality follows from the fact that min1≤≤ min

³

2
0 01



´
≥ 1

2min  0 a.s.

by Lemma A.2(iv), and max1≤≤
kk2
2
≤ max1≤≤ max

³
0
 2

´
=  ( ) by Lemma A.2(i).

Then we have 1


P
=1 k̂k2 =  (

−2
 ) =  (1).

(iv) We want to establish the consistency of the estimated factor space ̂1, which extends the
results of Bai and Ng (2004) and Bai (2009). Our model allows for heterogeneous slope coefficients

and unobserved stationary common factors. We estimate ̂1 from equation (2.10) in Section 2.2 as
follows "

1

 2

X
=1

( − ̂)( − ̂)
0
#
̂1 = ̂11  (A.9)

Combining (A.9) and the fact that  − ̂ = −̂ +  00 +  = −̂ +  01 
0
1 +  02 

0
2 + , we

have

̂11 =
1

 2

X
=1

̂̂
0

0
̂1 −

1

 2

X
=1

̂
00
 

00̂1 − 1

 2

X
=1

̂
0
̂1

− 1

 2

X
=1

 00 ̂
0

0
̂1 −

1

 2

X
=1

̂
0

0
̂1 +

1

 2

X
=1

 00
0
̂1

+
1

 2

X
=1


00
 

00̂1 +
1

 2

X
=1


0
̂1 +

1

 2

X
=1

 02 
0
2

00
2

00
2 ̂1

+
1

 2

X
=1

 01 
0
1

00
2

00
2 ̂1 +

1

 2

X
=1

 02 
0
2

00
1

00
1 ̂1 +

1

 2

X
=1

 01 
0
1

00
1

00
1 ̂1

≡1 + + 11 +
1

 2

X
=1

 01 
0
1

00
1

00
1 ̂1 say.

It follows that ̂11 − 01 (
1

Λ001 Λ01)(

1
 2
 001 ̂1) = 1+ + 11 Let 1 = (

1

Λ001 Λ01)(

1
2
 001 ̂1)

−1
1 

It is easy to show that 1 =  (1) and is asymptotically nonsingular. Then ̂1
−1
1 −  01 =

[1 + + 11] (
1
 2
 001 ̂1)−1(

1

Λ001 Λ01)−1 and

1


°°°̂1−1 −  01

°°° ≤ 1

(k1k+ + k11k)

°°°( 12 001 ̂1)−1°°°
×°°( 1


Λ001 Λ01)−1

°°  It remains to analyze kk for  = 1 2  11. For 1, we have that by the result in
(iii),

1


k1k ≤ 1



X
=1

kk

k̂k2 k

0
̂1k
 2

≤ max
1≤≤

kk2
 2

k̂1k


1



X
=1

k̂k2 =  (
2
 ) =  ( )

where we use the fact that max1≤≤
kk2
 2
≤ max1≤≤ max

³
0
 2

´
=  ( ) by Lemma A.2(i)

and
k̂1k

≤ √1. For 2, we have

1


k2k ≤ k

00̂1k
 2

max
1≤≤

kk


(
1



X
=1

k̂k2
)12(

1



X
=1

k0 k2
)12

=  (
p
 )

4



where we use the fact that
k 00 ̂1k

 2
=  (1) and

1


P
=1 k0 k2 =  (1) by Assumption 3.2(i). For

3,

1


k3k ≤ 1√



k̂1k


max
1≤≤

kk


(
1



X
=1

k̂k2
)12(

1



X
=1

kk2


)12
= 

Ãr





!


where 1


P
=1

kk2


=  (1) by Assumption 3.1(i). Similarly, for 4 and 5,

1


k4k ≤ k 0k



k̂1k


max
1≤≤

kk


(
1



X
=1

k̂k2
)12(

1



X
=1

k0 k2
)12

=  (
p
 ) and

1


k5k ≤ 1√



k̂1k


max
1≤≤

kk


(
1



X
=1

kk2


)12(
1



X
=1

k̂k
)12

= 

Ãr





!


where we use the fact that
k 0k

≤ k 01 k


+ 1√



k 02 k√

=  (1) For 6, we have

1


k6k = 1



°°°° 1

 2
 0Λ00̂1

°°°° ≤ 1√


µ
1



°°°̂1°°°¶µ 1


°° 0°°¶ 1√


°°Λ00°° =  (
−12−12)

where  = (1  )
0 and we have used the fact that 1



°°Λ00°°2 =  (1) by Assumption 3.2(iii).

Analogously, we can show that 1

k7k =  (

−12−12). For 8,

1

 2
k8k2 =

1

 2

°°°° 1

 2
0̂1

°°°°2 ≤ 2 X
=1

°°°°°−3
X
=1

 ( )̂
0
1

°°°°°
2

+ 2
X
=1

°°°°°−3
X
=1

̂
0
1

°°°°°
2

≡ 2 (k8()k+ k8()k) 

where  ( ) and  are defined in Assumption 3.2(iii). Note that k8()k = −3(−2
P

=1 k̂1k2)
×(−1P

=1

P
=1 k( )k2) =  (

−3) and k8()k = −2−1(−2
P

=1

°°°̂1°°°2)(−2P
=1

P
=1

kk2) =  (
−2−1) by the fact that −1

P
=1

P
=1 k( )k2 ≤ by Assumption 3.2(iii) (see

also Lemma 1(i) in Bai and Ng (2002)) and that E(kk2) ≤ −2 under Assumption 3.2(iii). Then
1

k8k =  (

−12−1 + −32). For 9 and 10 we have

1


k9k =

1



°°°° 1

 2
 02Λ

00
2 Λ

0
2

00
2 ̂1

°°°° ≤ 1



k 02 k2


k̂1k


°°°°Λ002 Λ02

°°°° =  (
−1) and

1


k10k =

1



°°°° 1

 2
 01Λ

00
1 Λ

0
2

00
2 ̂1

°°°° ≤ 1√


k 01 k


k 02 k√


k̂1k


°°Λ001 Λ02°°√


=  (( )−12)

where
Λ001 Λ

0
2√


=  (1) by Assumption 3.2(i). Analogously, we have

1

k11k =  (( )−12). In sum,

we have shown that 1


°°°̂1−1
1 −  01

°°° =  (
√
 ) +

1√

 (

−1
 ) Then (iv) follows. ¥
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To prove Theorem 3.2 we need the following two lemmas.

Lemma A.5 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1

 0

0
1 (̂1 −  011) =  (

√
 + −1 )

(ii) 1

̂ 01(̂1 −  011) =  (

√
  + −1 )

(iii) k
̂1
−  01

k2 =  (
√
 + −1−1 )

(iv) 1

∗0
³
̂1

−1
1 −  01

´
=  (

√
 + −1 ) for each  = 1  

Lemma A.6 Suppose that Assumptions 3.1-3.2 hold. Let 1 =
1
 2
0( 01−̂1)∗  2 =

1
 2
0̂1

 01 
0
1

− 1
2

P
=1 

0
̂1

 ̂ +
1

 2

P
=1 

0
̂1

  3 =
1

 2

P
=1 

0
( 01 − 

̂1
)  and 4 =

1
 2
0 01

∗ − 1
 2

P
=1 

0
01

  Then

(i) 1 =  (1 ) for each  = 1   and −1P
=1 k1k2 =  (

2
1 )

(ii) 2 =  (2 ) for each  = 1   and −1P
=1 k2k2 =  (

2
2 )

(iii) 3 =  (3 ) for each  = 1   and −1P
=1 k3k2 =  (

2
3 )

(iv) 4 =  (
−1) for each  = 1   and −1P

=1 k4k2 =  (
−2)

where 1 = −12
√
 + 

2
 + −1−1  2 = −1

√
 +  

2
 + −1−1  and

3 = −1214 
12
 + −1−12 

Proof of Theorem 3.2. (i) Based on the sub-differential calculus, a necessary condition for ̂ ̂,

and ̂1 to minimize the objective function (2.9) is, for each  = 1   , that 0×1 belongs to the
sub-differential of 


 (βα 1) with respect to  (resp. ) evaluated at {̂} {̂} and ̂1 That

is, for each  = 1   and  = 1 , we have

0×1 = − 2

 2
0̂1

( − ̂) + 

X
=1

̂

Y
=1 6=

k̂ − ̂k (A.10)

where ̂ =
̂−̂
k̂−̂k

if k̂ − ̂k 6= 0 and k̂k ≤ 1 if k̂ − ̂k = 0. Noting that  = 
0
 +

̂1
−1
1 01 + ∗ + (

0
1 − ̂1

−1
1 )01, (A.10) implies that

̂̂ =
1

 2
0̂1

∗ +
1

 2
0̂1

 01 
0
1 −



2

0X
=1

̂

Y
=1 6=

k̂ − ̂k (A.11)

which can be rewritten as

̂̂ = − 1

 2

X
=1

0̂1
 ̂ + (A.12)

where = 1+2−3+4−5, 1 2 3 and4 are defined in the statement of Lemma A.6,
and 5 =


2

P
=1 ̂

Q
=1 6= k̂− ̂k By Lemma A.6(i)-(iv), we have that

P4
=1

1


P
=1 kk2 =

 (
−112 +

2


4
+

−2−2+
−2−1+

−2) =  (
−112 +

2


4
+

−2) In addition,
we can show that 1



P
=1 k5k2 = 

¡
2
¢
 It follows that 1



P
=1 kk2 =  (

−112  +

2
4
 + −2 + 2)
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Let ̂1 =diag(̂1  ̂) and ̂2 as an × matrix with typical blocks 1
 2

0̂1
 ,

such that

̂2 =

⎛⎜⎜⎜⎜⎜⎜⎝
1

2
01̂1

111
1

 2
01̂1

212 · · · 1
 2

01̂1
1

1
2

02̂1
121

1
 2

02̂1
222 · · · 1

 2
02̂1

2
...

...
. . .

...

1
 2

0̂1
11

1
2

0̂1
22 · · · 1

2
0̂1



⎞⎟⎟⎟⎟⎟⎟⎠ 

Let  = (01  0 )
0. Then (A.12) implies that (̂1 − ̂2)b̂ = . It follows that

kk2 = tr(b̂0(̂1 − ̂2)
0(̂1 − ̂2)b̂) ≥ kb̂k2

h
min

³
̂1 − ̂2

´i2


By Assumption 3.2(v), we have that min(̂1 − ̂2) ≥ min2  0 w.p.a.1. Then 1

kb̂k2 ≤

2min
4

P
=1 kk2 =  (

−112  + 2
4
 + −2 + 2) = 

¡


−2 + 2
¢
. Consequently,

1


P
=1 k̂k2 = 

¡


−2 + 2
¢
.

Next, we want to strengthen the last result to the stronger version: 1


P
=1 k̂k2 =  (

−2).
Let β = β0 + 

−1v where v = (1  ) is a  × matrix. Let  =vec(v)  We want to show
that for any given ∗  0, there exists a large constant  = (∗) such that for sufficiently large 
and  we have



(
inf

1



=1 kk2=



 (β + 

12
 −1 α̂ ̂1)  


 (β

0α0 ̂1)

)
≥ 1− ∗

regardless of the property of ̂1 and ̂ This implies that w.p.a.1 there is a local minimum β̂ =
(̂1  ̂) such that

1


P
=1 k̂k2 =  (

−2). Note that

 2
h


 (β + 

12
 −1v α̂ ̂1)−


 (β

0α0 ̂1)
i

≥ 
12




X
=1

Ã

12


 2
0

0
̂1

 − 2


0

0
̂1

( 01 − ̂11)
0
1 −

2


0

0
̂1

∗

!

=




X
=1

1

 2
0

0
̂1



− 2
12




X
=1

0

⎧⎨⎩ ·2 + 1


0̂1

∗ +
1



X
=1


0
̂1

 ̂ − 1



X
=1


0
̂1



⎫⎬⎭
≡ 1 − 22 

where 2 =
1
 2
0̂1

 01 
0
1− 1

 2

P
=1 

0
̂1

 ̂ +
1

 2

P
=1 

0
̂1

 as defined in Lemma

A.6. By Assumption 3.2(v) and Lemma A.5(iii), 1 = 

0̂1 ≥ min(̂1)

−1 kvk2 ≥
min

−1 kvk2 2 w.p.a.1. Note that |2 | ≤ { 1
P

=1 kk2}12
P4

=1 (2)
12  where
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21 =
 2



P
=1 k̄2k2 22 =

1
 2

P
=1 k0̂1

∗ k2 23 =
1

3 2

P
=1

P
=1 k0̂1

̂k2
and 24 =

1
32

P
=1

P
=1 k0̂1

k2 By Lemmas A.6(i)-(ii) and A.5(iii), 21 =

 2


 (

−22 + 2
4
 + −2−2 ) =  (1) and 22 ≤ 2 2



P
=1

°°° 1
 2
0(̂1

− 01
)∗
°°°2 +

2


P
=1

°°° 1 0 01
∗
°°°2 =  2


 (

−12 + 2
4
 + −2−2 ) +

1

 (1) =  (1) Next,

23

≤ 1



1

3 2

X
=1

X
=1

kk2
°°°0̂1

 ̂

°°°2
≤  2



∙
min

µ
1


Λ001 Λ

0
1

¶¸−2½
max
1≤≤

1

 2
kk2

¾
max
1≤≤

°°01°°2
(

1

 2

X
=1

°°01°°2 kk2
)
1



X
=1

°°°̂°°°2
=

 2


 (1) (1)  (

1) (1)

¡


−2 + 2
¢
=  (1) 

where we use the fact that max1≤≤ 1
 2

kk2 =  (1) by Lemma A.2(i), max1≤≤
°°01°°2 =


¡
1

¢
by Assumption 3.2(i) and the Markov inequality, and 1

 2

P
=1

°°01°°2 kk2 =  (1) by

the Markov inequality and 1


P
=1

°°°̂°°°2 = 

¡


−2 + 2
¢
 Similarly, we have by Lemma A.5(iii),

24 ≤ 1



1

3 2

X
=1

X
=1

kk2
°°°0̂1



°°°2
≤ 1



∙
min

µ
Λ001 Λ01


¶¸−2
2

3 2

X
=1

X
=1

°°01°°2 °°01°°2½°°°0(̂1
− 01

)

°°°2 + °°°0 01


°°°2¾
=
1




³
−1 (

p
 + −1 ) + 1

´
=  (1) 

It follows that |2 | = 
−12 kvk  (1)  Then 1 dominates 2 for sufficiently large .

That is,  2[
 (β+ 

12
 −1v α̂ ̂1)−

 (β
0α0 ̂1)]  0 for sufficiently large . Consequently,

the result in (i) follows.
(ii) We study the probability bound for each term on the right side of (A.11). For the first term,

we have by Lemma A.6(i)°°°° 1 20̂1
∗

°°°° ≤ °°°° 1 20 01
∗

°°°°+ °°°° 1 20(̂1
−01

)∗

°°°°
=  (

−1) + (
−12p + 

2
 + −1−1 ) =  (

−1) (A.13)

For the second term, we can readily apply Lemmas A.6(ii), A.5(iii) and A.3(iii), and Theorem 3.2(i)
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to obtain

°°°° 1 20̂1
 01 

0
1

°°°° ≤ k2k+
°°°°°° 1

 2

X
=1

0̂1
 ̂

°°°°°°+
°°°°°° 1

 2

X
=1

0̂1


°°°°°°
= (

−1p + 
2
 + −1−1 ) + ( ) + (

−1) =  (
−1)

(A.14)

The third term is  ()  By Lemma A.5(iii), min(
1
2
0̂1

) = min(
1
2
0 01

) +  (1) 

Noting that ( 1
 2
0 01

)
−1 is the principal  ×  submatrix of ( 1

 2
 0

)
−1 min( 1 2

0
 01

) ≥
min(

1
2
 0

) and the last object is bounded away from zero w.p.a.1. It follows that ̂ =  (
−1+

) for  = 1 2 

(iii) Let  (βα) =
1


P
=1

Q
=1 k−k and ̂ () =

Q−1
=1 k̂−k+

Q−2
=1 k̂−k×

k0−k++
Q

=2 k0−k. By SSP, we have that as ( )→∞,
¯̄̄Q

=1 ||̂ − ||−
Q

=1

°°0 − 
°°¯̄̄

≤ ̂ ()k̂−0 k where ̂ () ≤  ()(1+2k̂−0 k) and  () = max1≤≤ max1≤≤≤−1Q
=1 k0 −k−1− = max1≤≤ max1≤≤≤0−1

Q
=1 k0 −k−1− = (1) with  be-

ing finite integers. It follows that as ( )→∞

| (β̂α)−  (β
0α)| ≤  ()

1



X
=1

k̂k+ 2 ()
1



X
=1

k̂k2

≤  ()

(
1



X
=1

k̂k2
)12

+ (
−2) =  (

12
 −1) (A.15)

By (A.15) and the fact that  (β
0α0) = 0 and that  (β̂ α̂)−  (β̂α

0) ≤ 0. we have

0 ≥  (β̂ α̂)−  (β̂α
0) =  (β

0 α̂)−  (β
0α0) + (

12
 −1)

=
1



X
=1

Y
=1

k0 − ̂k+ (
12
 −1)

=
1



Y
=1

k̂ − 01k+
2



Y
=1

k̂ − 02k+ +




Y
=1

k̂ − 0k+ (
12
 −1) (A.16)

By Assumption 3.3(i),  →  ∈ (0 1) for each  = 1 . So (A.16) implies that
Q

=1 k̂ −
0 k =  (

12
 −1) for  = 1 . It follows that (̂(1)  ̂())− (01  0) =  (

12
 −1).

(iv) By Theorem 3.1(iv) and Theorem 3.2(i), we have 1

k̂1 −  011k2 =  (

2
 + −2 )

=  (
2


−1 +−1)¥

To prove Theorem 3.3 we use the following two lemmas.

Lemma A.7 Suppose that Assumptions 3.1-3.3 hold. Then for any   0
(i) 

¡
max1≤≤

°° 1
 2
0∗

°°  

¢
= (−1)

(ii) 
³
max1≤≤

°°° 1
 2
0 01

∗
°°°  

´
= (−1)
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Lemma A.8 Suppose that Assumptions 3.1-3.3 hold. Then for any   0

(i) 
³
max1≤≤ k1k  ( + −1212 −1 )

¡
 + −12(log  )3

¢´
= (−1),

(ii) 
³
max1≤≤ k2k  

12
  (12)2

´
= (−1),

(iii) 
³
max1≤≤ k3k  

12
  (12)3

´
= (−1),

(iv) 
¡
max1≤≤ k4k  ( + (12))

¢
= (−1)

(v) 
³
max1≤≤

°°°̂ − 0

°°°  
¡
 (12) + (log )2

¢´
= (−1) for any   0,

(vi) 

µ
1


P
=1

°°°̂ − 0

°°°2  2
2


¶
= (−1) for any   0,

(vii) 
³
max1≤≤

°°° 1
 2
0̂1

 01 
0
1

°°°  12(  + −1212 −1 )
´
= (−1)

Proof of Theorem 3.3. (i) Fix  ∈ {1 }. By the consistency of ̂ and ̂, we have ̂− ̂
→

0 − 0 6= 0 for all  ∈ 0 and  6= . Now, suppose that k̂ − ̂k 6= 0 for some  ∈ 0 Then the
first order condition (with respect to ) for the minimization of the objective function (2.8) implies
that

0×1 =− 2


0 01

∗ +
2


0( 01

−
̂1
)∗ −

2


0̂1

 01 
0
1 +

2

 2
0̂1

 (̂ − 0)

+

Ã
2

 2
0̂1

 +
̂

k̂ − ̂k


!
 (̂ − ̂) + 

X
=1 6=

̂

Y
=1 6=

k̂ − ̂k

≡ −̂1 + ̂2 − ̂3 + ̂4 + ̂5 + ̂6 say,

where ̂ are defined in the proof of Theorem 3.2(i), ̂ =
Q

=1 6= k̂− ̂k → 0 ≡
Q

=1 6= k0 −
0 k  0 for  ∈ 0 by Assumption 3.3(ii). Let Ψ = 1(2) + (log )2 Let  denote a
generic constant that may vary across lines. By Lemma A.8(v)-(vi), we have



Ã
max
∈0



°°°̂ − 0

°°°  Ψ

!
= (−1) and 

Ã
1



X
=1

°°°̂ − 0

°°°2  2
2


!
= (−1) (A.17)

This, in conjunction with the proof of Theorem 3.2(i)-(iii), implies that

 (k̂ − 0k   ) = (−1) and  (max
∈0



¯̄
̂ − 0

¯̄ ≥ 02) = (−1) (A.18)

By (A.17)-(A.18) and the fact thatmax∈0


1
 2
0̂1

 ≤ max a.s., 
³
max∈0



°°°̂4°°°  2

´
= (−1) and 

³
max∈0



°°°̂6°°°  Ψ

´
= (−1) By Lemmas A.7(ii) and A.8(i), (vii), we

have 
³
max∈0


k̂1k  

´
= (−1) 

³
max∈0


k̂3k  12( +  12

12
 −1 )

´
= (−1) and 

³
max∈0


k̂2k  ( +  12

12
 −1 )

¡
 + −12(log  )3

¢´
= (−1)

10



For ̂5, we have

(̂ − ̂)
0̂5 = (̂ − ̂)

0
Ã
2

 2
0̂1

 +
̂

k̂ − ̂k


!
 (̂ − ̂)

≥ 2̂k̂ − ̂k2 + ̂k̂ − ̂k ≥ 0k̂ − ̂k

Combining the above results yields  (Ξ ) = 1− (−1), where

Ξ =

(
max
∈0



k̂2k  
³
 +  12

12
 −1

´³
 + −12(log  )3

´)

∩
(
max
∈0



k̂3k  12( +  12
12
 −1 )

)
∩
(
max
∈0



¯̄
̂ − 0

¯̄
 02

)

∩
(
max
∈0



°°°̂4°°°  2

)
∩
(
max
∈0



°°°̂6°°°  Ψ

)


Then conditional on Ξ , we have that uniformly in  ∈ 0,¯̄̄
(̂ − ̂)

0(̂2 + ̂3 + ̂4 + ̂5 + ̂6)
¯̄̄

≥
¯̄̄
(̂ − ̂)

0̂5
¯̄̄
−
¯̄̄
(̂ − ̂)

0(̂2 + ̂3 + ̂4 + ̂6)
¯̄̄

≥
n
0 − 

³
12

³


12
  +  12

12
 −1

´
+ 2 + Ψ

´o
k̂ − ̂k

≥0k̂ − ̂k2

where the last inequality follows by the fact that12(
12
 +

12
12
 −1 )+

2
+Ψ

= () for sufficiently large ( ) by Assumption 3.3(iv). It follows that

 (̂) =  ( ∈ ̂| ∈ 0) =  (̂1 = ̂2 + ̂3 + ̂4 + ̂5 + ̂6)

≤ 
³
|(̂ − ̂)

0̂1| ≥ |(̂ − ̂)
0̂5 − (̂ − ̂)

0(̂2 + ̂3 + ̂4 + ̂6)
´

≤  (k̂1k ≥ 04Ξ ) + (−1)→ 0 as ( )→∞

where the last inequality follows because  À  by Assumption 3.3(iv). Consequently, we

can conclude that w.p.a.1, ̂ − ̂ must be in a position where k − k is not differentiable with
respect to  for any  ∈ 0. That is,  (k̂ − ̂k = 0| ∈ 0) = 1− (−1) as ( )→∞.

For uniform consistency, we have that  (∪=1̂ ) ≤
P

=1  (̂ ) ≤
P

=1

P
∈0


 (̂) ≤

 max1≤≤  (k̂1k ≥ 04) + (1)→ 0 as ( )→∞This completes the proof of (i). Then
the proof of (ii) directly follows SSP and is therefore omitted. ¥

To prove Theorem 3.4, we use the following two lemmas.

Lemma A.9 Suppose that Assumptions 3.1-3.3 hold. Then for any  = 1 ,
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(i) 1
 2

P
∈̂

0̂1
 01 

0
1 =

1
 2

P
∈̂

1


P
=1 

0
̂1

 ̂− 1
 2

P
∈̂

1


P
=1 

0
̂1



− 1
2

P
∈̂

1


P
=1 

0
̂1

 02 
0
2 +  (

−12−1),
(ii) 1


2

P
∈̂

0̂1
 =

1


2

P
∈0


0 01

 +  (1),

(iii) 1√


P
∈̂

0̂1

³
∗ − 1



P
=1 

∗


´
=  +  (1),

(iv) 1
 2

P
∈̂

1


P
∈̂

0̂1
 =

1
 2

P
∈0



1


P
∈0


001

 +  (1)

Lemma A.10 Suppose that Assumptions 3.1-3.3 hold. Then

(i) 
→ 0,

(ii)  =  + +  (1) for  = 1 ,

(iii) 
→  (0Ω0) conditional on C where Ω0 = lim→∞Ω .

Proof of Theorem 3.4. (i) To study of the oracle property of the C-Lasso estimator, we invoke

the sub-differential calculus. A necessary and sufficient condition for {̂} and {̂} to minimize the
objective function in (2.9) is that for each  = 1   (resp.  = 1 ), the null vector 0×1
belongs to the sub-differential of 


 (β,α ̂1) with respect to  (resp. ) evaluated at {̂} and{̂}. That is, for each  = 1  and  = 1 , we have

0×1 = − 2

 2
0̂1

( − ̂) +




X
=1

̂

Y
=1 6=

k̂ − ̂k (A.19)

0×1 =




X
=1

̂

Y
=1 6=

k̂ − ̂k (A.20)

where ̂ =
̂−̂
k̂−̂k

if k̂ − ̂k 6= 0 and k̂k ≤ 1 if k̂ − ̂k = 0. First, we observe that

k̂ − ̂k = 0 for any  ∈ ̂ by the definition of ̂, implying that ̂ − ̂ → 0 − 0 6= 0

for any  ∈ ̂ and  6=  by Assumption 3.3(ii). It follows that k̂k ≤ 1 for any  ∈ ̂ and

̂ =
̂−̂
k̂−̂k

=
̂−̂
k̂−̂k w.p.a.1 for any  ∈ ̂ and  6= . This further implies that w.p.a.1P

∈̂

P
=1 6= ̂

Q
=1 6= k̂ − ̂k =

P
∈̂

P
=1 6=

̂−̂
k̂−̂k

Q
=1 6= k̂ − ̂k = 0×1 and

0×1 =
X
=1

̂

Y
=1 6=

k̂ − ̂k

=
X
∈̂

̂

Y
=1 6=

k̂ − ̂k+
X
∈̂0

̂

Y
=1 6=

k̂ − ̂k+
X

=1 6=

X
∈̂

̂

Y
=1 6=

k̂ − ̂k

=
X
∈̂

̂

Y
=1 6=

k̂ − ̂k+
X
∈̂0

̂

Y
=1 6=

k̂ − ̂k (A.21)

Then by (A.19)—(A.21) we have

2

 2

X
∈̂

0̂1
( − ̂) +





X
∈̂0

̂

Y
=1 6=

k̂ − ̂k = 0×1 (A.22)

12



Noting that 1{ ∈ ̂} = 1{ ∈ 0}+ 1{ ∈ ̂ \0}− 1{ ∈ 0 \ ̂} and  = 
0
 +  01 

0
1 + ∗

when  ∈ 0, we have

1

 2

X
∈̂

̂1
 =

1

 2

X
∈̂

0̂1


0
 +

1

 2

X
∈̂

0̂1
 01 

0
1 +

1

 2

X
∈̂

0̂1
∗

=
1

 2

X
∈0



0̂1


0
 +

1

 2

X
∈̂\0

0̂1


0
 −

1

 2

X
∈0


\̂

0̂1


0


+
1

 2

X
∈̂

0̂1
 01 

0
1 +

1

 2

X
∈̂

0̂1
( +  02 

0
2) (A.23)

Combining (A.22) and (A.23) yields

1

 2

X
∈̂

0̂1
(̂ − 0) =

1

 2

X
∈̂

0̂1
 01 

0
1 +

1

 2

X
∈̂

0̂1

¡
 +  02 

0
2

¢
+ ̂1 − ̂2 + ̂3 (A.24)

where ̂1 =
1

2

P
∈̂\0 

0
̂1


0
 , ̂2 =

1
 2

P
∈0


\̂

0̂1


0
, and ̂3 =


2

P
∈̂0 ̂

×Q
=1 6= k̂ − ̂k. By Theorem 3.3 and Lemmas S1.11-S1.12 in Su et al. (2016b), we have

 (12k̂1k ≥ ) ≤  (̂ ) → 0,  (12k̂2k ≥ ) ≤  (̂ ) → 0, and  (12k̂3k ≥
) ≤ P

=1

P
∈0


 ( ∈ ̂0| ∈ 0) ≤

P
=1

P
∈0


 (̂) = (1). It follows that k̂1 − ̂2 +

̂3k =  (
−12−1) By Lemma A.9(i), we have as

√


→ 0

1

 2

X
∈̂

0̂1
 01 

0
1 =

1

 2

X
∈̂

1



X
=1

0̂1
 ̂ − 1

 2

X
∈̂

1



X
=1


0
̂1



− 1

 2

X
∈̂

1



X
=1


0
̂1

 02 
0
2 +  (

−12−1) (A.25)

In addition,

1

 2

X
∈̂

1



X
=1

0̂1
 ̂ =

1

 2

X
∈̂

1



X
=1

X
∈̂

0̂1


¡
̂ − 0

¢
+  (

−12−1)

(A.26)

by Theorem 3.3. Let ̂1 =diag
³

1
1 2

P
∈̂1 

0
̂1

    
1

 2

P
∈̂

0̂1


´
and ̂2 is a
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× matrix with typical blocks 1


P
∈̂

P
∈̂


0
̂1

 such that

̂2 =

⎛⎜⎜⎜⎜⎜⎜⎝
1

12

P
∈̂1

P
∈̂1 

0
̂1

     1
12

P
∈̂1

P
∈̂


0
̂1



1
22

P
∈̂2

P
∈̂1 

0
̂1

     1
2 2

P
∈̂2

P
∈̂


0
̂1

 

...
. . .

...

1
2

P
∈̂

P
∈̂1 

0
̂1

  · · · 1
2

P
∈̂

P
∈̂


0
̂1



⎞⎟⎟⎟⎟⎟⎟⎠ 

Combining (A.24)—(A.26), we have
√
vec(α̂−α0) = (̂1 −̂2 )

−1√̂ + (1) where

the th element of ̂ is

̂ =
1√


X
∈̂

0̂1

⎡⎣¡ +  02 
0
2

¢− 1



X
=1


¡
 +  02 

0
2

¢⎤⎦
and  =diag(


1

  

)⊗. By Lemma A.9(ii)-(iv), we have that ̂1−̂2 = + (1),

̂ =  +  (1), where  and  are defined in Theorem 3.4. Then we have
√
vec(α̂−

α0) = −1

√
+ (1) By Lemma A.10(ii), we have −1−2 = + (1),

where  and  = 1 +2 are defined in Theorem 3.4. Thus,

√
vec(α̂−α0) = −1

p
 ( + ) +  (1) (A.27)

where  = (
0
1   

0
 )

0 and  = (
0
1   

0
 )

0.
(ii) By Lemma A.10 (i) and (iii), we have


→ 0 and 

→ (0Ω0) conditional C. (A.28)

Combining (A.27)—(A.28) yields
√
vec(α̂−α0)−√

−1


→(00
−1
0 Ω0

−1
0 ) ¥

To prove Theorem 3.5 we use the following lemma.

Lemma A.11 Suppose that Assumptions 3.1-3.3 hold. Then, as ( )→∞

(i) 1√

k̂1̂1 −  01 

0
1k =  (

√
 ) + (

−1
 ),

(ii) 1√

k̂2 −  022k =  (

−1
 )

(iii) 1√


P
∈̂

(̂2 −−1
2 02) =  (1)

(iv) 1√


°°°̂2̂2 −  02 
0
2

°°° =  (
−1
 )

(v) 1√


P
∈̂

(∆̂21 −∆21) =  (1)

(vi)
√




P
=1

P
=1 (κ̂ − κ)1 { ≤ } =  (1)

(vii) 1√


P
∈0


(∆̂24

ˆ̄2 −∆24̄02) =  (1)

(viii) 1√


P
∈0



P
=1

P
=1

h
κ̂1 { ≤ } ∆̂24 ˆ̄2 − κ1 { ≤ }∆24̄02

i
=  (1)

(ix) Ω̂ = Ω +  (1) and Ω̂
+
 = Ω

+
 +  (1)

where ̄
0
2 = 02 − 1



P
=1 

0
2 
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Proof of Theorem 3.5. (i) We first consider the bias-corrected post-Lasso estimators vec(α̂

̂
). By

construction and Theorem 3.4, we have

√
vec(α̂

̂
−α0)

=
√
vec(α̂

̂
− α̂)+

√
vec(α̂− α0)

=
p


−1
 +

p


h
−1 (1 +2)− ̂−1 (̂1 + ̂2)

i
+  (1)

It suffices to show that
√
vec(α̂

̂
−α0) = √

−1
 +  (1) by showing that (i1) ̂1 −

̂2 =  +  (1) (i2) ̂1 = 1 +  (1) and (i3) ̂2 = 2 +  (1) (i1) holds by

Lemma A.9 (ii) and (iv). For (i2), it suffices to show that ̂1−1 =  (1) for  = 1  By
Theorem 3.3 and using arguments like those in the proof of Lemma A.9(ii), we can readily show that

̂1 = ̃1+ (1) where ̃1 =
1√


P
∈0


∆̂21− 1√



P
∈0



P
=1

P
=1 κ̂1 { ≤ } ∆̂21

It follows that

̂1 −1 =
1√


X
∈0



(∆̂21 −∆21)− 1√


X
∈0



X
=1

X
=1

1 { ≤ }
h
κ̂∆̂21 − κ∆21

i
+  (1)

=
1√


X
∈0



(∆̂21 −∆21)− 1



X
=1

X
=1

κ̂1 { ≤ }
⎛⎝ 1√



X
∈0



(∆̂21 −∆21)
⎞⎠

−
√




X
=1

X
=1

(κ̂ − κ)1 { ≤ }
⎛⎝ 1



X
∈0



∆21

⎞⎠+  (1)

≡1 (1) +1 (2) +1 (3) +  (1)

We can prove ̂1 = 1+ (1) by showing that 1 () =  (1) for  = 1 2 3 Noting that¯̄̄
1


P
=1

P
=1 κ̂1 { ≤ }

¯̄̄
≤ 1

3

P
=1

P
=1

°°°̂1°°°°°°̂1°°° =  (1) and
1


P
∈0


∆21 =  (1) 

these results would follow by Lemma A.11(v)-(vi). To show (i3), we first observe that

2 =
1√


X
∈0



E
¡
0|C

¢
 01

 02

⎛⎝02 −
1



X
=1

02

⎞⎠
=

1√


X
∈0



E
¡
0|C

¢
 02 ̄

0
2 −

1√


X
∈0



E
¡
0|C

¢
 01

 02 ̄
0
2 ≡ 21 −22

where ̄
0
2 = 02 − 1



P
=1 

0
2 . Let 

212 = (21() 22()) 12 = (1 ()  2 ()) =

(1 ()  2 ()) and 12 = (10  
10
 )

0Note that  = 
 =  () 


+


 () 


+

1 () 1 +
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2 () 2  By the BN decomposition and the independence of { } and {12 }, we have

02 =4 = 21()1 + 22()2 = 212()12

=212(1)12 + 4̃−1 − 4̃

EC () =EC

Ã
2

X
=1



!
=

X
=1

³

1
 () 1 + 

2
 () 2

´
= 12 () 12



=12 (1) 12
 + 2EC (̃0 − ̃) 

where 
12
 = ( 10

  
20
 )0 =

³P
=1 

10
 
P

=1 
20


´0
  and ̃ are defined in Assumption 3.1.

Let ∗21 =
1√


P
∈0


2
P∞

=0

P∞
=0 +

0


0
4̄
0
2 It follows that

21 −∗21

=
1√


X
∈0



1



X
=1


12
 () 12

 
120
 212()0̄02 −

1√


X
∈0



2

∞X
=0

∞X
=0

+
0
4̄

0
2

=
1√


X
∈0



1



X
=1

12 (1) ( 12
 

120
 − )

212(1)0̄02

+
1√


X
∈0



2

(
1



−1X
=1

Ã
EC (+1) ̃

0
 −

∞X
=0

+1
0


!
04̄

0
2 −

1



∞X
=0

+1
0


0
4̄
0
2

− 1



X
=1

³
EC (̃0) 

120
 212(1)0 − ̃0(1)

004
´
̄
0
2 +

1



X
=1

EC (̃) 
120
 212(1)0̄02

− 1

EC

Ã
X
=1



!
̃0

0
4̄
0
2 +

1


EC (1) ̃

0
0

0
4̄
0
2

)
≡ 1√



X
∈0




2
 +

1√


X
∈0



2

n

2
1 +

2
2 +

2
3 +

2
4 +

2
5 +

2
6

o
04̄

0
2

where we use the fact that 
12
 (1)212(1)0 = 2 (1) (1)

0 04 by construction and thatP∞
=0

P∞
=0 +

0
 =  (1) (1)

0 −P∞
=0 +1

0
 + ̃0(1)

0 Following the proof of Lemma
A.7 in Huang et al. (2018), we can show that 1√



P
∈0


2

2


0
4̄
0
2 =  (1) for  = 1 2  6 and

1√


P
∈0


E(2

 ) = 0 It follows that 21 = ∗21 +  (1) =
1√


P
∈0


∆24̄

0
2 +  (1)

Analogously, we have22 = ∗22+ (1)  where
∗
22 =

1√


P
∈0



1


P
=1

P
=1 κ1{ ≤
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} ×2
P∞

=0

P∞
=0 +

0


0
4̄
0
2 Let 

∗
2 = ∗21 −∗22 Then

∗2 =
1√


X
∈0



1



X
=1

X
=1

(1{ = }− κ1 { ≤ })2
∞X
=0

∞X
=0

+
0


0
4̄
0
2

=
1



X
=1

X
=1

κ̄
∞X
=0

∞X
=0

³

1
+

21
 + 

2
+

22



´ 1√


X
∈0



̄
0
2

=
1



X
=1

X
=1

κ̄
1√


X
∈0



∆24̄
0
2

By Theorem 3.3 and using arguments as used in the proof of Lemma A.9(ii), we can readily show

that ̂2 = ̃2 +  (1) where ̃2 =
1√


P
∈0



1


P
=1

P
=1 κ̂∆̂24

ˆ̄2 Thus we can

prove that ̂2 = 2 +  (1) by showing ̃2 = ∗2 +  (1) for  = 1 . Note that

̃2−∗2 =
1√


P
∈0


(∆̂24

ˆ̄2−∆24̄02) − 1√


P
∈0



P
=1

P
=1 1 { ≤ } [κ̂∆̂24 ˆ̄2−

κ∆24̄
0
2] =  (1) −  (1) =  (1) by Lemma A.11(vii)-(viii). Consequently, ̂2 −2 =

 (1)

In sum, we have
√
vec(α̂

̂
−α0) = √

−1
 +  (1)

(ii) For the fully-modified post-Lasso estimators ̂


, we first consider the asymptotic distribution

for the infeasible version of the fully modified post-Lasso estimator ̃


. Noting that + = 

0
 +

 01 
0
1 +  02 

0
2 + +  by (A.24) and (A.25) and Theorem 3.3, we have

1

 2

X
∈̂

0̂1
(̃



− 0) =

1

 2

X
∈0



0̂1

¡
+ +  02 

0
2

¢
+

1

 2

X
∈̂

0̂1
 01 

0
1

− 1√


+1 −
1√


2 +  (
−12−1) (A.29)

Combining (A.26), (A.29) and Lemma A.9(i) yields

1

 2

X
∈̂

0̂1
(̃



− 0)−

1

 2

X
∈̂

1



X
=1

0̂1
 ̂

=
1

 2

X
∈0



0 01

⎛⎝+ −
1



X
=1

+ 

⎞⎠+ 1

 2

X
∈0



0 01
 02

⎛⎝02 −
1



X
=1

02

⎞⎠
− 1√


+1 −

1√


2 +  (
−12−1)

By (A.26) and Lemma A.10 (i)-(iii), we have
√
vec(α̃

 −α0) = (̂1−̂2 )
−1√ [(

+
+
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
2
 ) −+1 −2] +  (1) =

√


−1


+
 +  (1) where

+
 =

1√


X
∈0



001

⎛⎝+ −
1



X
=1


+


⎞⎠ 


2
 =

1√


X
∈0



001

⎛⎝ 02 −
1



X
=1


0
2

⎞⎠ 

 +1 =
1√


X
∈0




†
 (1)

X
=1

X
=1

n
κ̄

³
 
 

+0


´
− [1 { = }− κ1 { ≤ }] 1+

o

†
 (1)

00

 +2 =
1√


X
=1

⎧⎨⎩ 1 E ¡0|C¢1© ∈ 0
ª− 1



X
∈0




1


E(0 |C)

⎫⎬⎭ 01
+ 

3 =
1√


X
∈0



[ − EC ()]0 01
 02 

0
2

and + = +
 +

2
 and 

+
 =  +1+ +2+3 are the th block-elements of 

+


and  + , respectively. We have a new error process 
+
 = (

+
 ∆

0
∆

0
1 

0
2 )

0 whose partial sum
satisfies the multivariate invariance principle: 1√



P[ ·]
=1

+
 ⇒ + = (Ω+ ). Following the proof of

Lemma A.10(iii) (see also Theorem 9 in Phillips and Moon, 1999), we can show that  +

→ (0Ω+0 )

conditional on C where Ω+0 = lim→∞Ω+ and Ω
+
 =Var

¡
 + |C

¢
 Then we have

√
vec(α̃

 −α0) →MN (0 0
−1
0 Ω

+
0 

−1
0 )

Next, we show that α̂
 is asymptotically equivalent to α̃

 by showing that
√
 (α̂

 −α̃
 ) =

 (1)  Note that

√
 (α̂

 −α̃
 ) =

p


h
(̂1 − ̂2 )

−1(̂+ + ̂+1 + ̂2)−−1

³
+ ++1 +2

´i


Then it suffices to show (ii1) ̂1 − ̂2 =  +  (1) (ii2) ̂
+
1 = +1 +  (1)(ii3)

̂+ = + +  (1), and (ii4) ̂2 = 2 +  (1) (ii1) and (ii4) have been established in the
proof of part (i) of the theorem. For (ii2), we can apply arguments analogous to those used in the

proof of Lemma A.11(v) to establish that EC
°°° 1√



P
∈̂

(Ω̂ −Ω)
°°° =  (



+ 

2
) =  (1)  Since

∆+ = ∆ − ΩΩ
−1
∆ this implies that

°°° 1√


P
∈̂

(∆̂+21 −∆+21)
°°°2 =  (1)  The latter
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further implies that ̂+1 = +1 +  (1) For (ii3) we can apply Theorem 3 to show that

̂+ − +

=̂+
 − ̃+

 + ̃+
 − +



=
1√


X
∈̂

0̂1

⎛⎝̂+ −
1



X
=1

̂
+


⎞⎠− 1√


X
∈̂

0̂1

⎛⎝+ −
1



X
=1


+


⎞⎠+  (1)

=
1√


X
∈0



0̂1

¡
̂+ − +

¢− 1√


X
∈0



X
=1

0̂1

³
̂+ − +

´
 +  (1)

=
1√


X
∈0



0∆
³
Ω12Ω

−1
22 − Ω̂12Ω̂−122

´
− 1√



X
∈0



0̂1∆
³
Ω12Ω

−1
22 − Ω̂12Ω̂−122

´

− 1√


X
∈0



X
=1

0̂1
∆

³
Ω12Ω

−1
22 − Ω̂12Ω̂−122

´
 +  (1)

≡1 + 2 + 3 +  (1)

where ̃+
 = 1√



P
∈0


0̂1

³
+ − 1



P
=1 

+


´
and ̃+

 − +
 =  (1) by Lemma

A.9(iii). Following the proof of Lemma A.11(v), we can show that  =  (1) for  = 1 2 3 Then
(ii3) follows. This completes the proof of (ii).

(iii) The proof is analogous to that of (ii) and is omitted. ¥

To prove Theorems 3.6-3.7 we use the following two lemmas.

Lemma A.12 Suppose that Assumptions 3.1-3.3 and 3.5 hold. Then

(i) For any 1 ≤  ≤ 0, 1( ̂)− 1(
0) =  (

−1
 ),

(ii) For each r with 0 ≤   0, there exist a positive number  such that plim inf( )→∞[1(0)

−1(0 0)] = ,

(iii) For any fixed r, with 0 ≤  ≤ max, 1( ̂
)− 1(

0 ̂0) =  (
−2
 ),

where 1(
0) is defined analogously to 1( ̂) with ̂ replaced by 0  = (−1Λ00Λ0)

×(−100̂) and 0 = ∆ 0

Lemma A.13 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then

(i) For any 1 ≤ 1 ≤ 01, 2(1 ̂
1
1 )− 2(1 

0
1

1
1 ) =  (

√
 ),

(ii) For any 1 ≤ 1  01, plim inf( )→∞ 
−1[2(1  01

1
1 ) − 2(1 

0
1 )] = 1 for some

1  0,

(iii) For any 01 ≤ 1 ≤ max, 2(1 ̂
1)− 2(

0
1 ̂

01) =  (1)

where 2(1 
0
1

1
1 ) is defined analogously to 2(1 ̂

1
1 ) with ̂ 1

1 replaced by  01
1
1  and 1

1 =

(−1Λ00Λ0) ×(−2 00̂ 1)

Proof of Theorem 3.6. Noting that 1()− 1(
0) = 1( ̂

)−1(
0 ̂0)− (0− )1( )

it suffices to show that 
³
1( ̂

)− 1(
0 ̂0)  (0 − )1( )

´
→ 0 as ( ) → ∞ when

 6= 0. We consider the under- and over-fitted models, respectively. When 0 ≤   0, we make the
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following decomposition:

1( ̂
)− 1(

0 ̂0) =[1( ̂
)−  (0)] + [1(

0)− 1(
0 00)]

+ [1(
000)− 1(

0 ̂0)] ≡ 11 +12 +13

1 =  (
−1
 ) for  = 1 3 by Lemma A.12(i). Noting that 1(

000) = 1(
0 0)

plim inf( )→∞12 =  when   0 by Lemma A.12(ii). It follows that  (1()  1(
0))→

0 as 1( )→ 0 as ( )→∞ under Assumption 3.5.

Now, we consider the case where 0   ≤ max. Note that 
2
 [1( ̂

)−1(
0 ̂0)] =  (1)

and 2 ( − 0)1( )  2 1( ) → ∞ by Lemma A.12(iii) and Assumption 3.5, we have

 (1()  1(
0)) =  (1( ̂

)− 1(
0 ̂0)  (0 − )1( ))→ 0 as ( )→∞. ¥

Proof of Theorem 3.7. Noting that 2(1)−2(01) = 2(1 ̂
1
1 )−2(01 ̂ 01

1 )−(01−1)2( )

it suffices to show that 
³
2(1 ̂

1
1 )− 2(

0
1 ̂

01
1 )  (

0
1 − 1)2( )

´
→ 0 as ( )→∞ when

 6= 0. First, when 1  01 we consider the decomposition

2(1 ̂
1
1 )− 2(

0
1 ̂

01
1 ) = [2(1 ̂

1
1 )− 2(1 

0
1

1
1 )] + [2(1 

0
1

1
1 )− 2(

0
1 

0
1

01
1 )]

+ [ (01 
0
1

01
1 )−  (01 ̂

01
1 )] ≡ 21 +22 +23

By Lemma A.13,21 =  (
12) 22 is of exact probability order ( log log  ) and23 =

 (1). It follows that

 (2(1)  2(
0
1)) = 

³
2(1 ̂

1
1 )− 2(

0
1 ̂

01
1 )  (

0
1 − 1)2( )

´
→ 0

as 2( ) (log log  )  → 0 under Assumption 3.5.

Next, for 1  01, we have  (1 ̂
1
1 ) −  (01 ̂

01
1 ) =  (1) for 1  01 by Lemma A.13(iii),

and (1 − 01)2( ) → ∞ by Assumption 3.5. This implies that  (2(1) − 2(
0
1)  0) =

 (2(1 ̂
1
1 )− 2(

0
1 ̂

01
1 )  (

0
1 − 1)2( ))→ 0 as  →∞. ¥

To prove Theorem 3.8 we use the following lemma.

Lemma A.14 Suppose that Assumptions 3.1-3.3 and 3.7 hold. Then max0≤≤max |̂2() −
̂2
̂(0)

| =  (
2
 ) where ̂

2
()

= 1


P
=1

P
∈̂()

P
=1[−̂0̂()

−̂1()0̂1()]2

and  is defined in Section 3.6.

Proof of Theorem 3.8. First, we show that

3(0 ) = ln[3(0)] + 03( )

= ln
1



0X
=1

X
∈̂(0)

X
=1

h
 − ̂

0
̂(0)

 − ̂1(0 )
0̂1(0 )

i2
+ (1)

→ ln(20)
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We consider the cases of under- and over-fitted models separately. When 1 ≤   0 for 
() =

(1 ) we have

3() =
1



X
=1

X
∈̂(0)

X
=1

h
 − ̂

0
̂()

 − ̂1()0̂1()
i2

≥ min
1≤0

inf
()∈G()

1



X
=1

X
∈

X
=1

h
 − ̂

0


 − ̂1(
())0̂1(())

i2
= min
1≤0

inf
()∈G()

̂2
()



By Assumption 3.6 and Slutsky’s Lemma, we can demonstrate

min
1≤0

3() ≥ min
1≤0

inf
()∈

ln(̂2
()

) + 3( )
→ ln(2)  ln(20)

It follows that  (min1≤0 3()  3(0 ))→ 1.
When 0   ≤ max we can show that  [̂2

̂()
− ̂2

̂(0)
] =  (1) when there is no

unobserved common factor and no endogeneity in , 
2
 [̂

2
̂()

− ̂2
̂(0)

] =  (1) when there

are only unobserved nonstationary common factors and 2 [̂
2
̂()

− ̂2
̂(0)

] =  (1) when there

are both nonstationary and stationary common factors. Then by Lemma 14,



µ
min
∈K+

3()  3(0 )

¶
=

µ
min
∈K+

−2 ln
³
̂2
̂()

̂2
̂(0)

´
+ −2 3( )( −0)  0

¶
≈

µ
min
∈K+

−2

³
̂2
̂()

− ̂2
̂(0)

´
̂2

̂(0)
+ −2 3( )( −0)  0

¶
→1 as ( )→∞

where K+ = { : 0   ≤ max} ¥
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