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Physics of relativistic shocks
Mikhail V. Medvedev
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Abstract. Relativistic shocks are usually thought to occur in violentastrophysical explosions.
These collisionless shocks are mediated by a plasma kineticstreaming instability, often loosely
referred to as the Weibel instability, which generates strong magnetic fields “from scratch" very
efficiently. In this review paper we discuss the shock micro-physics and present a recent model of
“pre-conditioning" of an initially unmagnetized upstreamregion via the cosmic-ray-driven Weibel-
type instability.
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INTRODUCTION

It has been shown in recent years that collisionless relativistic shocks are mediated by
the Weibel instability — a current filamentation instability that produces strong, sub-
equipartition magnetic fields at the shock front [1]. This isan attractive model for
gamma-ray bursts (GRBs), because it puts a synchrotron shock model on a firm physical
ground. Here we describe the physics of the instability, itslinear regime and saturation.
We discuss the properties of the nonlinear Weibel turbulence — the state of the ongoing
self-similar process of current mergers. Finally, we present a toy model of the foreshock
region — an extended region in the upstream of the shock whichmay likely be populated
with strong and relatively large-scale (meso-scale) magnetic fields produced by shock-
accelerated particles. The foreshock can be the main playerin determining the shock
radiative processes and the efficiency of cosmic ray acceleration.

LINEAR REGIME OF FIELD GROWTH AND ITS SATURATION

The instability under consideration was first predicted by Weibel [2] for a non-relativistic
plasma with an anisotropic distribution function. The simple physical interpretation con-
siders the PDF anisotropy more generally as a two-stream configuration of cold plasma.
Below we give a brief, qualitative description of this streaming magnetic instability.

Let us consider, for simplicity, the dynamics of one speciesonly (e.g., protons),
whereas the other (electrons) is assumed to provide global charge neutrality.1 The
streaming particles are assumed to move along thez-axis with the velocitiesv = +ẑvz
andv = −ẑvz, thus forming equal particle fluxes in opposite directions (so that the net

1 In reality, the role of protons is more complicated, e.g., they play a crucial role in the electron heating,
which we do not consider here.
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current is zero). Such a particle distribution occurs naturally near the front of a shock
(moving alongz-direction), where the “incoming” (in the shock frame) ambient gas par-
ticles meet the “outgoing” particles reflected from the shock potential (loosely speaking,
the low energy cosmic rays). Thus, the particle velocitiesvz are of order the shock veloc-
ity, vz ∼ vsh. The counter-streaming particles may also have some thermal spread. Since
for high-Mach number shocks,vth ≪ vsh in the upstream region, we may neglect the par-
allel velocity spread in our consideration. The thermal spread in the transverse direction
cannot be neglected, however. We parameterize the PDF anisotropy as follows:

A =
ε‖− ε⊥

εtot
≃ M2−1

M2+1
, (1)

whereε‖ ∝ v2
z ≃ v2

sh is the energy of particle alongz-direction,ε⊥ ∝ (v2
x +v2

y)∝ v2
thermal≃

c2
s is the thermal energy in the transverse direction,εtot = ε‖+ ε⊥ is the total energy,cs

is the sound speed upstream and the Mach number of the shock isM = vsh/cs. Clearly,
for strong shocksM ≫ 1, the anisotropy parameter is close to unity,A ∼ 1. Next,
according to the linear stability analysis technique, we add an infinitesimal magnetic
field fluctuation,B = x̂Bx cos(ky). The Lorentz force,e(v×B)/c, acts on the charged
particles and deflects their trajectories, as is shown in Figure 1a. As a result, the protons
moving upward and those moving downward will concentrate inspatially separated
current filaments. The magnetic field of these filaments appears to increase the initial
magnetic field fluctuation. The growth rate and the wavenumber of the fastest growing
mode (which, in fact, sets the spatial correlation scale of the produced field) are

γB = Aωp,s(vz/c), kB = Aωp,s/c, (2)

whereωp,s =
(

4πe2ns/ms
)1/2

is the plasma frequency defined for speciess (electrons,
protons, etc.),np andmp are the number density and the mass of the protons, respec-
tively. The above scalings are for non-relativistic plasmas. In the relativistic case, one
shall simply substitutems → γsms, thereγs is the Lorentz factor of the streaming species.
Note that the instability is driven by the PDF anisotropy andshould quench for the
isotropic case,A = 0.

The Lorentz force deflection of particle orbits increases asthe magnetic field pertur-
bation grows in amplitude. The amplified magnetic field is random in the plane per-
pendicular to the particle motion, since it is generated from a random seed field. Thus,
the Lorentz deflections result in a pitch angle scattering, which makes the bulk of the
PDF isotropic. If one starts from a strong anisotropy, so that the thermal spread is much
smaller than the particle bulk velocity, most of the particles will eventually isotropize
and the thermal energy associated with their random motionswill be equal to their ini-
tial directed kinetic energy. This final state will bring theinstability to saturation.

The saturation level of the magnetic field may readily be estimated as follows. First
of all, note that the instability is due to the free streamingof particles. As the magnitude
of the magnetic field grows, the transverse deflection of particles gets stronger, and their
free streaming across the field lines is suppressed, see Figure 1b. Once the bounce rate
of the streaming particles in the self-generated current filaments becomes greater than
the instability growth rate, the instability ceases. In therelativistic case we are concerned
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FIGURE 1. Illustration of various stages of the Weibel instability. Color coding of particles:blue — the
incoming particles from the IGM,red — the particles scattered from the shock. (a) Linear regime:current
filamentation; (b) saturation; (c) nonlinear regime: filament coalescence.



with here, this condition is identical to that the typical curvature scale for the deflections
is the Larmor radius,

ρL = v⊥B/ωc,s, (3)

wherev⊥B is the particle velocity transverse to the direction of the local magnetic field
and

ωc,s =
eB

γsmsc
(4)

is the cyclotron (Larmor) frequency of speciess and we assumedv⊥B ∼ c. On scales
larger thanρL, particles can only move along field lines. Hence, when the growing
magnetic fields become such thatkBρL ∼ 1, the particles are magnetically trapped and
can no longer amplify the field. Assuming an isotropic particle distribution at saturation
(v⊥B ∼ vsh), this condition can be re-written as

εB =
B2/8π

msc2nsγ2
shock

≃ A2. (5)

For strong shocks (M ≫ 1, A∼ 1), this corresponds to the magnetic energy density close
to equipartition with the thermal energy of particles downstream the shock.

Numerical PIC simulation indicate a somewhat smaller valueof εB, typically not
exceeding 0.1 or so even for strong shocks, that is the magnetic field energy density
at a relativistic shock is of the order of 10% of the shock kinetic energy [3, 4, 5]. For
more recent relevant work, see [6, 7].

NONLINEAR WEIBEL TURBULENCE AND FILAMENT
COALESCENCE

Numerous 3D PIC numerical simulations demonstrate that thegenerated magnetic fields
are associated with a quasi-two-dimensional distributionof current filaments. Hence
we suggest the following toy model. We consider straight one-dimensional current
filaments oriented in the vertical,z-direction. Initially, all filaments are identical: the
initial diameter of them isD0, their initial mass per unit length isµ0 ≃ mn(πD2

0/4),
wherem is the mass of plasma particles (e.g., electrons) andn is their number density.
Each filament carries currentI0 in either positive or negative ˆz-direction. The net current
in the system is set to zero, i.e., there are equal numbers of positive and negative
current filaments. We also assume that the initial separation (the distance between the
centers) of the filamentsd0 is comparable to their size,d0 ≃ 2D0. Finally, no external
homogeneous magnetic field is present in the system. Here we assume that filaments
have a simple structure: they have no return current on the outside. Generally, this is not
true, as the filaments represent some sort of the Harris equilibrium. The return current
can be incorporated in the analysis and is expected to decrease the overall coalescence
rate, because it shall partially screen the main current and, thus, reduce the interaction
strength between the filaments.

Initially, the filaments are at rest and their positions in space are random. This con-
figuration is unstable because opposite currents repel eachother, whereas like currents



are attracted to each other and tend to coalesce and form larger current filaments. The
characteristic scale of the magnetic field will accordinglyincrease with time. We study
this process quantitatively using the toy model of two interacting filaments.

The magnetic field produced by a straight filament isB0(r) = 2I0/(cr), where r
is the cylindrical radius. The force per unit length acting on the second filament is
dF/dl = −B0I0/c. SincedF/dl = µ ẍ, wherex is the position in the center of mass
frame and “overdot” denotes time derivative, we write the equation of motion as follows:

ẍ =− 2I2
0

c2µ0

1
x
, (6)

where we used thatr = 2x and the reduced massµr = µ0/2. We define the coalescence
time as the time required for the filaments, which are initially at rest, to cross the distance
between them and “touch” each other, which happens when the distance between their
centers becomes equal toD0, i.e., whenx = D0/2. The coalescence time, as it is defined
above, is independent of the details of the merging process itself, which involves rather
complicated dynamics associated with the redistribution of currents. Quite obviously,
the interaction between the filaments is the weakest at largedistancesx ∼ x0 ∼ d0/2.
Hence, the coalescence rate is limited by the filament motions at the largest scales. The
coalescence time can be readily estimated from Eq. (6), assuming thatx ∼ x0 ∼ d0/2
andẍ ∼ (d0/2)τ−2

0 , as follows:

τ0,NR ∼
(

D2
0c2µ0/(2I2

0)
)1/2

. (7)

The above estimate is valid as long as the motion is non-relativistic. The maximum
velocity of a filament is at the time of coalescence,x = D0/2:

v0 ∼ D0/2τ0 ∼ I0/(c
√

2µ0). (8)

It must always be much smaller than the speed of light.
If the motion of a filament during the merger becomes sub-relativistic, i.e., vmerger

becomes a significant fraction ofc the separation cannot decrease faster than ast(x) ≃
x/c. Therefore, the coalescence time will be

τ0,R ≃ D0/vmerger. (9)

The filament coalescence is a hierarchical process. Indeed,suppose that initially the
system containsN0 current filaments, with an average separationd0 ∼ 2D0. Each of the
filaments carries currentI0, its diameter isD0 and its mass per unit length isµ0. For
simplicity, we assume that filaments coalesce pairwise.

Having the original “zeroth generation” of filaments merged(the process takes about
τ0,NR or τ0,R to complete), the system will now containN0/2 of “first generation”
filaments. Each of these filaments carries currentI1 = 2I0, has mass per unit length
µ1 = 2µ0, and the separation between them isd1 =

√
2d0 (because the two dimensional

number density of filaments decreased by 2). Sinceµ ∝ D2, the filament size also
increases asD1 =

√
2D0. Remarkably, this new configuration is identical to the initial



FIGURE 2. The 2D structure of the magnetic fields ine−e+ plasmas at various times (from [8]).
The change of the field correlation length with time is clearly seen. Similar The growth of this length
is substantially slower and the magnetic field filling factoris respectively larger in the electron-proton
plasma.

one, but with the re-scaled parameters. Hence, the coalescence process is self-similar.
The produced first generation filaments will be interacting with each other and merge
again to yield the second generation. The coalescence process will then continue in a
self-similar way. Note that the coalescence times at each stage are not necessarily the
same. Taking into account that at thek-th merger level, i.e., afterk pairwise mergers:
Ik = 2kI0, µk = 2kµ0, Dk = 2k/2D0, dk ∼ Dk/2, we obtain

τk,NR = τ0,NR, τk,R = 2k/2τ0,R. (10)

Since the coalescence time is independent ofk while the filaments are non-relativistic,
whereas the distance between them increases, the typical velocities of the merging
filaments grow with time and, will approach some terminal velocity vmerger ∼ c, as
vk = 2k/2v0.

Finally, it is instructive to present the evolution of the parameters as a function of
physical time,t, rather than the merger level,k. Apparently, it takest = ∑k

k′=0τk′ to
completek mergers, whereτk is given by Eq. (10). Thus, for the non-relativistic and
relativistic cases respectively, we have:k = t/τ0,NR andk ≃ 2log2 [(t/τ0,R)]. Thus, the
magnetic field correlation length increases as a function oftime as

λB(t) = D02t/(2τ0,NR), λB(t)≃ vmergert, (11)

in the non-relativistic and sub-relativistic regimes, respectively. Note that the last ex-
pression is an approximation at large timest ≫ τ0,R, i.e., at largek ≫ 1.

Simulations of the Weibel filament dynamics in 2D pair-dominated and electron-
ion plasmas confirm the above arguments. A few snapshots are shown in Figure 2. It
has been observed that the filament coalescence does occur and the merger velocity in
relativistic plasmas does approach some terminal value, which is somewhat smaller then
the speed of light. By determining the spectral peak of the magnetic fluctuations at each
time step, one determined that after an initial fast growth,the typical correlation length
of the field sets on the scalings

λB(t) ∝ t0.8, λB(t) ∝ t, (12)



for non-relativistic and relativistic plasmas, respectively. Thus, the field scale grows
in a self-similar manner, as one shall expect for a scale-free turbulence. We also note
that in some respect, the field scale growth is analogous to the inverse cascade in
two-dimensional magnetohydrodynamic (MHD) turbulence. The crucial difference is,
however, the entirelykinetic nature of the process; at such small scales∼ c/ωp the
MHD approximation is completely inapplicable.

RELATIVISTIC SHOCK AND ITS FORESHOCK REGION

The simple understanding of a relativistic shock goes as follows. The particles reflected
from the shock potential and propagate forward. They are Weibel-unstable and result
in plasma current filamentation. The filaments interact witheach other; they merge
to form larger ones with stronger magnetic field since the current is approximately
conserved during mergers. As filaments get stronger, they scatter particle more, thus
causing particle heating and acceleration. At some point, the filaments are too strong,
so they break up and result in strong longitudinal electric fields that slow down the
ions (or the plasma in-flow, in general). Here the density builds up quickly, so this is
the shock jump. Such a picture is, however, rather simplistic. The shock continuously
accelerates and ejects cosmic rays (CRs) into the upstream region. Because of the non-
linear shock acceleration, these CRs carry a substantial fraction of the shock energy, yet
they are propagating nearly at the light speed – much faster than the shock. Hence, in
time, the CRs deposit their energy into the magnetic field in an extremely large region
in front. These fields will in turn affect the shock propagation and particle acceleration.
The model of the relativistic foreshock is discussed now.

Overall, our model of the foreshock is as follows. A shock is asource of CRs which
move away from it, thus forming a stream of particles throughthe ambient medium,
say, the interstellar medium (ISM). If the ISM magnetic fields are negligible, i.e., their
energy density is small compared to that of CRs, the streaming instability (either the
pure magnetostatic Weibel or the mixed-mode electromagnetic oblique Weibel-type
instability, depending on conditions) is excited and stronger magnetic fields are quickly
generated. The Weibel instability dispersion equation [2]has been also derived as the
cosmic-ray streaming instability dispersion equation, see e.g., [10]. The generated fields
further isotropize (thermalize) the CR stream. Since less energetic particles, having a
greater number density and carrying more energy overall, are thermalized closer to the
shock, the generated B-field will be stronger closer to the shock and fall off away from it,
whereas its correlation length will increase with the increasing distance from the shock.
More energetic particles keep streaming because of their larger Larmor radii and produce
the magnetic field further away from the shock. This process stops at distances where
either the CR flux starts to decrease (because of the finite distance the CR particles can
get away from a relativistic shock or because of the shock curvature causing CR density
to decrease as∝ r−2 if the shock is sub- or non-relativistic) or where the generated
magnetic fields become comparable to the ISM field and the instability ceases. Thus, a
large upstream region — the foreshock — is populated with magnetic fields. We now
derive its self-similar structure. We work in the shock co-moving frame unless stated
otherwise.



Let’s consider a relativistic shock moving alongx-direction with the bulk Lorentz fac-
tor Γsh; the shock is plane-parallel and lies in theyz-plane, andx = 0 denotes the shock
position. The shock continuously accelerates cosmic rays,which then propagate away
from it into the upstream region. We conventionally assume that the CR distribution over
the particle Lorentz factor is described by a power-law:

nCR = n0(γ/γ0)
−p+1 (13)

for γ > γ0 and zero otherwise. The indexp is approximately equal to 2.2 for ultrarela-
tivistic shocks andn0 is the normalization.2 We assume that the above energy distribu-
tion is the same everywhere in the upstream, that is, we neglect the nonlinear feedback
of magnetic fields onto the particle distribution. Moreover, we assume that the forma-
tion of the CR power-law distribution is co-temporaneous with the shock formation it-
self, so we neglect the finite time acceleration of CRs, whichmay be quite important
for higher-energy CRs. Accurate inclusion of this effect would require solution of the
convection-diffusion equation with diffusion being calculated self-consistently from the
self-generated fields, which are not steady at the beginningof the shock formation; all
these issues are beyond the scope of the present paper. The CRmomentum distribu-
tion exhibits strong anisotropy: the parallel (x) components of CR momenta are much
greater than their thermal spread in the perpendicular (yz) plane. Indeed, for a particle
to move away from the shock, it should have thex-component of the velocity exceeding
the shock velocity. Since both the shock and the particle move nearly at the speed of
light, this puts a constraint on their relative angle of propagation to be less then 1/Γsh in
the lab (observer) frame. Hence, the transverse spread of the CR particle’s momenta is
p⊥ ≤ p‖/Γsh≪ p‖. This is also seen in numerical simulations [5].

The CR particles propagate through the self-generated foreshock fields and scatter
off them. Lower energy particles are deflected in the fields more strongly and, there-
fore, izotropize faster than the higher energy ones, as having larger Larmor radii. At a
positionx > 0 the CR distribution can roughly be divided into isotropic (themalized)
component withγ < γr(x) and streaming component withγ > γr(x), whereγr(x) is
the minimum Lorentz factor of the streaming particles at a location x; it is also the
maximum Lorentz factor of the randomized component at this location. The stream-
ing component is Weibel-unstable with a very shorte-folding time τ ∼ ω−1

p,rel, where

ωp,rel =
(

4πe2ñ(γ)/mpγ
)1/2

is the relativistic plasma frequency, ˜n(γ) is the density of
streaming particles of the Lorentz factorγ (tilde denotes streaming particles). Note that
the Weibel instability growth rate depends onn of the lower density component – cosmic
rays, in our case – measured in the center of mass frame of the streaming plasmas. For
the lower-energy part of the CR distribution, the center of mass frame is approximately
the shock co-moving frame, hence we evaluate the instability on the shock frame. This
approximation is less accurate for the high-energy CR tail;however, the growth rate
and the scale length are weak functions of the the shock Lorentz factor (∝ Γ∓1/2

sh ), so
the result will be accurate within an order of magnitude for all reasonable values ofΓsh

2 Conventionally the distribution is given asdn/dγ ∝ γ−p with p being∼ 2.2−2.3 for relativistic shocks;
hence the density of particles of energy∼ γ is n(γ) ∝ γ−pδγ ∝ γ−p+1.



for GRB afterglows. Here we use the proton plasma frequency because the CR electron
Lorentz factors are aboutmp/me times larger, so they behave almost like protons [5].
The instability is very fast: it rapidly saturates (the fields cease to grow) in a few tens of
e-folding timesτ, that is in few tens of inertial lengths (also referred to as the ion skin
length)c/ωp,rel in front of the shock. Thereafter the particles keep streaming in current
filaments and the field around them amounts toξB ∼ 0.01−0.001 or so of the kinetic
energy of this group of particles:

B2(γ)/8π ∼ ξBmpc2γ ñ(γ), (14)

whereξB is the efficiency factor obtained from PIC simulations;ξB has the same mean-
ing as the conventionalεB parameter reserved here for the ratio of the total magnetic
energy to the total kinetic energy of the shock and which, as is seen in PIC simulations,
is larger thanξB near the shock because of the nonlinear evolution and filament merg-
ers. Whereas there is a concern that the Weibel instability can be suppressed by large
upstream magnetic fields, numerical simulations generallyindicate that the upstream
field has little influence on the Weibel instability if the field energy density does not
exceed few percent of the total shock kinetic energy density. For our conditions with
ξB ∼ 0.01−0.001 and reasonable CR acceleration efficiency,ξCR∼ 0.5 (see, e.g., [11])
the instability is hardly suppressed. The correlation length of the field is of the order of
the ion inertial (skin) length

λ (γ)∼ c/ωp,rel =
(

mpc2γ/4πe2ñ(γ)
)1/2

. (15)

These random fields deflect CR particles and ultimately lead to their isotropization.
The group of particles of the Lorentz factorγr thermalizes at the distance from the shock:

xr ∼ λ (γ)/(2ξB). (16)

At this point,x = xr, one hasγ = γr by definition; no field of the strengthB(γr) and the
scaleλ (γr) can be produced atx > xr. One can show that randomization of the higher
energy particles is small in these fields atx ∼ xr, which means that these particles keep
streaming through much larger distancesx ≫ xr and will produce the magnetic field
further away from the shock. This field will be weaker and larger scale because of the
lower density of the streaming particles ˜n(γ)≪ ñ(γr), according to Eqs. (13)–(15).

Finally, the number density of streaming CR particles atγr is ñ(γr) = n0(γr/γ0)
−p+1.

Therefore,

λ (γr)∼
(

mpc2γ0/4πe2n0
)1/2

(γr/γ0)
p/2 ≡ λ0(γr/γ0)

p/2, (17)

whereλ0 is the inertial length of the lowest energy CR “plasma". Inverting this expres-
sion yields:

γr ∼ γ0[λ (γr)/λ0]
2/p ∼ γ0(2ξBxr/λ0)

2/p. (18)

Hereafter, the subscript “r” can be omitted without loss of clarity.
In a steady state, this field is continuously advected towardthe shock (in the shock

co-moving frame since the center of mass frame of the foreshock plasma differs from the



FIGURE 3. A schematic representation of the foreshock magnetic fields: the coherence length is
increasing with the upstream distance. Below are schematicgraphs showing variation of the spectrum
of the streaming part of cosmic rays and the corresponding self-generated fields (highlighted).

shock frame) and may affect the onset and the saturation level of the Weibel instability.
In addition, the current filaments producing the fields mergewith time, so thatB andλ
change while being advected. These nonlinear feed-back effects are difficult to properly
account for in a theoretical model; hence they are omitted inthe current study. PIC
simulations can help us to quantify the effects as well as to confirm or disprove our
assumption that the shock and the foreshock do form a self-sustained, steady state
structure.

The self-similar structure of the foreshock [12] immediately follows from Eqs. (13),
(14), (16) and (18). The magnetic field correlation length isproportional to the upstream
distance from the shock,

λ (x)∼ x(2ξB), (19)

and its strength decreases with the distance as

B(x)∼ B0(x/x0)
−(p−2)/p , (20)

whereB0 =
(

8πξBmpc2n0γ0
)1/2

andx0 = λ0/(2ξB) =
(

mpc2γ0/4πe2n0
)1/2

/(2ξB). In
this estimate we neglected the advected fieldsB(γ) as sub-dominant compared toB(γr)
for γ > γr. We note here that the idea of self-similarity of the Weibel turbulence has been



first proposed by Medvedev et al. [9] and then further elaborated by Katz et al. [13],
whose results are in agreement with the above scalings. TheεB parameter expresses
the field energy normalized to the shock kinetic energy. The energy of cosmic rays is
UCR=

∫

n(γ/γ0)(mpc2γ) d(γ/γ0)∼ mpc2γ0n0 and constitutes a fractionξCR of the total
shock energy,Ush. The efficiency of cosmic ray acceleration,ξCR, can be as high as
several tens percent, perhaps, up toξCR ∼ 0.5, as follows from the nonlinear shock
modeling [11]. The scaling ofεB is:

εB ∼ ξCRξB (x/x0)
−2(p−2)/p . (21)

These scalings hold while the shock can be treated as planar and while the ISM
magnetic fields are negligible compared to the Weibel-generated fields. If the shock
is relativistic, CR particles can occupy a narrow region in front of it. Assuming CR to
propagate nearly at the speed of light, their front is ahead of she shock at the distance
∆r′ ∼ ∆r/Γsh∼ R/(2Γsh) in the shock frame. Also, when the radial distance in the lab
frame∆r = x/Γsh becomes comparable to the shock radius∆r ∼ R the curvature of the
shock can no longer be neglected: the density of CR particles, which was assumed to
be constant in our model, starts to fall as∝ r−2. This leads to a steeper decline ofB
with distance. Obviously, the first constraint is more stringent for a relativistic shock,
whereas both are very similar (within a factor of two) for a non-relativistic shock. Hence
one should use the first constraint. Here we also assumed thatthe ambient magnetic field
is zero. It is a good approximation for usual ISM conditions [12].

We can also estimate the magnetic field spectrum at and after the shock jump as
long as dissipation is not playing a role. The magnetic field of different correlation
scales created in the foreshock is advected toward the shock, so a broad spectrum is
accumulated:

Bλ ∝ λ−(p−2)/p ∼ λ−0.091, (22)

where Eqs. (19) and (20) were used andp ∼ 2.2 was assumed.
We want to note that a number of simplifying assumptions has been made in our

analysis. In particular,nonlinear feedback effects of the upstream magnetic field on the
particle distribution, on the shock structure and on Fermi acceleration were omitted.
The inclusion of these effects is hardly possible in any analytical model. We neglected
in this model that the accelerated electrons can loose theirenergy and cool down in the
self-generated fields while the protons keep their energy, thus causing electric fields and,
possibly, currents to build up in the region and modify the foreshock structure. We also
assumed that a steady state exists for the shock-foreshock system at hand. Apparently, it
is not at all clear whether the steady state is at all possibleor the system exhibits an inter-
mittent behavior. One can envision a scenario in which the CRs overproduce upstream
magnetic fields leading to enhanced particle scattering andthe overall preheating of the
ambient medium, which, in turn, can cause the shock to weaken, disappear and then
re-appear in a different place further upstream. Presentlyavailable 2D PIC simulations
of an electron-position shock do show the upstream field amplification and no steady
state has been achieved: both upstream and downstream fieldscontinue to grow for the
duration of the simulations though no shock re-formation has so far been observed. We
argue that extensive PIC or/and hybrid simulations of a shock are imperative for further
study.



CONCLUSIONS

What is more important: a shock or its foreshock? Conventionally, one believes that the
radiation observed from gamma-ray bursts is produced in theshock downstream. Indeed,
the magnetic fields there are present, though the small-scale ones decay relatively fast.
The foreshock fields advected into the downstream may increase the meso-scale fields
which are not coupled to dissipation efficiently. The shock front itself can produce
substantial radiation for certain parameters of a GRB explosion. However, the fields at
the shock are mostly those created in the foreshock too and then advected with the flow.
The foreshock region itself is very large in size∼ R/Γ2

sh in the observer’s frame and is
filled with the magnetic field of sub-Gauss strength (a fraction of the CR energy density)
and of correlation scale as large as∼ R/ξB ∼ 0.01R ∼ 1016 cm for R ∼ 1018 cm. The
present model is very simple and neglects a number of important nonlinear feedback
effects. Extensive simulations are needed to accurately study the foreshock structure.
How much radiation is emitted from the foreshock region strongly depends on these
details. It is premature to draw any conclusions on this matter. Summarizing all the
above, we believe that the study (e.g., using PIC and other simulations) of a foreshock
is of crucial importance for our understanding of observational signatures of relativistic
shocks and it shall be given the top priority.
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