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Resumo Alargado 

Os engenheiros de ecossistemas são organismos que transformam ou criam habitats, afetando 

muitas outras espécies. Os ecossistemas intertidais estão entre os mais produtivos do planeta e têm um 

papel vital na sobrevivência de muitos vertebrados, nomeadamente peixes e aves. A sua importância é 

especialmente relevante para aves costeiras migradoras fora da época de reprodução uma vez que várias 

espécies apenas se alimentam de macroinvertebrados bentónicos presentes nestas áreas. O caranguejo-

violinista, Afruca tangeri, é descrito como um engenheiro de ecossistemas em bancos de vasa intertidais, 

onde tem impactes importantes, nomeadamente na alteração das características biogeoquímicas do 

sedimento e do ciclo de nutrientes. Além destes impactes, o caranguejo-violinista integra a dieta de 

grande parte das aves costeiras presentes no seu habitat, o que o torna um recurso muito importante.  

Este estudo visou investigar a influência que as populações de caranguejo-violinista têm na 

estrutura da restante comunidade de macroinvertebrados bentónicos e dos seus principais predadores, 

as aves costeiras, no arquipélago dos Bijagós, Guiné-Bissau. O estudo decorreu em Adonga, no Parque 

Nacional de Orango, no arquipélago dos Bijagós. Para cumprir os objetivos foram selecionados dois 

tipos de área: com elevada e com baixa densidade de caranguejos. Em ambos os tipos de áreas, procedeu-

se à amostragem da comunidade de macroinvertebrados bentónicos utilizando cores de sedimento. 

Posteriormente todos os invertebrados recolhidos foram identificados ao nível taxonómico mais baixo 

possível e, para cada tipo de área, foi determinada a diversidade e riqueza da comunidade assim como a 

densidade, biomassa total e biomassa disponível para as aves (5 cm superficiais do sedimento) de cada 

taxon identificado. Foi também realizada uma amostragem da comunidade de aves costeiras recorrendo 

a parcelas marcadas em ambos os tipos de área analisadas e procedendo a contagens (intervaladas de 

uma hora) no período de 2h antes a 2h depois do pico da maré vazia. Posteriormente, para cada tipo de 

área, foi calculada a riqueza e diversidade da comunidade de aves costeiras e a densidade de cada uma 

das espécies de aves costeiras contadas. Foram ainda descritos e comparados o comportamento 

alimentar e a dieta de quatro espécies de aves: Maçarico-galego (Numenius phaeopus), Tarambola-

cinzenta (Pluvialis squatarola), Perna-vermelha-comum (Tringa totanus) e Borrelho-grande-de-coleira 

(Charadrius hiaticula) com base em vídeos (3-4 mins) de indivíduos em alimentação. Com o objetivo 

de caracterizar as populações de caranguejo-violinista em cada tipo de área foram efetuados vídeos em 

60 quadrados de amostragem. Posteriormente, os vídeos foram analisados e para cada tipo de área 

determinou-se a densidade, rácio sexual e distribuição das classes de tamanho das populações de 

caranguejo e ainda o rácio caranguejo/tocas nas áreas de elevada densidade de caranguejos. Por fim 

caracterizámos os dois tipos de área em termos de granulometria (percentagem de finos) e conteúdo de 

matéria orgânica do sedimento.  

Áreas com elevada densidade de caranguejos demonstraram um maior conteúdo em finos e 

matéria orgânica no sedimento. Nestas mesmas áreas, as comunidades de aves costeiras e 

macroinvertebrados apresentaram menor riqueza, diversidade e densidade, e, no caso dos 

macroinvertebrados, menor biomassa total e biomassa disponível para as aves. A comunidade de 

macroinvertebrados bentónicos em áreas com baixa densidade de caranguejo é dominada pelos 

poliquetas sedentárias das famílias Cirratulidae, Maldanidae e Capitellidae e pelos bivalves das famílias 

Veneridae (maioritariamente Pelecyora isocardia) e Lucinidae. Nas áreas com elevada densidade de 

caranguejo, as espécies acima referidas encontram-se também entre as mais abundantes, sendo ainda de 

mencionar os poliquetas errantes da família Nereidae e a substituição dos bivalves Lucinidae pela 

família Solecurtidae (maioritariamente Tagelus adansonii) como segundo bivalve mais abundante. É 

ainda de notar que os caranguejos-violinista tornam-se um dos taxa mais abundantes em áreas com 

elevada densidade de caranguejo, ultrapassados apenas pelo bivalve P. iscocardia. Não obstante, os 

caranguejos-violinistas são, isoladamente e com uma margem muito significativa, o taxon com os 
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maiores valores de biomassa nestas áreas. Foram encontrados ainda 13 taxa em áreas com baixa 

densidade de caranguejo que estão completamente ausentes em áreas com elevada densidade de 

caranguejo.  

A comunidade de aves costeiras em áreas com elevada densidade de caranguejos é caracterizada 

pela dominância de Maçarico-galego (Numenius phaeopus), Perna-vermelha-comum (Tringa totanus), 

Maçarico-das-rochas (Actitis hypoleucos) e Íbis-sagrada (Treskiornis aethiopicus), sendo que o 

Maçarico-das-rochas ocorre quase exclusivamente nestas áreas. Todas estas espécies consomem 

preferencialmente caranguejos-violinista. Em contraste, em áreas com baixa densidade de caranguejos, 

a comunidade de aves costeiras é dominada por Pilrito-de-bico-comprido (Calidris ferruginea), 

Seixoeira (Calidris canutus), Borrelho-grande-de-coleira (Charadrius hiaticula), Pilrito-das-praias 

(Calidris alba), Pilrito-de-peito-preto (Calidris alpina) e Pilrito-pequeno (Calidris minuta), sendo este 

último quase exclusivo destas áreas. Todas estas espécies predam principalmente poliquetas, bivalves 

e/ou gastrópodes. As restantes espécies não demonstraram diferenças significativas na densidade entre 

áreas, sendo elas Fuselo (Limosa lapponica), Ostraceiro (Haematopus ostralegus), Tarambola-cinzenta 

(Pluvialis squatarola), Borrelho-de-testa-branca (Charadrius marginatus), Perna-verde (Tringa 

nebularia) e Rola-do-mar (Arenaria interpres). À exceção da Tarambola-cinzenta, todas as aves em 

alimentação nas áreas com baixa densidade de caranguejos apresentaram uma maior taxa de bicadas, 

mas essa diferença não se traduziu num maior sucesso alimentar. Praticamente não foram encontradas 

diferenças na dieta das aves entre áreas, à exceção de um maior consumo de bivalves/gastrópodes em 

áreas com baixa densidade de caranguejos por parte do Maçarico-galego e um maior consumo de 

bivalves/gastrópodes em áreas com elevada densidade de caranguejo por parte da Tarambola-cinzenta. 

Houve, no entanto, uma grande proporção de presas não identificadas devido ao seu pequeno tamanho 

e à distância a que os vídeos foram filmados.  

Nas áreas com elevada densidade, as populações de caranguejo-violinista são constituídas por 

indivíduos de classes de tamanho maiores, sendo que caranguejos com uma largura de carapaça superior 

a 1 cm são quase exclusivos destas áreas. Encontrámos ainda um rácio sexual enviesado para o número 

de fêmeas nestas áreas e um dos menores rácios caranguejo/toca alguma vez descrito. Não encontrámos 

diferenças significativas de tamanho entre machos e fêmeas de caranguejo-violinista.  

Este estudo destaca os possíveis efeitos das populações de caranguejo-violinista no seu habitat, 

particularmente mostra a existência de grandes diferenças na composição da comunidade de 

macroinvertebrados bentónicos e aves costeiras entre áreas com baixa e elevada densidade de 

caranguejos. Com o conhecimento adquirido após a realização deste estudo é possível prever a estrutura 

mais provável da comunidade de aves costeiras presentes numa área do arquipélago dos Bijagós com 

base apenas na presença de caranguejo-violinista e, daí, prever qual a importância dessas áreas para cada 

espécie de ave costeira presente. Apesar de uma grande proporção de espécies de aves costeiras incluir 

caranguejo-violinista na sua dieta, a maioria das espécies tende a evitar as áreas com elevadas densidades 

de caranguejos. A presença de caranguejos-violinistas e o seu impacto nos macroinvertebrados e nas 

aves podem, portanto, ser muito relevantes numa perspetiva conservacionista já que esta espécie de 

caranguejo está amplamente distribuída nos Bijagós, a segunda área mais importante para aves costeiras 

invernantes na África Ocidental. 

Palavras-chave: Afruca tangeri, áreas intertidais, aves costeiras, engenheiros de ecossistemas, Guiné-

Bissau.  
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Abstract 

Ecosystem engineers are organisms able to transform or create habitats, indirectly affecting 

many other species. Fiddler crabs Afruca tangeri (Eydoux, 1835), have been described as ecosystem 

engineers of intertidal mudflats, delivering important impacts, namely by changing sediment 

biogeochemical characteristics and nutrient cycling. This study aimed to investigate the influence of the 

fiddler crab populations in the structure of the remaining benthic macroinvertebrate communities as well 

as on the spatial distribution of their main predators, i.e. shorebirds, in the Bijagós archipelago, Guinea-

Bissau. To achieve this, we selected areas with high densities of fiddler crabs and areas with low 

density/absence of crabs and compared the diversity and density of macroinvertebrates and shorebirds 

between these areas. In addition, we described foraging behavior of four shorebird species in both types 

of areas. Study areas were further characterized by determining the granulometry and organic matter 

content of the sediment. Areas with high crab density were characterized by finer sediments and higher 

organic matter content. Both the macroinvertebrate and shorebird communities presented significantly 

lower diversity and densities in areas showing high crab density. Except for the Grey plover, all birds 

foraging in areas with low crab densities showed higher pecking rates, although we found no differences 

in the overall feeding success. This study highlights the diverse effects of fiddler crab populations on 

their habitat, in particular by modifying the composition of the benthic macroinvertebrate fauna and 

associated shorebird communities. Although fiddler crabs are known to be an important prey item for 

many shorebird species, overall, high crab density areas are avoided by the majority of species within 

the shorebird community. Results from this study may be extremely relevant from a conservation 

perspective as fiddler crabs are widespread in the intertidal mudflats of the Bijagós archipelago, the 

second most important area for wintering shorebirds in West Africa. 

Key-words: Afruca tangeri, ecosystem engineers, Guinea-Bissau, intertidal mudflats, shorebirds 
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Introduction 

Keystone species are “species that maintain the organization, stability and function of their 

communities, and have disproportionately large, inimitable impacts on their ecosystems by performing 

essential ecological functions” (Hale & Koprowski, 2018). This concept was first introduced in 1996 by 

Paine (1996) to explain the large top-down influence that purple sea stars (Pisaster ochraceus) and sea 

snails (Charonia spp.) have on their respective communities by performing their role as predators. Since 

then, the concept evolved and now includes a great diversity of species and trophic levels, not only 

referring to species that have a direct impact on others but also to species whose influence transforms 

or creates habitats, thus affecting many other species indirectly (Ciechanowski et al., 2011; Law et al., 

2014). These species are called ecosystem engineers, and are generally defined as species that create, 

alter, or maintain habitats, and influence community composition through non-trophic interactions 

(Jones et al., 1994). Ecosystem engineers can have a critical impact on population dynamics, community 

composition and ecosystem function (Kleinhesselink et al., 2014; Wright & Jones, 2006). For example, 

the presence of the cushion plant Azorella montantha increases soil moisture and buffers temperature 

extremes which leads to an increase in species richness, thus altering species composition at a landscape-

level (Badano et al., 2006). Prairie dogs are another example of ecosystem engineer as their constant 

grazing reduces vegetation volume and the cover of grasses and tall shrubs, increasing bare ground and 

forb cover, and creating and maintaining a whole new landscape (Baker et al., 2013). 

Estuaries and other intertidal systems are among the world’s most productive ecosystems, 

maintaining complex trophic webs (Schelske & Odum, 1962; Day Jr et al., 2013). This high productivity 

is the key for the relevance of these areas for many vertebrate species including birds and fishes (Wallace 

et al., 1984; Burger et al., 1997). Intertidal mudflats are especially important for shorebird populations 

during migratory and non-breeding periods, as many species feed almost exclusively on benthic 

macroinvertebrates at low tide in this habitat (Quammen, 1984; Evans, 1999).  

Several ecosystem engineer species inhabit intertidal mudflats, delivering important impacts in 

the whole system. Some plant species, such as the cordgrass Spartina anglica and the seagrass Zostera 

noltii reduce the hydrodynamic energy of the waves and currents, facilitating the establishment of other 

plant species (Bouma et al., 2005). Another cordgrass, Spartina foliosa, provides structure, oxygenates 

the sediment through its rhizomes (Josselyn, 1983), and maintains marsh elevation by trapping sediment 

(Cahoon et al., 1996). Animals, such as crabs, can also have a major role modifying this habitat, 

especially in tropical environments (Mouton & Felder, 1996; Botto & Iribarne, 2000; Kristensen, 2008). 

The burrowing activity of fiddler crabs (Uca spp., Afruca sp. and Leptuca spp.) is known to increase 

carbon flow, change the topography and biogeochemistry of the sediment and increase decomposition 

efficiency (Genoni, 1991; Mouton & Felder, 1996; Botto & Iribarne, 2000; Kristensen, 2008). These 

effects are the consequence of bioturbation, which is the forced ascension of deep organic matter and 

sediment to the surface, promoting growth and activity of bacteria (Katz, 1980; Montague, 1980a, b; 

Bertness, 1985; Gutiérrez et al., 2006; Kristensesn, 2008). 

Fiddler crabs are an abundant food source for shorebirds in many tropical mudflats during the 

non-breeding period (Boschi, 1964; Summers, 1980; Zwarts, 1985; Iribarne & Martinez, 1999; 

Lourenço et al. 2017). The easy access to this prey item leads many shorebirds to include it in their diet. 

For example, in Bahia Somborombon, in Argentina, waders are known predators of the fiddler crab Uca 

uruguayensis (Iribarne, 1999). In Guinea-Bissau, the majority of the shorebird species feeds on the 

fiddler crab Afruca tangeri and even some birds usually associated with pelagic and terrestrial food 

sources like the Common gull-billed tern (Gelochelidon nilotica) and the Palm-nut vulture (Gypohierax 

angolensis), respectively, resort to these crabs as prey (Zwarts, 1985). Some species, like the Whimbrel 
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(Numenius phaeopus) are true fiddler crab specialists, as can feed almost exclusively on crabs (Lourenço 

et al., 2017).  

In addition of being an important prey item for shorebirds, the key role fiddler crabs play as 

ecosystem engineers, namely changing sediment biogeochemical characteristics and nutrient cycling, 

can potentially impact the benthic macroinvertebrate community, and thus indirectly impact their main 

predators, i.e., shorebirds (Mouton & Felder, 1996; Botto & Iribarne, 2000; Kristensesn, 2008). To the 

best of our knowledge, the effects of fiddler crabs on other benthic macroinvertebrates have never been 

studied in detail, although the presence of these crabs has been shown to promote a decrease in 

meiofauna density, either by direct effects, such as predation, or by indirect effects, such as competition 

for food (Hoffman et al., 1984; Reinsel, 2004; Weis & Weis, 2004). Such effects may also hold true for 

macroinvertebrate communities. Moreover, bioturbation promoted by some crustaceans has been shown 

to have negative effects on mobile benthos, like errant polychaetes (Wilson, 1981; Jensen, 1985; 

Levinton, 1985; Tamaki, 1988) and sessile benthos (Stevens, 1928; Dorsey & Synnot, 1980; Posey, 

1986; Pillay et al., 2007), like sedentary polychaetes, bivalves and gastropods, but these studies focused 

mainly on crayfish bioturbation and no study has been performed regarding the possible effects of the 

fiddler crabs’ bioturbation. 

The presence and density of fiddler crabs are likely not the only factors affecting 

macroinvertebrate and shorebird communities. Population characteristics such as size-class distribution 

and sex-ratio may be also important to explain the abovementioned effects.  Larger crabs dig deeper and 

wider borrows (Lim & Diong, 2003), meaning that larger individuals will increase the sediment/air 

interface and the potential for biological and chemical reactions (Kristensesn, 2008). Also, different 

shorebird species prey preferentially upon particular crab size classes, while avoiding others. Indeed, 

the size (maximum carapace width) of preyed crabs is highly correlated with the width of bird’s bill and 

with its ability to break the crabs into small pieces (Zwarts, 1985). The marked sexual dimorphism 

exhibited by fiddler crabs, with adult males being larger than females, also leads to differences in burrow 

size between sexes (Lim & Diong, 2003). Also, fiddler crabs have sexually dimorphic claws: the males 

have one claw much larger than the other, while females have two similar (minor) claws. Whilst this 

characteristic makes males more threatening, leading some bird species to avoid preying on them 

(Bildstein, 1989), the claw increases male conspicuity making them potentially more attractive for birds 

that hunt with air strikes (Koga et al., 2001).  

The fiddler crab Afruca tangeri (Eydoux, 1835) is widespread in the extensive intertidal 

mudflats of the Bijagós archipelago (Zwarts, 1985; Lourenço et al., 2017). This archipelago lies off the 

coast of Guinea-Bissau (11°12′N, 15°53′W) and comprises 88 islands and islets. The intertidal areas 

cover over 140,000 ha and are mostly dominated by large areas of soft sediment beds interspaced with 

smaller areas of sandy sediments, often bordered by mangrove trees (Pennober, 1999; Campredon & 

Catry, 2017). This archipelago is one of the world’s most important wintering areas for shorebirds 

holding ca. 10% (ca. 700,000) of all birds that migrate along the East Atlantic Flyway (EAF; Salvig et 

al., 1994; Delany et al., 2009). Although the importance of this site is undisputed, many aspects of the 

ecology of shorebirds and their relationships with other key organisms are still poorly understood. In 

particular, only two studies have focused on the relationship between fiddler crabs and shorebirds in the 

Bijagós (Zwarts, 1985; Lourenço et al., 2017), both exclusively aiming to describe trophic relationships. 

In this study we aim to understand the influence of fiddler crab populations in shaping the 

structure of the remaining benthic macroinvertebrate community as well as the spatial distribution of 

foraging shorebirds in the mudflats of the Bijagós archipelago. To fulfill this goal, we compared the 

density and species composition of the bird and infaunal communities among areas with low (control) 
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and high density of fiddler crabs. We further performed a characterization of these areas regarding 

relevant factors for macroinvertebrates such as sediment type (granulometry) and organic matter 

content. Also, we estimated if the foraging behavior and consumption of crabs by shorebirds varies 

among areas with different densities of fiddler crabs by analyzing video recordings of foraging birds. 

We predicted that areas with fiddler crabs have overall lower shorebird species richness and lower 

densities of shorebirds that feed on other macroinvertebrates but a higher density and species richness 

of shorebirds that preferably eat crabs.  

 

Methods 

Study area 

The Bijagós archipelago (11°12′N, 15°53′W) arises from the continental shelf off Guinea-

Bissau, near the mainland coast. It is an active deltaic archipelago, the only one on the Western coast of 

Africa (Pennober 1999). The archipelago and its intertidal flats and channels, covering an area of 

roughly one million hectares, possesses an astonishing biodiversity, which as lead to its classification as 

a Biosphere Reserve (1996) by UNESCO and as a Ramsar Site (2014) and has justified the creation of 

three marine protected areas and two National Parks. The large and complex network of channels that 

separates the 88 islands and islets of the archipelago is usually surrounded by mangroves and large mud 

and sand flats, which represent the largest extension of intertidal areas in Africa. This archipelago has a 

population of about 30,000 people and the inhabitants are predominantly farmers and fishermen (Thorne 

et al., 2013). The natural resources have been managed traditionally by the diverse Bijagós ethnic groups 

based on strong cultural and religious values (Henry, 1994). This has allowed a long-term conservation 

of the islands, for example by the active protection of sacred islands and islets and sacred forest patches 

where initiation rites take place, and which remain nearly untouched. This site is of crucial importance 

for many vertebrates, holding a total of 175 species of fish (Campredon & Catry, 2016), 17 species of 

reptiles (Catry et al., 2009; Aulyia et al., 2012), 282 species of bird (Dodman et al, 2004) and 29 species 

of mammal (Campredon & Catry, 2016). Moreover, the tidal flats and the mangroves of the archipelago 

play a major role in sustaining the productivity of fisheries resources, which has considerable weight in 

the national economy. 

The present study took place in the intertidal flats near Adonga islet, part of the Orango National 

Park, in the Bijagós archipelago, Guinea-Bissau (Fig. 1) between February and April 2019. This is an 

uninhabited area, approximately 11 km long and possesses large extensions of intertidal mudflats 

bordered by mangroves. The mudflats have heterogeneous sandy and muddy patches cropped by a 

channel network around. Fiddler crabs occupy large extensions of these flats.  

Fiddler crab distribution is a discreet phenomenon, rather than a continuum one, so there were 

no medium crab density areas as they were either present or absent from an area. The two classes 

analyzed were distinguished on the field based on the clear visual heterogeneity presented by the crab 

populations distribution and associated reworked sediment. Based on visual analysis, high crab density 

areas presented a greater abundance of crabs and strong signs of bioturbation, namely the crab burrows 

and revolved sediment while low crab density areas did not present either bioturbated sediment nor big 

crabs visible to the naked eye, although some very small crabs where present. The whole intertidal 

classification in low and high crab density presented in Fig. 1 was obtained by Belo (2019) using remote 

sensing techniques. 
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Fig. 1. Study area showing the intertidal mudflats around Adonga islet.  Low and high crab density areas 

are represented by light and dark grey, respectively. Black squares represent the plots used for shorebird 

counts (each square roughly 250×250m). Circles show the sites selected for macroinvertebrate sampling, 

sediment sampling and crab video recordings: white circles with black outline – high crab density areas; 

black circles with white outline – low crab density areas. The black diagonal arrow shows the positioning 

of the Adonga islet within the Bijagós archipelago. 

 

Macroinvertebrate collection and processing 

Three areas of low and three of high crab density were selected to describe and compare 

macroinvertebrate communities (Fig. 1). Fifteen sediment cores (86.6 cm2, approximately 20 cm deep) 

were collected in each area, totalizing 90 cores, 45 per crab density area. This sampling covered an area 

of about 625,000 m2. Since most small macroinvertebrates inhabit the upper layers of the sediment, the 

top 5 cm of collected sediment were sieved in saltwater through a 0.5 mm mesh siever and the deepest 

15 cm of the core content were sieved using a 1 mm mesh. All invertebrates were immediately stored in 

96% alcohol until further analysis. 

In the laboratory all invertebrates were identified to the lowest possible taxonomic level using 

guides for eastern Atlantic polychaetes (Fauchald, 1977), bivalves, gastropods (Carpenter & Angelis, 

2016) and crustaceans (Carpenter & Angelis, 2014). Afterwards, to determine biomass (measured as mg 

of ash-free dry weight, AFDW), each individual was dried to constant weight (at 60⁰C, during 48h) and 
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then incinerated in a muffle furnace (580⁰C, 2h). The samples were weighed after drying and again after 

incineration, and the biomass was calculated as the difference between dry weight and ash weight. We 

further determined the harvestable biomass, i.e., the macroinvertebrate biomass in the top 5 cm of 

sediment excluding invertebrates outside the size range consumed by shorebirds (Lourenço et al., 2017).  

 

Fiddler crab density, sex-ratio, crab/burrow ratio and size class distribution 

Burrow counting has been widely used to determine crab density (Altevogt, 1959; Aspey, 1978; 

Gunther, 1963; Zwarts, 1985; Jordão & Oliveira, 2003), although this method is known to overestimate 

the number of crabs, from 25% (Macia et al., 2001) up to 46% (Skov et al., 2002), given that one 

individual can excavate more than one burrow. Recently, in the Bijagós archipelago, Lourenço et al. 

(2018a) showed that when remotely video recording crab patches, some time after camera set up and 

associated disturbance, the number of crabs detected in videos rapidly stabilized, suggesting that video 

recording can be an effective sampling method. Therefore, fiddler crab density was estimated using 

video cameras in six selected areas, three with low and three with high crab density. In each of these 

areas, 30 quadrats (70×70 cm) marked with small wooden stakes and a thin wire, were filmed for 4 min 

each using a Canon PowerShot SX60 HS, with 1980×640 pixel resolution at 25fps. The camera was set 

on a tripod on the side of the quadrat, and after starting the filming session the observer moved to >50m 

from the camera until the end of the footage, to avoid any disturbance. Each video was analyzed using 

the software VLC media player 3.0.6 and as individuals resumed their normal activity, we counted the 

total number of individuals, the number of burrows and identify the sex of each crab. We also determined 

the size (carapace width to the nearest mm) of the crabs, using a small ruler previously placed within 

the quadrat that was used as a reference. We excluded ca.30-60s of the initial and final parts of the film, 

when the effects of the approaching and departing observer drive away the fiddler crabs into hiding in 

their burrows. We defined six size classes (see results). Fiddler crabs’ biomass was estimated using the 

regression equations determined by Lourenço et al. (2017). We also determined the crab/burrow ratio. 

 

Sediment sample collection and processing 

Sediment sample collection took place in the same areas selected for macroinvertebrate 

sampling. In total, 30 samples (ca. 40 ml each) of sediment were collected in both low and high crab 

density areas (15 in each). Samples were air dried after removing all visible particles of detritus. This 

sediment was then used for determining organic content and fine fraction.  

In the laboratory, approximately 5 g of each 40 ml sediment sample was used to determine 

organic content following the same method described above for determining the biomass of 

macroinvertebrates. To determine the fine fraction of sediments (i.e. weight of particles < 63 µm/total 

sample weight) we determined the dry weight of the remaining sediment in each sample. We then 

hydrated the samples again and used sodium pyrophosphate for six hours to disperse the sediment prior 

to wet sieving through a 63 µm mesh. Then the dry weight of the material left on the mesh was measured. 

The weight of the fine fraction was calculated as the difference between the two weights (Quintino et 

al., 1989). 
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Shorebird counts  

Shorebird density (expressed as number of birds per km2) was calculated from repeated counts 

during low tide. Sixty-seven plots roughly 250×250m were defined in order to cover a representative 

part of the Adonga mudflats. The limits of each plot were defined with a set of poles prior to the counts 

using a GPS (approximate positioning error of ca. 4m). During a single day, five successive counts were 

performed sequentially on a set of four plots by one observer positioned at the plots’ intersection point. 

This point was reached by boat during ebbing tide, avoiding thus disturbing the birds. Counts were 

carried out at 1-hour intervals in the period of two hours before and two hours after low tide peak and 

repeated in each plot two to three times between February and April. In most days, counts involved three 

observers using zoom-telescopes (20–60×), allowing to singly identify and count each bird within each 

plot. During the counts we recorded if the birds were feeding or resting in low or high crab density areas, 

which were easily identified by eye (crabs were only visible by eye in high density areas and strong 

signs of bioturbation in the top of the sediment were also evident). 

 

Shorebird foraging behavior and diet  

Shorebird foraging behavior and diet were studied using video recordings of focal individuals 

using a Canon PowerShot SX60 HS, with 1980×640 pixel resolution at 25fps. Four species were filmed 

in areas with low and high crab density: Ringed Plover (Charadrius hiaticula), Whimbrel (Numenius 

phaeopus), Grey plover (Pluvialis squatarola) and Common redshank (Tringa totanus). These were the 

species more often present in both low and high crab density areas and for which we could achieve a 

reasonable number of videos. Actively foraging birds were filmed during 2-3 min. If birds stopped 

feeding or flew away, the video was discarded from further analysis. The videos were analyzed using 

VLC media player 3.0.6 at low playing speed (down to 1/5 of the original speed). For each focal 

individual we counted the number of steps, curves (sharp direction changes, > 45°), stops, and feeding 

attempts (Lourenço et al., 2017). In most videos it was also possible to estimate the success of each 

foraging attempt by either observing the prey being eaten or by observing swallowing movements. Prey 

items taken were identified whenever possible and divided in 3 classes: Polychaeta, Bivalvia/Gastropoda 

and fiddler crabs. Bivalvia and Gastropoda prey were not separated in two classes because it was 

difficult to distinguish individuals belonging to either of these groups using the videos.  

Shorebirds can be divided in visual foragers, i.e. species that use mainly visual cues to search, 

find and capture prey; tactile foragers, i.e. species that recur mainly to tactile cues using the beak to 

probe for prey; and mixed foragers that use both visual and tactile cues to find prey (Barbosa & Moreno, 

1999; Dias et al., 2009; Lourenço et al., 2017). Furthermore, the shorebird foraging behavior can be 

divided in sinuous or linear depending on the number of sharp turns preformed during the search for 

prey (Barbosa & Moreno, 1999; Lourenço et al., 2017). Also, shorebirds can be divided depending on 

the number of stops and steps executed while foraging. Species that mainly search food by scanning the 

area in front of them and pecking at the substrate surface when they detect a prey are called continuous 

searchers and species that either probe as they walk or peck at items that they see on the substrate surface 

are called pause-travel foragers (Barbosa & Moreno, 1999). Taking this into account, the data obtained 

from videos was used to compare different species in terms of their foraging strategy and diet among 

the two different crab density classes. For this purpose, we used four behavioral parameters: the number 

of steps, the ratio of steps.turn-1 , the ratio of stops.steps-1 and the rate of feeding attempts.min-1; and five 

parameters directly related to diet: the ratio of success.attempt-1, the rate of success.min-1, the rate of 
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Polychaeta consumed.min-1, the rate of Bivalvia/Gastropoda consumed.min-1 and the rate of fiddler crab 

consumed.min-1.  

 

Data analysis 

Bird densities in low and high crab density areas within each 250×250 m plot were calculated 

by averaging repeated counts within the same day and among all counting days. Only foraging birds 

were considered for these calculations, birds resting were not included. 

All the differences in variables between low and high crab density areas regarding the 

macroinvertebrate community, fiddler crab populations, sediment samples and shorebird community 

were tested using a Mann-Whitney U test. This test was selected since our data is non-parametric. For 

data distributions sufficiently far from normal and for relatively large sample sizes, the Mann-Whitney 

U test is considerably more efficient than parametric tests like Student’s t-test. 

We used two measurements of diversity, the Shannon Index (H’): 

Equation 1.    𝐻′ = ∑ 𝑝𝑖 ln 𝑝𝑖
𝑅
𝑖=1  

where pi is the proportion of individuals belonging to the ith species in the dataset and the exponential 

Shannon Index (eH’): 

Equation 2.    𝑒𝐻′ = 𝑒∑ 𝑝𝑖 ln 𝑝𝑖
𝑅
𝑖=1  

 to determine diversity of both the macroinvertebrate and shorebird communities in areas of low 

and high crab density. As shown by Jost & González-Oreja (2012), the Shannon Index, although widely 

used, is not directly compatible with the rules of inference biologists apply to them and conclusions 

based on them can often be invalid. This may happen because each index calculated for each community 

has its own units, contrary to species richness, so, technically, comparison across indices should not be 

possible. In the same study, the authors argue that, nevertheless, the Shannon Index “can be converted 

to a linear species richness scale by taking their equivalent number of species, the number of equally 

common, equiprobable species needed to produce a community with the same complexity as that 

indicated by the original measure. After this conversion, measures can be directly compared with each 

other. All standard complexity measures of given order q have the same formula when compared: 

Equation 3.    𝑞𝐷 = (∑ 𝑝𝑖
𝑞)1/(1−𝑞)𝑅

𝑖=1  

The most useful diversity measure, and the only one that weighs all species exactly according to their 

relative contribution to the community, is the limit of this expression as q approaches 1, which equals 

the exponential of the Shannon index” (Equation 2). Thus, the exponential Shannon Index is more suited 

to be applied than the “typical” Shannon Index. Nevertheless, we also present the Shannon Index so that 

our results can, to some degree, be compared with previous works that calculated the “standard” 

Shannon Index (e.g. Lourenço et al., 2018a).  

We also determined the rarefaction curves for the macroinvertebrate communities in low and 

high crab density areas to allow for an unbiased comparison between the two crab density areas given 

that, although the number of cores taken in each area was the same, the prevalence of empty cores was 

different (Hurlbert, 1971). Calculating these curves allowed us to compare the richness of both areas 

regardless of the sampling effort. 
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Results 

Macroinvertebrate communities in low and high crab density areas 

Low crab density areas showed a significantly higher taxonomic richness, Shannon diversity 

and exponential Shannon when compared with high crab density areas (Table 1). There was a total of 

13 species that were only found in low crab density areas and the difference in richness does not depend 

on the sampling effort (Fig. 2). 

 

Table 1. Mean taxonomic richness and diversity indexes ± SD calculated per core for the benthic 

macroinvertebrate community in low (LCD; n=45) and high (HCD; n=45) crab density areas. These 

variables were compared with Mann-Whitney U tests and we report the significance of the differences 

(p). Significant differences (α = 0.05) are highlighted in bold. 

Index LCD HCD p 

    

Taxonomic richness 8.33 

(±2.79) 

2.64 

(±1.96) 
<0.001 

    

Shannon Diversity  1.74 

(±0.33) 

0.77 

(±0.59) 
<0.001 

    

Exponential Shannon 6.00 

(±1.97) 

2.57 

(±1.68) 
<0.001 

    

 

 

Fig. 2. Invertebrate taxa accumulation curves calculated for low (LCD; n=45) and high (HCD; n=45) 

crab density areas in relation to the number of core samples. The analysis was carried using the lowest 

possible taxonomic level for each identified taxon. The shades around the lines represent the 95% 

confidence interval. 
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All classes of invertebrates analyzed were found to have a significantly lower density (Fig.3) as 

well as lower values of total and harvestable biomass (Fig 4 A and B) in high crab density areas. The 

most abundant group of macroinvertebrates in low crab density areas were polychaetes, and the most 

abundant taxa were sedentary polychaetes, including Cirratulidae, Capitellidae and Maldanidae. In high 

crab density areas, polychaetes are also the most abundant macroinvertebrates, although with 

significantly lower abundances when compared with low crab density areas. The most abundant taxa, 

however, were the bivalves Pelecyora isocardia (Dunker, 1845) and Tagelus adansonii (Bosc, 1801). 

Nevertheless, both taxa presented a lower density in these areas compared with low crab density areas 

(Table 2). Moreover, sedentary polychaetes also represented a significant amount of the collected 

macroinvertebrates in high crab density areas, including Capitellidae, Cirratulidae and Maldanidae 

individuals, although, again, the density was significantly lower than in low crab density areas. The 

errant polychaete family Nereidae was also found to be one of the most abundant macroinvertebrates in 

high crab density areas, with values similar to those from low crab density areas (Table 2). In terms of 

biomass, the most important macroinvertebrates in low crab density areas were the bivalves Senilia 

senilis (Linnaeus, 1758), P. isocardia and T. adansonii, the sedentary polychaetes Paraonidae, 

Capitellidae, Maldanidae and Cirratulidae, the errant polychaetes Marphysa sanguinea (Montagu, 1813) 

and Lumbrineridae and the crustacean Balsscallichirus balssi (Monod, 1933). Unsurprisingly, the most 

important macroinvertebrates in high crab density areas were the fiddler crabs. Moreover, the bivalves 

P. isocardia and T. adansonii were also among the main contributors to the macroinvertebrate biomass 

in these areas although with significantly lower values than in low crab density areas (Table 2). In terms 

of harvestable biomass the main contributors in low crab density areas were the sedentary polychaetes 

Capitellidae and Paraonidae, the bivalve P. isocardia and the crustacean B. balssi. On the other hand, in 

high crab density areas the most important macroinvertebrates are the fiddler crabs and, to a lesser 

extent, the bivalve P. isocardia (Table 2). 

 

Fig. 3. Mean density ± SE of the main macroinvertebrate taxa sampled in low (LCD) and high crab 

density areas (HDC). The density estimates of Polychaeta, Bivalvia, Gastropoda and Crustacea 

(excluding fiddler crabs A. tangeri) were calculated from the core sampling (n=90) while the A. tangeri 

density was estimated using video recordings (n=60). Note the logarithmic scale in y-axis. 
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In terms of abundance, the largest differences among areas were found in the density of 

sedentary polychaetes Cirratulidae and Maldanidae, the bivalves Austromacoma nymphalis (Lamarck, 

1818), Abra sp., S. senilis and Lucinidae, all of which had lower densities in high crab density areas 

(Table 2). In terms of total biomass, the major differences were found for the errant polychaetes 

Glyceridae and Lumbrineridae, for the sedentary polychaetes Capitellidae, Cirratulidae and Paraonidae, 

for the bivalves Arcuatula senhousia (Benson, 1842), S. senilis and Lucinidae and for the crustaceans 

B. balssi and A. tangeri, all of which presented lower biomass in high crab density areas except for A. 

tangeri. When considering only the harvestable biomass, some taxa such as the sedentary polychaete 

Paraonidae and the bivalve Abra sp. considerably lose importance. The largest differences in terms of 

harvestable biomass were found for the sedentary polychaetes Glyceridae, Capitellidae and Maldanidae, 

for the bivalves A. nymphalis and Lucinidae and for the crustaceans B. balssi and A. tangeri. Again, all 

the above-mentioned taxa were found to have a lower biomass in high crab density areas except the 

fiddler crabs A. tangeri themselves. 

 

Fig. 4. Mean biomass (measured as mg AFDW/m2) ± SE of the main macroinvertebrate taxa sampled 

in both low (LCD) and high (HCD) crab density areas.  The biomass estimates of Polychaeta, Bivalvia, 

Gastropoda and Crustacea (excluding A. tangeri) were calculated from the core sampling (n=90) while 

the A. tangeri biomass was estimated using the video recordings (n=60) and regression equations 

calculated in Lourenço et al. (2017). A – Total biomass estimates using all samples collected up to a 

depth of 20 cm. B – Estimates of harvestable biomass for shorebirds using samples collected only in the 

top 5 cm of sediment excluding invertebrates outside the size range consumed by shorebirds (based in 

Lourenço et al. 2017). Note the logarithmic scale in y-axis. 
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Table 2. Mean density (individuals/m2), total biomass (mg AFDW/m2) and harvestable biomass (mg 

AFDW/m2 in the top 5 cm of sediment; only invertebrates in the size range consumed by shorebirds) ± 

SE of all macroinvertebrate taxa estimated for low (LCD) and high (HCD) crab density areas. Estimates 

calculated from the core sampling (n=90), except for A. tangeri. Afruca tangeri density estimated using 

the video recordings (n=60). These variables were compared with Man-Whitney U tests and we report 

the significance of the differences (p). Significant differences (α = 0.05) are highlighted in bold. 

Taxa 
Density  Total biomass  Harvestable biomass 

LCD HCD p  LCD HCD p  LCD HCD p 

Polychaeta (total) 
1324.33 

(±193.16) 

188.63 

(±23.78) 
<0.001 

 3090.38 

(±1252.28) 

147.58 

(±55.21) 
<0.001 

 1952.47 

(±1042.95) 

88.07 

(±52.39) 
<0.001 

            

   Errantia (total) 
222.03 

(±25.69) 

64.84 

(±12.05) 
<0.001 

 1116.67 

(±329.86) 

73.11 

(±52.65) 
<0.001 

 216.20 

(±71.68) 

72.64 

(±52.66) 
<0.001 

            

      Eunicidae 
17.68 

(±3.69) 

3.93 

(±1.82) 
<0.001 

 245.29 

(±106.15) 

18.42 

(±17.51) 
<0.001 

 30.64 

(±23.63) 

18.42 

(±17.51) 
0.050 

            

         Eunice sp. 
7.86 

(±3.79) 
0 0.043 

 2.87 

(±1.77) 
0 0.082 

 2.87 

(±1.77) 
0 0.082 

            

         Marphysa    

         sanguinea 

19.65 

(±6.21) 

1.96 

(±1.96) 
0.008 

 709.67 

(±309.03) 

52.52 

(±52.52) 
0.007 

 82.64 

(±70.65) 

52.52 

(±52.52) 
0.179 

            

      Glyceridae 
37.33 

(±9.93) 

1.96 

(±1.96) 
<0.001 

 65.33 

(±18.01) 

0.39 

(±0.39) 
<0.001 

 51.59 

(±14.51) 

0.39 

(±0.39) 
<0.001 

            

      Lumbrineridae 
33.40 

(±7.59) 

1.96 

(±1.96) 
<0.001 

 245.59 

(±69.51) 

7.43 

(±7.43) 
<0.001 

 51.75 

(±21.43) 

7.43 

(±7.43) 
0.026 

            

      Nephtyidae 
35.37 

(±9.89) 

11.79 

(±4.53) 
0.083 

 50.66 

(±32.62) 

1.49 

(±1.08) 
0.061 

 6.90 

(±2.88) 

1.49 

(±1.08) 
0.291 

            

      Nereidae 
41.26 

(±12.12) 

33.40 

(±8.56) 
0.956 

 10.49 

(±3.76) 

7.74 

(±3.01) 
1 

 10.08 

(±3.76) 

7.27 

(±2.99) 
1 

            

      Onuphidae 
1.96 

(±1.96) 
0 0.328 

 1.74 

(±1.74) 
0 0.328 

 1.74 

(±1.74) 
0 0.328 

            

      Sylidae 
19.65 

(±5.54) 

3.93 

(±2.75) 
0.014 

 6.98 

(±2.49) 

0.79 

(±0.57) 
0.013 

 2.20 

(±1.08) 

0.79 

(±0.57) 
0.251 

            

   Sedentaria (total) 
1051.21 

(±171.98) 

119.86 

(±20.49) 
<0.001 

 1943.59 

(±1028.61) 

71.21 

(±21.35) 
<0.001 

 1717.89 

(±1033.52) 

14.54 

(±3.86) 
<0.001 

            

      Capitellidae 
113.96 

(±19.79) 

51.09 

(±13.33) 
0.003 

 781.18 

(±710.49) 

37.12 

(±18.06) 
<0.001 

 759.50 

(±710.97) 

7.49 

(±2.61) 
0.017 

            

      Cirratulidae 
538.38 

(±158.34) 

33.40 

(±9.44) 
<0.001 

 131.67 

(±37.37) 

4.59 

(±1.66) 
<0.001 

 83.61 

(±30.69) 

2.95 

(±1.13) 
<0.001 

            

      Maldanidae 
345.82 

(±42.14) 

31.44 

(±9.39) 
<0.001 

 209.79 

(±33.57) 

24.23 

(±12.23) 
<0.001 

 91.74 

(±22.15) 

4.11 

(±2.22) 
<0.001 

            

      Orbiniidae 
25.54 

(±7.76) 
0 <0.001 

 21.29 

(±10.05) 
0 <0.001 

 9.65 

(±5.60) 
0 0.006 

            

      Paraonidae 
51.09 

(±13.62) 

3.93 

(±3.93) 
<0.001 

 819.41 

(±770.82) 

5.27 

(±5.27) 
<0.001 

 781.49 

(±771.50) 
0 0.002 

            

      Terebellidae 
1.96 

(±1.96) 
0 0.328 

 1.55 

(±1.55) 
0 0.328 

 1.55 

(±1.55) 
0 0.328 
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Table 2 continued.  

Taxa 
Density  Total biomass  Harvestable biomass 

LCD HCD p  LCD HCD p  LCD HCD p 

Polychaeta (cont.)            

            

   Polychaeta incertae  

   sedis (total) 

7.85 

(±3.79) 

1.96 

(±1.96) 
0.173 

 4.95 

(±3.52) 

0.88 

(±0.88) 
0.179 

 4.85 

(±3.52) 

0.88 

(±0.88) 
0.320 

            

      Magelonidae 
7.85 

(±3.79) 

1.96 

(±1.96) 
0.173 

 4.95 

(±3.52) 

0.88 

(±0.88) 
0.179 

 4.85 

(±3.52) 

0.88 

(±0.88) 
0.320 

            

   Polychaeta indet. 
17.68 

(±15.79) 
0 0.1596 

 3.87 

(±3.06) 
0 0.159 

 3.87 

(±3.06) 
0 0.159 

            

            

Bivalvia (total) 
711.9 

(±82.69) 

145.40 

(±31.31) 
<0.001 

 3932.64 

(±1087.37) 

1837.81 

(±1474.81) 
<0.001 

 405.91 

(±95.04) 

205.66 

(±81.19) 
<0.001 

            

      Abra sp. 
23.57 

(±10.29) 

1.96 

(±1.96) 
0.048 

 85.63 

(±39.65) 

30.91 

(±30.91) 
0.058 

 39.83 

(±17.01) 
0 0.012 

            

      Arcuatula senhousia 
21.61 

(±6.97) 

3.93 

(±3.93) 
0.009 

 9.23 

(±3.70) 

0.33 

(±0.33) 
0.007 

 6.41 

(±2.75) 

0.33 

(±0,33) 
0.025 

            

      Austromacoma  

      nymphalis 

25.54 

(±7.76) 

1.96 

(±1.96) 
0.004 

 28.49 

(±9.84) 

1.18 

(±1.18) 
0.003 

 21.76 

(±7.99) 

1.18 

(±1.18) 
0.013 

            

      Loripes sp. 
1.96 

(±1.96) 
0 0.328 

 52.62 

(±52.62) 
0 0.328 

 
0 0 - 

            

      Pelecyora isocardia 
408.69 

(±57.13) 

78.59 

(±20.88) 
<0.001 

 376.12 

(±100.49) 

208.63 

(±86.96) 
<0.001 

 261.74 

(±80.56) 

179.22 

(±79.44) 
0.002 

            

      Senilia senilis 
39.29 

(±8.22) 

1.96 

(±1.96) 
<0.001 

 3113.8 

(±1093.62) 

79.56 

(±79.56) 
<0.001 

 9.09 

(±3.38) 
0 0.006 

            

      Striarca lactea 
11.78 

(±7.22) 
0 0.082 

 15.72 

(±10.99) 
0 0.082 

 0.02 

(±0.02) 
0 0.328 

            

      Tagelus adansonii 
72.70 

(±20.32) 

47.16 

(±11.79) 
0.813 

 156.15 

(±96.93) 

1515.06 

(±1473.39) 
0.901 

 9.61 

(±6.77) 

23.07 

(±9.24) 
0.717 

            

      Lucinidae indet. 
106.10 

(±16.29) 

9.82 

(±4.19) 
<0.001 

 94.86 

(±41.92) 

2.14 

(±1.29) 
<0.001 

 47.45 

(±14.17) 

1.87 

(±1.28) 
<0.001 

            

            

Gastropoda (total) 
37.33 

(±10.32) 

7.86 

(±6.17) 
0.002 

 16.44 

(±7.09) 

3.67 

(±3.35) 
0.001 

 16.11 

(±7.10) 

3.67 

(±3.35) 
0.002 

            

      Bulla sp. 
23.58 

(±9.49) 

7.86 

(±6.17) 
0.049 

 13.66 

(±7.04) 

3.67 

(±3.35) 
0.047 

 13.66 

(±7.04) 

3.67 

(±3.35) 
0.047 

            

      Retusa sp. 
3.93 

(±2.75) 
0 0.159 

 0.67 

(±0.47) 
0 0.159 

 0.67 

(±0.47) 
0 0.159 

            

      Turbonilla sp. 
1.96 

(±1.96) 
0 0.328 

 0.33 

(±0.33) 
0 0.328 

 0.33 

(±0.33) 
0 0.328 

            

      Rissoidae indet. 
3.93 

(±2.75) 
0 0.159 

 1.18 

(±0.90) 
0 0.159 

 0.84 

(±0.84) 
0 0.328 
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Table 2 continued.  

Taxa 
Density  Total biomass  Harvestable biomass 

LCD HCD p  LCD HCD p  LCD HCD p 

Gastropoda (cont.)            

            

      Rissoela sp. 
1.96 

(±1.96) 
0 0.328 

 0.59 

(±0.59) 
0 0.328 

 0.59 

(±0.59) 
0 0.328 

            

      Gastropoda indet. 
1.96 

(±1.96) 
0 0.328 

 0.02 

(±0.02) 
0 0.328 

 0.02 

(±0.02) 
0 0.328 

            

            

Crustacea (total 

except A. tangeri) 

43.23 

(±11.46) 

11.79 

(±8.71) 
0.008 

 1374.15 

(±476.21) 

149.06 

(±126.87) 
0.001 

 333.54 

(±317.49) 

15.44 

(±15.20) 
0.396 

            

      Balsscallichirus  

      balssi 

35.37 

(±8.62) 

7.86 

(±5.49) 
0.002 

 1346.07 

(±472.43) 

32.87 

(±25.33) 
<0.001 

 333.54 

(±317.49) 

9.22 

(±8.98) 
0.386 

            

      Pachygrapsus  

      gracilis 
0 

1.96 

(±3.93) 
0.328 

 
0 

116.16 

(±116.16) 
0.328 

 
0 

6.23 

(±6.23) 
0.328 

            

   Alpheidae 
7.85 

(±3.79) 
0 0.043 

 28.08 

(±17.77) 
0 0.043 

 
0 0 - 

            

            

      Afruca tangeri 
9.12 

(±2.04) 

62.44 

(±6.31) 
<0.001 

 161.41 

(±53.99) 

6311.97 

(±490.37) 
<0.001 

 161.41 

(±53.99) 

6311.97 

(±490.37) 
<0.001 

            

 

Fiddler crab sex-ratio, crab/burrow ratio and size-class distribution 

 We determined the sex and measured a total of 1044 crabs. The size class distribution differed 

between areas with low and high crab densities. In high crab density areas we found individuals 

belonging to all six size-classes and small individuals (<0.5 cm) comprised less than 20% of the sampled 

population. Conversely, in low crab density areas we only registered crabs belonging to the four smallest 

classes (Fig. 5), with crabs measuring <0.5 cm comprising almost 50% of all individuals measured. In 

both areas, the two smallest classes were more prevalent with the 0.5-1 cm class dominating in the high 

crab density areas and the 0-0.5 cm class dominating in the low crab density areas. 

The sex-ratio was found to be female biased in high crab density areas and male biased in low 

crab density areas (Table 3) although there were no significant differences among areas. There was a 

high proportion of crabs, about one third (357 individuals), whose sex could not be determined due to 

their small size. No significant differences in size were found between sexes (Mann-Whitney Test, W = 

57792, p = 0.681; Fig. 6). 

The crab/burrow ratio could only be determined for high crab density areas since in low crab 

density areas there was a high density of holes of unknown origin (either from crabs or other organisms, 

such as polychaetes and bivalves). Crab/burrow ratio was estimated to be 0.28 (±0.12 SD, n=29 videos). 
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Fig. 5. Size class proportion of fiddler crab Afruca tangeri populations in low (LCD) and high crab 

density (HCD) areas (n=1044 individuals). 

 

Table 3. Sex-ratio of fiddler crab Afruca tangeri populations in low (LCD) and high crab density (HCD) 

areas. Only individuals with a carapace width >1 cm were included in the analysis, in order to exclude 

all crabs that could not be sexed. The p was calculated using a Chi-Squared Test (χ-squared = 2, df = 1).   

Area Sex-ratio p 

  

0.214 

HCD (n=376) 1 F : 0.88 M 

  

LCD (n=23) 1 F : 1.81 M 

  

 

 

Fig. 6. Carapace width of female (F, n=360), male (M, n=327) and unknown sex (NI, n=357) fiddler 

crabs Afruca tangeri. 
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Sediment characteristics 

 Organic matter content and fine fraction of the sediment were significantly higher in high crab 

density areas. These two characteristics were also found to have a strong positive correlation (Pearson 

Correlation = 0.856, p<0.001) (Table 4). 

 

Table 4. Mean ± SD organic matter content (% AFDW) and fine fraction of the sediment samples 

collected in low (LCD) and high crab density (HCD) areas. These variables were compared with Mann-

Whitney U tests and we report the significance of the differences (p). Significant differences (α = 0.05) 

are highlighted in bold. 

Variable 
LCD 

(n=15) 

HCD 

(n=15) 
p 

    

AFDW (%) 2.78 

(±2.01) 

5.98 

(±2.66) 
<0.001 

    

Fine fraction (%) 
17.95 

(±12.44) 

32.65 

(±12.18) 
0.003 

    

 

Shorebird communities in low and high crab density areas 

The shorebird community of low crab density areas showed a higher taxonomic richness, 

Shannon diversity and exponential Shannon when compared with high crab density areas (Table 5). The 

18 most common shorebird species counted are illustrated in Fig. 7. 

 

Table 5. Mean richness and diversity indexes ± SD calculated for the shorebird community in low 

(LCD) and high (HCD) crab density areas using the plot counts (n=67). These variables were compared 

with Mann-Whitney U tests and we report the significance of the differences (p). Significant differences 

(α = 0.05) are highlighted in bold. 

Index LCD HCD p 

    

Species richness 
12.06 

(±3.87) 

10.65 

(±3.31) 
0.013 

    

Shannon Diversity 
1.72 

(±0.44) 

1.57 

(±0.45) 
0.045 

    

Exponential Shannon 
5.99 

(±1.94) 

5.24 

(±1.87) 
0.045 
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Fig. 7. Illustrations of the 18 most common shorebird species counted. All the illustrations and their 

rights are owned by ©2019 HBW Alive: Handbook of the Birds of the World Alive (www.hbw.com). 

Bird images are NOT to scale. A – Red knot; B – Curlew sandpiper; C – Ringed plover; D – Sanderling; 

E – Eurasian Oystercatcher; F – Grey plover; G – Dunlin; H – White-fronted plover; I – Little stint; J – 

Common greenshank; K – Kentish plover; L – Ruddy turnstone; M – Eurasian curlew; N – Bar-tailed 

godwit; O – Sacred ibis; P – Common redshank; Q – Common sandpiper; R – Whimbrel. 

A B C 

D E F 

G H I 

J K L 

O N M 

P Q R 

http://www.hbw.com/
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Twelve out of the 18 most common shorebird species studied showed significant differences in 

terms of density among the two different crab density areas (Fig. 8, Table 6). Among this, seven species 

showed higher densities in low crab density areas (Sanderling Calidris alba, Dunlin Calidris alpina, 

Red knot Calidris canutus, Curlew sandpiper Calidris ferruginea, Little stint Calidris minuta, Kentish 

plover Charadrius alexandrinus and Ringed plover Charadrius hiaticula), while five species showed 

the opposite pattern (Common sandpiper Actitis hypoleucus, Eurasian curlew Numenius arquata, 

Whimbrel Numenius phaeopus, Sacred ibis Threskiornis aethiopicus and Common redshank Tringa 

totanus). For the remaining six species (Ruddy turnstone Arenaria interpres, White-fronted plover 

Charadrius marginatus, Eurasian oystercatcher Haematopus ostralegus, Bar-tailed godwit Limosa 

lapponica, Grey plover Pluvialis squatarola and Common greenshank Tringa nebularia) no significant 

differences were evident. The largest differences (more than tenfold) were found for Common 

sandpiper, Red knot and Ringed plover. 

 

 

 

Fig. 8. Mean densities (individuals/km2) ± SE of the most frequent shorebird species recorded in low 

(LCD) and high (HCD) crab density areas. The vertical line separates species that have higher densities 

in low crab density areas from species with higher densities in high crab density areas. 
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Table 6. Mean densities (individuals/km2) ± SE of the most frequent shorebird species recorded in the 

low (LCD) and high (HCD) crab density areas. Densities between areas were compared with Mann-

Whitney U tests and we report the significance of the differences (p). Significant differences (α = 0.05) 

are highlighted in bold. 

Species 
Density (inds/km2) 

LCD HCD p 

    

Red knot Calidris canutus 
242.38 

(±46.15) 

21.75 

(±5.28) 
<0.001 

    

Curlew sandpiper Calidris ferruginea 
289.37 

(±35.09) 

73.17 

(±26.19) 
<0.001 

    

Ringed plover Charadrius hiaticula 
181.22 

(±10.81) 

7.63 

(±1.18) 
<0.001 

    

Sanderling Calidris alba 
118.27 

(±7.27) 

32.08 

(±4.17) 
<0.001 

    

Eurasian oystercatcher Haematopus ostralegus 
27.99 

(±3.87) 

13.70 

(±2.09) 
0.202 

    

Grey plover Pluvialis squatarola 
74.87 

(±4.19) 

65.43 

(±7.58) 
0.091 

    

Dunlin Calidris alpina 
11.92 

(±1.96) 

3.30 

(±1.26) 
<0.001 

    

White-fronted plover Charadrius marginatus 
12.36 

(±1.14) 

5.97 

(±0.87) 
0.085 

    

Little stint Calidris minuta 
4.38 

(±0.73) 

0.86 

(±0.46) 
<0.001 

    

Common greenshank Tringa nebularia 
4.96 

(±0.58) 

3.57 

(±0.91) 
0.076 

    

Kentish plover Charadrius alexandrinus 
6.77 

(±0.75) 

5.51 

(±1.45) 
0.021 

    

Ruddy turnstone Arenaria interpres 
12.61 

(±1.45) 

15.28 

(±2.00) 
0.878 

    

Eurasian curlew Numenius arquata 
4.37 

(±0.53) 

18.98 

(±4.02) 
0.025 
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Table 6 continued. 

Species 
Density (inds/km2) 

LCD HCD p 

    

Bar-tailed godwit Limosa lapponica 
102.32 

(±7.69) 

121.43 

(±34.14) 
0.539 

    

Sacred ibis Threskiornis aethiopicus 
12.77 

(±2.19) 

36.17 

(±4.46) 
0.001 

    

Common redshank Tringa totanus 
37.88 

(±2.82) 

75.02 

(±7.06) 
0.015 

    

Common sandpiper Actitis hypoleucus 
3.20 

(±0.51) 

42.54 

(±4.89) 
<0.001 

    

Whimbrel Numenius phaeopus 
99.68 

(±6.97) 

300.07 

(±14.59) 
<0.001 

    

 

 

Shorebird foraging behavior and diet  

 We filmed a total of 139 focal foraging birds corresponding to ca. 7 h of film. The major 

difference found on the foraging behavior of the four species studied between low and high crab density 

areas was the pecking rate, which was significantly higher in areas with low crab density (for all species 

except Grey plover; Tables 7 and 8). The Ringed plover showed a higher success per peck in high crab 

density areas, while the Whimbrel showed a higher stops.steps-1 rate in these areas. The Common 

redshank took more steps per minute and had a less sinuous search behavior (less curves.steps-1) in high 

crab density areas while no significant differences were found in the foraging behavior of the Grey 

plover (Tables 7 and 8).  

 In terms of diet, few differences were found among areas with different crab densities (Tables 

7 and 8 / Fig. 9). The Whimbrel fed more frequently on Bivalvia/Gastropoda in low crab density areas 

while in high crab density areas A. tangeri is the main prey item taken. The Grey plover consumed more 

fiddler crabs in high crab density areas as well as more Bivalvia/Gastropoda prey. The Common 

redshank and Ringed plover did not show significant differences in terms of diet composition between 

low and high crab density areas. 
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Table 7. Behavioral parameters (means ± SD, samples sizes in parenthesis) of foraging shorebirds 

(Ringed plover and Whimbrel) video-recorded in areas with low (LCD) and high (HCD) crab densities. 

Parameters were compared with Mann-Whitney U tests and we report the significance of the differences 

(p). Significant differences (α = 0.05) are highlighted in bold. 

Variables 

 Ringed plover  Whimbrel 

 LCD 
(n=18) 

HCD 

(n=18) 
p 

 LCD 

(n=23) 

HCD 

(n=23) 
p 

         

Steps.min-1  128.38 

(±29.60) 

119.68 

(±29.60) 
0.170 

 98.42 

(±39.74) 

89.09 

(±42.86) 
0.617 

         

Curves.steps-1  0.09 

(±0.03) 

0.08 

(±0.03) 
0.389 

 0.05 

(±0.03) 

0.04 

(±0.04) 
0.130 

         

Stops.steps-1  0.18 

(±0.06) 

0.16 

(±0.09) 

0.097 

 

 0.005 

(±0.008) 

0.01 

(±0.03) 

0.016 

 

         

Pecking.min-1  21.19 

(±7.15) 

13.47 

(±8.45) 

0.003 

 

 6.56 

(±4.28) 

2.53 

(±3.48) 

<0.001 

 

         

Success.peck-1  0.09 

(±0.09) 

0.15 

(±0.09) 

0.048 

 

 0.14 

(±0.18) 

0.23 

(±0.26) 
0.395 

         

Success.min-1  1.68 

(±1.41) 

1.53 

(±0.90) 
0.764 

 0.98 

(±1.39) 

0.65 

(±1.10) 
0.647 

         

Fiddler crabs.min-1  0.02 

(±0.08) 

0.09 

(±0.19) 
0.163 

 0.32 

(±0.58) 

0.42 

(±0.42) 
0.139 

         

Polychaeta.min-1  0.89 

(±1.20) 

0.86 

(±1.01) 
0.748 

 0.01 

(±0.07) 
0 0.339 

         

Bivalvia/Gastropoda.min-1  0.27 

(±0.34) 

0.20 

(±0.22) 
0.757 

 0.56 

(±0.93) 

0.22 

(±1.04) 

0.004 

 

         

 

Table 8. Dietary parameters (means ± SD, samples sizes in parenthesis) of foraging shorebirds (Grey 

plover and Common redshank) video-recorded in areas with low (LCD) and high (HCD) crab densities. 

Parameters were compared with Mann-Whitney U tests and we report the significance of the differences 

(p). Significant differences (α = 0.05) are highlighted in bold. 

Variables 

  Grey plover  Common redshank 

  LCD 

(n=16) 

HCD 

(n=16) 
p 

 LCD 

(n=10) 

HCD 

(n=15) 
p 

          

Steps.min-1   77.90 

(±39.98) 

87.58 

(±44.38) 
0.270 

 132.18 

(±29.76) 

186.09 

(±77.65) 

0.041 

 

          

Curves.steps-1   0.07 

(±0.03) 

0.06 

(±0.03) 
0.274 

 0.09 

(±0.03) 

0.07 

(±0.07) 

0.037 

 

          

Stops.steps-1   0.12 

(±0.04) 

0.13 

(±0.08) 
0.867 

 0 

(±0.001) 

0 

(±0.001) 
0.552 
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Table 8 continued. 

Variables 

  Grey plover  Common redshank 

  LCD 

(n=16) 

HCD 

(n=16) 
p 

 LCD 

(n=10) 

HCD 

(n=15) 
p 

          

Pecking.min-1   6.67 

(±6.11) 

6.46 

(±5.59) 
0.926 

 34.27 

(±12.86) 

11.32 

(±7.87) 

<0.001 

 

          

Success.peck-1   0.25 

(±0.22) 

0.18 

(±0.26) 
0.172 

 0.08 

(±0.12) 

0.11 

(±0.13) 
0.486 

          

Success.min-1   1.22 

(±1.79) 

0.88 

(±1.61) 
0.149 

 1.64 

(±1.49) 

1.07 

(±1.18) 
0.398 

          

Fiddler crabs.min-1   
0 

0.23 

(±0.39) 

0.009 

 

 0.05 

(±0.17) 

0.07 

(±0.19) 
0.844 

          

Polychaeta.min-1   0.12 

(±0.19) 

0.04 

(±0.17) 
0.108 

 
0 

0.13 

(±0.39) 
0.263 

          

Bivalvia/Gastropoda.min-1   0.20 

(±0.19) 

0.23 

(±0.83) 

0.029 

 

 0.07 

(±0.14) 

0.02 

(±0.09) 
0.404 

          

 

 

 

Fig. 9. Prey ingested per minute and proportion of prey group ingested in low (LCD) and high (HCD) 

crab density areas. 
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Discussion 

Differences in macroinvertebrate communities between low and high crab density areas 

The results suggest that fiddler crabs have a strong effect on the structure (composition and 

abundance) of the remaining macroinvertebrate community. The richness and diversity of the benthic 

macroinvertebrate community are much lower in high crab density areas. Moreover, there were 13 

species that were never sampled in high crab density areas. Additionally, almost all invertebrate taxa 

studied showed drastically lower density and biomass in high crab density areas. Many species were 

two to six times less abundant in high crab density areas. Even the most abundant species in areas with 

high crab density showed lower abundances compared to low crab density areas. 

Similar impacts have been recorded for meiofaunal organisms and may result either from direct 

effects, such as predation, or indirect effects, such as disturbance or competition for food (Hoffman et 

al, 1984; Reinsel, 2004; Weis and Weis, 2004). In this case, predation is the less likely hypothesis since 

fiddler crabs feed mainly on vegetable detritus, microalgae, nematodes and bacteria (Emmerson & 

McGwynne, 1992; Lee, 1997; Kristensen & Alongi, 2006; Kristensen, 2008). Since fiddler crabs share 

the same preferred food source with many species of the remaining macroinvertebrate community, 

competition is a likely mechanism reducing the diversity and density of the macroinvertebrate 

community in high crab density areas (Kruitwagen et al., 2010).  

The disturbance effect caused by the burrowing activity of fiddler crabs can also have deep 

impacts in the macrobenthos due to changes in sediment topography and biogeochemistry (Mouton & 

Felder, 1996; Botto & Iribarne, 2000; Kristensen, 2008). The physical stability of other 

macroinvertebrate burrows can be compromised as crabs may dig their complex burrow network down 

to 40 cm, making the presence of other macroinvertebrates more difficult in these areas (Koretsky et al., 

2002; Lim, 2006). This is the case for errant polychaetes, for instance, which rely on migrations through 

the sediment to search for food (Tamaki, 1985). Bioturbation performed by the fiddler crabs can offer a 

physical challenge for movement representing thus an important disturbance factor leading to a lower 

abundance of these organisms. Previous studies have also shown that bioturbation may lead to a 

reduction on the survival rate of mobile benthos, such as errant polychaetes (Wilson, 1981; Jensen, 1985; 

Levinton, 1985; Tamaki, 1988), and sessile benthos, such as sedentary polychaetes and bivalves 

(Stevens, 1928; Dorsey & Synnot. 1980; Posey, 1986), by reducing their refuge areas and ultimately 

excluding them. Bioturbation promoted by fiddler crabs may also be the factor leading to the lower 

densities of gastropods and crustaceans in high crab density areas, as crab activity may decrease the 

survivability of gastropods (Pillay et al., 2007) and inhibit the burrowing behavior of other crustaceans 

(Banner & Banner, 1966; Abele & Felgenhauer, 1982; Tamaki, 1988).  

Bioturbation also causes significant changes to the sediment characteristics. The increment in 

the area of exposed sediment to the air and water facilitates the erodibility of the particles, leading to an 

increase in the fine fraction (Botto & Iribarne, 2000). Also, there may be an increase in the organic 

matter content, since the crabs force the ascension of deep organic matter to the surface, which promotes 

the growth and activity of bacteria, further increasing the organic matter content (Katz, 1980; Montague, 

1980a,b; Bertness, 1985, Gutiérrez et al., 2006; Kristensen, 2008). Our results showed that both organic 

matter content and fine fraction of the sediment are significantly higher in high crab density areas, which 

strongly agrees with the previous findings. Nevertheless, the increase in organic matter can also be 

strictly related with the increase in the fine fraction. The decrease in the sediment particle size alone 

may be creating conditions for the increase in organic matter content (Evans et al., 1990). It is difficult 

to determine the main reason behind the increase in organic matter as either the bioturbation performed 



 

23 

 

by the fiddler crabs or the increase in the fine fraction can be the direct cause. For years now, 

macroinvertebrate communities’ distribution has been known to be greatly influenced by sediment 

characteristics (Pearson & Rosenberg, 1978; Beukema, 1988; Raffaelli & Hawkins, 1996; Ysebaert & 

Herman, 2002). Rodrigues et al. (2006) has shown that sampling sites characterized either by high fine 

contents or high organic matter content present in general lower macroinvertebrate species richness and 

abundance, although the sediment descriptors alone do not explain the general pattern of distribution 

and other factors, such as the biogenic fraction, are likely involved. Specially, the increase in organic 

matter may prevent the macroinvertebrate community from achieving their potential maximum richness, 

diversity and density (Bolam et al., 2004). Moreover, meio- and macrofauna often respond similarly 

when affected by disturbance and organic matter enrichment caused for example by the fiddler crabs’ 

bioturbation. When the levels of disturbance and organic matter are low, the maximum diversity is 

observed but increasingly higher levels of both variables tend to lead to a decrease in meio- and 

macrofaunal diversity (Austen & Widdicombe, 2006). Since high density of fiddler crab populations 

significantly increases the organic matter content and the disturbance, as expected, the remaining 

macroinvertebrate community presents lower richness, diversity, density and biomass.  

The preferences regarding sediment fine fraction for each taxa can also be affecting the results. 

Most polychaetes and bivalves prefer a fine fraction and organic content of sediment similar to what we 

found in low crab density areas. Preferences for polychaetes include a fine fraction of 20% for 

Capitellidae and Orbiniidae (Anderson, 2008), and a fine fraction of 18% and organic matter content of 

2% for Paraonidae and Cirratulidae (Martins et al., 2013). For bivalves some optimal values assessed in 

previous studies for these characteristics include a fine fraction around 20% for S. senilis (Honkoop et 

al., 2008), 10-26% for Tellinidae and 7-15% for Veneridae (the family of Pelecyora isocardia) 

(Anderson, 2008).  

The invasive species A. senhousia had been previously recorded for the mudflats of the Bijagós 

archipelago (Lourenço et al., 2018b). This species is an opportunistic suspension feeder with high 

reproductive capacity and fast growth rate, capable of achieving high population densities and forming 

large mats (Crooks 1996; Mistri et al., 2004; Hayward et al., 2008) but it appears to have a low density 

in the Adonga mudflats for now. The density and biomass of this invasive species are especially low in 

high crab density areas where the disturbance driven by fiddler crabs may be delaying the expansion of 

A. senhousia. Still, the presence of this invasive species was recorded in 20.0% (n=45) of all cores 

collected in areas with low crab density in this region of the Orango National Park. 

Although many differences have been found in the benthic macroinvertebrate communities 

inhabiting low and high crab density areas, for 17 taxa we found no significant differences. Most of 

these taxa were relatively rare and thus results are less conclusive. An increase in sampling effort would 

be needed to properly sample these invertebrates. Still, for some of the relatively abundant taxa, the 

impacts of fiddler crabs seem to be negligible. This is the case for Nereidae and Nephtyidae polychaetes 

which are very versatile organisms and have been shown to have a wide range of sediment type 

preference ranging from low to high fine particle content depending on the species (Kristensen, 1998; 

Meißner et al., 2008). Also, some bivalve genera have a wide variety of preferences regarding sediment 

type like Abra (Alexander et al., 1993; Thiébaut et al., 1997) and Tagellus (Holland & Dean, 1977) and 

thus, sediment variables are a poor indicator of the spatial structure of both taxa.  

 Some of our results may also be influenced by factors not analyzed in this study. Many variables 

either biotic, such as salinity and currents (e.g. van der Meer, 1991; Ysebaert et al., 2002; Compton et 

al., 2013), or biotic such as interaction with other species and breeding success (e.g. Piersma, 1987; 
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Piersma et al., 1993a; van der Zee et al., 2012) may also be affecting the macrobenthic communities and 

thus, the results.  

 

Differences in shorebird community between low and high crab density areas  

Results from this study clearly show that fiddler crabs have a strong effect on the spatial 

distribution of the shorebird community. The density of most species is drastically different between 

low and high crab density areas (a magnitude up to 20× in some species), with some species being more 

abundant in areas with low density of fiddler crabs, while others show the opposite pattern. Nevertheless, 

and overall, shorebird densities were higher in low crab density areas. In low crab density areas, the 

shorebird community is dominated by Red knot, Curlew sandpiper, Ringed plover and Sanderling. 

Moreover, the Little stint is almost exclusive to these areas. On the other hand, the shorebird community 

in high crab density areas is dominated by the Whimbrel, Common redshank, Common sandpiper and 

Sacred ibis. Additionally, the Common sandpiper is almost exclusive to areas with high densities of 

fiddler crabs. 

Given that areas with high densities of fiddler crabs have lower richness and biomass of 

harvestable macroinvertebrates (see above), these areas are likely less attractive for most foraging 

shorebirds. However, fiddler crabs themselves are prey items of great importance for several shorebird 

species in the Bijagós.  Previous studies have found that a high proportion of the diet in many species 

of shorebirds, including in the Ringed plover, Grey plover, Common redshank, Sacred ibis, Kentish 

plover, Curlew, Common sandpiper, Bar-tailed godwit, Sanderling, Rudy turnstone and Whimbrel, is 

composed by fiddler crabs (Zwarts,1995; Lourenço et al. 2017). Some of these species have especially 

high proportions of fiddler crab in their diet and can be considered fiddler crab specialists in the Bijagós. 

These are the species that showed significantly higher densities in high crab density areas like the 

Whimbrel, the Common sandpiper, Common redshank, Sacred ibis and Curlew. The other species that 

feed on fiddler crabs but are not specialists either seem to show no preference in terms of foraging areas, 

like the Grey and Kentish plovers and the Bar-tailed godwit, or prefer low crab density areas, like the 

Ringed plover and Sanderling. This may be due to the fact that the other invertebrates relevant in their 

diet (Lourenço et al., 2017) are much scarcer in high crab density areas while crabs from the preferred 

size classes (0-1 cm, Zwarts, 1995), are present in both low and high crab density areas. Moreover, 

although these size classes have higher densities in high crab density areas, plovers are known to be 

mainly visual foragers that depend on sight to detect their prey, and the Sanderling and Bar-tailed godwit 

are mainly tactile foragers, that use their beaks to probe for prey (Zwarts et al., 1990; Lourenço et al., 

2008). The presence of larger crabs that are not suitable prey items may increase the difficulty of the 

foraging activity. 

Some of the studied birds are known to feed mainly on either polychaetes, such as the Dunlin 

(Lourenço et al., 2016), Curlew sandpiper (Puttick, 1978; Kalejta, 1993) White-fronted plover (Kalejta, 

1993) and Little stint (Bengston & Svensson, 1968), or on bivalves, such as the Red knot (Lourenço et 

al., 2017) and Eurasian oystercatcher (Priesma et al., 1993b). All these species were found to have lower 

densities in high crab density areas, where their main food source is less abundant, except for the 

Eurasian oystercatcher and White-fronted plover. For the Oystercatcher, factors not evaluated may be 

influencing the results, like intraspecific interactions, that has been found to be an important factor 

determining the spatial distribution of this species (Ens & Goss-Custard, 1984). In the case of the White-

fronted plover, the preference for Nereidae polychaetes, available in both crab density areas may explain 

the lack of significant differences. Moreover, all the above-mentioned shorebird species are known to 
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be mainly tactile foragers that devote a large proportion of time to random probing through which they 

find prey (Lourenço et al., 2017). The disturbance created by the larger and more abundant crabs in high 

crab density areas may prevent the birds from using their preferred forging strategy.  

The diet of the Common greenshank has been shown in previous studies to comprise mainly 

fish (Ntiamoa-Baidu et al., 1998), polychaetes and crabs (Kalejta, 1993). This wide variety of prey items 

may explain the non-significant differences found in the density of Common greenshank between low 

and high crab density areas. Moreover, we collected no data regarding the availability of small fish for 

waders and for Common greenshank the distribution of fish can be affecting the results. Also, this 

species was not very abundant in the study area and the low sample size may mask any possibly existing 

pattern of crab density preference. 

Since fiddler crabs are generally distributed in large patches within the intertidal mudflat, their 

presence must have a strong effect on the spatial segregation and zoning of the shorebird species in the 

whole Adonga mudflats. This effect must be especially strong for some locally abundant species like 

the Whimbrel, Curlew sandpiper, Red knot, Ringed plover and Sanderling as shown by the marked 

differences in abundance in our study plots, but not very strong in some other abundant species like 

Grey plover and Bar-tailed godwit that did not exhibit significant differences.  

 

Foraging behavior and diet of shorebirds in low and high crab density areas 

We expected that shorebirds would be feeding more frequently on fiddler crabs in high crab 

density areas. However, except for Grey plover, no other species analyzed showed an increase in the 

consumption rate of fiddler crabs in high crab density areas, not even the highly specialized crab hunter 

Whimbrel. It is important to note that we measured the consumption rate as individual preys consumed 

per minute and not biomass consumed per minute. Due to the difficulty in approaching birds in the study 

area without disturbing them, the videos were recorded at a considerable distance and thus it was 

virtually impossible to accurately estimate the size of the prey consumed and estimate associated 

biomass. Since fiddler crabs are overall larger in high crab density areas it is likely that biomass intake 

is higher there, but without a biomass estimation we cannot say for sure. The only other differences in 

diet were registered for the consumption rate of Bivalvia/Gastopoda prey. Whimbrel ingested more 

bivalves and/or gastropods in low crab density areas and Grey plover ingesting less. Both these predators 

feed mainly on fiddler crabs but to a small extent, Whimbrel also preys upon bivalves and Grey plover 

upon polychaetes and gastropods (Zwarts, 1995; Lourenço et al., 2017). This may explain the increase 

in Bivalvia/Gastropoda prey consumption in low crab density areas by Whimbrel were the availability 

of crabs is lower, especially the preferred size classes (1-1.5 and 1.5-2 cm; Zwarts, 1995).  For Grey 

plover the increase in Bivalvia/Gastropoda consumption in high crab density areas is contrary to the 

expected since these invertebrates are less abundant in these areas. Still, this data can be somehow biased 

as there was a high proportion of not identified prey items (also for Redshank).  

We found no major differences in the foraging behavior of birds feeding in low and high crab density 

areas across all the species filmed. An exception was recorded for the parameter “pecking rate”, which 

increased in low crab density areas for all species except for Grey plover. This increase was not expected 

to occur in low crab density areas, but in high crab density areas, that hold a high availability of fiddler 

crabs. This increase is difficult to explain and further investigation on the matter may be needed to truly 

understand what may cause these differences. Moreover, the higher pecking rate does not seem to 

translate into a higher feeding success, as this parameter was not different between areas. It is important 

to note that all the four species included in this analysis are mainly visual foragers, although Whimbrel 
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and Redshank can sometimes use tactile cues to find prey (Lourenço et al., 2017). Thus, the lack of 

significant behavioral differences between areas can be explained by the low behavioural plasticity in 

these species. We also acknowledge that the relatively low number of videos recorded can also be 

shading potential differences, and an increase in sample size would be important to support these results. 

 

Characterization of the fiddler crab populations in Adonga mudflats: a singular case? 

Our results show that the fiddler crab population is female-biased in high crab density areas 

while the opposite was found for low crab density areas. The contrasting results obtained may be 

influenced by the low number of individuals sampled in low crab density areas since the sex of most 

crabs in these areas could not be determined due to their small size. Interestingly, the results obtained in 

high crab density areas do not concur with most previous studies performed in other habitats, where 

there was either a male bias in the sex-ratio of fiddler crab populations (e.g. Moruf & Ojetayo, 2017) or 

a balanced sex-ratio (e.g. Moruf & Lawal-Are, 2017). This shows that the fiddler crab populations of 

Adonga mudflats may be unique in this aspect. In terms of crab/burrow ratio, it has been well 

documented in previous studies that fiddler crabs dig burrows in excess, although the exact ratio varies 

between species and populations, even depending on some biotic and/or abiotic factors, like food supply 

(Genoni, 1991). Nevertheless, our results point for the lowest crab/burrow ratio previously described, 

meaning that the fiddler crabs in this area dig many burrows in excess (ca. 1 crab per 4 burrows), more 

than it would be expected.  

 

Conclusions 

This study presents strong evidence for the role of fiddler crab populations in shaping the 

structure of the remaining macroinvertebrate communities as well as the spatial distribution of foraging 

shorebirds. Impacts of fiddler crabs are probably driven by bioturbation resulting from their foraging 

activity which changes the sediment characteristics, in particular increasing the fine particle and organic 

matter content. These changes, along with the disturbance factor, are likely to be the promoters of 

changes in the benthic macroinvertebrate community, whose density and biomass were significantly 

lower in high crab density areas. Fiddler crab occurrence also affected the main predator of the 

macroinvertebrates, the shorebirds, whose distribution is affected by the distribution of their prey. 

Indeed, the shorebird community showed lower diversity in high crab density areas, while areas with 

low crab densities hold overall higher bird numbers. In particular, shorebird species that prey mainly on 

polychaetes, bivalves and gastropods seem to avoid areas densely occupied by fiddler crabs. In contrast, 

birds that prey mainly on fiddler crabs seemed to prefer high crab density areas. Although we found a 

clear effect of the fiddler crabs on the spatial distribution of foraging shorebirds, no behavioral 

differences were apparent in foraging birds between high and low crab density areas, which may also 

reflect the recorded lack of dietary differences between the two types of areas.  

Results from our study are extremely relevant for the current knowledge on wintering shorebirds 

in the Bijagós archipelago. Fiddler crabs are largely widespread in the intertidal mudflats of the Bijagós 

archipelago and our data can be used to help predicting the most likely shorebird assemblages present 

in an area based on the presence of fiddler crabs. Although, in general, high crab density areas hold 

poorer and less abundant shorebird communities, there are many species that depend almost entirely on 

the crabs present in these areas to survive during the non-breeding period. These findings are critical 

from a conservation perspective, as the Bijagós archipelago is the second most important area for 
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wintering shorebirds in West Africa. Moreover, this is an ecosystem that has large extensions of fiddler 

crab, thus, the effect they have on the foraging shorebirds must be very strong, especially for locally 

abundant species that show clear segregation between the two crab density areas. Additionally, the 

fiddler crab patches seem to be relatively easy to map using satellite imagery (Belo, 2019) or even 

drones. Therefore, it is easy to include them on predictive models of shorebird distribution. It will be 

essential from now on to include the presence of fiddler crabs in these models as we now know it is a 

very powerful variable influencing the entire shorebird community.  

In the future, it may be also important to use satellite imagery to understand how the populations 

of fiddler crab evolve, and if the crab patches are dynamic or close to static. This knowledge may be 

critical to explain changes in both macroinvertebrate and shorebird abundance and distribution. 
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