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Abstract 

 

Ecosystems, and particularly, food webs have been subject of many studies in the last years. This is a 

hot topic if we consider the anthropogenic pressures and modifications that are increasingly prominent 

and notorious nowadays. Theoretical biologists try to figure out, in predictive analyses, how ecosystems 

will react if a species suddenly disappears. These analyses are often supported by a variety of different 

mathematical tools. Different mathematical tools are intended to give different biological answers. 

In fact, food webs are usually complex relationships of interactions and thus, it is very common, 

in any systems ecology work, to simplify these interactions. A common way to do it is to reduce the 

system under focus to a network form. In network representation, we usually have entities connected by 

links. These links can be weighted, directed, looped, and thus, allow us to add some detail to the analysis. 

In biology, a food web can also be depicted as a network: species or groups of species are depicted as 

entities and their trophic interactions are depicted as links. 

In general network analysis, there are a myriad of different centrality indices. Centrality indices 

allow us to identify the critical nodes in a network. In ecology these indices are also used and have been 

suggested to identify key organisms and to quantify their importance in food webs. All of these indices 

provide some information related to the centrality of a node in a network, but each of them is different. 

They express different aspects of being in the centre. Their relationships and also their biological 

meanings are often unclear.  

Another common way to evaluate the importance of a species to the food web is through 

dynamical simulations of system behaviour. We can test, based in mathematical expressions such as 

logistic models, how the whole system will behave, i.e., how all the species will react if we take one 

species almost to its extinction. 

This dissertation will analyse the correlation between centrality indices and the outcome of 

dynamical simulations, namely, community responses. The assumption is that the disturbance of more 

central species will generate larger community responses in the system. The goal is to understand if 

centrality indices are good enough to make predictions (closer to the ones we can get performing 

community response simulations). It is a major challenge to use simpler structural indicators to predict 

the outcome of much more complicated simulations. We approach these goals by using machine learning 

techniques to combine k centrality indices out of n in such a way that the correlation between the 

structural node centrality rank and the simulated node importance rank is the strongest. We ask which 

centrality indices should be chosen and how exactly they should be combined to best predict simulated 

food web dynamics. We also evaluate to what extent these correlations can be improved. 
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Resumo 

 

Muitos sistemas biológicos têm visto um grande declínio desde que o ser humano entrou em cena há 

muitos milhares de anos. Estes sistemas têm sofrido particulares perturbações com o aumento da 

população mundial e o estilo de vida moderno. Vários ecossistemas têm sido atacados com a constante 

destruição de habitats, pesca excessiva ou aumento de poluição, que leva, inevitavelmente à decadência 

e extinção de muitas espécies e ecossistemas. 

De modo a tentar compreender como os ecossistemas funcionam, quais as interações entre os 

organismos e os sistemas abióticos que os circundam, tem-se tentado reduzir tais sistemas, geralmente 

complexos e intrincados, a simplificações que podem ser avaliadas de modo mais objetivo. 

Desta forma, a modelação de sistemas ecológicos é cada vez mais utilizada para perceber como 

as espécies se encontram interligadas nos seus habitats. Reduzir sistemas complexos a representações 

matemáticas como redes permite-nos quantificar as partes dentro do todo. Um exemplo desta modelação 

biológica consiste em reduzir cadeias alimentares complexas a redes simples, representadas por nós (ou 

vértices) ligados por arcos (ou arestas) – grafos. Neste tipo de representação é possível adicionar algum 

nível de detalhe como, por exemplo, pesos, direções ou ciclos. Esta simplificação constitui uma 

ferramenta importante para se estudar interações topológicas e dinâmicas em sistemas biológicos.  

A modelação ecológica tem por base noções matemáticas. Neste caso, utilizaram-se conceitos 

derivados do estudo de grafos. Através destes conceitos é possível simular o comportamento de sistemas 

através de simulações e análises computacionais quantitativas.  

As redes ou teias alimentares são simplificações usadas para representar interações tróficas entre 

organismos. As relações presa-predador permitem-nos entender a dinâmica e a resiliência das 

comunidades: interações alimentares dão-nos noções sobre taxas de vitalidade, de crescimento e de 

mortalidade. Por exemplo, se a população sob análise tem mais presas à sua disposição, terá tendência 

a crescer; no entanto, se a mesma população tiver de confrontar um grande número de predadores, 

provavelmente irá decair, visto que mais indivíduos serão ingeridos.  

A aplicação de estatística de redes, importada de áreas como a matemática, física e informática, 

a estas representações biológicas, permite-nos avaliar os ecossistemas. Existe uma miríade de índices 

de centralidade (ou índices topológicos) utilizados. Em ecologia, estes índices têm sido usados e 

sugeridos como métodos de identificação de organismos chave de modo a quantificar a sua importância 

em cadeias alimentares ou ecossistemas. Estes índices dão alguma informação sobre a centralidade de 

um nó na rede. No entanto, cada um é diferente – expressam aspetos diferentes de centralidade – e, 

quando aplicados a sistemas biológicos, podem representar também diferentes significados.  

Espécies classificadas como mais importantes terão, de um ponto de vista de uma ecologia mais 

funcional, uma maior importância de conservação. Isto acontece porque, se essa população sofrer níveis 

críticos de extinção, ou se for completamente extinta do(s) ecossistema(s), pode levar a perturbações em 

cascata, isto é, provocar a extinção de muitas outras espécies – direta ou indiretamente dependentes – 

ou até, em casos mais drásticos, o desaparecimento de toda a comunidade em que se inserem. No 

entanto, a aplicação destes índices para expressar relações biológicas e o seu significado ainda é pouco 

claro. 
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Para além disto, estes índices permitem avaliar redes biológicas, de um modo teórico, a 

diferentes escalas. Índices topológicos globais, usados também em outras áreas de análise de grafos, 

permitem avaliar as redes como um todo. No entanto, estes índices oferecem menos detalhe no que toca 

a como cada indivíduo se interliga com os restantes nessa rede. A perspetiva local, do outro lado da 

escala, permite-nos entender melhor como cada indivíduo está conectado na rede. O problema é que, de 

uma perspetiva local, não temos compreensão sobre interações mais afastadas na rede, ou seja, sobre 

efeitos diretos ou indiretos que um indivíduo pode estar a causar aos outros indivíduos. Devido a isso, 

uma variedade de diferentes índices de escala intermédia têm surgido e sido utilizados. Estes, procuram 

acrescentar algumas dessas informações previamente ausentes – permitem analisar a posição topológica 

de cada espécie, mas com alguma perspetiva sobre os impactos diretos e ou indiretos que essa espécie 

tem no resto da comunidade. 

A representação simplificada destes sistemas pode ser vantajosa, em termos de análises teóricas 

mais objetivas. No entanto, utilizar índices estáticos – como é o caso dos índices topológicos – para 

avaliar sistemas que se encontram em constante mudança, pode ser falacioso: a vida não é estática e 

muito menos as complexas redes de interação entre espécies. Todas as espécies têm a sua taxa de 

crescimento, mortalidade e vitalidade, diferentes ciclos de reprodução, e, geralmente dependem de 

outras espécies para a sua sobrevivência. Para além disso, estas taxas variam ao longo do ciclo de vida 

de cada espécie. Deste modo, para entender como o tempo e as flutuações topológicas afetam as 

populações, outros tipos de análises matemáticas podem ser realizados. Estas análises, intituladas de 

análises dinâmicas (ou simulações), são frequentemente descritas por sistemas ordinários de equações 

diferenciais, que têm em conta diferentes parâmetros populacionais, adequados a cada espécie. 

No entanto, bancos de dados com informações relativas ao histórico de vida, informações 

demográficas e de interação de espécies, necessárias para parametrizar modelos de redes ecológicas 

raramente estão disponíveis, devido à sua grande complexidade de recolha, quer em termos de esforço 

quer em termos de escalas temporais – é difícil recolher dados relativamente a cada uma das espécies 

dentro das comunidades, durante todo o seu ciclo de vida (visto que pode ser um período relativamente 

extenso). Por este motivo, análises dinâmicas são muitas vezes preteridas relativamente a análises 

estáticas.  

Neste trabalho, pretendeu-se investigar, através da análise de clusters e correlações, quais as 

semelhanças entre alguns dos índices topológicos disponíveis e utilizados em modelação ecológica. 

Também se analisou como podemos utilizar estes índices, de maneira individual ou combinada, para 

prever quais são as espécies-chave (ou espécies críticas) numa rede alimentar. Utilizou-se, para isso, um 

algoritmo genético com regressão simbólica, e, como elemento alvo para esta comparação, uma 

simulação dinâmica. A simulação dinâmica usada tenta prever a resposta das espécies de uma 

comunidade quando uma delas é perturbada – simulação de resposta da comunidade. Para o uso desta 

simulação como “alvo”, partiu-se do pressuposto que esta seria a maneira mais correta de avaliar a 

importância de cada espécie dentro da rede. Devido à escassez de informação relativa a teias alimentares 

reais, utilizaram-se 1000 cadeias alimentares hipotéticas, constituídas por 15 espécies, 3 espécies basais 

e 4 espécies predadoras de topo.   

Os resultados obtidos fornecem novas maneiras de avaliar a ordem de importância de cada 

espécie, de acordo com simulações biológicas complexas. Podemos usar índices estruturais 

(topológicos) simples ou algumas combinações desses índices, variando dos mais simples aos mais 

complexos. Também foi percetível que o grau (D) e o índice de importância topológica ponderada de 5 

etapas (WI5) foram os que mais emergiram nas combinações de índices obtidas. Estes resultados são 

interessantes se considerarmos que o grau é um índice simples, baseado em interações diretas. O índice 

de importância topológica ponderada de 5 etapas, por sua vez, é um índice mais complexo, ponderado, 
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e que considera, também, interações indiretas. Além disso, descobrimos que este índice está 

simetricamente correlacionado com os resultados da simulação, contrariamente ao grau, que não se 

encontra correlacionado. São índices totalmente diferentes e, por isso, é interessante e conveniente 

combiná-los: permitem informações complementares e adequadas.  

Acreditamos que maneiras mais concisas e eficientes de identificar espécies-chave em redes 

ecológicas serão essenciais para o futuro da ecologia de sistemas que visa alcançar prioridades ou 

regulamentos objetivos de conservação e gestão de ecossistemas. A nossa abordagem, baseada na 

maximização do poder preditivo de análises estruturais, pode ser um grande passo em direção a 

pesquisas e análises rápidas e simples, mas bastante realistas sobre redes alimentares e espécies-chave 

nos ecossistemas.  

 

 

 

 

Palavras-chave: Biologia de Sistemas, Modelação, Análise de Redes, Análise Dinâmica, 

Aprendizagem Automática 



viii 

 

 
 



ix 

Table of Contents 

 

Acknowledgments ................................................................................................................................... ii 

Abstract .................................................................................................................................................. iv 

Resumo .................................................................................................................................................... v 

Table of Contents ................................................................................................................................... ix 

List of Tables .......................................................................................................................................... xi 

List of Figures ...................................................................................................................................... xiii 

List of Abbreviations ............................................................................................................................ xiv 

Chapter 1

 ................................................................................................................................................................. 1 

1.1 Ecology and Ecosystems ......................................................................................................... 1 

1.2 Networks ................................................................................................................................. 1 

1.3 Mathematical Concept ............................................................................................................. 2 

1.4 Graph Theory: Brief history .................................................................................................... 3 

1.5 Evaluate Node Position: Centrality ......................................................................................... 4 

1.6 Global vs local ......................................................................................................................... 4 

1.7 Ecological Networks ............................................................................................................... 5 

1.8 Food Web History ................................................................................................................... 5 

1.9 Food Webs ............................................................................................................................... 6 

1.9.1 Basic Concepts ................................................................................................................ 8 

1.9.2 Structure .......................................................................................................................... 8 

1.10 Problem ................................................................................................................................... 9 

1.10.1 Similarity Between Centrality Indices ............................................................................. 9 

1.10.2 Structure to Dynamics ................................................................................................... 10 

Chapter 2

 ............................................................................................................................................................... 11 

2.1 Data ....................................................................................................................................... 11 

2.2 Research Methodology .......................................................................................................... 11 

2.2.1 Topological indices ....................................................................................................... 11 

2.2.2 Networks dynamics ....................................................................................................... 15 

2.2.3 Single Index Correlation................................................................................................ 16 

2.2.4 N–Index Correlation ...................................................................................................... 16 

2.2.5 Combination of indices ................................................................................................. 16 

2.2.6 Program used ................................................................................................................. 17 



x 

Chapter 3

 ............................................................................................................................................................... 19 

3.1 Cluster analysis...................................................................................................................... 19 

3.2 Single correlation .................................................................................................................. 21 

3.3 Combination of k – Indices ................................................................................................... 23 

Chapter 4

 ............................................................................................................................................................... 28 

References ............................................................................................................................................. 31 

Appendix A Python Script ................................................................................................................. 35 

Appendix B Ordinal data matrix results ............................................................................................ 41 

B1 k – Indices combination ......................................................................................................... 41 

Appendix C Consensus dendrogram analysis – Alternative Approach ............................................. 46 

C1 Families of indices in the top-20 more frequent .................................................................... 47 

Appendix D Relative frequency of each index in the total unique mathematical expressions 

obtained  ................................................................................................................................... 49 

Appendix E Single and combined indices performance when applied to three, four or six nodes.... 51 

 

 

 



xi 

List of Tables 

 

Table 3.1. Spearman correlation and respective p-values related to all indices used and the simulation 

of the "community response" – metric values. ...................................................................................... 21 

Table 3.2. Spearman correlation and respective p-values related to all indices used and the simulation 

of the "community response" – ordinal values. ..................................................................................... 22 

Table 3.3. Best mathematical expressions, derived from the algorithm used, according to absolute 

Spearman correlation results. ................................................................................................................ 23 

Table 3.4. Most frequent mathematical expressions derived by the algorithm used. ........................... 25 

Table 3.5. Most frequent mathematical “families” of indices derived from Table 3.4. ....................... 26 

 

Table B1. Best mathematical expressions, derived from the algorithm used, according to absolute 

Spearman correlation results – ordinal data. ......................................................................................... 41 

Table B2. Most frequent mathematical expressions derived by the algorithm used – ordinal data. .... 44 

Table B3. Most frequent mathematical “families” of indices derived from Table B2. ........................ 45 

 

Table C1. Most frequent mathematical “families” of indices derived from Table 3.2 – metric data. .. 47 

Table C2. Most frequent mathematical “families” of indices derived from Table B2 – ordinal data. . 48 

 

Table D1. Relative frequency, in percentage, of each index appearance in the total of different unique 

results obtained – metric data. ............................................................................................................... 49 

Table D2. Relative frequency, in percentage, of each index appearance in the total of different unique 

results obtained – ordinal data. .............................................................................................................. 50 

 

Table E1. Spearman correlations derived from the results when applied to different groups of nodes in 

the networks. ......................................................................................................................................... 51 

Table E2. Average and standard deviation (percentage) of all results obtained related to their Spearman 

correlations. ........................................................................................................................................... 53 

Table E3. Performance of the “best” mathematical expressions obtained using different groups of nodes 

from the networks – different partial datasets – metric data. ................................................................ 55 

Table E4. Performance of the most frequent mathematical expressions obtained using different groups 

of nodes from the networks – different partial datasets – metric data. .................................................. 57 

Table E5. Performance of the “best” mathematical expressions obtained using different groups of nodes 

from the networks – different partial datasets – ordinal data. ............................................................... 59 



xii 

Table E6. Performance of the most frequent mathematical expressions obtained using different groups 

of nodes from the networks – different partial datasets – ordinal data. ................................................. 61 

 

 

  



xiii 

List of Figures 

 

Figure 1.1. Small network representing a simple, directed graph. ......................................................... 2 

Figure 1.2. Small network representing a simple, undirected graph. ..................................................... 2 

Figure 1.3. and Figure 1.4. Examples of representations of a simplified real food web: Seine Estuary 

food web. ................................................................................................................................................. 6 

Figure 1.5. Simplified food web for the Northwest Atlantic. ................................................................. 7 

Figure 3.1. Consensus dendrogram between topological indices. ........................................................ 20 

 

Figure C1. Consensus dendrogram between topological indices – four clusters. ................................ 46 

 

  



xiv 

List of Abbreviations  

 

Di – Degree 

wDi – Weighted Degree 

BCi – Betweenness Centrality 

CCi – Closeness Centrality 

TIi
n – Topological importance index 

WIi
n – Weighted topological importance index 

si – Status index 

s’i – Contra-status index 

∆si – Net status index 

Ki – Keystone index  

Kbu,i – Keystone index for bottom-up effects 

Ktd,i – Keystone index for top-down effects 

Kdir,i – Keystone index for direct effects  

Kindir,i – Keystone index for indirect effects 

3N – In a ranked network, it means the first three nodes (i.e. the first three most important species, 

according to the rank used) in a network 

4N – In a ranked network, it means the first four nodes (i.e. the first four most important species, 

according to the rank used) in a network 

6N – In a ranked network, it means the first six nodes (i.e. the first six most important species, according 

to the rank used) in a network 

 

 

 



1 

Chapter 1 

Introduction 

 

1.1   Ecology and Ecosystems 

 

Ecology (from the Greek: οἶκος - "house" or "environment"; -λογία - "study of") is the biological science 

that studies biotic and abiotic interactions between living organisms and their surroundings in a specific 

time and space. It was first coined by Haeckel in 1866.  

 Ecologists study biodiversity, distribution, biomass, ecosystems among other topics. An 

ecosystem is a community of species – living organisms – interacting with their environment – non-

living components. These interactions are always escorted by energy and nutrient fluxes. Ecologists can 

study ecosystems in different details’ level: ranging from individual organisms or species (organisms 

with specific traits that can mate and produce fertile offspring), to populations (comprising organisms 

from the same species), to communities (composed by different populations)1. 

 Ecosystems depend upon internal and external factors. Internal factors are usually associated to 

the type and quantity of species interacting in the ecosystem. External factors are frequently linked to 

climate, soil and topography. It is also important to mention that these systems are dynamic and, 

therefore, constantly changing, adapting and evolving1,2. 

 From an anthropogenic perspective, these systems are important since they provide us natural 

resources, e.g., water and air, and natural services, e.g., the nutrient cycle or air purification – cycles that 

are dependent upon the interaction of species in these habitats2.  

Since we are crossing an era of unprecedent changes in ecosystems, is thus primordial 

understanding how they work and how species interact between themselves.  

 

1.2   Networks  

 

Networks (or graphs – used interchangeably in this work) can be generally used to represent overall 

real-life problems since they can reduce a system to a simple interaction of points and edges. In fact, 

they are used in the more diverse fields such as, social networks, telecommunication networks or 

biological networks2-7.  

A suitable way to study an ecosystem or its parts is using graph theory. Graphs allow us to 

represent the interactions between species and their abiotic surroundings. Furthermore, graph analysis 

is becoming more and more refined and thus, allow us to address different biological questions with 

more accurate and, simultaneously, meaningful answers8. 
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 We can simplify and reduce a system to a graphical network, generally, by considering the parts 

of the system we want to study as specific entities, connected to each other. Entities are represented by 

nodes and connections between them by arcs. This is a simplistic way to represent a system. As a result, 

some information about the system is always lost. However, it is still one of the best ways to understand 

and predict the behaviour of a complex system. 

 

1.3   Mathematical Concept 

 

Mathematically, a graph is defined by a set of points (nodes, vertices or junctions) connected by lines 

(edges, arcs, branches). Formally, a graph is defined as G = (N, A) where N is a finite set and A ⊆ N×N. 

N elements are denoted by nodes and A elements by edges or arcs, whether the graph is directed 

or undirected, respectively. In case of an undirected graph, an edge between i and j is represented 

by {i, j} (in this case, edges {i, j} and {j, i} are the same). In case of a directed graph, an arc from i 

to j is represented by (i, j)4.  

 

Figure 1.1. Small network representing a simple, directed graph. 

 

 Graphs can also be represented in a visual form, as in Figure 1.1. The directed graph of Figure 

1.1 corresponds to the graph G = (N, A) where N = {1, …, 9} and A ={(1,3), (1,4), (2,5), (2,6), (3,6), 

(3,9), (4,7), (4,8), (5,9), (6,8), (6,9)}. 

As noted before, graphs can be directed or undirected. An undirected graph “similar” to the 

previous directed graph can be defined as follows: 

N = {1, …, 9} and E ={{1,3},{1,4},{2,5},{2,6},{3,6},{3,9},{4,7},{4,8},{5,9},{6,8},{6,9}}. 

 

Figure 1.2. Small network representing a simple, undirected graph. 
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Another common way to represent graphs is through an adjacency matrix. The adjacency matrix 

𝐴, for the undirected graph with nodes 𝑖 to 𝑗, is constructed according the following rules: 

𝐴𝑖,𝑗 = {
0, 𝑖𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,
𝑛, 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛 𝑒𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑖 𝑎𝑛𝑑 𝑗.

 (1.1) 

 

 Fig. 1.2, as an undirected graph would be denoted by: 

𝐴1,9 =

(

 
 
 
 
 
 

0
0
1
1
0
0
0
0
0

0
0
0
0
1
1
0
0
0

1
0
0
0
0
1
0
0
1

1
0
0
0
0
0
1
1
0

0
1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
1
1

0
0
0
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0

0
0
1
0
1
1
0
0
0)

 
 
 
 
 
 

 (1.2) 

 A similar definition holds for directed graphs. 

It is also important to notice that if we want to provide more information regarding the system 

or graph we study, we can consider other properties. They can be weighted and unweighted, whether 

we want to consider that some interactions are quantitatively more important than others. If not, they 

are binary, represented by zeros and ones (like in matrix 𝐴1,9). Graphs can contain multi-edges, more 

than one connection between the same nodes for example; self-loops, when a node is, simultaneously, 

the provider and receiver of the information; and they can also include cycles, e.g., when 𝐴 → 𝐵,𝐵 →

𝐶, 𝐶 → 𝐴.  

Besides these briefly mentioned properties, there are also a variety of other, for example, 

regarding graphs structure. Approaching them is out of scope of this work but they can be consulted in 

more detail in a variety of technical or introductory book texts related to graph theory4.  

 

1.4   Graph Theory: Brief history 

 

Graph theory was discovered independently in different times and places. It started as a mathematical 

tool to try to solve a series of different physical and real problems. Its foundation is usually attributed to 

Euler (1707-1782) since he tried to solve a topology problem called the Königsberg Bridge Problem. In 

this problem, Euler proved that it is impossible to start and end in the same point, without repeating the 

same path, if we have two islands and two banks of a river connected by seven bridges. This was a real-

life problem and, in order to solve it, Euler represented the four different pieces of land as points, and 

the bridges as lines, producing a graph9.  

With the course of the years, this area became more and more useful to manage problems in a 

diversity of other subjects and, therefore, different definitions and methods to classify topologies and 

patterns arose. Social sciences were of great contribution for the development of measures that could 

help to analyse networks. These measures are now widely used in all areas, including biology4. 
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1.5   Evaluate Node Position: Centrality 

 

One important and useful group of measures that arose within graph theory was the one that allow us to 

evaluate the importance of a node (or edge) in the considered network. This group of measures is known 

as centrality measures.  

There is a myriad of different mathematical measures in this group, each of which, based in 

different assumptions and concepts. In spite of that, they all stand for the same principle: identify which 

is the most important node for the network and helping us to define what it means to be central in a 

network4. Usually this measures account for the topology of the network and, therefore, they are also 

considered as topological, structural or positional indices (these names will be used interchangeably). 

Mathematically, if we consider 𝐺1 = (𝑁1, 𝐸1) and 𝐺2 = (𝑁2, 𝐸2) as two isomorphic graphs 

(directed or undirected, weighted or unweighted) where 𝑁1 and 𝑁2 are node sets and 𝐸1 and 𝐸2 edge 

sets respectively, a real-valued function 𝐹 will be considered a structural index if and only if: 

For each 𝑛 𝜖 𝑁1  ⟹ 𝐹𝐺1(𝑛) = 𝐹𝐺2(𝑀(𝑛)), where 𝐹𝐺1(𝑛) denotes the value of 𝐹(𝑛) in 𝐺1and 

𝑀 is a mapping function from 𝑁1 to 𝑁2.  

A centrality index, by definition, is a function 𝐶 that is a structural index and allows us to derive 

an order for the set of nodes or edges. By this rank or order we can say which are the most important 

vertices for the network10.  

 

1.6   Global vs local  

 

Centrality indices can be considered as ranging from a global to a local spectrum, crossing the meso-

scale level, in between both11.  

By using a global index, like, connectivity or link density, for example, we are able to 

characterize the topology of the whole network. However, we lose information about the specific 

position – and importance – of each node in the network. A local index, on the opposite side of the 

spectrum, such as the degree of a node (number of links that are directed assigned to it) provides 

information only about that specific node12 without considering the rest of the network or secondary 

connections. 

 Due to this, some meso-scale metrics emerged – so one could analyse the importance of a node, 

regarding its direct or indirect interactions in the network. The meso-scale perspective considers that the 

strength of indirect effects decreases with the length of the pathway11. One example of these metrics is 

the positional keystone index (explained further in more detail) which comprises the neighbours of the 

neighbours of a node and, thus, provides more information about the network structure in which the 

node is embedded13.  
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1.7   Ecological Networks 

 

As aforementioned, ecological systems provide important sources for life and human economies. 

Therefore, knowing how species interact between themselves in their context can be very useful.  

Indeed, nowadays, we are witnessing a never-seen rate of human direct or indirect modifications 

in the environment14 and thus, it is important to try to predict the deeds of an ecosystem and understand 

its intricate connections.  

Ecologists can rely on countless methodologies and different ways to subset communities in 

ecosystems in an effort to explain its interactions2,8. 

One of these methodologies consists of zoom in food webs in the ecosystems and transform 

their biological information in graph representation: food webs can be represented as diagrams of trophic 

interactions between species in an ecosystem, depicting which species eat which others15. They can 

include patterns of material and energy flow in communities2.  

This informational reduction allows us to study, and quantitatively evaluate, the interactions and 

properties of each food web based on mathematical, computational and statistical methods. Plus, this 

simplicity allow us to overcome problems concerning data collection for food webs, which happen quite 

often16.  

 

1.8   Food Web History 

 

Food webs, also nominated as “food cycles” was a concept widely spread by Charles Elton17. Elton 

emphasized that “Every animal is closely linked with a number of other animals living round it, and 

these relations in an animal community are largely food relations“. Elton goes further in his idea about 

food cycles, describing patterns in how organisms are related, a concept coined as “Pyramid of 

Numbers”. Elton stood that most food webs had many organisms on their bottom trophic levels and 

subsequently fewer on the upper ones. This concept is now known as Eltonian Pyramid.  

These concepts were later developed by scientists like Raymond Lindeman18, Robert May19, 

John Lawton20 and Stuart Pimm21.  

Lindeman started to consider the trophic dynamics and the energy transfers in ecosystems due 

to these dynamics. He realized that energy flows in food webs starting in a light form – assimilated by 

producers – and then passes through animal consumers and bacterial decomposers with some losses. He 

recognized that decomposers transform organic substances back to inorganic matter, ready to use by 

autotrophic organisms again. 

In 1972, May started to use a theoretical approach applied to ecological systems to understand 

whether populations with n animals and l interactions would be stable or not. 

Pimm and Lawton developed these ideas even further, using food chains (food webs in which 

is predator as only one prey) and food webs as a structure to understand and study population dynamics 

through predictions2. 
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1.9   Food Webs 

 

Usually, food webs are depicted as diagrams represented with species (e.g. orca), or functional groups 

of species (e.g. benthic invertebrates), linked by arrows or lines that represent the trophic interactions 

between species: when arrows are used, energy flow is represented from the resource to the consumer, 

while when lines are used, the population dynamical effects are represented between the prey and the 

predator (the predator does have an effect on the prey, even if this does not follow the direction of 

energy). Examples of food webs can be observed in Figures 1.2 – 1.4. 

 

 
Figure 1.3. and Figure 1.4. Examples of representations of a simplified real food web: Seine Estuary food web. Each node 

represents a species (or group of species) and each link represents the trophic interaction between species. In Fig. 1.2. links are 

undirected, unweighted and nodes are randomly distributed. In Fig. 1.3 links are directed, unweighted and nodes are distributed 
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according to the respective trophic level. DicLab – Dicentrarchus labrax (fish); PomMic – Pomatoschistus microps 

(suprabenthos); Ofish – Other fishes; PlaFle – Platichthys flesus (fish); Bird – Birds; CraCra – Crangon crangon 

(suprabenthos); PalLong – Palaemon longirostris (suprabenthos); NeoInt – Neomysis integer (suprabenthos); OmnBentPre – 

Omnivorous & benthic predators; BenthDep – Benthic deposit feeders; BenthSus – Benthic suspension feeders; Zoopl – 

Zooplankton; Phyto – Phytoplankton; PhytoBenth – Phytobenthos22. 

 

 
Figure 1.5. Simplified food web for the Northwest Atlantic. Each node represents a species (or group of species) and each 

arrow points to the predator species. Image from David Lavigne, National Science and Engineering Research Council. 
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1.9.1   Basic Concepts 

 

Food webs have a typical organization: they usually start with primary producers or basal species, at 

the bottom of the food web. They are followed by herbivores or omnivores and then by animals that eat 

herbivores or omnivores: carnivores, or predators. Animals not consumed by any other are defined as 

top predators. 

Basal species grow and develop using inorganic nutrients, water and energy from sunlight – 

photosynthesis – or from chemicals – chemosynthesis. Due to this, they are considered as autotrophic 

or chemotrophic, respectively.  

Herbivores, omnivores, predators, decomposers and detritivores are heterotrophic organisms: 

they feed on organic substrates to obtain nutrients and energy. Herbivores feed on plants. Omnivores 

can feed either on plants or animals. Predators are usually associated to carnivores: animals that eat other 

animals23. The difference between decomposers and detritivores is that decomposers can break down 

matter without ingesting it. Detritivores must ingest and digest the organic dead matter using internal 

processes.  

Food webs can be grouped in different ways: we can either consider them regarding the 

ecosystem they are depicting (e.g., detrital food webs, fresh water food webs) or we can gather them in 

different categories, such as: 

• Source webs – all relationships in these food webs rise from only one food source, i.e., they 

only contain one element in their basis (basal species or basal trophic group). 

• Sink webs – all the trophic interactions depicted descend from only one “sink”, i.e., the top 

predator or top trophic group. 

• Community webs – all the feeding interactions in the community. This concept is hard to 

materialize since the limits of a community are often difficult to establish or it can generate 

dauntingly complex webs. 

 

1.9.2   Structure 

 

1.9.2.1 Trophic Positions 
 

To better understand some of the concepts above-mentioned, one should define the trophic organization 

of a food web.  

The trophic level of a species or group of species is an abstract definition that helps us 

distinguishing subgroups of species within the community that acquire energy similarly. Thus, we have 

basal species or primary producers in the first position, conventionally attributed as trophic level one 

(but sometimes can also be considered as zero8). They are usually followed by herbivores at level 2, 

predators or omnivores at level 3 or higher, and top-predators (that can also be omnivores), “finishing” 

the chain, usually at level 4 or 5. There are also decomposers and detritivores that obtain their energy 

from all dead species of all trophic levels, and usually, due to this, they are not assigned to any trophic 

level.  
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Besides basal species – that produce directly their energy – the rest of the species can feed in 

more than one trophic level, making it hard to objectively attribute one species to one trophic level2.  

 

1.9.2.2 Keystone Species: Positional Importance 
 

In a trophic network, there are species, or groups of species that are critical for that network. These 

species are considered as keystone species. Their removal or perturbation can imply severe 

destabilization for all the community, with loss of other species24. A formal definition of keystone 

species is “one whose impact on its community or ecosystem is large, and disproportionately large 

relative to its abundance”25. 

 However, quantifying the importance of a species experimentally is a delicate process due to 

the spatiotemporal ranges intrinsically associated. These cause rising difficulties regarding the execution 

of objective methodologies related to field manipulation or laboratory experiments8. To counter this, a 

variety of theoretical methods arose. Nowadays, we can predict which are the most important species 

for the network, based on diverse topological indices – broadly used in graph theory –, or dynamical 

analysis – usually more specific to the field of study.  

 Currently, one challenge for theoretical ecologists is to choose which network centrality indices 

or dynamical simulations perform better or are more adequate to solve specific problems or questions8. 

If simple and fast structural analysis can reach the predictability of complicated and data-intensive 

dynamical simulations, conservation management can be more efficient. 

 

1.10   Problem 

 

1.10.1   Similarity Between Centrality Indices 

 

As previously mentioned, there are a variety of different positional indices, each of which based in 

different definitions and with its own mathematical construction. But, if we have so many options to 

analyse our data, how can we choose or, at least, be sure that we are using indices that will bring new 

information to our study?  

One of the current problems in graph theory – and graph theory applied to biology – is weather 

to use each index. There’s no specific formula to answer this problem yet. Some indices, very closely 

derived, such as status and contrastatus (explained in more detail later), despite of their similar 

mathematical constructions, can provide very different information about the same node or network in 

general26. 

  One way to avoid redundant information (or to reinforce the importance of a node in a network) 

is to study the pairwise correlation between different indices: the most correlated indices will 

characterize a network likewise and, therefore, won’t bring much new information for the analysis27. 
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Some studies based in small sets of networks were made in order to better understand this 

similarity12,28. These studies give us some insight and guidelines about the most related indices, but they 

can be specific to the networks used rather than general.  

Here, we attempt to widen these studies, using more networks and comparing the rank order 

provided by 18 centrality indices, through spearman correlation and clustering: the more redundant 

indices will cluster together. 

 

1.10.2   Structure to Dynamics 

 

These topological indices are useful to evaluate static food webs. However, real-world networks are not 

static: they change through time and space. For instance, the topology of a food web can change if there 

are two differential preys for a predator: at one moment, one of them can be more available in nature, 

and thus, will be the preferential one. But this can easily change if this species starts eventually to be 

scarcer8. Thus, dynamical approaches, that study, across a chronological time line, changes in size or 

proportion of entities (species or groups of species) and also their connections (interactions), are usually 

useful to understand the behaviour of the whole system, or merely to evaluate the effects in the network 

if one entity is deleted, for example. 

Unfortunately, dynamical studies have also their flaws: they can be either too simplistic to 

model the real-world dynamics3 or, when more complex and accurate, they are usually time and effort 

demanding, since they require much more specific data about the network29.  

Due to this, it would be very convenient if we could predict the outcome of dynamical models 

based solely in topological indices: 1) topological indices that characterize the importance of a node in 

a network (even though statically) are easier to obtain, 2) we would get more accurate results, not only 

based in the connections or the hierarchy of the network (as structural properties directly enable us to 

infer) but also based in how entities, in a specific context, interact between themselves and how they are 

connected in the same system, 3) we could infer the behaviour of a wider diversity of networks, even in 

fields where there’s still a lack of available experimental data as in the case of food webs.  

With this work, we aim to tie the knot between both topological methods and dynamical 

simulations in a mathematical expression. This expression intends to avoid performing dynamical 

simulations but reach similar answers using just a few of the available topological indices.  
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Chapter 2 

Data and Research Methodology 

 

2.1   Data 

 

We used 1000 randomly generated networks composed of 15 species: 12 consumers and 3 basal species. 

The maximum number of top predators was set to 4 and 36 links were randomly generated between 

species. The basal species #1, #2 and #3 were not perturbed for the community response simulation. 

Therefore, these species were not considered for this analysis. Each network was considered undirected8. 

In the case of weighted topological indices, weights for the arcs AB were generated as 
1

𝑛𝑟 𝑜𝑓 𝐴′𝑠 𝑝𝑟𝑒𝑦𝑠
, if 

A eats B.  

With these data, a matrix 𝑀12𝑛×𝑘 was constructed: being n the number of networks (each 

composed of 12 nodes) and k the respective 18 topological indices and the community response 

simulation’s results. This matrix was then processed in two different ones: 𝑀𝑟12𝑛×𝑘  and 𝑀𝑟𝑜12𝑛×𝑘. 

𝑀𝑟12𝑛×𝑘  containing the real (original) values derived by each index and the community response 

simulation in each column, compressed in the range [0,1]. We used the function “normalize” from the 

“BBmisc” package30 with the default method parameter “range”, using R31. 𝑀𝑟𝑜12𝑛×𝑘, containing the 

rank order values, i.e., in this matrix the real values were replaced by the respective node rank order 

(from 1 to 12). To nodes in the same network, with the same index value, a random order was assigned. 

Figure 1.3 and Figure 1.4 were generated using the “igraph” package32, using R. 

 

2.2   Research Methodology 

 

2.2.1   Topological indices 

 

To access the positional importance of nodes in a network one can use a range of different network 

indices (some of these indices are more local or global, some are for weighted or directed networks and 

some are used to evaluate hierarchies, as previously mentioned).  

 

2.2.1.1 Degree and weighted degree (Di, wDi) 
 

The most local network centrality index is the degree of a node (𝐷). It represents the number of other 

nodes directly connected to it. In a food web, the degree of a node 𝑖 (𝐷𝑖) is the sum of its preys and 
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predators. In weighted networks, the weighted degree of node 𝑖 (𝑤𝐷𝑖) is the sum of weights on links 

adjacent to node 𝑖33. 

 

2.2.1.2 Betweenness centrality (BCi) 
 

Betweenness centrality is considered a global index since it quantifies the portion of shortest paths 

crossing a given node 𝑖.  

Considering 𝑖 ≠ 𝑗 ≠ 𝑘 three different nodes, 𝑑𝑗𝑘 as the total number of shortest paths between 

nodes 𝑗 and 𝑘, and 𝑑𝑗𝑘(𝑖) as the number of these shortest paths that cross node 𝑖, we can represent 

betweenness centrality as11,33: 

 𝐵𝐶𝑖 = ∑ ∑
𝑑𝑗𝑘(𝑖)

𝑑𝑗𝑘
, 𝑖 ≠ 𝑗 ≠ 𝑘.𝑘𝑗    (2.1) 

Since this index scales with the number of nodes and edges, if we want to have 𝐵𝐶𝑖 ∈ [0, 1] we 

can divide this measure by the number of pairs of nodes not including node 𝑖: (𝑁 − 1)(𝑁 − 2), if we 

are considering directed graphs. If we are considering undirected graphs, we can divide by 

(𝑁 − 1)(𝑁 − 2) 2⁄  (only one direction is considered)34. 

 

𝐵𝐶𝑖 =
∑

𝑑𝑗𝑘(𝑖)

𝑑𝑗𝑘
𝑗<𝑘

(1/2)(𝑁−1)(𝑁−2)
= 

2∑
𝑑𝑗𝑘(𝑖)

𝑑𝑗𝑘
𝑗<𝑘

(𝑁−1)(𝑁−2)
, 𝑖 ≠ 𝑗 ≠ 𝑘.   (2.2) 

Where, 𝑗 < 𝑘 reinforces that unidirectional state. 𝑁 is the number of nodes in the network. 

Biologically speaking, if 𝐵𝐶𝑖 is large for a species or trophic group 𝑖, deleting this species will 

affect quickly and directly the whole web. This happens because the node is incident to many shortest 

paths in the network35.  

 

2.2.1.3 Closeness centrality (CCi) 
 

The closeness centrality index is also considered a global index since it evaluates the network as a whole. 

It is the inverse of the normalized average length of the shortest path between node 𝑖 and all other 

nodes33,36. It quantifies how close a node 𝑖 is to others11,35. 

 𝐶𝐶𝑖 =
𝑁−1

∑ 𝑑𝑖𝑗
𝑗=𝑁
𝑗=1

, 𝑖 ≠ 𝑗   (2.3) 

𝑑𝑖𝑗  is the length of the shortest path between nodes 𝑖 and 𝑗 in the network33. 

The biological meaning is close to 𝐵𝐶𝑖: the larger the value for 𝐶𝐶𝑖, the more the deletion of this 

group will affect the other groups directly. 
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2.2.1.4 Positional importance based on indirect chain effects (TIi
n, 

WIi
n) 

 

𝑇𝐼𝑖
𝑛 and 𝑊𝐼𝑖

𝑛 measure the topological importance considering the 𝑛-step-long indirect effects, in 

unweighted and weighted networks, respectively36. These indices can be considered as local, meso or 

global scale. If 𝑛 = 1 it is a local index. If 𝑛 ≤ 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑝𝑎𝑡ℎ it is considered a meso-scale index. If the 

maximum number of steps is considered, the whole network is accounted: it’s considered a global index. 

We used 𝑛 = 1, 𝑛 = 3 and 𝑛 = 5. 

To derive these indices, let 𝑎𝑛,𝑖𝑗  be the effect of 𝑗 on 𝑖, if 𝑗 is connected to 𝑖 in 𝑛 steps. One step 

is each connection between direct neighbours. We consider first the case with n = 1 as follows: 

 
𝑎1,𝑖𝑗 = 

1

𝐷𝑗
 (2.4) 

 To define 𝑎𝑛,𝑖𝑗 let 𝑃𝑘 be a path from 𝑖 to 𝑗 with 𝑛 arcs, where 𝑃𝑘 is the path 𝑖 =

𝑖1, 𝑖2, … , 𝑖𝑛−1, 𝑖𝑛 = 𝑗. 

The contribution of this path 𝑃𝑘 to 𝑎𝑛,𝑖𝑗 is equal to 𝑎1,𝑖1𝑖2 × 𝑎1,𝑖2𝑖3 × …× 𝑎1,𝑖𝑛−1𝑖𝑛 = 𝐶(𝑃𝑘). 

Finally, 𝑎𝑛,𝑖𝑗 = ∑ 𝐶(𝑃𝑘)𝑘 ∈ {all paths from 𝑗 to 𝑖 with 𝑛 arcs} . 

The total 𝑛-step effects of node (species) 𝑖 is the sum of its effects on every other species 𝑗37. 

 𝜎𝑛,𝑖 = ∑ 𝑎𝑛,𝑖𝑗
𝑗=𝑁
𝑗=1    (2.5) 

For the calculation of the topological importance of node 𝑖 when effects are considered up to 𝑛 

steps we normalize 𝑖’s 𝑛-step effects with the total number of steps we want to consider (𝑛)38: 

 
𝑇𝐼𝑖
𝑛 =

∑ ∑ 𝑎𝑚,𝑖𝑗
𝑗=𝑁
𝑗=1

𝑚=𝑛
𝑚=1

𝑛
=
∑ 𝜎𝑚,𝑖
𝑚=𝑛
𝑚=1

𝑛
.   (2.6) 

We can only consider steps up to the biggest path in the network, e.g., if the biggest path is 3, 

𝑛 ≤ 3. 

We made the simplifying assumption that community-level effects spread both bottom-up and 

top-down, with equal strength in both directions, so we used only undirected links (i.e., undirected 

graphs). 

Biologically, these indices preview that the specie(s) with higher attributed value will be the 

ones with more direct and indirect effects in all the network. Thus, if they are deleted from the network 

it will, more likely, generate cascade events. This index considers how many interactions that particular 

species has in the network. Direct and indirect effects have the same importance in unweighted graphs, 

whether in weighted ones it will depend in the strength of the connection.  

 

 



14 

2.2.1.5 Status index and its components (si, s’i, ∆si) 

 

Considering the food web as a directed acyclic graph (DAG), the status is the sum of distances from 

node 𝑖 to each other nodes37. Reverting the direction of the links, the same calculation will give the 

contrastatus of each node (𝑠′𝑖). These indices were primarily used in sociology26 but rapidly transposed 

to biological use, applied first, to food webs39. 

∆𝑠𝑖  is called the net status of node 𝑖 and it’s the difference between status and contrastatus: 

 ∆𝑠𝑖 = 𝑠𝑖 − 𝑠′𝑖   (2.7) 

These indices rank the “power” of a species in a network. Status and net status usually point out 

the top-predators as the “most powerful” ones and basal species as the “most powerless”, while 

contrastatus is the opposite: it considers the basal species as the powerful ones39. It was observed in 

some cases, that the net status can define more accurately who is the most important node for the network 

than the status or contrastatus26,39. 

 

2.2.1.6 Keystone index and its components (Ki, Kbu,i, Ktd,i, Kdir,i, 

Kindir,i) 
´ 

The keystone index and its components were derived from the status indices, previously discussed40. 

Hence, these indices were primarily developed to find the keystone species in a web, based solely on 

their position according to trophic interactions, i.e., disregarding their secondary interactions 

(competition, mutualism, etc.). Keystone index considers secondary interactions between species since 

the calculation of the value for each node accounts the sequent chain of nodes and their connections. In 

fact, although these indices are based in global indices, they are of meso-scale type (keystone index and 

its components, contrary to status and its derivations, account for the neighbours of the neighbours and 

consider a decreasing importance of the effects of the neighbouring nodes with the increase of the path 

length). 

The keystone index of a species 𝑖 is defined as35:  

 
𝐾𝑖 = 𝐾𝑏𝑢,𝑖 + 𝐾𝑡𝑑,𝑖 =∑

1

𝑑𝑐

𝑛

𝑐=1

(1 + 𝐾𝑏𝑢,𝑐) +∑
1

𝑓𝑒

𝑚

𝑒=1

(1 + 𝐾𝑡𝑑,𝑒) (2.8) 

 
𝐾𝑖 = 𝐾𝑖𝑛𝑑𝑖𝑟,𝑖 +𝐾𝑑𝑖𝑟,𝑖 = (∑

𝐾𝑏𝑢,𝑐
𝑑𝑐

𝑛

𝑐=1

+∑
𝐾𝑡𝑑,𝑒
𝑓𝑒

𝑚

𝑒=1

) + (∑
1

𝑑𝑐

𝑛

𝑐=1

+∑
1

𝑓𝑒

𝑚

𝑒=1

) (2.9) 

 

Where 𝐾𝑖, 𝐾𝑏𝑢,𝑖, 𝐾𝑡𝑑,𝑖, 𝐾𝑑𝑖𝑟,𝑖, 𝐾𝑖𝑛𝑑𝑖𝑟,𝑖 stand for five indices that can be considered individually: 

the keystone index (bidirectional) of species 𝑖, the bottom-up and top-down keystone indices, and the 

keystone indices accounting for direct and indirect-effects, respectively. 𝑛 represents the number of 

direct predators of species 𝑖, 𝑑𝑐 is the number of prey species of its 𝑐𝑡ℎ predator and 𝐾𝑏𝑢,𝑐 is the bottom-

up keystone index of the 𝑐𝑡ℎ predator. Similarly, 𝑚 is the number of direct preys of species 𝑖, 𝑓𝑒 is the 

𝐾𝑖𝑛𝑑𝑖𝑟,𝑖 𝐾𝑑𝑖𝑟,𝑖 
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number of predators of this 𝑒𝑡ℎ prey being considered and 𝐾𝑡𝑑,𝑒 the top-down keystone index of 𝑒𝑡ℎ 

prey. Equations (2.8) and (2.9) were rearranged in order to show their meaning35. 

Biologically, as the bottom-up and top-down indices consider the interactions of a species in the 

food web, we know that the removal of an important species will lead to more disconnections in both 

directions of the food web. Therefore, these indices count the number of species that will be 

disconnected after the removal of species 𝑖. 

The keystone index, 𝐾, loses that specific information, since it’s the sum up of both effects 

(either indirect and direct or top-down and bottom-up), and thus, only refers to the importance of a 

species in maintaining the trophic flow, in a more broad and general sense13.  

 

2.2.2   Networks dynamics 

 

Studying the dynamical behaviour of a food web and particularly, simulating how the whole system will 

behave when a particular species is perturbed can retrieve relevant information about the importance of 

a species or group of species since some of the species can cause large community responses24. However, 

approaching food web dynamics – dynamic sensitivity analyses – is not easy since many communities 

are known to be complex tangles of interactions. To model such dynamics, we usually need some 

measurements and labour effort, not always easy to obtain. 

To model the dynamics of the hypothetical food webs used for this work, the following system 

of differential equations was applied35,41: 

𝑑𝑁𝑖
𝑑𝑡

=  𝑟𝑖𝑁𝑖 (1 −
𝑁𝑖
𝐾𝑖
) + ∑ 𝑁𝑖ε𝑖ρ

ρ=resources

𝑁𝜌
ℎω𝑖𝜌 

𝑁0
ℎ +ω𝑖𝜌𝑄𝑖𝜌

− 

− ∑ 𝑁𝑐ε𝑐𝑖
c=resources

𝑁𝑖
ℎω𝑐𝑖 

𝑁0
ℎ +ω𝑐𝑖𝑄𝑐𝑖

− 𝑑𝑖𝑁𝑖 

(2.10) 

Here, 𝑁𝑖  means the abundance of species 𝑖, 𝑟𝑖 is the rate of increase, 𝐾𝑖 the carrying capacity of 

the logistic model, 𝑑𝑖 the mortality rate of consumer species 𝑖, ω𝑖ρ is species 𝑖’s relative consumption 

rate when consuming species 𝜌, 𝑁0 is the half-saturation density, 𝑄𝑖ρ is the sum of the abundances of 

the resources 𝑖 can consume. For more information about how this dynamics was performed, one can 

consult the original works35,41. The difference here was that we were only interested in single-species 

perturbations and how their community reacted to those perturbations. 

 

2.2.2.1 Community response  
 

As in the already mentioned work8, the community response (𝐶𝑅𝑗) of species 𝑗 was measured as the 

average of the population variations, of all species, after the perturbation of 𝑗 (without considering self-

effects): 



16 

𝐶𝑅𝑗 =∑|
𝑁𝑖(𝑗)
𝑡

𝑁𝑖
𝑡 − 1| /14,   (𝑖 ≠ 𝑗)

𝑛

𝑖=1

 (2.11) 

𝑁𝑖(𝑗)
𝑡  is the population size of species 𝑖, at time 𝑡 in a simulation where species 𝑗 was perturbed 

and 𝑁𝑖
𝑡 is the population size of species 𝑖 at time 𝑡 without perturbations, i.e., in a reference simulation.  

 

2.2.3   Single Index Correlation  

 

Since we still don’t know how the topological indices described are correlated with this dynamical 

simulation35, two simple analyses were made to compare each structural index with the simulation: a 

metric one, using the normalized outcome values of the topological indices and the simulation (𝑀𝑟12𝑛×𝑘), 

and an ordinal one, considering the rank order of each node for each structural index and the community 

response simulation (𝑀𝑟𝑜12𝑛×𝑘). To better understand the similarities between indices, Spearman 

Correlation was applied to both matrices, using “spearmanr” function from “scipy.stats”42 in Python43. 

 

2.2.4   N–Index Correlation  

 

To compare the N-indices, we also performed an UPGMA classification, using all the topological 

indices’ results, and excluding the community response values, in order to understand which are the 

most related, i.e., which indices are more redundant and thus don’t bring new information to the analysis.  

We performed this analysis again in both matrices (𝑀𝑟12𝑛×𝑘  and 𝑀𝑟𝑜12𝑛×𝑘). The distances 

between indices 𝑖 and 𝑗 were calculated using 𝑑𝑖𝑗 = 1 − |𝜌𝑖𝑗|, where 𝜌𝑖𝑗 is the Spearman Correlation 

between indices 𝑖 and 𝑗 for each network. The next step was to perform a consensus dendrogram using 

the majority rule – only the groups with a 50% appearance in the original set of 1000 networks will 

appear in this final dendrogram.  

This statistical analysis was performed using R31, package “ape”44. 

 

2.2.5   Combination of indices  

 

In theory, all topological indices used in this work have their biological importance, ranging either from 

local to global characterizations of species in the network, based either in neighbourhood and or 

distance. On the other hand, a lot of different dynamical approaches have been applied to describe the 

role of species in the ecosystems, although these approaches are usually more time and effort 

consuming8. 
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Using some of the topological indices to try to predict the same results obtained throughout 

dynamical approaches would be of added value inasmuch as static food webs and the embedded species 

importance are easier to assess. 

Here, we try to address a call made by other studies27 in the attempt of replacing complicated, 

time and effort consuming, sometimes, even hard to compute formulae – as are dynamical simulations 

– with simpler and easier ones, without much information loss. We also attempt to better explain the 

similarity between centrality indices and how they are related to dynamical analyses, since there’s still 

a lack of bridging information.  

 

2.2.6   Program used 

 

In order to find a mathematical expression that could predict the community response values, based in 

the used topological indices, we used “gplearn” version 0.4.0 – “Genetic Programming (GP) with 

symbolic regression” – a free open source code45, adapted. This code extends the “scikit-learn”46 

machine learning library available for Python43.  

Roughly, this algorithm works by 1) applying one of the basic mathematical operations (namely 

addition, subtraction, multiplication, division) to two of the independent variables (in our case, structural 

indices), all chosen randomly. Then, 2) a prediction for the community response values is calculated, 

based in this randomly generated mathematical formula. This prediction is then 3) compared to the real 

values of the community response simulation (“Fitness”). The program works by generating an initial 

number of mathematical random formulae (chosen by the user) and, after, from this population a part is 

chosen (“Selection”). 4) The best individual – mathematical formula that performed better in predicting 

the community responses’ values – will act like a “parent” for the next generation.  

This individual can undergo through mutations (“Evolution”) in order to generate the next 

generation (with the same initial population size). 

This process is then repeated for 𝑔 generations or until the parents reach perfection (which in 

programming means accuracy = 100%). 

 

2.2.6.1 Parameters used 
 

The Symbolic Regressor algorithm was trained using the values from both matrixes (𝑀𝑟12𝑛×𝑘 and 

𝑀𝑟𝑜12𝑛×𝑘). An attempt of performing a grid search was made but due to computational and time 

constraints different parameters were applied instead, to induce more variability in the generated results.  

We performed 10000 iterations in each of which we assigned random values based in a uniform 

distribution to the “mutation” parameters (see Appendix A). Due to program constraints, the sum of 

these variables couldn’t surpass one. Each final mathematical formula obtained was the best result of an 

evolutionary process of 100 generations, chosen from half of a population that started with an initial 

population size of 1000, 5000 and 10000. Spearman correlation, using a cross validation test, was used 

to access the quality of the results. The data was partitioned into ten subsets of equal size. One of these 

ten subsets was used as the test data set, while the other nine were used as the training data set. The 
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cross-validation process was then repeated ten times, with each of the ten subsets used once as the test 

set. The results of all iterations were then averaged to produce a single estimation for the accuracy. 

The parameters used can be accessed in more detail in Appendix A. 
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Chapter 3 

Results and Discussion 

 

In this section we present the results of the single correlation and cluster analysis. We also present the 

best combinations of k-indices obtained, i.e., the best mathematical formulae obtained to predict the 

community response values (dependent variable). The most common mathematical formulae obtained 

in the overall results are also showed. Results for both metric and ordinal data are showed and 

commented. 

 

3.1   Cluster analysis 

 

The consensus dendrogram (Figure 3.1) was the same, for both matrixes’ datasets, so only one figure is 

showed. This dendrogram confirms the two big groups previously observed: correlated {wD, Kbu, WI5, 

WI3, Ktd, s, ∆s, WI1, s’} and uncorrelated indices {Kindir, Kdir, K, BC, TI1, TI3, TI5, D, CC}  – see the two 

first branches formed (at 75%, for example). In addition, if we consider a distance of 40% (see Appendix 

B) we can form four groups. Distances between 30% and 35% allow us to form five groups: {WI1, WI3}, 

{∆s, s’, Ktd}, {Kbu, wD, s, WI5}, {K, Kdir, Kindir}, {TI3, TI5, TI1, BC, CC, D} – we will focus our analysis 

in these five groups. 
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Figure 3.1. Consensus dendrogram between topological indices. Between distance 35% and 30% (a distance of 32,5% was 

used to select groups), five groups can be formed: {WI1, WI3}, {∆s, s’, Ktd}, {Kbu, wD, s, WI5}, {K, Kdir, Kindir}, {TI3, TI5, TI1, 

BC, CC, D}. 

 

These groups show redundant information: indices within same groups are highly correlated to each 

other, due to their mathematical construction or to the final attributed results regarding nodes’ 

importance in networks. Consequently, if we want to simply evaluate a food web in a static way, we can 

use one index from each group and, therefore, we can reduce analysis’ complexity, without losing much 

information. 
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3.2   Single correlation 

 

Table 3.1 and Table 3.2 show the Spearman correlation for each of the 18 topological indices related to 

the community response. Table 3.1 was calculated using the metric data (𝑀𝑟12𝑛×𝑘). Table 3.2 was 

calculated using ordinal data (𝑀𝑟𝑜12𝑛×𝑘). For better results’ visualization, indices were coloured as in 

the five groups presented in Figure 3.1. 

 

Table 3.1. Spearman correlation and respective p-values related to all indices used and the simulation of the "community 

response" – metric values. 

Indices Spearman correlation (ρ) c p-value  ͤ Weighted Directed 

𝒘𝑫 -0.7006 0.00 yes no 

𝑾𝑰𝟓 -0.6773 0.00 yes no 

𝑲𝒃𝒖 -0.6755 0.00 no yes 

𝑾𝑰𝟑 -0.6645 0.00 yes no 

𝑾𝑰𝟏 -0.6002 0.00 yes no 

𝑲𝒕𝒅 0.5986 0.00 no yes 

𝒔  -0.5866 0.00 no yes 

∆𝒔 -0.5806 0.00 no yes 

𝒔′ 0.5438 0.00 no yes 

𝐾𝑖𝑛𝑑𝑖𝑟  0.3226 0.00 no yes 

𝐾 0.2665 0.00 no yes 

𝐾𝑑𝑖𝑟  0.1524 0.00 no yes 

𝐵𝐶 -0.1401 0.00 no no 

𝑇𝐼1 -0.1381 0.00 no no 

𝑇𝐼3 -0.1059 0.00 no no 

𝑇𝐼5 -0.1009 0.00 no no 

𝐷 -0.0548 0.00 no no 

𝐶𝐶 -0.0330 0.00 no no 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1); c Spearman 

correlation (ρ) was calculated for each of the 18 topological indices versus the community response results; ͤ p-values were 

derived for each Spearman correlation. 

 

 



22 

Table 3.2. Spearman correlation and respective p-values related to all indices used and the simulation of the "community 

response" – ordinal values.  

Indices Spearman correlation (ρ) c p-value  ͤ Weighted Directed 

𝒘𝑫 -0.6884 0.00 yes no 

𝑲𝒃𝒖 -0.6701 0.00 no yes 

𝑾𝑰𝟓 -0.6690 0.00 yes no 

𝑾𝑰𝟑 -0.6565 0.00 yes no 

𝑲𝒕𝒅 0.6169 0.00 no yes 

𝒔 -0.6014 0.00 no yes 

∆𝒔 -0.5931 0.00 no yes 

𝑾𝑰𝟏 -0.5916 0.00 yes no 

𝒔′ 0.5650 0.00 no yes 

𝐾𝑖𝑛𝑑𝑖𝑟  0.3433 0.00 no yes 

𝐾 0.2804 0.00 no yes 

𝐾𝑑𝑖𝑟  0.1569 0.00 no yes 

𝑇𝐼1 -0.1396 0.00 no no 

𝐵𝐶 -0.1352 0.00 no no 

𝑇𝐼3 -0.1123 0.00 no no 

𝑇𝐼5 -0.1071 0.00 no no 

𝐷 -0.0689 0.00 no no 

𝐶𝐶 -0.0459 0.00 no no 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1); c Spearman 

correlation (ρ) was calculated for each of the 18 topological indices versus the community response results; ͤ p-values were 

derived for each Spearman correlation. 

 

Indices {wD, Kbu, WI5, WI3, Ktd, s, ∆s, WI1, s’} correlated, in both cases, with community 

response values (ρ ≥ 0.5, p-value ≤ 0.05) while {Kindir, Kdir, K, BC, TI1, TI3, TI5, D, CC} were not 

correlated. Only two of the correlated indices were positively correlated: the keystone index based on 

top-down approach and the contrastatus {Ktd, s’}. All indices correlated better with the rank order data 

than with the metric data. However, {wD, WI5, Kbu, WI3, WI1} performed better when applied to metric 

data – increasing the correlation in about 0.85%.  

It is also noticeable that the order of the indices (from the most correlated one to the least 

correlated one) was slightly different whether we used ordinal and metric values: {wD, Kbu, WI5, WI3, 

Ktd, s, ∆s, WI1, s’} versus {wD, WI5, Kbu, WI3, WI1, Ktd, s, ∆s, s’}. Indices {TI1, BC} were also switched 

in both tables. In addition, we can observe that the group of indices {Ktd, s, ∆s, s’} performed better 

when applied to ordinal data. These differences are probably due to the random order assigned to nodes 
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when draws between values were found – since the Spearman correlation is based in the correlation 

between data ranks.  

 

3.3   Combination of k – Indices  

 

The mathematical expressions obtained can be consulted in Tables 3.3 – 3.5. Only the top 20 results are 

shown. Table 3.3 shows the mathematical expressions with the best Spearman correlation combinations’ 

values, Table 3.4 displays the most frequent results (out of the 30 000 generated in total: 10 000 for each 

initial population size) and Table 3.5 shows the indices’ groups (or “families”, within the top 20 most 

frequent). Results for ordinal data can be consulted in Appendix B. 

 

Table 3.3. Best mathematical expressions, derived from the algorithm used, according to absolute Spearman correlation results. 

Results  
Spearman 

correlation (ρ) c 

Relative frequency 

(percentage) r 

𝐾𝑖𝑛𝑑𝑖𝑟
2 ×𝑊𝐼5 × 𝑠 × (𝐶𝐶 − 𝐾𝑑𝑖𝑟)(𝐾𝑑𝑖𝑟 − 0.028) + 

+(
𝑊𝐼5

𝐶𝐶
−
𝐷

𝑊𝐼5
)
𝐾𝑏𝑢 ×𝑊𝐼

3

𝑤𝐷2
− (𝐷 − ∆𝑠)(∆𝑠 − 𝐾) × 

× (𝑤𝐷 × 𝑇𝐼1) (
𝐵𝐶 × 𝑤𝐷2

𝐷
−𝑊𝐼5 × ∆𝑠 + 𝑇𝐼3

2
) 

(3.1) 0.7842 0.003 

(
𝑇𝐼5

𝑊𝐼5
−𝑊𝐼3 − 𝐵𝐶) (

𝑠

𝑤𝐷
+ 𝐾𝑡𝑑 − 𝐵𝐶) × 

× (𝑇𝐼5 ×𝑊𝐼3 + 𝐾𝑡𝑑 − 𝑇𝐼
1 +

𝑊𝐼3 × 𝐷

𝑊𝐼5
2 ) 

(3.2) 0.7818 0.003 

𝑤𝐷 +
𝑊𝐼5

𝐷 + 𝐶𝐶 × 𝑠
 (3.3) 0.7801 0.003 

∆𝑠

𝑠
× 𝑤𝐷 × 𝑇𝐼5 +

𝑊𝐼5

𝑇𝐼5
 (3.4) 0.7801 0.003 

 (𝐶𝐶 + 1)𝑊𝐼5 + 𝑤𝐷 −
𝑇𝐼5

𝑊𝐼5
− 

−(
𝐾𝑏𝑢
𝑤𝐷

+ ∆𝑠 − 𝐵𝐶) (𝑊𝐼3 ×𝑊𝐼5 +
𝐷

𝑊𝐼3
) 

(3.5) 0.7799 0.003 

𝑊𝐼5

𝑇𝐼3
+ 𝑇𝐼1 + 𝐵𝐶 −

𝐷

𝑊𝐼5
(∆𝑠 + 𝐾𝑡𝑑) (3.6) 0.7791 0.003 

𝑇𝐼5 +𝑤𝐷 − 1 − (𝐾 − 𝐵𝐶)(𝑇𝐼3 + 𝐾𝑑𝑖𝑟) − 

−(
𝑤𝐷

𝐾𝑏𝑢
−

𝐷

𝑊𝐼3
+
𝑊𝐼5 × 𝐶𝐶

𝑇𝐼3 × 𝑇𝐼5
) 

(3.7) 0.7789 0.003 
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(𝑠 + 𝑇𝐼5)(𝑤𝐷 − 𝐷)

𝐵𝐶 × 𝑤𝐷 + 𝑇𝐼1 ×𝑊𝐼5
+ (𝑊𝐼5 + ∆𝑠) × 

× (0.833𝑇𝐼1)(𝐶𝐶 −𝑊𝐼3 + 𝐾𝑡𝑑 × 𝐷) 

 (3.8) 0.7788 0.003 

𝑊𝐼5 × 0.547 − 𝐶𝐶 × 𝐾𝑡𝑑 − (
𝐷

0.804
) × 

× (∆𝑠 − 𝐷) − 1 − 𝑤𝐷 × 𝐾 − 0.099𝑇𝐼5 −
𝑊𝐼3

𝐷
 

(3.9) 0.7788 0.003 

𝐷

𝑊𝐼5
(∆𝑠 + 𝐾𝑖𝑛𝑑𝑖𝑟) − (𝑇𝐼

3 + 𝐶𝐶)
𝑤𝐷

𝑊𝐼5
 (3.10) 0.7786 0.003 

𝑊𝐼5

𝐷
− (𝐾𝑏𝑢 × 𝑇𝐼

1) +
𝐵𝐶

∆𝑠
×
𝑤𝐷

𝑇𝐼5
 (3.11) 0.7786 0.003 

(𝑇𝐼3 + 𝐶𝐶)𝑤𝐷

𝐾𝑏𝑢
− 𝐷 (

1

𝑊𝐼5
+ 𝐶𝐶) (3.12) 0.7784 0.003 

(𝑠′ + 𝑤𝐷 −
𝐷

𝑊𝐼5
) (𝑇𝐼1 × 𝐶𝐶 − 𝐾𝑏𝑢 − 0.916) (3.13) 0.7782 0.003 

(
𝑊𝐼5

𝐷
+ 𝐾𝑏𝑢)

𝑤𝐷

𝐾𝑏𝑢
 (3.14) 0.7781 0.003 

(
𝑊𝐼5

𝐷 × 𝐾𝑏𝑢
+ 1)𝑤𝐷 (3.15) 0.7781 0.003 

(𝑇𝐼1 +𝑊𝐼1)(𝑠 − 0.314) + 𝑤𝐷 (1 +
1

𝐷
) − 𝑠 (3.16) 0.7781 0.003 

0.990𝐷

0.593𝑊𝐼5
(∆𝑠 − 𝑤𝐷 + 𝑠′ × 𝐾) (3.17) 0.7770 0.003 

  (1 + 0.661𝐾𝑡𝑑 − 𝑇𝐼
3 × 𝐷)(𝑊𝐼5 × 𝑠 × 𝐾 × 

× 𝑇𝐼1 −
𝐷

𝑊𝐼5
+ 𝑠′ + 𝐾𝑡𝑑) 

(3.18) 0.7770 0.003 

(𝐵𝐶 − 𝑠 +𝑊𝐼5 × 𝑤𝐷) − (𝑇𝐼3 +𝑊𝐼3) × 

× (𝑊𝐼1 − 𝐶𝐶) − (
𝐷

𝑊𝐼1
+ ∆𝑠 + 𝐾𝑡𝑑) (

𝑊𝐼1

𝑊𝐼5
− 𝑠 × 𝐾) 

(3.19) 0.7770 0.003 

(∆𝑠 − 𝐾𝑑𝑖𝑟)(∆𝑠 − 𝑇𝐼
5) − (𝐶𝐶 × 𝑤𝐷) −

𝑊𝐼5

𝐷
 (3.20) 0.7770 0.007 

Average * 0.7789 ± 0.0667 0.003 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1); c Spearman 

correlation (ρ) is the Spearman correlation when testing the performance of the obtained formula in 10% of the data (test data); 
r Relative frequency in percentage is the number of times each result appeared among all results (i.e., among the 30 000 

iterations executed), in percentage. * Average is the average of the values showed. Standard deviation for the Spearman 

correlation of these mathematical expressions was the average of the standard deviations when applied to 90% of data versus 

all data. Metric data was used in order to obtain these results. 
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Table 3.4. Most frequent mathematical expressions derived by the algorithm used.  

Results  Spearman correlation (ρ) c Relative frequency (percentage) r 

𝑊𝐼5

𝐷
 (3.21) 0.7616 15.027 

𝐷

𝑊𝐼5
 (3.22) 0.7616 6.733 

𝑊𝐼5

𝑇𝐼5
 (3.23) 0.7586 2.897 

𝑇𝐼5

𝑊𝐼5
 (3.24) 0.7586 2.157 

𝑊𝐼5

𝑇𝐼3
 (3.25) 0.7546 1.257 

𝑇𝐼3

𝑊𝐼5
 (3.26) 0.7546 0.983 

𝑊𝐼3

𝐷
 (3.27) 0.7540 0.733 

𝐷

𝑊𝐼3
 (3.28) 0.7702 0.593 

𝑤𝐷 +
𝑊𝐼5

𝐷
 (3.29) 0.7702 0.573 

𝑊𝐼3

𝐷
+ 𝑤𝐷 (3.30) 0.7694 0.557 

𝑇𝐼5

𝑊𝐼3
 (3.31) 0.7539 0.445 

𝑊𝐼3

𝑇𝐼5
 (3.32) 0.7538 0.363 

𝑤𝐷

𝐷
 (3.33) 0.7535 0.330 

𝐵𝐶 −
𝐷

𝑊𝐼5
 (3.34) 0.7529 0.290 

𝐷

𝑊𝐼5
− 𝑇𝐼3 (3.35) 0.7686 0.276 

𝐷

𝑊𝐼5
− 𝐵𝐶 (3.36) 0.7686 0.270 

𝑇𝐼3 −
𝐷

𝑊𝐼5
 (3.37) 0.7677 0.267 
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𝐷

𝑊𝐼5
− 𝑇𝐼1 (3.38) 0.7676 0.260 

𝐷

𝑊𝐼5
− 𝐾𝑑𝑖𝑟  (3.39) 0.7660 0.237 

𝑇𝐼5 −
𝐷

𝑊𝐼5
 (3.40) 0.7677 0.233 

Average * 0.7617 ± 0.0016 1.724 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1); c Spearman 

correlation (ρ) is the Spearman correlation when testing the performance of the obtained formula in 10% of the data (test data); 
r Relative frequency in percentage is the number of times each result appeared among all results (i.e., among the 30 000 

iterations executed), in percentage. * Average is the average of the values showed. Standard deviation for the Spearman 

correlation of these mathematical expressions was the average of the standard deviations when applied to 90% of data versus 

all data. Metric data was used in order to obtain these results. 

 

Table 3.5. Most frequent mathematical “families” of indices derived from Table 3.4. 

Results Relative frequency (percentage) r 

𝑊𝐼5, 𝐷 21.760 

𝑊𝐼5, 𝑇𝐼5 5.054 

𝑊𝐼5, 𝑇𝐼3 2.240 

𝑊𝐼3, 𝐷 1.326 

𝑊𝐼3, 𝑇𝐼5 0.808 

𝑤𝐷,𝑊𝐼5, 𝐷 0.573 

𝑊𝐼5, 𝐵𝐶, 𝐷 0.560 

𝑊𝐼3, 𝑤𝐷, 𝐷 0.557 

𝑊𝐼5, 𝐷, 𝑇𝐼3 0.543 

𝑤𝐷,𝐷 0.330 

𝑊𝐼5, 𝐷, 𝑇𝐼1 0.260 

𝑊𝐼5, 𝐾𝑑𝑖𝑟 , 𝐷 0.237 

𝑊𝐼5, 𝐷, 𝑇𝐼5 0.233 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1); r Relative frequency 

in percentage is the number of times each result appeared among all results (i.e., among the 30 000 iterations executed), in 

percentage. 
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The top 20 mathematical combinations used a range of 4 to 14 different indices in the same 

expression (Table 3.3). These results showed significant increases in correlation values when compared 

to single-correlations: an average of 77.89% versus 62.53%.  

The mathematical expression with the best Spearman correlation showed an increase of about 

8.36% when compared to the best correlation using a single index (78.42% versus 70.06%). 

Furthermore, an average, of 3.5 of the groups formed in the consensus dendrogram were used (and the 

median of groups used was of 4). 

 We also analysed the most frequent mathematical expressions derived from the algorithm used. 

In this scenario, only two or three indices were combined and Spearman correlation was significantly 

better than single-index correlations. For instance, Spearman correlation obtained was 77.02% (for two 

different mathematical expressions – one relying in two indices and the other one in three). The loss of 

information here is not significant since the previously best correlation obtained was of 78.42% (and 

70.06% for the single correlation), which implies that this approximation is valid to predict our “target 

values” more than using only one topological index. The average correlation was also slightly worse 

than the previous one (76.17% vs 77.89%) but this difference is also not significant and allow us to 

conclude that, in general, we can use these simpler mathematical expressions (Table 3.4) to get good 

predictions without much information loss and with a decrease of effort and computational time.  

 Table 3.5 shows the most common groups of indices. We can see that the “purple family” was 

present in almost every expression (in Table 3.4). This family was more frequently married with the 

pink, green and blue. Note that green, yellow and purple families represent community response 

correlated indices while blue and pink represent not correlated indices. Consequently, when using metric 

data one can use correlated and uncorrelated indices together to have strong and fast predictions 

(regarding community response values). 

For these predictions, we can rely on 13 “families” that mix 9 indices (see Table 3.5):  {WI5, D}, 

{WI5, TI5}, {WI5, TI3}, {WI3, D}, {WI3, TI5}, {wD,WI5, D}, {WI5, BC, D}, {WI3, wD, D}, {WI5, D, TI3}, 

{wD,D}, {WI5, D, TI1}, {WI5, Kdir, D}, {WI
5, D, TI5}. This means that in order to simplify our approach 

and analysis we can rely in some combination of these nine indices. The most frequent index was the 

degree (D), it occurred in 10 out of 13 families, followed by weighted topological importance 5-step-

long (WI5), present in 9. Topological indices TI5, WI3, wD, TI3, TI1, BC and Kdir were also important. 

It is also interesting to highlight that the combination of indices {WIn, TIn} was present in half of these 

mathematical expressions and the combination of {WIn, D} in 13 out of the most frequent top-20 

expressions showed. 
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Chapter 4 

Conclusions 

 

The use of ecological models is being increasingly used to better understand interactions between 

organisms in ecosystems. Reducing complex systems to mathematical representations such as networks 

allow us to quantify the parts within the whole and thus, food web representations fill an important place 

to study topological and dynamical interactions. Since ecological modelling is a mathematical concept 

we can, through simulations and quantitative computational analysis, try to understand how complex 

biological systems are connected and how their species interact with each other12,47. 

Food webs are representations used to depict in a simple way, trophic interactions between 

organisms, from a micro to a macro level48. Thus, prey-predator relationships allow us to understand the 

dynamics and resilience of communities: feeding interactions give us insights related to vital rates, rates 

of growth and rates of mortality. These rates depend on the animals that are eaten or being eaten; if the 

population under analysis is eating more preys, the population grows; if the population is being eaten 

by predators, it is decaying49.  

Applying network statistics to food webs allow us to have some perception about the global 

scale – global topological indices provide us information to understand the network as a whole but give 

less insights related to each individual in the network. The local perspective, in the other side of the 

scale, allow us to better understand how each individual is connected in the network. The problem is 

that, from a local perspective, we don’t have any grasps about further interactions, i.e., about direct or 

indirect effects that that individual may be causing to the rest of the network. Due to this, a variety of 

mesoscale indices emerged. These indices add some of these missing information – they allow us to 

look to each species’ topological position with some insights about its interactions within the 

community12. 

However, these representations are of continuously changing systems: life is not static and much 

less the intricate nets where species interact. Every species has their rate of growth, mortality and vitality 

and these are usually dependent on other species. As a result, considering only a static perspective may 

not be very useful for the sake of the knowledge inferred about these complex systems. In order to 

understand how time and topological fluctuations affect populations, a number of different dynamic 

analysis raised8. These dynamics are often described by ordinary differential or difference equation 

systems, that take different population parameters into account.  

Nonetheless, databases holding life history, demographic and species interaction information 

necessary to parameterize ecological network models are rarely available50. Due to these, hypothetical 

medium sized food webs were generated and used as real ones. Our work focused in trying to understand 

how well some topological indices available and already used in ecological modelling can predict which 

are the keystone species (critic species in a food web) when compared to each other and when compared 

to a dynamical simulation. 

Understanding the dynamics of food webs, particularly, which species are keystones (or of 

major importance) is also a greater concern for conservation biology that aims to be more functional28. 

To understand which are the species that, in case of extinction, will originate a collapse in the food web 

is primordial nowadays, since, if we can’t save all species from habitat loss we can, at least, prevent the 
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extinction of the most (or group of) important ones, in order to avoid a cascade loss51. Thus, 

understanding the structure and dynamics of a network is primordial to infer knowledge.  

In the literature there are studies suggesting the use of different topological network indices to 

characterize the importance of a species in a community and there are some also comparing their 

performance11,12,27-29. There are also some dynamical analyses that have been made on food webs in 

order to predict which are these key species in a community and how the others react to their 

perturbations29,52.   

In addition, there are studies on the relationship between structural centrality and simulated 

importance24. However, to our knowledge, this is the first attempt to combine different centrality indices 

and to test the correlation between these combined indices and simulated importance. 

 

Our results showed that weighted topological indices 1 and 3-step long are in the same branch 

of the dendrogram obtained which may indicate that taking small paths from the focusing species into 

account (1 to 3 in this case) is not very different. The ∆s, 𝑠′ and the Ktd might be related because 

mathematically, they all derive from the status index.  

We found that 𝑤D,WI5 and Kbu are the most reliable topological indices, when we want to find 

the critic species in a food web (when we are comparing to the dynamical analysis used), with an 

accuracy rate of almost 70%. It is important to notice that these dynamical analyses tell us how the 

population of an organism responds when each of the others in the food web are disturbed, i.e., when 

they almost reach extinction. It is also interesting to note that the weighted degree is a local index – 

comprising only the species directly attached to the species being considered – but it considers different 

weights for these species. The weighted topological importance 5-step-long and the bottom-up keystone 

indices are mesoscale. These results are not surprising since it makes sense, that when analysing the 

importance of a species, we should consider the importance (weights) of the species directly attached to 

it. On the other hand, it also makes sense to look to closer species’ interactions, in a shorter to a medium 

level – since the species to which it is connected, will suffer more if they are directly dependent on it.  

It is also noticeable that the degree (D) and the 5-step-long weighted topological importance 

index (WI5) were the ones that appeared the most in all results. This is interesting if we consider that the 

degree is a simple, direct index that provides the direct interactions and the 5-step-long weighted 

topological importance index is a complex, weighted index that considers also indirect interactions. 

Furthermore, we found that this index is symmetrically correlated with the simulation results, unlike the 

degree, that is not correlated at all. These are totally different indices, and this is why it is interesting 

and convenient to combine them: they provide complementary and adequate information. 

The results obtained provide new ways to achieve the order of importance of each species 

obtained through complex biological simulations. We can either use simple structural indices, or some 

combinations of these indices, ranging from simpler ones to more complex. More complex combinations 

allow to increase even more the accuracy of the results.  

 

Future studies could focus on 1) use more food webs in order to get more accurate combinations 

2) apply the simple indices or combinations obtained to real food webs to identify which are the keystone 

species and check their biological role in those networks 3) apply the same approach to other network 

types (e.g. metabolic networks). We believe that more concise and efficient ways to identify keystone 

species in ecological networks will be essential for the future of systems-based ecology that aims to 
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achieve objective conservation priorities or regulations to manage ecosystems. We suggest that our 

machine learning-based approach to maximize the predictive power of structural analysis can be a major 

step towards simple and fast, yet quite realistic research on food webs. 
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Appendix A   Python Script 

 

Python script used to adapt “gplearn” algorithm to the specific studied problem. 

 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 

@author: Catarina Gouveia 

""" 

# Importing the libraries 

import pandas as pd 

from gplearn.genetic import SymbolicRegressor 

from sklearn.model_selection import KFold 

import random 

from scipy.stats import spearmanr 

from numpy.random import RandomState 

 

# Allows the results to be reproducible 

random_state = RandomState(seed = 201819) 

 

# Importing the dataset: 

path = r"C:\ " # Define the path 

 

# CHANGE THIS - realvalues / rankorder 

data = pd.read_csv(path+r"totaldata_realvalues.csv") 

 

# Choosing our data features and matrix of target variable 

X = data[data.columns[:-1]] #1st to 18th are our features 

y = data[data.columns[-1:]] #last column is our target variable 

y_vector = data[data.columns[-1:]].values.ravel() 
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var = {} 

results = {} 

i = 0 

for j in range(10000): 

 

    population_size = 1000 

 

    # Atributing random values to the next 4 different variables: 

    p_crossover = round(random.uniform(0.5, 0.9), 1) 

    p_hoist_mutation = round(random.uniform(0.01, 0.1), 2) 

    p_point_mutation = round(random.uniform(0.01, 0.1 - p_hoist_mutation), 2) 

 

    #p_hoist_mutation + p_point_mutation can't exceed 0.1 - otherwise can cause trouble 

    p_subtree_mutation = abs(round(random.uniform(0.01, 1 - p_crossover - p_hoist_mutation - 

p_point_mutation), 2)) 

 

    if p_crossover + p_hoist_mutation + p_point_mutation + p_subtree_mutation > 1: 

        p_hoist_mutation = 0 

 

    results[j] = {} 

    print(j)  

    # Splitting the data in 10 folds 

    kf = KFold(n_splits = 10, random_state = random_state, shuffle = False) 

 

    while population_size <= 10000: 

        all_est_gp = [] 

        for train_index, test_index in kf.split(data): 

            X_train, X_test = X.iloc[train_index], X.iloc[test_index] 

            y_train, y_test = y.iloc[train_index].values.ravel(), y.iloc[test_index].values.ravel() 

            # This X_train and y_train will be used to fit and generate the model 
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 # gplearn model 

            est_gp = SymbolicRegressor(generations = 100, 

                        p_crossover = p_crossover,  

p_hoist_mutation = p_hoist_mutation, 

                        p_point_mutation = p_point_mutation,  

p_subtree_mutation = p_subtree_mutation, 

                        population_size = population_size, 

                        function_set = ('add', 'sub', 'mul', 'div'), 

                        tournament_size = 0.5 * population_size, 

                        n_jobs = -1, 

                        low_memory = True, 

                        metric = 'spearman', 

                        parsimony_coefficient = 'auto',  

random_state = random_state                

) 

 

            est_gp.fit(X_train, y_train) 

            # New line to append the 10 different solutions to each subset  

            all_est_gp.append((est_gp.__str__(), str(est_gp._program.raw_fitness_))) 

            to_calc_test_averageTest = [] 

            to_calc_test_averageTrain = [] 

            to_calc_test_averagepTest = [] 

            to_calc_test_averagepTrain = [] 

 

            pred3 = est_gp.predict(X_train) 

 

            ################################################## 

 #Correlation: train data 

 # (Must be the same of the one that comes out from the algorithm) 

            scoreTrain_Algorithm, pval_algorithm = spearmanr(y_train, pred3)  
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            ################################################## 

 

            # Calculating predictions using X_test, X_train (should be exactly the same 

            # than the real ones) and with all the data, X (the predictions coming out from the 

            # ones that are not used to train should be different) 

            pred = est_gp.predict(X_test) # est_gp is your trained gp 

            pred2 = est_gp.predict(X_train) # Used as control, to verify 

            pred_alldata = est_gp.predict(X) # Used as control, to verify 

 

            ################################################## 

            scoreTrain, pTrain = spearmanr(y_train, pred2) # Used as control, to verify   

#pTrain contains p-values 

            scoreTest, pTest = spearmanr(y_test, pred) 

            score_alldata, p_alldata = spearmanr(y_vector, pred_alldata) # Used as control, to verify             

################################################## 

             

            all_est_gp.append((scoreTrain, pTrain)) 

            all_est_gp.append((scoreTest, pTest)) 

            all_est_gp.append((score_alldata, p_alldata)) 

 

 # Save results in dictionary format 

            results[j]['p_crossover'] = est_gp.p_crossover 

            results[j]['p_hoist_mutation'] = est_gp.p_hoist_mutation 

            results[j]['p_point_mutation'] = est_gp.p_point_mutation 

            results[j]['p_subtree_mutation'] = est_gp.p_subtree_mutation 

            #results[j]['random_state'] = est_gp.random_state.get_state() 

            results[j]['population size: '+str(est_gp.population_size)] = {} 

            results[j]['population size: '+str(est_gp.population_size)] = [all_est_gp] 

            for train_index, test_index in kf.split(data): 

                X_train, X_test = X.iloc[train_index], X.iloc[test_index] 

                y_train, y_test = y.iloc[train_index].values.ravel(), y.iloc[test_index].values.ravel() 
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                to_calc_test_averageTest.append(scoreTest) 

                to_calc_test_averageTrain.append(scoreTrain) 

 

                to_calc_test_averagepTest.append(pTest) 

                to_calc_test_averagepTrain.append(pTrain) 

 

            averageTest = sum(to_calc_test_averageTest)/10 

            averagepTest = sum(to_calc_test_averagepTest)/10 

            averageTrain = sum(to_calc_test_averageTrain)/10 

            averagepTrain = sum(to_calc_test_averagepTrain)/10 

 

            # This X_train and y_train will be used to fit and generate the model 

            results[j]['population size: '+str(est_gp.population_size)].append( 

            [ #Algorithm fitness [est_gp.__str__(), str(est_gp._program.raw_fitness_), #Algorithm fitness 

            (scoreTrain_Algorithm, pval_algorithm), # It has to be the same of the one from the algorithm 

            (to_calc_test_averageTest[0], to_calc_test_averagepTest[0]),  

            # The Spearman that comes out directly from the data test 

            #  (the only data not used to produce the model) 

            (averageTest, averagepTest), # Average Spearman derived from the 10 != test sets derived from 

the Kfold 

            (averageTrain, averagepTrain), # Average Spearman derived from the 10 != train sets derived 

from the Kfold 

            (score_alldata, p_alldata)] # It will be similar to the average since all data is also being used) 

 

        if population_size == 1000: 

            population_size = 5000 

        elif population_size == 5000: 

            population_size = 10000 

        else: 

            population_size += 10000 
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        i += 1 

        if i == 100: # Save results from 100 to 100 iterations 

            i = 0 

            var = results 

            results_train = pd.DataFrame.from_dict(var, orient='index') 

            results_train.to_csv(path+r'\filename.csv', index=False) # Save file 
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Appendix B   Ordinal data matrix results 

 

B1 k – Indices combination  

 

B1.1    Top–20 Spearman correlation 

 

Table B1 displays the results. These showed significant increases in correlation values when compared 

to single-correlation results: an average of 72.15% was obtained with the k-index combinations versus 

62.80% when using one of the correlated indices (ordinal data). 

The mathematical expression with the best Spearman correlation showed an increase of about 

3.63% when compared to the best Spearman correlation using a single index (72.47% versus 68.84%).  

What’s more, the mathematical expressions obtained for the ordinal data considered in average, 

3.95 groups (out of the 5 present in the clustering analysis) and most of the expressions included indices 

from 4 of these groups.  

 We also analysed the most frequent mathematical expressions derived from the algorithm used. 

In this scenario, only two or three indices were combined and Spearman correlations were significantly 

better than for single-index correlations. For instance, Spearman correlation for ordinal data increased 

to 71.85%, using three indices. In addition, the least correlated mathematical expression in this top-20 

represented still an improvement in correlation when compared to the best obtained for single-

correlation: 69.96% against 68.84% (see Table 3.2, in main text, and Table B1). However, the average 

correlation of this top-20 was slightly worse than the previous one (70.61% against 72.15%). 

 

Table B1. Best mathematical expressions, derived from the algorithm used, according to absolute Spearman correlation results 

– ordinal data.  

Results 
Spearman 

correlation (ρ) c 

Relative Frequency 

(percentage) r 

𝐷 − 𝑇𝐼5(1 + 𝐶𝐶) −
𝐾𝑖𝑛𝑑𝑖𝑟 × (𝑇𝐼

5 + 𝑠′)

𝐾𝑡𝑑
+ 

+
(𝐷 − 𝐾)(𝑠′ × 𝐾)

𝐾𝑖𝑛𝑑𝑖𝑟 ×𝑊𝐼
3
+ 

+(
𝑤𝐷

0.015
− 𝑇𝐼5 ×𝑊𝐼5) − (𝐾 × 𝑤𝐷 −

∆𝑠

𝑇𝐼5
) − 

−(𝐾𝑡𝑑 −𝑊𝐼
1 −𝑊𝐼5 − 𝑠′) × (2𝑊𝐼3 − 0.051𝐾𝑏𝑢) 

(B. 1) 0.7247 0.003 
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𝑇𝐼3 +𝑊𝐼5 − (𝐾𝑡𝑑 +
𝑇𝐼3 × 𝐶𝐶

𝑠′ +𝑤𝐷
) (B. 2) 0.7237 0.003 

𝑠 × 𝐾𝑖𝑛𝑑𝑖𝑟
𝑤𝐷 × 𝐷

− 2𝑊𝐼3 + 𝐾𝑡𝑑 + 𝑇𝐼
3 + 

+( 
𝑠′

𝑊𝐼3
+
𝑊𝐼1

0.999
) ×

∆𝑠 − 𝐾𝑏𝑢
𝑇𝐼3 +𝑊𝐼5

+ 

+
0.268𝐷(𝑇𝐼3 −𝑊𝐼5)

0.598𝐾𝑏𝑢(𝑠
′ + ∆𝑠)

−
𝑊𝐼1 − 2𝑠′ − 𝑇𝐼3

𝐶𝐶 × 𝐾(𝐾𝑡𝑑 + ∆𝑠)
 

(B. 3) 0.7230 0.003 

𝐷 − 𝑤𝐷 + ∆𝑠 −𝑊𝐼1 −𝑊𝐼3 + 𝐾𝑡𝑑 +
𝐾𝑏𝑢 + 𝑠′

𝑊𝐼1 + 𝐶𝐶
 (B. 4) 0.7222 0.003 

𝑤𝐷 ×𝑊𝐼3 −
𝑊𝐼5

𝐵𝐶
−0.223𝐾𝑡𝑑(∆𝑠 + 𝐷)

 (B. 5) 0.7218 0.003 

∆𝑠 − 2𝑤𝐷 + 𝐾𝑡𝑑 −
𝐾𝑖𝑛𝑑𝑖𝑟 + ∆𝑠

𝐾𝑖𝑛𝑑𝑖𝑟 + 𝐾𝑑𝑖𝑟
 (B. 6) 0.7216 0.003 

𝑊𝐼1 +𝑊𝐼3 + 𝑤𝐷 − ∆𝑠 − 𝐾𝑡𝑑 − 0.774 + 

+𝐾𝑏𝑢 − 𝐶𝐶 
(B. 7) 0.7215 0.003 

𝑇𝐼1 × 𝑇𝐼3

𝑊𝐼3 + 𝑠′
−𝑊𝐼5 −𝑤𝐷 + 𝐾𝑡𝑑 −𝑊𝐼

3 (B. 8) 0.7213 0.003 

𝑇𝐼3

𝑊𝐼5
+
𝐾𝑡𝑑
𝑊𝐼3

+
∆𝑠 +𝑊𝐼3

𝑊𝐼5 + 𝑇𝐼5
 (B. 9) 0.7212 0.007 

𝐾𝑡𝑑 + ∆𝑠 + 𝐶𝐶 −𝑊𝐼
5 − 2𝑤𝐷 + 

+
𝑠

0.830(0.299 +𝑊𝐼5) (
𝐾𝑑𝑖𝑟
𝑊𝐼3

+ 𝑇𝐼3 × ∆𝑠)
 

(B. 10) 0.7211 0.003 

𝑤𝐷

0.022
− ∆𝑠 × 𝐷 − 𝐾𝑡𝑑

2 + 𝐵𝐶 + 𝑇𝐼3 − 

−
𝑇𝐼1 × 𝑇𝐼3

𝐶𝐶(𝐶𝐶 − 𝐾𝑏𝑢)(𝑊𝐼
1 + 𝐾𝑖𝑛𝑑𝑖𝑟)𝐾

 

(B. 11) 0.7211 0.003 
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𝐾𝑡𝑑 − 𝑇𝐼
5 −𝑊𝐼1 + 𝑠′ −

𝑤𝐷

0.220
+
𝑠′

𝑇𝐼3
− 

−
𝐾𝑑𝑖𝑟 + 𝑇𝐼

5

∆𝑠 × 𝑤𝐷
+
𝐾𝑏𝑢
𝐾𝑡𝑑

 

(B. 12) 0.7210 0.010 

𝐾𝑡𝑑 × 𝑤𝐷 − 𝐾𝑑𝑖𝑟 + 𝐷 − (𝑊𝐼
5 + 𝑠′)(𝑤𝐷 − 0.672) (B. 13) 0.7210 0.003 

𝑤𝐷

𝐾𝑡𝑑 + 0.786∆𝑠
 (B. 14) 0.7207 0.003 

∆𝑠 +
𝐾𝑡𝑑
0.755
𝑤𝐷

 
(B. 15) 0.7207 0.003 

−𝐾𝑡𝑑(0.607 +𝑊𝐼
3)(𝐾𝑏𝑢 + 𝐾𝑑𝑖𝑟)

𝑤𝐷(𝐶𝐶 + 𝑠)
 (B. 16) 0.7207 0.003 

(𝑊𝐼5 + 𝑠′) ×
𝑤𝐷

𝐾𝑡𝑑
−
𝑇𝐼1 × 𝐶𝐶

𝑊𝐼1 × 𝐾𝑡𝑑
 (B. 17) 0.7207 0.003 

2𝑊𝐼1 − 2𝐾𝑡𝑑 − 𝐷 +𝑊𝐼
3 + 𝑤𝐷 + 𝑠′ (B. 18) 0.7206 0.003 

𝑤𝐷 + 𝐶𝐶

𝑤𝐷 + 𝐾𝑏𝑢
+

𝑤𝐷

−0.013(∆𝑠 + 𝐾𝑡𝑑)
 (B. 19) 0.7206 0.003 

0.578 + 𝑤𝐷 +𝑊𝐼3 − 𝐶𝐶 −
𝐾𝑡𝑑
𝐶𝐶

 (B. 20) 0.7203 0.003 

Average *  0.7215 ± 0.0037 0.004 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1); c Spearman 

correlation (ρ) is the Spearman correlation when testing the performance of the obtained formula in 10% of the data (test data); 
r Relative frequency in percentage is the number of times each result appeared among all results (i.e., among the 30 000 

iterations executed), in percentage. * Average is the average of the values showed. Standard deviation for the Spearman 

correlation of these mathematical expressions was the average of the standard deviations when applied to 90% of data versus 

all data. Ordinal data was used in order to obtain these results. 

 

B1.2    Top–20 relative frequency 

 

For ordinal data, we can observe (Table B2 and Table B3) that we just need to calculate the rank order 

for the nodes, based in five different indices in order to have good Spearman correlations. These indices 

were distributed in six families: {Ktd, WI5}, {WI3, Ktd}, {Ktd, wD}, {Ktd, wD, WI5}, {Ktd, ∆s, wD}, 

{WI3, Ktd, wD} – Ktd is always present, followed by wD (present in four out of the six families), but 

also WI5, WI3 and ∆s are valuable indices.  
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Table B2. Most frequent mathematical expressions derived by the algorithm used – ordinal data. 

Results Spearman correlation (ρ) c Relative frequency (percentage) r  

𝑊𝐼5 − 𝐾𝑡𝑑 (B. 21) 0.7034 5.697 

−(𝑊𝐼5 − 𝐾𝑡𝑑) (B. 22) 0.7034 5.630 

−(𝑊𝐼3 − 𝐾𝑡𝑑) (B. 23) 0.7027 2.380 

𝑊𝐼3 − 𝐾𝑡𝑑 (B. 24) 0.7027 2.337 

−(𝑤𝐷 − 𝐾𝑡𝑑) (B. 25) 0.7016 1.250 

𝑤𝐷 − 𝐾𝑡𝑑 (B. 26) 0.7016 1.230 

𝑊𝐼5

𝐾𝑡𝑑
 (B. 27) 0.7016 0.817 

𝐾𝑡𝑑
𝑊𝐼5

 (B. 28) 0.7016 0.770 

𝐾𝑡𝑑
𝑊𝐼3

 (B. 29) 0.7012 0.523 

𝑊𝐼3

𝐾𝑡𝑑
 (B. 30) 0.7012 0.493 

𝐾𝑡𝑑 + ∆𝑠

𝑤𝐷
 (B. 31) 0.7185 0.320 

𝑤𝐷 +𝑊𝐼5 − 𝐾𝑡𝑑 (B. 32) 0.7113 0.310 

𝑤𝐷

∆𝑠 + 𝐾𝑡𝑑
 (B. 33) 0.7185 0.283 

𝑤𝐷 +𝑊𝐼3 − 𝐾𝑡𝑑 (B. 34) 0.7109 0.267 

𝐾𝑡𝑑 −𝑊𝐼
5 − 𝑤𝐷 (B. 35) 0.7113 0.263 

𝐾𝑡𝑑
𝑤𝐷

 (B. 36) 0.6996 0.257 

𝑤𝐷

𝐾𝑡𝑑
 (B. 37) 0.6996 0.253 

𝑤𝐷 ×𝑊𝐼5

𝐾𝑡𝑑
 (B. 38) 0.7104 0.247 

𝐾𝑡𝑑 −𝑊𝐼
3 − 𝑤𝐷 (B. 39) 0.7109 0.240 

𝐾𝑡𝑑
𝑤𝐷 ×𝑊𝐼5

 (B. 40) 0.7104 0.237 

Average * 0.7061 ± 0.0021  1.190 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1); c Spearman 

correlation (ρ) is the Spearman correlation when testing the performance of the obtained formula in 10% of the data (test data); 
r Relative frequency in percentage is the number of times each result appeared among all results (i.e., among the 30 000 
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iterations executed), in percentage. * Average is the average of the values showed. Standard deviation for the Spearman 

correlation of these mathematical expressions was the average of the standard deviations when applied to 90% of data versus 

all data. Ordinal data was used in order to obtain these results. 

 

Table B3. Most frequent mathematical “families” of indices derived from Table B2. 

Results Relative frequency (percentage) r 

𝐾𝑡𝑑,𝑊𝐼
5 12.914 

𝑊𝐼3, 𝐾𝑡𝑑 5.733 

𝐾𝑡𝑑 , 𝑤𝐷 2.990 

𝐾𝑡𝑑 , 𝑤𝐷,𝑊𝐼
5 1.057 

𝐾𝑡𝑑, ∆𝑠, 𝑤𝐷 0.603 

𝑊𝐼3, 𝐾𝑡𝑑 , 𝑤𝐷 0.507 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1); r Relative frequency 

in percentage is the number of times each result appeared among all the results (i.e., the 30 000 iterations executed), in 

percentage.  

 

Table B3 shows the most common groups of indices. The “purple family” is, again, present in almost 

every expression (see also the analysis for metric data in the main text). In this case, this family was 

associated with yellow and green families. This means that, when using ordinal data, one should rely 

only on correlated indices. 

The combination of indices {WIn, Ktd} occurred in 14 out of the top-20 mathematical formulae, 

and {wD, Ktd} in 12 (Table B3). 
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Appendix C    Consensus dendrogram analysis – 

Alternative Approach 

 

Considering a distance of 40% for the clustering of groups, we can observe that four groups were formed 

(Figure C1): {WI3, WI1}, {∆s, s’, Ktd, Kbu, wD, WI5}, {K, Kdir, Kindir}, {TI3, TI5, TI1, BC, CC, D}. The 

first two depict the indices correlated to community response values and the other two clusters 

uncorrelated ones. 

 

Figure C1. Consensus dendrogram between topological indices – four clusters. Using a distance above 35% (40% in this case), 

four groups can be formed: {WI3, WI1}, {∆s, s’, Ktd, Kbu, wD, WI5}, {K, Kdir, Kindir}, {TI3, TI5, TI1, BC, CC, D}. 
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C1 Families of indices in the top-20 more frequent 

 

Relying our analysis in these four consensus dendrogram groups formed, the results for the most 

frequent mathematical families of indices are showed in Table C1 and Table C2, respective to metric 

and ordinal data. 

 

Table C1. Most frequent mathematical “families” of indices derived from Table 3.4 – metric data. 

Results Relative frequency (percentage) r 

𝑊𝐼5, 𝐷 21.760 

𝑊𝐼5, 𝑇𝐼5 5.054 

𝑊𝐼5, 𝑇𝐼3 2.240 

𝑊𝐼3, 𝐷 1.326 

𝑊𝐼3, 𝑇𝐼5 0.808 

𝑤𝐷,𝑊𝐼5, 𝐷 0.573 

𝑊𝐼5, 𝐵𝐶, 𝐷 0.560 

𝑊𝐼3, 𝑤𝐷, 𝐷 0.557 

𝑊𝐼5, 𝐷, 𝑇𝐼3 0.543 

𝑤𝐷,𝐷 0.330 

𝑊𝐼5, 𝐷, 𝑇𝐼1 0.260 

𝑊𝐼5, 𝐾𝑑𝑖𝑟 , 𝐷 0.237 

𝑊𝐼5, 𝐷, 𝑇𝐼5 0.233 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure C1); r Relative frequency 

in percentage is the number of times each result appeared among all the results (i.e., the 30 000 iterations executed), in 

percentage.  
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Table C2. Most frequent mathematical “families” of indices derived from Table B2 – ordinal data. 

Results Relative frequency (percentage) r 

𝐾𝑡𝑑 ,𝑊𝐼
5 12.914 

𝑊𝐼3, 𝐾𝑡𝑑 5.733 

𝐾𝑡𝑑 , 𝑤𝐷 2.990 

𝐾𝑡𝑑 , 𝑤𝐷,𝑊𝐼
5 1.057 

𝐾𝑡𝑑 , ∆𝑠, 𝑤𝐷 0.603 

𝑊𝐼3, 𝐾𝑡𝑑 , 𝑤𝐷 0.507 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure C1); r Relative frequency 

in percentage is the number of times each result appeared among all the results (i.e., the 30 000 iterations executed), in 

percentage.  

 

We can conclude that related to the metric data, results don’t change with this different 

clustering approach – see Table 3.5 and Table C1 (the yellow group – the one that was assimilated into 

the purple group – is not included in the most frequent families). Results obtained for ordinal data allow 

us to conclude that we can use, essentially, the “purple group” and, occasionally the weighted 

topological importance 3-step-long index (WI3), belonging to the green group – see Table C2.  
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Appendix D    Relative frequency of each index in the 

total unique mathematical expressions obtained 

 

We also checked the relative frequency of each index in the total unique mathematical expressions 

obtained.  

Comments on the results for the metric data are present in the main text (but see Table D1). 

Related to ordinal data, we found that the weighted degree (wD) and the keystone top-down indices 

(Ktd) were the most frequent among all the results. They were followed by the 5 and 3-step-long 

weighted topological importance indices (WI5 and WI3). These results are also interesting if we note 

that wD and Ktd are completely different: wD is a local, weighted, undirected index, while Ktd is a meso, 

unweighted and directed index. 

 

Table D1. Relative frequency, in percentage, of each index appearance in the total of different unique results obtained – metric 

data. 

Indices Relative frequency (percentage) r 

𝐖𝐈𝟓 80.39 

𝐃 75.00 

𝐓𝐈𝟓 45.53 

𝐖𝐈𝟑 40.53 

𝐓𝐈𝟑 32.37 

𝐰𝐃 30.73 

𝐁𝐂 24.38 

𝐓𝐈𝟏 22.19 

𝐖𝐈𝟏 21.95 

CC 18.83 

Kbu 18.83 

∆𝒔 18.00 

s 17.64 

K 17.47 

Kdir 16.98 

Kindir 14.97 

𝒔’ 14.48 

Ktd 14.26 

Each index is represented with the respective family colour found in the dendrogram’s clusters (Figure 3.1). We found 13082 

different mathematical expressions for the metric data. 
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Table D2. Relative frequency, in percentage, of each index appearance in the total of different unique results obtained – ordinal 

data. 

Indices Relative frequency (percentage) r 

𝐰𝐃 74.75 

𝐊𝐭𝐝 73.21 

𝐖𝐈𝟓 46.88 

𝐖𝐈𝟑 38.73 

𝐖𝐈𝟏 28.45 

𝐊𝐛𝐮 24.00 

D 18.27 

∆𝒔 17.09 

CC 14.82 

TI5 14.50 

TI3 13.48 

𝒔’ 13.31 

K 12.95 

s 12.15 

Kindir 11.53 

Kdir 10.04 

TI1 9.83 

BC 8.06 

Each index is represented with the colour of each of the families found in the dendrogram (Figure 3.1). We found 13981 

different mathematical expressions for the ordinal data. 
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Appendix E   Single and combined indices performance 

when applied to three, four or six nodes 

 

We decided to apply each individual index to check its performance when classifying the first three 

nodes (i.e., nodes #1, #2 and #3), the first four nodes (#1, #2, #3 and #4), the four middle nodes (#5, #6, 

#7, #8), the four last nodes (#9, #10, #11, #12). We did the same for the first six nodes versus the last 

six nodes. These results are showed in Table E1. The same was done for all the results (mathematical 

formulae) obtained either for metric and ordinal data. The average of these results is presented in Table 

E2. 

 

Table E1. Spearman correlations derived from the results when applied to different groups of nodes in the networks. 

Indices Analysis 

Three most 

important 

nodes 

Four most 

important 

nodes 

Four 

middle 

nodes 

Four 

worse 

nodes 

First six 

nodes 

Last six 

nodes 

𝐖𝐈𝟓 

Rank 

order  
-18.79 -26.77 -24.80 -48.49 -34.65 -55.66 

Real 

values 
-43.24 -48.89 -29.00 -28.05 -57.04 -36.33 

𝐃 

Rank 

order  
-12.45 -14.45 -1.64 12.53 -13.04 7.68 

Rank 

order  
15.90 14.28 1.71 -13.01 10.12 -12.09 

𝐓𝐈𝟓 

Rank 

order  
-14.58 -16.81 -3.68 12.61 -15.38 7.91 

Real 

values 
16.05 14.32 -4.29 -16.19 8.86 -15.58 

𝐖𝐈𝟑 

Rank 

order  
-18.29 -26.27 -24.16 -47.20 -33.75 -54.22 

Real 

values 
-42.38 -47.90 -28.47 -27.71 -55.91 -35.50 

𝐓𝐈𝟑 

Rank 

order  
-14.92 -17.08 -3.87 12.58 -15.71 7.66 

Real 

values 
15.92 14.19 -4.57 -16.69 8.61 -16.03 

𝐰𝐃 

Rank 

order  
-17.78 -27.18 -25.96 -50.98 -35.71 -57.50 

Real 

values 
-51.71 -54.70 -29.58 -28.55 -60.28 -37.52 
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𝐁𝐂 

Rank 

order  
-16.41 -18.06 -4.39 11.54 -16.75 6.21 

Real 

values 
13.23 11.56 -5.47 -19.12 6.08 -18.22 

𝐓𝐈𝟏 

Rank 

order  
-16.18 -18.10 -4.72 11.98 -17.34 6.63 

Real 

values 
15.06 13.31 -6.39 -18.60 7.17 -18.25 

𝐖𝐈𝟏 

Rank 

order  
-18.00 -24.48 -20.43 -36.79 -31.00 -45.46 

Real 

values 
-34.18 -39.54 -26.38 -26.30 -48.19 -32.43 

𝐂𝐂 

Rank 

order  
-12.49 -13.41 -1.04 13.80 -12.02 9.06 

Real 

values 
15.19 14.08 0.56 -11.19 10.34 -10.13 

𝐊𝐛𝐮 

Rank 

order  
-14.34 -24.30 -24.89 -48.94 -32.99 -55.37 

Real 

values 
-49.77 -52.44 -27.54 -25.35 -57.58 -34.56 

∆𝒔 

Rank 

order  
-7.77 -17.75 -20.24 -39.42 -26.08 -46.19 

Real 

values 
-32.65 -37.98 -18.96 -15.93 -44.87 -24.83 

𝐬 

Rank 

order  
-1.02 -19.14 -20.23 -45.94 -26.29 -51.40 

Real 

values 
48.12 -50.23 20.02 -17.50 -52.59 -25.22 

𝐊 

Rank 

order  
-13.63 -15.24 -5.18 40.93 -11.96 42.37 

Real 

values 
33.40 36.37 1.62 -14.19 38.57 -12.56 

𝐊𝐝𝐢𝐫 

Rank 

order  
-16.80 -18.99 -1.90 34.69 -16.30 34.83 

Real 

values 
30.56 32.99 0.09 -19.52 33.43 -17.31 

𝐊𝐢𝐧𝐝𝐢𝐫 

Rank 

order  
-7.82 -9.83 -7.78 42.14 -7.25 44.47 

Real 

values 
33.40 36.66 3.16 -7.11 39.60 -6.67 

𝒔’ 
Rank 

order  
3.79 13.90 18.96 36.44 23.90 43.01 
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Real 

values 
27.83 33.48 15.49 11.11 40.35 20.73 

𝐊𝐭𝐝 

Rank 

order  
3.00 13.34 21.73 44.63 24.98 50.13 

Real 

values 
36.58 40.88 19.00 12.34 46.82 23.90 

Each index is represented with the colour of each of the families found in the dendrogram (Figure 3.1); Correlations were 

performed for each index values versus the community response values. Results are showed for: the first three most important 

nodes, the four most important nodes, the four middle nodes and the four worse nodes, and when applied to the first six and 

last six nodes. Networks were split according to the rank community response importance of their nodes. Bold values represent 

Spearman correlations higher than 50%. 

 

Table E2. Average and standard deviation (percentage) of all results obtained related to their Spearman correlations. 

 

Three most 

important 

nodes 

Four most 

important 

nodes 

Four 

middle 

nodes 

Four 

worse 

nodes 

First six 

nodes 

Last 

six 

nodes 

All 

Metric 

results 
56.51 ± 1.44 60.19 ±1.32 36.24 ± 0.77 31.61 ± 1.81 

66.12 

±1.39 

43.39 

±1.28 

76.03 

±0.50 

Ordinal 

results 
14.94 ± 2.34 24.95 ± 1.97 26.97 ± 0.72 52.59 ± 1.91 

35.06 ± 

1.36 

58.88 ± 

1.72 

70.33 ± 

1.60 

Networks were split according to the rank community response importance of their nodes. Shaded cells represent Spearman 

correlations higher than 50%. 

 

From all the singular indices (Table E1), only wD, Kbu and s are good enough to predict, by 

themselves, the most important nodes in a network: with predictions for three nodes being worse than for 

four and for six, respectively (3N < 4N < 6N), for wD and Kbu. s shows good results for 4N < 6N (its 

predictions for 3N are still below 50% for the Spearman correlation). 

From the analysis of the results in Table E2, we can conclude that the mathematical expressions 

obtained using the real values of the indices, allow us to predict quite well the first more important nodes 

in a network. We can see that 3N < 4N < 6N – the more nodes used, the better the prediction. However, 

if we just want to evaluate the prediction of the first three nodes, it’s still a good approach. 

Related to the cocktails obtained from the nodes ordered according to their rank (“ordinal 

approach”) we can conclude that they are better to evaluate the least important nodes in the network, 

with the last 4N < 6N. Again, the more nodes used, the better the prediction. 

Moreover, we calculated the standard deviation for all Spearman correlations obtained when 

applied to the training set and to the testing set to check if they were biased due to the relatively small 

dataset used. The result was 0.46% ± 0.25% and 0.56% ± 0.25% respectively. These results show that 

our results were not under or overfitted since, the variance between the training and testing set was, in 

average, 0.1%. 

We also checked the performance of each mathematical expressions obtained and previously 

presented when expressing the target values. We wanted to check whether they were good to predict 

which are the first three nodes, the first four, the middle four or last four, or the first six or last six nodes 

in the networks. With these – more detailed – information we confirmed the results previously seen in 
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Table E2. We found very different Spearman correlations – with big standard deviations in between 

(Tables E3 – E6). In Tables E3 – E6 we present the mathematical expressions that were accurate in more 

than 50% of the cases. We can infer from these that the first three nodes were more contributory to the 

final predictions, followed by the four, and the six first nodes, respectively. When more nodes were 

used, the accuracy of the predictions improved, in general, when the metric data was taken into account. 

It’s also noticeable that not always the best cocktail – the one with higher accuracy – is the one that 

allows to get better accuracy for the prediction of the first few nodes. 

When considering the ordinal data, we observed that the least important nodes in a network 

(according to the community response), were the more influential for the predictions: using the six last 

ranked nodes was more significant than using the first four. Indeed, if we aim to predict the first most 

important nodes, it’s better to use metric data results. On the other hand, if we aim to predict the last 

ranked nodes we should use the ordinal data results. However, one should note that these cocktails 

performed better when evaluating the network as whole, than when evaluating only 3 to 6 nodes.
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Table E3. Performance of the “best” mathematical expressions obtained using different groups of nodes from the networks – different partial datasets – metric data. 

Results – Equation 

reference 

Spearman 

correlation 

(ρ) c 

Three most 

important 

nodes 

Four best 

nodes 

Four middle 

nodes 

Four worse 

nodes 

First six 

nodes 

Last six 

nodes 

Average 

Spearman 

correlation * 

Average 

Standard 

deviation * 

(3.1) 78.42 -16.97 ± 43.45 
-21.45 ± 

40.28 
-36.17 ±29.87 

-30.20 

±34.09 

-37.55 

±28.89 

-43.04 

±25.02 
-30.90 ±9.16 33.60 ±6.48 

(3.2) 78.18 30.67 ±33.59 
34.76 

±30.70 
35.74 ±30.01 32.73 ±32.14 

46.94 

±22.09 

43.34 

±24.64 
37.36 ±5.82 28.86 ±6.37 

(3.3) 78.01 -58.16 ±14.04 
-61.78 

±11.48 
-37.46 ±28.68 

-33.65 

±31.37 

-67.82 

±7.21 

-45.02 

±23.33 
-50.65 ±4.51 19.35 ±13.93 

(3.4) 78.01 -3.33 ±52.81 -7.90 ±49.57 -34.27 ±30.93 
-32.56 

±32.14 

-20.82 

±40.44 

-43.96 

±24.08 
-23.81 ±9.85 35.43 ±15.95 

(3.5) 77.99 -16.78 ±43.28 
-22.07 

±39.54 
-36.38 ±29.43 

-33.19 

±31.68 

-35.23 

±30.24 

-44.10 

±23.96 
-31.29 ±9.81 30.97 ±10.05 

(3.6) 77.91 -56.64 ±15.04 
-60.16 

±12.55 
-37.83 ±28.34 

-36.54 

±29.25 

-66.33 

±8.19 

-47.61 

±21.43 
-50.85 ±5.61 19.95 ±12.20 

(3.7) 77.89 -14.68 ±44.70 
-20.30 

±40.72 
-35.00 ±30.33 

-32.39 

±32.17 

-32.84 

±31.86 

-43.73 

±24.15 
-29.82 ±9.38 31.85 ±10.54 

(3.8) 77.88 -56.48 ±15.14 
-60.26 

±12.46 
-37.29 ±28.71 

-35.07 

±30.28 

-66.60 

±7.98 

-46.64 

±22.09 
-50.39 ±5.92 20.30 ±12.79 

(3.9) 77.88 -52.26 ±18.11 
-56.81 

±14.89 
-37.25 ±28.73 

-35.99 

±29.62 

-64.70 

±9.31 

-47.28 

±21.64 
-49.05 ±9.83 20.84 ±11.21 

(3.10) 77.86 57.18 ±14.63 
60.60 

±12.20 
36.96 ±28.92 36.47 ±29.27 

66.78 

±7.84 

46.81 

±21.96 
50.8 ±8.78 20.04 ±12.69 

(3.11) 77.86 -57.79 ±14.19 
-61.00 

±11.92 
-36.54 ±29.22 

-34.53 

±30.64 

-66.70 

±7.89 

-46.24 

±22.36 
-50.47 ±9.72 20.41 ±13.37 



56 

(3.12) 77.84 -14.62 ±44.70 
-21.55 

±39.80 
-35.79 ±29.73 

-31.14 

±33.02 

-35.10 

±30.22 

-42.54 

±24.96 
-30.12 ±10.18 31.55 ±10.26 

(3.13) 77.82 54.52 ±16.47 
58.70 

±13.52 
37.82 ±28.28 37.38 ±28.59 

65.80 

±8.50 

48.13 

±20.99 
50.39 ±5.45 19.98 ±11.45 

(3.14) 77.81 -8.03 ±49.34 
-12.88 

±45.91 
-35.65 ±29.81 

-31.26 

±32.92 

-25.39 

±37.07 

-42.41 

±25.04 
-25.94 ±8.91 34.15 ±13.31 

(3.15) 77.81 -8.03 ±49.34 
-12.88 

±45.91 
-35.65 ±29.81 

-31.26 

±32.92 

-25.39 

±37.07 

-42.41 

±25.04 
-25.94 ±7.91 34.15 ±13.31 

(3.16) 77.81 -60.68 ±12.11 -63.80 ±9.91 -35.60 ±29.85 
-33.51 

±31.32 

-68.31 

±6.72 

-45.16 

±23.09 
-51.18 ±7.91 20.18 ±15.06 

(3.17) 77.70 57.61 ±14.21 
61.10 

±11.74 
38.57 ±27.67 34.78 ±30.35 

67.36 

±7.31 

46.26 

±22.23 
50.95 ±11.32 19.86 ±13.06 

(3.18) 77.70 -12.16 ±46.35 19.16 ±0.41 -35.56 ±29.80 
-34.47 

±30.57 

-33.56 

±31.21 

-44.98 

±23.14 
-23.60 ±10.00 23.03 ±23.57 

(3.19) 77.70 -57.54 ±14.25 
-60.93 

±11.86 
-36.60 ±29.34 

-35.99 

±29.49 

-66.74 

±7.74 

-46.91 

±21.77 
-50.79 ±13.05 20.04 ±12.95 

(3.20) 77.70 57.12 ±14.52 
60.75 

±11.95 
37.74 ±28.22 36.48±29.11 

66.77 

±7.69 
46.90±21.75 50.96±9.96 19.74±9.71 

Networks were split according to the rank community response importance of their nodes. Spearman correlations were obtained using these partial networks. Standard deviations were obtained 

through the comparison of the correlation obtained for the whole network and the partial correlation, using metric values. c Spearman correlation when using all the metric data available. * Averages 

and respective standard deviations were calculated without considering the correlation result for the whole network (i.e., excluding c). Bold values show Spearman correlations higher than 50%. 

 

 

 



57 

Table E4. Performance of the most frequent mathematical expressions obtained using different groups of nodes from the networks – different partial datasets – metric data. 

Results – Equation 

reference 

Spearman 

correlation 

(ρ) c 

Three most 

important 

nodes 

Four best 

nodes 

Four middle 

nodes 

Four worse 

nodes 

First six 

nodes 

Last six 

nodes 

Average 

Spearman 

correlation * 

Average 

Standard 

deviation * 

(3.21) 76.16 -56.98 ±13.56 
-60.59 

±11.01 
-36.08 ±28.34 

-29.16 

±33.23 

-66.43 

±6.88 

-41.85 

±24.26 
-48.52 ±14.91 19.55 ±10.54 

(3.22) 76.16 56.98 ±13.56 60.59 ±11.01 36.50 ±28.05 30.24 ±32.47 
66.43 

±6.88 

42.80 

±23.59 
48.92 ±14.48 19.26 ±10.24 

(3.23) 75.86 -57.23 ±13.17 
-60.79 

±10.65 
-35.51 ±28.53 

-29.88 

±32.51 

-66.40 

±6.69 

-42.35 

±23.70 
-48.70 ±14.84 19.21 ±10.49 

(3.24) 75.86 57.23 ±13.17 60.79 ±10.65 35.51 ±28.53 29.93 ±32.48 
66.40 

±6.69 

42.40 

±23.66 
48.71 ±14.82 19.20 ±10.48 

(3.25) 75.46 -57.29 ±12.84 
-60.83 

±10.34 
-34.64 ±28.86 

-29.08 

±32.79 

-66.28 

±6.49 

-41.59 

±23.95 
-48.29 ±15.25 19.21 ±10.78 

(3.26) 75.46 57.29 ±12.84 60.83 ±10.34 34.69 ±28.83 29.09 ±32.79 
66.28 

±6.49 

41.60 

±23.94 
48.30 ±15.23 19.21 ±10.77 

(3.27) 75.40 -55.47 ±14.09 
-59.29 

±11.38 
-36.68 ±27.37 

-28.14 

±33.41 

-65.55 

±6.96 

-40.76 

±24.49 
-47.65 ±14.60 19.62 ±10.32 

(3.28) 77.02 55.47 ±14.09 
-59.29 

±11.38 
37.10 ±27.08 29.23 ±32.64 

65.55 

±6.95 

41.71 

±23.82 
28.30 ±44.85 19.33 ±10.01 

(3.29) 77.02 56.00 ±13.70 59.78 ±11.03 36.46 ±27.52 29.33 ±32.56 
65.80 

±6.77 

41.78 

±23.76 
48.19 ±14.42 19.22 ±10.20 

(3.30) 76.94 -56.00 ±13.68 
-59.78 

±11.01 
-36.46 ±27.50 

-29.29 

±32.57 

-65.80 

±6.75 

-41.72 

±23.78 
-48.18 ±14.44 19.22 ±10.21 

(3.31) 75.39 -52.79 ±15.91 
-56.42 

±13.34 
-33.41 ±29.61 

-30.50 

±31.66 

-62.89 

±8.76 

-42.78 

±22.98 
-46.47 ±13.02 20.38 ±9.21 
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(3.32) 75.38 -56.82 ±14.22 
-60.47 

±11.64 
-36.59 ±28.53 

-32.20 

±31.63 

-66.43 

±7.43 

-44.04 

±23.26 
-49.43 ±13.83 19.45 ±9.78 

(3.33) 75.35 -57.41 ±13.87 
-60.85 

±11.44 
-35.68 ±29.23 

-32.42 

±31.54 

-66.47 

±7.46 

-44.31 

±23.13 
-49.52 ±14.06 19.45 ±9.94 

(3.34) 75.29 -56.87 ±14.13 
-60.50 

±11.56 
-36.59 ±28.48 

-33.55 

±30.62 

-66.37 

±7.42 

-45.01 

±22.52 
-49.82 ±13.42 19.12 ±9.49 

(3.35) 76.86 56.89 ±14.06 60.53 ±11.49 36.57 ±28.43 32.90 ±31.03 
66.40 

±7.33 

44.56 

±22.78 
49.64 ±13.63 19.19 ±9.64 

(3.36) 76.86 56.87 ±14.13 60.50 ±11.56 36.59 ±28.48 33.55 ±30.62 
66.37 

±7.42 

45.01 

±22.52 
49.82 ±13.42 19.12 ±9.49 

(3.37) 76.77 -56.89 ±14.06 
-60.53 

±11.49 
-36.57 ±28.48 

-32.90 

±31.03 

-66.40 

±7.33 

-44.56 

±22.78 
-49.64 ±13.63 19.20 ±9.65 

(3.38) 76.76 56.85 ±14.08 60.50 ±11.50 36.67 ±28.35 32.83 ±31.06 
66.38 

±7.34 

44.48 

±22.83 
49.62 ±13.62 19.19 ±9.63 

(3.39) 76.60 56.90 ±13.93 60.59 ±11.32 36.93 ±28.05 32.19 ±31.40 
66.55 

±7.11 

44.00 

±23.05 
49.53 ±13.83 19.14 ±9.78 

(3.40) 76.77 -56.90 ±14.05 
-60.53 

±11.48 
-36.54 ±28.45 

-32.87 

±31.04 

-66.41 

±7.33 

-44.56 

±22.78 
-49.64 ±13.65 19.18 ±9.65 

Networks were split according to the rank community response importance of their nodes. Spearman correlations were obtained using these partial networks. Standard deviations were obtained 

through the comparison of the correlation obtained for the whole network and the partial correlation, using metric values. c Spearman correlation when using all the metric data available. * Averages 

and respective standard deviations were calculated without considering the correlation result for the whole network (i.e., excluding c). Bold values show Spearman correlations higher than 50%. 
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Table E5. Performance of the “best” mathematical expressions obtained using different groups of nodes from the networks – different partial datasets – ordinal data. 

Results – Equation 

reference 

Spearman 

correlation 

(ρ) c 

Three most 

important 

nodes 

Four best 

nodes 

Four middle 

nodes 

Four worse 

nodes 

First six 

nodes 

Last six 

nodes 

Average 

Spearman 

correlation * 

Average 

Standard 

deviation * 

(B. 1) 72.47 -15.85 ±40.04 
-26.20 

±32.72 
-28.36 ±31.19 

-57.47 

±10.61 

-36.50 

±25.43 

-62.85 

±6.80 
-37.87 ±18.56 24.47 ±13.12 

(B. 2) 72.37 -17.11 ±39.07 
-27.44 

±31.77 
-28.05 ±31.34 

-52.54 

±14.02 

-37.32 

±24.78 

-59.25 

±9.28 
-36.95 ±16.15 25.04 ±11.42 

(B. 3) 72.30 15.90 ±39.88 25.30 ±33.23 28.06 ±31.29 56.09 ±11.46 
36.17 

±25.55 

61.69 

±7.50 
37.20 ±18.09 24.82 ±12.79 

(B. 4) 72.22 14.93 ±40.51 24.11 ±34.02 28.67 ±30.79 55.73 ±11.66 
35.53 

±25.94 

61.96 

±7.44 
36.82 ±18.43 25.06 ±12.98 

(B. 5) 72.18 17.90 ±38.38 27.24 ±31.77 28.39 ±30.96 53.36 ±13.31 
36.87 

±24.96 

59.54 

±8.94 
37.22 ±16.18 24.72 ±11.44 

(B. 6) 72.16 14.45 ±40.81 24.96 ±33.37 29.02 ±31.21 55.12 ±12.05 
36.11 

±25.49 

61.00 

±7.90 
36.78 ±18.01 25.14 ±12.80 

(B. 7) 72.15 -12.24 ±42.36 
-22.59 

±35.04 
-28.71 ±30.72 

-56.96 

±10.74 

-34.20 

±26.83 

-62.38 

±6.91 
-36.18 ±19.68 25.43 ±13.91 

(B. 8) 72.13 12.82 ±41.94 23.55 ±34.35 28.34 ±30.96 57.33 ±10.47 
35.03 

±26.23 

62.57 

±6.76 
36.61 ±19.55 25.12 ±13.82 

(B. 9) 72.12 16.23 ±39.53 25.87 ±32.70 28.19 ±31.07 54.90 ±12.18 
36.15 

±25.43 

60.90 

±7.93 
37.04 ±17.47 24.81 ±12.35 

(B. 10) 72.11 10.32 ±43.69 20.90 ±36.21 29.05 ±30.45 56.81 ±10.82 
33.39 

±27.38 

62.16 

±7.04 
35.44 ±20.29 25.93 ±14.34 

(B. 11) 72.11 -11.77 ±42.66 
-20.80 

±36.28 
-27.01 ±31.89 

-54.68 

±12.32 

-31.62 

±28.63 

-59.71 

±8.77 
-34.27 ±19.03 26.76 ±13.46 
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(B. 12) 72.10 19.09 ±37.49 27.86 ±31.28 27.71 ±31.39 56.57 ±10.98 
36.65 

±25.07 

62.06 

±7.10 
38.32 ±17.27 23.89 ±12.21 

(B. 13) 72.10 17.71 ±38.46 27.17 ±31.77 28.04 ±31.15 54.61 ±12.36 
37.29 

±24.61 

60.67 

±8.08 
37.58 ±16.84 24.41 ±11.91 

(B. 14) 72.07 -16.84 ±39.05 
-26.97 

±31.89 
-27.99 ±31.17 

-53.53 

±13.11 

-36.94 

±24.84 

-59.86 

±8.63 
-37.02 ±16.64 24.78 ±11.76 

(B. 15) 72.07 16.82 ±39.07 26.97 ±31.89 27.97 ±31.18 53.57 ±13.08 
36.93 

±24.85 

59.87 

±8.62 
37.02 ±16.66 24.78 ±11.78 

(B. 16) 72.07 16.90 ±39.01 27.00 ±31.86 27.97 ±31.18 53.69 ±12.99 
36.55 

±25.11 

59.90 

±8.60 
37.00 ±16.67 24.79 ±11.79 

(B. 17) 72.07 -15.42 ±40.06 
-25.75 

±32.75 
-28.08 ±31.10 

-53.02 

±13.47 

-36.52 

±25.13 

-59.55 

±8.85 
-36.39 ±16.94 25.23 ±11.98 

(B. 18) 72.06 -13.49 ±41.42 
-23.07 

±34.64 
-28.49 ±30.81 

-55.83 

±11.48 

-34.65 

±26.45 

-61.75 

±7.30 
-36.21 ±18.91 25.35 ±13.37 

(B. 19) 72.06 16.67 ±39.16 26.89 ±31.93 28.06 ±31.11 53.91 ±12.83 
36.90 

±24.86 

60.07 

±8.48 
37.08 ±16.81 24.73 ±11.89 

(B. 20) 72.03 -16.21 ±39.47 
-26.57 

±32.14 
-28.11 ±31.06 

-55.47 

±11.71 

-36.59 

±25.06 

-60.93 

±7.85 
-37.31 ±17.51 24.55 ±12.38 

Networks were split according to the rank community response importance of their nodes. Spearman correlations were obtained using these partial networks. Standard deviations were obtained 

through the comparison of the correlation obtained for the whole network and the partial correlation, using ordinal ranked networks. c Spearman correlation when using all the ordinal data available. 

* Averages and respective standard deviations were calculated without considering the correlation result for the whole network (i.e., excluding c). Bold values show Spearman correlations higher 

than 50%. 
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Table E6. Performance of the most frequent mathematical expressions obtained using different groups of nodes from the networks – different partial datasets – ordinal data. 

Results – Equation 

reference 

Spearman 

correlation 

(ρ) c 

Three most 

important 

nodes 

Four best 

nodes 

Four middle 

nodes 

Four worse 

nodes 

First six 

nodes 

Last six 

nodes 

Average 

Spearman 

correlation * 

Average 

Standard 

deviation * 

(B. 21) 70.34 -12.29 ±41.05 
-22.84 

±33.59 
-26.66 ±30.89 

-52.40 

±12.69 

-33.85 

±25.81 

-58.66 

±8.26 
-38.88 ±15.86 22.25 ±11.21 

(B. 22) 70.34 12.29 ±41.05 22.84 ±33.59 26.66 ±30.89 52.40 ±12.69 
33.85 

±25.81 

58.66 

±8.26 
38.88 ±15.86 22.25 ±11.21 

(B. 23) 70.27 12.27 ±41.01 22.96 ±33.45 26.75 ±30.78 52.11 ±12.84 
33.78 

±25.81 

58.43 

±8.37 
38.81 ±15.68 22.25 ±11.09 

(B. 24) 70.27 -12.27 ±41.01 
-22.96 

±33.45 
-26.75 ±30.78 

-52.11 

±12.84 

-33.78 

±25.81 

-58.43 

±8.37 
-38.81 ±15.68 22.25 ±11.09 

(B. 25) 70.16 11.31 ±41.61 22.59 ±33.64 26.64 ±30.77 51.80 ±12.99 
33.84 

±25.69 

58.03 

±8.58 
38.58 ±15.60 22.33 ±11.03 

(B. 26) 70.16 -11.31 ±41.61 
-22.59 

±33.64 
-26.64 ±30.77 

-51.80 

±12.99 

-33.84 

±25.69 

-58.03 

±8.58 
-38.58 ±15.60 22.33 ±11.03 

(B. 27) 70.16 -16.40 ±38.01 
-26.08 

±31.17 
-26.38 ±30.96 

-49.70 

±14.47 

-35.74 

±24.34 

-56.33 

±9.78 
-38.85 ±13.71 22.14 ±9.69 

(B. 28) 70.16 16.40 ±38.01 26.08 ±31.17 26.38 ±30.96 49.70 ±14.47 
35.74 

±24.34 

56.33 

±9.78 
38.85 ±13.71 22.14 ±9.69 

(B. 29) 70.12 16.19 ±38.14 25.96 ±31.23 26.44 ±30.89 49.65 ±14.48 
35.43 

±24.53 

56.29 

±9.78 
38.75 ±13.72 22.18 ±9.70 

(B. 30) 70.12 -16.19 ±38.14 
-25.96 

±31.23 
-26.44 ±30.89 

-49.65 

±14.48 

-35.43 

±24.53 

-56.29 

±9.78 
-38.75 ±13.72 22.18 ±9.70 

(B. 31) 71.85 17.09 ±38.72 27.03 ±31.69 27.84 ±31.12 52.99 ±13.34 
36.90 

±24.72 

59.52 

±8.72 
40.86 ±14.76 21.92 ±10.44 
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(B. 32) 71.13 -14.59 ±39.99 
-25.20 

±32.45 
-27.19 ±31.07 

-53.61 

±12.39 

-35.52 

±25.18 

-59.74 

±8.06 
-40.25 ±15.63 21.83 ±11.05 

(B. 33) 71.85 -17.09 ±38.72 25.12 ±32.54 -27.84 ±31.12 
-52.99 

±13.34 

-36.90 

±24.72 

-59.52 

±8.72 
-30.43 ±33.50 22.09 ±10.64 

(B. 34) 71.09 -14.58 ±39.96 25.85 ±31.19 -27.26 ±30.99 
-53.41 

±12.50 

-35.48 

±25.18 

-59.59 

±8.13 
-29.98 ±33.84 21.60 ±10.69 

(B. 35) 71.13 14.59 ±39.99 
-25.85 

±31.19 
27.19 ±31.07 53.61 ±12.39 

35.52 

±25.18 

59.74 

±8.06 
30.04 ±33.91 21.58 ±10.75 

(B. 36) 69.96 15.22 ±38.70 25.85 ±31.19 26.39 ±30.81 49.23 ±14.66 
35.78 

±24.17 

55.74 

±10.06 
38.60 ±13.48 22.18 ±9.53 

(B. 37) 69.96 -15.22 ±38.70 
-27.14 

±31.04 
-26.39 ±30.81 

-49.23 

±14.66 

-35.78 

±24.17 

-55.74 

±10.06 
-38.86 ±13.18 22.15 ±9.49 

(B. 38) 71.04 -17.37 ±37.95 25.20 ±32.45 -26.97 ±31.16 
-51.57 

±13.76 

-36.46 

±24.45 

-58.15 

±9.11 
-29.59 ±33.00 22.19 ±10.40 

(B. 39) 71.09 14.58 ±39.96 25.20 ±32.45 27.26 ±30.99 53.41 ±12.50 
35.48 

±25.18 

59.59 

±8.13 
40.19 ±15.53 21.85 ±10.98 

(B. 40) 71.04 -17.37 ±37.95 
-27.13 

±31.04 
-26.97 ±31.16 

-51.57 

±13.76 

-36.46 

±24.45 

-58.15 

±9.11 
-40.06 ±14.24 21.90 ±10.07 

Networks were split according to the rank community response importance of their nodes. Spearman correlations were obtained using these partial networks. Standard deviations were obtained 

through the comparison of the correlation obtained for the whole network and the partial correlation, using ordinal ranked networks. c Spearman correlation when using all the ordinal data available. 

* Averages and respective standard deviations were calculated without considering the correlation result for the whole network (i.e., excluding c). Bold values show Spearman correlations higher 

than 50%. 

 

 


