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Abstract. In this lecture I give an introduction to the rotational energy extraction of black holes
by the electromagnetic Blandford-Znajek process and the generation of relativistic jets. After some
basic material on the electrodynamics of black hole magnetospheres, we derive the most important
results of Blandford and Znajek by making use of Kerr-Schildcoordinates, which are regular on
the horizon. In a final part we briefly describe results of recent numerical simulations of accretion
flows on rotating black holes, the resulting large-scale outflows, and the formation of collimated
relativistic jets with high Lorentz factors.
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1. INTRODUCTION

For good reasons it is by now generally believed that active galactic nuclei (AGNs) are
powered by supermassive black holes (BHs), with typical masses of about 109 M⊙. In-
deed, this seems to be the only way to generate the enormous energy of order 1046 erg/s
in regions not much larger than the solar system. Accretion of matter by black holes, of-
fers the most efficient power supply. A few solar masses of gasper year suffice to power
the most energetic quasars.

It is known for long that AGNs often expel enormous energies in two oppositely di-
rected relativistic jets with Lorentz factorsγ ∼ 10. More recently, moderately large
Lorentz factors (γ a few) have been seen in BH x-ray binaries (XRBs), calledmicro-
quasars. Relativistic jets have also been observed in gamma-ray bursts (GRBs). How are
these remarkable jets formed? Which mechanisms are responsible for the concentrated
energy input at their origin? Most probably processes connected to BHs are involved.
Among these, perhaps the most promising possibility is the energy extraction from a
black hole via magnetic fields, since fairly strong magneticfields are likely to be present
in accretion flows on the central BH. This scenario, which gives rise to a long-range
coherence, is the main subject of this talk. Basic questionsto be answered are: Which
forces drive the jets? What are the mechanisms that regulatetheir content, and how are
they collimated?

Penrose first discovered that a substantial fraction of a Kerr black hole mass can
be converted, at least in principle, into the energy of surrounding matter or radiation.
However, the Penrose process is inefficient under typical astrophysical conditions. Later
it was found that external electromagnetic fields can be usedto extract rotational energy
of black holes. Of great influence was a pioneering study by Blandford & Znajek [8]
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which demonstrated the possibility of an electromagnetically driven wind from a rotating
black hole, provided the space around the black hole is filledwith plasma. In their paper
they developed a general theory of force-free steady-stateaxisymmetric magnetospheres
of black holes, and estimated that the power of the wind couldbe high enough to explain
the energetics of radio galaxies and quasars.

This work triggered the so calledmembrane modelby Thorne and collaborators [1]
(see also [7]). In this model one first splits the elegant 4-dimensional physical laws of
general relativity (GR) into space and time (3+1 splitting). For a general situation this
can be done in many ways (reflecting the gauge freedom in GR) since there is no canon-
ical fibration of spacetime by level surfaces of constant time. (For a stationary BH we
shall choose foliations which are adapted to the corresponding Killing field.) Relative
to these the dynamical variables (electromagnetic fields, etc) become quantities on an
absolute spacewhich evolve as functions of anabsolute time, as we are accustomed to
from non-relativistic physics. We shall see, for example, that the 3+1 splitting brings
Maxwell’s equations into a form which resembles the familiar form of Maxwell’s equa-
tions for moving conductors. We can then use the pictures andour experience from
ordinary electrodynamics.

In a second more specific step one replaces the boundary conditions at the horizon
by physical properties (electric conductivity, etc) of afictitious membrane. This proce-
dure is completely adequate as long as one is not interested in fine detailsvery closeto
the horizon. The details of this boundary layer are, however, completely irrelevant for
astrophysical applications. (The situation is similar to many problems in electrodynam-
ics, where one replaces the real surface properties of a conductor and other media by
idealized boundary conditions.)

This approach turns the drawback of the Boyer-Lindquist coordinates, which become
singular at the horizon, into an advantage. The membrane model has the merit that it
allows us to understand astrophysical processes near blackholes more easily, because
things become then closer to the intuition we have gained from other fields of physics,
for instance from the electrodynamics of moving bodies. However, this membrane
reformulation of regularity requirements at the horizon – in terms of the singular BL
coordinates – is clearly artificial. More importantly, it hides the fact that the key role
in the electrodynamic Blandford-Znajek mechanism is played not by the black hole
event horizon, but by its ergo-sphere (as in the Penrose process). Later I shall present an
alternative derivation of the most important results of Blandford and Znajek, in making
use of Kerr-Schild coordinates. This foliation is not singular at the horizon, whence no
boundary problems arise.

Kerr-Schild coordinates not only simplify theoretical analysis, but have also success-
fully been used in some numerical simulations. In recent years several codes have been
developed to study the magnetic energy extraction from BHs.In particular, various
groups have addressed the question how relativistic jets may have formed. In the last
part of the lecture I will briefly report on what has been done and achieved so far in
numerical studies of what is now often dubbed the (generic) “Blandford-Znajek mecha-
nism”, although only a specific version was originally proposed.

We begin with some basic material on black hole electrodynamics.
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2. SPACE-TIME SPLITTING OF ELECTRODYNAMICS

Let us perform the 3+1 splitting of the general relativisticMaxwell equations on a
stationary spacetime(M,(4)g). Most of what follows could easily be generalized to
spacetimes which admit a foliation by spacelike hypersurfaces (see, e.g., Ref. [2]), but
this is not needed in what follows. Similar 3+1 decompositions can be carried out for
the other equations of general relativistic magnetohydrodynamics (GRMHD) .

Slightly more specifically, we shall assume that globallyM is a productR × Σ,
such that the natural coordinatet of R is adapted to the Killing fieldk, i.e., k = ∂t .
We decompose the Killing field into normal and parallel components relative to the
“absolute space”(Σ,g), g being the induced metric onΣ,

∂t = α u+β . (1)

Here u is the unit normal field andβ is tangent toΣ. This is what one calls the
decomposition into lapse and shift;α is the lapse functionandβ theshift vector field.
We shall usually work with adapted coordinates(xµ) = (t,xi), where{xi} is a coordinate
system onΣ. Let β = β i∂i (∂i = ∂/∂xi), and consider the basis of 1-forms

α dt, dxi +β idt. (2)

One verifies immediately, that this is dual to the basis{u,∂i} of vector fields. Sinceu is
perpendicular to the tangent vectors∂i of Σ, the 4-metric has the form

(4)g=−α2dt2+gi j
(
dxi +β idt

)(
dxj +β jdt

)
, (3)

where gi j dxidxj is the induced metricg on Σ. Clearly, α, β , and g are all time-
independent quantities onΣ.

We introduce several kinds of electric and magnetic fields. Obviously, the spatial 1-
forms

Ě :=−ikF, Ȟ := ik∗F, (4)

have an intrinsic meaning. If we set

F = B+ Ě ∧dt, ∗F = D −Ȟ ∧dt, (5)

the electric and magnetic 2-formsD , B are spatial. Two further electric and magnetic
1-forms are defined by

E = ⋆D , H = ⋆B, (6)

where⋆ denotes the spatial Hodge dual on(Σ,g). The corresponding vector fields are
denoted by~E and~B. These are measured by observers moving with 4-velocityu, so-
called FIDOs, forfiducial observers. One easily finds the following algebraic relations:

Ě = α E − iβ B, Ȟ = αH + iβ D . (7)

We give also the coordinate components of the various fields:

Ěi =−Fti , Ȟi = ∗Fti =
α
2

ηi jkF jk, Bi j = Fi j , Bi =
1
2

η i jkFjk, Di j = ∗Fi j , Ei = αFti

(8)
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whereηi jk denotes the Levi-Civita tensor on(Σ,g).
In terms of the current 4-vectorJµ the electric charge density isρel = αJt . Beside the

spatial current 1-formj = Jkdxk we use also its spatial Hodge dualJ = ⋆ j. Using also
ρ̂ = ⋆ρel, the Maxwell equations can be written in 3+1 form as (d denotes the exterior
differential onΣ):

dB = 0, ∂tB+dĚ = 0,
dD = 4πρ̂ , −∂tD +dȞ = 4πJ̌ , J̌ := α J − iβ ρ̂ . (9)

These can be translate into a vector analytic form. (For thisas well as detailed deriva-
tions, see [7].) All this looks like Maxwell’s equations formoving conductors.

Integral Formulas

As is well-known from ordinary electrodynamics, it is oftenuseful to write the basic
laws in integral forms. Consider, for instance, the induction law in (9). If we integrate
this over a surface areaA , which isat restrelative to the absolute space, we obtain with
Stokes’ theorem(C := ∂A ), using also (7),

∮

C
α E =− d

dt

∫

A
B+

∮

C
iβ B. (10)

The left hand side is the electromotive force (EMF) alongC . The last term is similar to
the additional term one encounters in Faraday’s induction law for moving conductors.
It is an expression of the coupling ofB to the gravitomagnetic field and plays a crucial
role in much that follows. This term contributes also for a stationary situation, for which
(10) reduces to

EMF(C ) =
∮

C
α E =

∮

C
iβ B. (11)

3. BLACK HOLE IN A HOMOGENEOUS MAGNETIC FIELD

As an instructive example and a useful tool we discuss now an exact solution of
Maxwell’s equations in the Kerr metric, which becomes asymptotically a homogeneous
magnetic field. This solution can be found in a strikingly simple manner [3].

For any Killing field K and its 1-formK♭ one has the following identityδ d K♭ =
2R(K), whereδ denotes the co-differential andR(K) is the 1-form with components
RµνKν . In components this is equivalent to

K ;α
µ ;α =−Rµα Kα . (12)

This form can be obtained by contracting the indicesσ andρ in the following general
equation for a vector fieldξσ ;ρµ − ξσ ;µρ = ξλ Rλ

σρµ and by using the consequence
Kσ

;σ = 0 of the Killing equationKσ ;ρ +Kρ;σ = 0. For a vacuum spacetime we thus have
δ d K♭ = 0 for any Killing field. Hence, the vacuum Maxwell equations are satisfied
if F is a constant linear combination of the differential of Killing fields (their duals,
to be precise). For the Kerr metric, as for any axially symmetric stationary spacetime,
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we have two Killing fieldsk andm. Both in Boyer-Lindquist (BL) and in Kerr-Schild
(KS) foliations the Killing fields are coordinate derivatives:k= ∂t andm= ∂ϕ (k♭ andm♭

denote the corresponding 1-forms). The Komar formulae provide convenient expressions
for the total massM and the total angular momentumJ of the Kerr BH:

M =− 1
8π

∫

∞
∗dk♭, J =

1
16π

∫

∞
∗dm♭ (13)

(for G= 1).
We try the ansatz

F =
1
2

B0(dm♭+2adk♭) (B0 = const), (14)

and choosea such that the total electric charge

Q=− 1
4π

∫

∞
∗F (15)

vanishes. The Komar formulae (13) tell us that

Q=− 1
8π

B0(16πJ−2a ·8πM), (16)

and this vanishes ifa= J/M (which is the standard meaning of the symbola in the Kerr
solution).

Clearly,F is stationary and axisymmetric:

Lk F = LmF = 0, (17)

because (dropping♭ from now on)Lk dk= d Lk k= 0, (Lk k= [k,k] = 0), etc.
The solution (14) can be expressed in terms of a potential:F = dA, with

A=
1
2

B0(m+2ak) =
1
2

B0(gµϕ +2agµt)dxµ , (18)

where the last expression holds in Boyer-Lindquist (BL) as well as in Kerr-Schild (KS)
coordinates. Asymptotically, this describes a magnetic field in the z-direction whose
magnitude isB0.

It is straightforward to work out explicit expressions for~E and~B. The electric field
has a quadrupole-like structure and is poloidal. It is proportional toa, and thus due to the
gravitomagnetic component of the Kerr solution. Its emergence is of great astrophysical
significance.

It is of interest to work out the magnetic flux through the equator of the BH, i.e.,

Φ =
∫

upper h.
B =

∫

equator
A = 2π Aϕ

∣
∣
∣equator. (19)

One finds
Φ = 4πB0M(rH −M) = 4πB0M

√

M2−a2. (20)
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Generically one has, as expected,Φ ≈ πr2
HB0. Note, however, that (20) vanishes for an

extremal BH (a = M). In other words, the flux is completely expelled from the black
hole, like in the Meissner-Ochsenfeld effect in superconductivity. In order to study the
structure the Wald solution close to the black hole one has toexpress it in terms of Kerr-
Schild coordinates (see Sect. 6). The magnetic field lines inthese coordinates are shown
for a= M in Fig. 1, taken from [4].

2

0

-2

z

-2 0 2
x

FIGURE 1. Black hole “Meissner effect” (from [4]). The magnetic field lines of Wald’s vacuum
solution in KS coordinates fora = 1 are shown in thex = r sinϑ , z= r cosϑ plane. The partial circles
(thick lines) bound the ergosphere.

4. AXISYMMETRIC STATIONARY FIELDS

In this section we discuss some consequences of Maxwell’s equations for a stationary
axisymmetric magnetoshere outside a black hole.

4.1. Potential Representation

For an axisymmetric field we haveL∂ϕ B = 0 ↔ di∂ϕ B = 0, whencei∂ϕ B =

−dΨ/2π . From this we conclude that for the BL foliationB can be expressed in terms
of two potentialsΨ andI ,

B =
1

2π
dΨ∧dϕ

︸ ︷︷ ︸

poloidal part

+
2I
α
∗dϕ

︸ ︷︷ ︸

toroidal part

, (21)

both of which can be taken to be independent ofϕ. (The physical meaning ifI will
be discussed further below.)Ψ is the magnetic flux function (see Fig. 2), because the
poloidal flux inside a tube{Ψ = const} is

∫

B =
1

2π

∫

d(Ψdϕ) =
1

2π

∮

Ψdϕ = Ψ, Ψ(0) = 0. (22)
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Ψ is constant along magnetic field lines, as should be clear from Fig. 2. It is easy to

B

FIGURE 2. Axisymmetric magnetic field. The total flux inside the magnetic surface defines the flux
functionΨ.

show this also formally.
The electric field~E has no toroidal component for an axisymmetric stationary sit-

uation. This is an immediate consequence of the induction law: Applying (10) for a
stationary and axisymmetric configuration to the closed integral curveC of the Killing
field ∂ϕ , we obtain

∮

C
α E =

∮

C
iβ B =

ω
2π

∮

C
dΨ = 0=⇒ ~Etor = 0. (23)

A similar application of Ampère’s law in integral form gives
∮

C
αH = 4π

∫

A
αJ = 4π I , (24)

whereI is the total upward current through a surfaceA bounded byC . This shows that
the potentialI in (21) is the upward current.

So far we did not make any model assumptions about the physicsof the magne-
tosphere. But now we assume that the electromagnetic field isdegenerate, i.e., that
~E · ~B = 0, which is equivalent to the invariant statementF ∧F = 0. (This is satisfied
for ideal GRMHD and for force-free fields; see Sects. 5 and 6.)BecauseE is poloidal,
we can then represent the electric field as follows

E = i~vF B (~E =−~vF ×~B), (25)

where~vF is toroidal. Let us set

~vF =:
1
α
(ΩF −ω) ω̃~eϕ . (26)

For the interpretation ofΩF note the following: For an observer, rotating with angular
velocityΩ, the 4-velocity isu= ut (∂t +Ω∂ϕ). On the other hand,u= γ (e0+~v), where

~v is the 3-velocity relative to a FIDO. Using also∂t = α e0+~β we getΩ~∂ϕ = α~v−~β or

~v=
1
α
(Ω−ω)~∂ϕ =

1
α
(Ω−ω) ω̃~eϕ . (27)
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This has the same form as (26). Since the transformed electric field~E′ = γF(~E+~vF ×~B)
vanishes, we may regardΩF as the angular velocity of the magnetic field lines. (The
transformed frame can be defined as the “local rest frame” of the magnetic field lines.)
Eqs. (25) and (26) imply

α E =−ΩF −ω
2π

dΨ, Ě =−dΨ, (28)

thus~E is perpendicularto the surfaces{Ψ = const}. Taking the exterior derivative, and
using induction law, we getdΩF ∧dΨ = 0 =⇒ ΩF = ΩF(Ψ). So the electromagnetic
field is determined in terms ofΨ, I and the “flow (field line) constant”ΩF(Ψ).

4.2. EMF outside a rotating Black Hole

In Fig. 3 we consider a stationary rotating BH in an external magnetic field (like in
§3). The integral in (11) along the field lines gives no contribution and far awayβ drops
rapidly (∼ r−2). Thus, there remains only the contribution from the horizon (CH ) of the
pathC in Fig. 3:

EMF=
∫

CH

iβH
B, βH =−ΩH ∂ϕ , (29)

whereΩH is the angular velocity of the horizon (only the normal component~B⊥ con-
tributes). I recall thatΩH = a(2MrH)

−1, rH = M+
√

M2−a2.

B

BH

B

FIGURE 3. Arrangement for eq. (29).

Let us work this out for the special case of an axisymmetric field. For the closed path
C in Fig. 3 the EMF is by (29)

EMF≡△V =

∫

CH

iβH
B =−

(

−ΩH

2π

) ∫

CH

dΨ,

i.e.

△V =
ΩH

2π
△Ψ. (30)

This result isindependentof the physics outside the black hole.
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Let us integrate it from the pole to some point north of the equator. For the exact
vacuum solution in §3 we know the result for the EMF, if we integrate up to the equator:
From (30) and (20) we get EMF= 2ΩH B0M (rH −M) or (ΩH = a/2MrH)

EMF= aB0
rH −M

rH

(

rH = M+
√

M2−a2
)

. (31)

Note that the “Meissner effect” for black holes implies thatthe EMF vanishes for ex-
tremal black holes. We shall, however, see that this property of the vacuum solution is
astrophysically not relevant, because a plasma-filled magnetosphere changes the struc-
ture of the magnetic field close to the horizon dramatically.Even for a maximally rotat-
ing Kerr black hole the magnetic field is pulled inside the event horizon. For a detailed
discussion we refer to [4].

For a general situation we have roughlyΣ△Ψ = Ψ ∼ B⊥π r2
H , ω̃2 ∼ < ω̃2 > ∼ r2

H
2 .

The total EMF,V = Σ△V, is thus

V ∼ 1
2π

ΩH Ψ ∼ 1
2π

a
2MrH

B⊥π r2
H ≃ 1

2

( a
M

)

MB⊥ (32)

(compare this with (31)). Numerically we find

V ∼ (1020Volt)
( a

M

) M
109M⊙

B⊥
104G

. (33)

For reasonable astrophysical parameters we obtain magnetospheric voltagesV ∼ 1020

Volts. This voltage is comparable to the highest cosmic ray energies that have been
detected.

Note, however, that for a realistic astrophysical situation there is plasma outside the
BH and it is, therefore, at this stage not clear how the horizon voltage (33) is used in
accelerating particles to very high energies. This crucialissue is addressed in the final
section.

Let us estimate at this point the characteristic magnetic field strength than can be
expected outside a supermassive BH. A characteristic measure is the field strength
BE, for which the energy densityB2

E/8π is equal to the radiation energy densityuE

corresponding to the Eddington luminosity. One finds(MH,8 ≡ MH/108M⊙)

BE = 1.2×105M−1/2
H,8 Gauss. (34)

For a BH with mass∼ 109 M⊙ inside an accretion disk acting as a dynamo, a character-
istic field of about 1 Tesla (104 Gauss) is thus quite reasonable.

5. BASIC EQUATIONS OF GENERAL RELATIVISTIC IDEAL
MAGNETOHYDRODYNAMICS

The relativistic fluid is described by its rest-mass density, ρ0, the energy-mass density,
ρ , the 4-velocity,U µ , and the isotropic pressure,p, assumed to be given by an ideal gas
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equation of state
p= (Γ−1)ε, (35)

whereε = ρ −ρ0 is the internal energy density, andΓ is the adiabatic index.
The basic equations of GRMHD are easy to write down. First, wehave the baryon

conservation
∇µ(ρ0U

µ) = 0. (36)

For a magnetized plasma the equations of motion are

∇νTµν = 0, (37)

where the energy-stress tensorTµν is the sum of the matter (M) and the electromagnetic
(EM) parts:

Tµν
M = (ρ + p)U µUν + pgµν , (38)

Tµν
EM =

1
4π

(Fµ
λ Fνλ − 1

4
gµνFαβ Fαβ ). (39)

In addition we have Maxwell’s equations

dF = 0, ∇νFµν = 4πJµ . (40)

We adopt theideal MHD approximation

iUF = 0, (41)

which implies that the electric field vanishes in the rest frame of the fluid (infinite
conductivity). Then the inhomogeneous Maxwell equation provides the current 4-vector
Jµ , but is otherwise not used in what follows.

As a consequence of (40) and (41) we obtain (using the Cartan identity LU = iU ◦
d + d ◦ iU ): LUF = 0, i.e., thatF is invariant under the plasma flow, implying flux
conservation. The basic equations imply that

∗F = h∧U, (42)

whereh= iU ∗F is the magnetic induction in the rest frame of the fluid (seen by a comov-
ing observer). Note thatiUh = 0. Furthermore, one can show that the electromagnetic
part of the energy-momentum tensor may be written in the form

Tµν
EM =

1
4π

[
1
2
‖h‖2gµν +‖h‖2U µUν −hµhν

]

, (43)

with ‖h‖2 = hαhα .
Let us also work out the 3+1 decomposition of the ideal MHD condition (41). Using

U = γ(e0+~v), γ = (1−v2)−1/2 and the coordinate velocityV i =U i/U t = αvi −β i , we
obtain from (5)

E = i~vB or Ě = i~VB (⇒ i~V Ě = 0). (44)

Therefore, the induction equation becomes

∂tB+di~VB = 0 or ∂tB+L~VB = 0. (45)
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6. THE BLANDFORD-ZNAJEK PROCESS

In this section we derive the main results obtained by Blandford and Znajek [8], by
making use of the Kerr-Schild coordinates.

6.1. Steady-state force-free magnetospheres

BZ studied axisymmetric, force-free magnetized plasmas outside Kerr black holes.
The following presentation is strongly influenced by the recent paper [9].

A plasma is said to beforce-freeif iJF = 0, i.e.

FµνJν = 0 (46)

(no electric field in the rest system of the current). This condition follows from ideal
GRMHD when the inertia of the plasma is ignored. Formally, itis obtained by letting the
specific enthalpy(ρ + p)/n in the ideal GRMHD equations go to zero. Since Maxwell’s
equations imply that∇νTµν

EM =−Fµ
νJν , the energy-stress tensor of the electromagnetic

field is separately conserved. The force-free condition (46) implies the constraintF ∧
F = 0, i.e., the algebraic condition∗FµνFµν = 0. In the literature it has often been
asserted that magnetospheres of black holes should in largeparts be nearly force-free
This is not born out in recent simulations, except in the polar region (see Sect. 7). In 3+1
decomposition (46) becomes

ρe~E+~j ×~B= 0. (47)

Therefore, the vector fields~E and~B are perpendicular.

6.2. Energy flux at infinity

Of particular interest is the energy flux at infinity. Since∂t is a Killing field, Tµ
t are

the components of a conserved 4-vector field:

1√−g
∂µ(

√−gTµ
t ) = 0.

For stationary fields∂i(
√−gTi

t ) = 0. The electromagnetic power at infinity1 is

PEM =
∫ π

0

√−gFE 2π dϑ , (48)

1 In the classical BZ process one ignores the extraction of rotational energy of the black hole by accreting
material interacting with the electromagnetic field. BelowTµν always denotes the electromagnetic energy-
momentum tensor.
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whereFE = −Tr
t . The integral can be taken for any fixedr outside the horizon, in

particular at the horizon if we use Kerr-Schild coordinates. ForFE we get

FE =− 1
4π

FtlF
rl =− 1

4π
Ftϑ F rϑ (49)

(Ftϕ = 0). It is straightforward to check thatFE is invariant under the coordinate trans-
formation [BL]→ [KS]. Using previous results on readily finds in BL coordinates

FE =− 1
4π

ΩF
(−g)

grr gϑϑ
B̂r B̂ϕ , (50)

whereB̂i := Bi/α = ∗F it .
Now we transform the result (50) to KS coordinates. It is straightforward to show that

B̂r , B̂ϑ remain invariant, while the remaining component transforms as

B̂ϕ [BL] = B̂ϕ [KS]− a−2rΩF

∆
B̂r [KS], (51)

where∆ := r2−2Mr +a2. This implies that on the horizon (∆ = 0)

FE|H =
1

2π
(
B̂r)2 ΩFrH(ΩH −ΩF)sin2ϑ . (52)

Therefore,

PEM =

∫ π

0
dϑρ2

H sinϑ
(
B̂r)2 ΩFrH(ΩH −ΩF)sin2ϑ (53)

or in terms of the normalize normal componentB⊥

PEM =
1
2

∫ π

0
dϑΩF(ΩH −ΩF)ρHω̃3B2

⊥. (54)

The important result (54) shows thatPEM becomes maximal forΩF ≈ 1
2ΩH . Then

Pmax
EM =

1
8

Ω2
H

∫ π

0
ρHω̃3B2

⊥ dϑ . (55)

After angular integration one finds, ifB2
⊥ is replaced by an average value〈B⊥〉2,

Pmax
EM =

1
4

( a
M

)2
M2〈B⊥〉2 f

(
a
rH

)

, (56)

where the functionf is not far from 1 [10] . Numerically,

Pmax
EM = 1.7×1046 erg

s

(
a
M

· M
109 M⊙

· 〈B⊥〉
104 G

)2

f . (57)

For the angular momentum fluxFL one findsFE = ΩFFL. Using this one can show
that up to 9% of the initial mass can, in principle, be extracted [10].

Whether the crucial conditionΩF ≈ 1
2ΩH is approximately satisfied in realistic as-

trophysical scenarios is a difficult problem for model builders. This brings me to recent
numerical work by several groups.
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7. GENERAL RELATIVISTIC MHD SIMULATIONS

In recent years several groups have developed codes for ideal GRMHD, and applied
them in particular for studies of the generic BZ mechanism. These numerical studies
show how accretion dynamics self-consistently create large scale magnetic fields and
explore the resulting outflows.

7.1. Numerical methods

There are many ways to write the basic equations in a form suitable for numerical
integration. A pioneering code, based on the 3+1 splitting relative to the FIDO tetrad
described in Sect. 2, has been developed by Koide and collaborators (for a detailed de-
scription, see [11]). The system to be integrated consists of eight evolutionary equations
for two scalar and two vector quantities (primary code variables), which contain in ad-
dition five ‘primitive’ variables that can be determined from the former by solving two
coupled polynomial equationsP(x,y) = 0, Q(x,y) = 0. This process, like similar itera-
tive root-finding processes in other schemes, is time consuming.

A code that is able to perform long-term (several thousand ofM in time) GRMHD
simulations, has been developed by Villiers & Hawley [12]. It evolves different auxiliary
variables from which the primitive variables are easily recovered. In contrast to some
alternative schemes [13], [14], it is not fully conservative. Since BL coordinates are used,
the inner boundary condition must lie outside the horizon. KS coordinates are used in
the axisymmetric code HARM [13]. In a modified version of this[19] the inversion from
“conserved” quantities to “primitive” variables has been improved (see Appendix A).

A specific common problem is that the magnetic field is advanced in time by an
antisymmetric differential operator, and not by a differential operator of divergence
form. In addition one has to guarantee that the numerical scheme preserves the constraint
equationdB = 0 to rounding error. One way to handle this problem is the so-called
constraint transport (CT) method, where the induction equation is discretized such that
the solenoidal constraint is built in [15].

No code is perfect, and it is therefore important that the outcomes of different ap-
proaches are compared.

7.2. Qualitative results

I first summarize some of the results presented in [16] on simulations of accretion
flows on rotating black holes, and the properties of the resulting unbound outflows2.

The qualitative late-time structure is illustrated in Fig.4. Along the equator there
is a wedge-shaped Keplerian accretion disk and a net accretion flow is produced by
MHD turbulence whose origin is a magneto-rotational instability, which leads to a

2 This is based on a sequence of earlier papers on the the subject, cited in [16]
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fast amplification of the magnetic field (see Appendix B). A short distance outside the
marginally stable circular stable orbit, the equatorial pressure and density reach a local
maximum in a ‘inner torus’ region. Inside this local pressure maximum, the density and
pressure drop as the flow accelerates toward the black hole inthe ‘plunging region’.
Above and below the disk is a ‘corona’ of hot magnetized plasma with a magnetic field
whose typical strength is near equipartition. Along the spin axis of the BH there is a
‘centrifugal funnel’ that is largely empty of matter, but filled with magnetic field and an
outward Poynting flux. Between the evacuated funnel and the corona there is a region
of unbounded mass flux, referred to as the ‘funnel wall jet’. It is this part that is the
center of attention in [16]. Of particular interest is the strength of the jet compared to
the amount of accretion on the BH. The quantification of this is somewhat ambiguous,
because matter and electromagnetic fluxes are usually not constant in time or radius, and
there is exchange between the two components.

Accretion Disk

Funnel Wall jet
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FIGURE 4. Main dynamical features in accretion disk simulations. Fig. 1 of [16].

The numerical results show that for rapidly-rotating BH’s the jet plays a significant
role in the energy budget. When| a/M |≥ 0.9, the total jet efficiency is generally several
tens of percent, with the matter portion somewhat larger than the electromagnetic part.
The ratio ofangular momentumin the unbound outflow to that deposited in the BH is
also a very strong function of BH spin. In the non-rotating case this is only a few tenths
of a percent, but rises to≃ 25% whena/M = 0.9. Fora/M = 0.99, the highest spin case
reported in [16], the rate at which the BH spins down due to electromagnetic torques
nearly matches the rate at which it acquires angular momentum by accreting matter.
Indeed, the angular momentum expelled in the outflow is an order of magnitude larger
than the net amount captured. In all cases, the electromagnetic portion of the angular
momentum carried away is comparable to the matter portion carried in the funnel wall
jet.

It has to be emphasized that in the initial state of the simulations there is no mag-
netic field in the region that eventually becomes the outflow region. The large scale
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magnetic field within the funnel and the Poynting flux jet rapidly develop as a result
of magnetically controlled accretion. The formation can bedescribed as follows. When
disk material reaches the horizon, strong magnetic pressure gradients are built up which
drive the plasma upward. In turn, this motion drains off the field lines, forming a “mag-
netic tower”. This was previously seen in non-relativisticsimulations using a pseudo-
Newtonian potential [18]. It is interesting that the evacuated funnel is the only region
that is force-free3 (in contrast to earlier expectations).

The matter-dominated outflow moves at a modest velocity (v/c ∼ 0.3) along the
centrifugal barrier surrounding the evacuated funnel. Thefunnel wall jet turns out to
be acceleratedandcollimatedby magnetic and gas pressure forces in the inner torus
and the surrounding corona. The magnetic field is spun by the rotating Kerr spacetime,
hence the energy of the Poynting flux jet comes from the BH rotation. Below we will
address the question whether magnetic forces might provideadditional acceleration and
collimation on far larger scales than are modeled in [16].

Hawley and Krolik conclude from their numerical studies that while the proximate
energy source is the BH’s rotation, accretionreplenishesboth the BH’s mass and angular
momentum. A substantial decrease of the rotational energy of the BH does not appear
to be a generic phenomenon. This is in contrast to the classicBZ model. For a detailed
discussion, I refer to the original paper.

Similar results were found before by McKinney and Gammie in their axisymmetric
simulations [9]. Among other aspects these also showed thatas the hole loses energy and
angular momentum, its total mass and angular momentum are replenished by accretion.
In [20] McKinney followed the evolution of the jet tillt ≈ 104GM/c3 out to r ≈
104GM/c2, and found that by then the jet has become superfast magnetosonic and
moves at a Lorentz factor of about 10. This may, however, onlybe a small fraction
of the Lorentz factor at much larger distances. Indeed, if a large fraction of the magnetic
and thermal energy would go into particle kinetic energy, one would estimate from the
simulation that the terminal Lorentz factor may reach almost 103. This estimate is based
on the following fact. For a stationary axisymmetric flow theenergy (momentum) flux
per unit rest-mass flux is conserved along flux surfaces and can thus be determined from
local flow quantities. The relevant formula for this quantity is, using previous notation,

−TA
t

ρ0UA =−ρ + p
ρ0

Ut −
ΩF

4π
B̂A

ρ0UAȞϕ (A= r,ϑ). (58)

Since the simulation in [20] stopped long before the end of the acceleration period,
Komissarov et al. have studied numerically the further evolution of the relativistic jet
[21]. Key issues of this investigation are: (i) Is the magnetic driving mechanism able
to accelerate outflows to high Lorentz factors with high efficiency over astrophysically
extended scales? (ii) Can these flows be collimated by purelymagnetic stresses? Since
most of the acceleration takes place far away from the black hole, the simulations are
carried out in the framework of special-relativistic idealMHD.

3 The criterion for the validity of this property is that(‖h‖2/8π)/(ρ + p)≫ 1.
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The authors investigate models of the following kind. The free boundary with an am-
bient medium is replaced by solid rigid walls on which appropriate boundary conditions
are imposed. This simplification enables higher numerical accuracy. At the inlet bound-
ary, the injected poloidal current distribution is prescribed through a rotational profile.
The initial configuration corresponds to a non-rotating purely poloidal magnetic field
with nearly constant magnetic pressure across the funnel. Moreover, the outflows are ini-
tially Poynting flux-dominated. The authors find that these approach a steady state with
a spatially extended acceleration region. Furthermore, the acceleration process turns out
to be very efficient; almost 80% of the Poynting flux is converted into kinetic energy.
The results also show efficient self-collimation. In contrast to [20], no instabilities or
shocks are found in the simulation.

We have already remarked earlier that even for very rapidly rotating black holes the
Blandford-Znajek process can drive magnetized jets. Fig. 5from [4] shows clearly that
there is no “Meissner effect” at work. This is due to the fact that within the ergosphere
the plasma unavoidably corotates with the black hole.

FIGURE 5. Magnetic field lines and logarithm of rest-mass density (colored) quasi-steady accretion
disk simulations for an almost extreme Kerr black hole (a/M = 0.999) [Fig. 3 of [4]].

One of the main shortcomings of existing simulations is thatthe radiation field is
completely neglected. It is likely that radiative and otherhigh energy processes play a
significant role in the flow dynamics through radiation forceon the outflowing plasma.
Moreover, at some point physical resistivity will also haveto be included, and the single-
fluid approximation will not always hold everywhere. Numerical calculations will be
performed in 3D.
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A. NUMERICAL SCHEMES FOR GRMHD

Most GRMHD codes have adopted aconservative scheme, which means that the inte-
grated evolutionary equations are of the general form

∂tU(P)+∂iF
i(P) = S(P). (59)

Here,U are vector-valued “conserved” variables,P is a vector of “primitive” variables
(rest-mass density, internal energy density, velocity components and magnetic field
components). The fluxesF i , U and the “source vector”S depend onP. Conservative
numerical schemes advanceU , then calculateP(U) once or twice per time step.

While in praxis the mapP 7→U(P) is analytically known, the inverse mapU 7→ P(U)
is not available in closed form and must be computed numerically. How this is performed
is at the heart of a conservative scheme, since the operationmust be accurate, fast and
robust.

Below we describe these points in more detail, following [19]. We use the notation
and basic equations introduced in Sect. 5.

Equations (36), (37) and (45) can readily be written in the form (59) in terms of the
eight conserved variables

U : D := γρ0, Qµ :=−uνTν
µ , ~B, (60)

whereγ =−uµU µ = (1−v2)−1/2. As eight primitive variables we use

P : ρ0, ε, ~B, vi . (61)

(The vector~B is common toU andP.)
In [19] it is shown thatW := ρ0hγ2, whereh :=1+ε+p/ρ0, andv2 can be determined

from U by solving two polynomial equations. After that one can easily recover all
primitive variables.

B. MAGNETO-ROTATIONAL INSTABILITY

This important instability, whose crucial astrophysical implications have been under-
stood astonishingly late, shows up already in linearized theory. For a detailed pedagogi-
cal discussion we refer to [17].

In a systematic treatment one linearizes the basic equations of MHD for small fluc-
tuations of a disk system, consisting of a central point massand a differentially rotat-
ing magnetized disk. An analysis of the resulting rather complicated dispersion relation
leads to the following results. In the non-rotating limit (homogeneous unperturbed situ-
ation) one finds the familiar Alfvén waves and two other MHD modes. The fast one is
often referred to as magnetosonic wave, and represents magnetic and thermal pressure
in concert. In the slow mode magnetic tension and gas compression act in opposition.
For weak fields it becomes degenerate with the Alfvén mode, while for strong fields it
becomes an ordinary sound wave, channeled along the field lines.
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The effect of Kepler rotation on these three modes is very interesting: At a critical
rotation frequency theslow MHD mode becomes unstable.

There is a simple way to understand this far reaching instability. Consider an axisym-
metric gas disk in the presence of a vertical magnetic field, that has no effect on the disk
equilibrium. Assume that a fluid element is displaced from its circular orbit byξ ∝ eikz

(z= vertical direction). Using the induction law and simple mechanics one finds the
these incompressible planar displacements satisfy the same equation as the separation
of two orbiting mass points, connected by a spring (with a spring constant related to the
Alfvén velocity). It is quite obvious that this system is unstable; the separation of the two
mass points rapidly increases. This is the essence of the weak-field magneto-rotational
instability.

The magneto-rotational instability plays a fundamental role in disk accretion, because
it leads to disk-turbulence and corresponding stresses.
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