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A brief introduction to cosmic topology
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Abstract. Whether we live in a spatially finite universe, and what its shape and size may be, are among the fundamental long-
standing questions in cosmology. These questions of topological nature have become particularly topical, given the wealth
of increasingly accurate astro-cosmological observations, especially the recent observations of the cosmic microwave back-
ground radiation. An overview of the basic context of cosmictopology, the detectability constraints from recent observations,
as well as the main methods for its detection and some recent results are presented.

1. INTRODUCTION

Whether the universe is spatially finite and what is its shapeand size are among the fundamental open problems that
the modern cosmology seeks to resolve. These questions of topological nature have become particularly topical, given
the wealth of increasingly accurate astro-cosmological observations, especially the recent observations of the cosmic
microwave background radiation (CMBR) [1]. An important point in these topological questions is that as a (local)
metrical theory general relativity leaves the (global) topology of the universe undetermined. Despite this inabilityto
predict the topology of the universe at a classical level, weshould be able to devise strategies and methods to detect it
by using data from current or future cosmological observations.

The aim of these lecture notes is to give a brief review of the main topics on cosmic topology addressed in four
lectures in the XIth Brazilian School of Cosmology and Gravitation, held in Mangaratiba, Rio de Janeiro from July 26
to August 4, 2004. Although the topics had been addressed with some details in the lectures, here we only intend to
present a brief overview of the lectures. For more details werefer the readers to the long list of references at the end
of this article.

The outline of this article is a follows. In section 2 we discuss how cosmic topology arises in the context of the
standard Friedmann–Lemaître–Robertson–Walker (FLRW) cosmology, and what is the main observational physical
effect used in the search for a nontrivial topology of the spatial section of the universe. We also recall in this section
some relevant results about spherical and hyperbolic 3-manifolds, which will be useful in the following sections. In
section 3 we discuss the detectability of cosmic topology, present examples on how one can decide whether a given
topology is detectable or not according to recent observations, and review some important results on this topic. In
section 4 we review the two main statistical methods to detect cosmic topology from the distribution of discrete
cosmic sources. In section 5 we describe two methods devisedfor the search of signs of a non-trivial topology in the
CMBR maps.

2. BASIC CONTEXT

General relativity (GR) relates the matter content of the universe to its geometry, and reciprocally the geometry
constrains the dynamics of the matter content. As GR is a purely metrical (local) theory it does not fix the (global)
topology of spacetime. To illustrate this point in a very simple way, imagine a two-dimensional (2–D) world and its
beings. Suppose further these 2–D creatures have a geometrical theory of gravitation [an (1+ 2) spacetime theory],
and modelling their universe in the framework of this theorythey found that the 2–D geometry of the regular space is
Euclidean — they live in a spatially flat universe. This knowledge, however, does not give them enough information
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to determine the space topology of their world. Indeed, besides the simply-connected Euclidean planeR2, the space
section of their universe can take either of the following multiply-connected space forms: the cylinderC

2 = R×S
1,

the torusT2 = S1×S1, the Klein bottleK2 = S1×S1
π and the Möbius bandM2 =R×S1

π . In brief, the local geometry
constrains, but does not dictate the topology of the space. This is the very first origin of cosmic topology in the context
of GR, as we shall discuss in what follows.

Within the framework of the standard FLRW cosmology in the context of GR, the universe is modelled by a 4 –
manifold M which is decomposed intoM = R×M, and is endowed with a locally isotropic and homogeneous
Robertson–Walker (RW) metric

ds2 =−dt2+a2(t)
[
dχ2+ f 2(χ)(dθ 2+ sin2 θdφ2)

]
, (1)

where f (χ) = (χ , sinχ , or sinhχ) depending on the sign of the constant spatial curvature (k = 0,1,−1), anda(t) is
the scale factor.

The spatial sectionM is usually taken to be one of the following simply-connectedspaces: EuclideanE3 (k = 0),
sphericalS3 (k= 1), or hyperbolicH3 (k=−1) spaces. However, since geometry does not dictate topology, the 3-space
M may equally well be any one of the possible quotient manifoldsM = M̃/Γ, whereΓ is a discrete and fixed point-free
group of isometries of the covering spacẽM = (E3,S3,H3). In forming the quotient manifoldsM the essential point
is that they are obtained from̃M by identifying points which are equivalent under the actionof the discrete groupΓ.
Hence, each point on the quotient manifoldM represents all the equivalent points on the covering manifold M̃. The
action ofΓ tessellates (tiles)̃M into identical cells or domains which are copies of what is known as fundamental
polyhedron (FP). An example of quotient manifold in three dimensions is the 3–torusT3 = S

1 × S
1 × S

1 = E
3/Γ,

The covering space clearly isE3, and a FP is a cube with opposite faces identified as indicated, in figure 1, by the
equal opposite letters. This FP tiles the covering spaceE3. The groupΓ = Z×Z×Z consists of discrete translations
associated with the face identifications.

FIGURE 1. A fundamental polyhedron of the Euclidean 3–torus. The opposite faces are identified by the matching through
translations of the pairs of equal opposite letters.

In a multiply connected manifold, any two given points may bejoined by more than one geodesic. Since the radiation
emitted by cosmic sources follows (space-time) geodesics,the immediate observational consequence of a non-trivial
spatial topology ofM is that the sky may (potentially) show multiple images of radiating sources: cosmic objects or
specific correlated spots of the CMBR. At large cosmologicalscales, the existence of these multiple images (or pattern
repetitions) is a physical effect often used in the search for a nontrivial 3-space topology.1 In this article, in line with
the usage in the literature, by cosmic topology we mean the topology of the space sectionM of the space-time manifold
M .

A question that arises at this point is whether one can use thetopological multiple images of the same celestial
objects such as cluster of galaxies, for example, to determine a nontrivial cosmic topology (see, e.g., refs [2] – [8])
In practice, however, the identification of multiple imagesis a formidable observational task to carry out because it

1 Clearly we are assuming here that the radiation (light) musthave sufficient time to reach the observer from multiple directions, or put in another
way, that the universe is sufficiently ’small’ so that this repetitions can be observed. In this case the observable horizon χhor exceeds at least the
smallest characteristic size ofM. A more detailed discussion on this point will be given in section 3.



involves a number of problems, some of which are:

• Two images of a given cosmic object at different distances correspond to different periods of its life, and so they
are in different stages of their evolutions, rendering problematic their identification as multiple images.

• Images are seen from different angles (directions), which makes it very hard to recognize them as identical due
to morphological effects;

• High obscuration regions or some other object can mask or even hide the images;

These difficulties make clear that a direct search for multiples images is not very promising, at least with available
present-day technology. On the other hand, they motivate new search strategies and methods to determine (or just
detect) the cosmic topology from observations. Before discussing in section 4 the statistical methods, which have been
devised to search for a possible nontrivial topology from the distribution of discrete cosmic sources, we shall discuss
in the next section the condition for detectability of cosmic topology.

3. DETECTABILITY OF COSMIC TOPOLOGY

In this section we shall examine the detectability of cosmictopology problem for the nearly flat (Ω0 ∼ 1) universes
favored by current observation [9], and show that a number ofimportant results may be derived from the very fact that
the cosmic topology is detectable. Thus, the results present in this section are rather general and hold regardless of the
cosmic topology detection method one uses, as long as it relies on images or pattern repetitions.

The extent to which a nontrivial topology of may or may not be detected for the current bounds on the cosmological
density parameters has been examined in a few articles [10] –[20]. The discussion below is based upon our contribution
to this issue [10] – [13].

In order to state the conditions for the detectability of cosmic topology in the context of standard cosmology, we
note that for non-flat metrics of the form (1), the scale factor a(t) can be identified with the curvature radius of the
spatial section of the universe at timet. Thereforeχ is the distance of a pointp= (χ ,θ ,φ) to the coordinate originO
(in the covering space) in units of the curvature radius, which is a natural unit of length that shall be used throughout
this paper.

The study of the detectability of a possible non-trivial topology of the spatial sectionM requires a topological typical
length which can be put into correspondence with observation survey depthsχobs up to a redshiftz= zobs. A suitable
characteristic size ofM, which we shall use in this paper, is the so-called injectivity radiusr in j , which is nothing but the
radius of the smallest sphere ‘inscribable’ inM, and is defined in terms of the length of the smallest closed geodesics
ℓM by r in j = ℓM/2 (see fig. 2).

FIGURE 2. A schematic representation of two fundamental cells, and the indication of the injectivity radiusr in j , which is the
radius of the smallest sphere ‘inscribable’ in the fundamental domain. The radius of the largest sphere ‘inscribable’rmax is also
shown.



Now, for a given survey depthχobs a topology is said to be undetectable ifχobs< r in j . In this case no multiple
images (or pattern repetitions of CMBR spots) can be detected in the survey of depthχobs. On the other hand, when
χobs> r in j , then the topology is detectable in principle or potentially detectable.

In a globally homogeneous manifold the above detectabilitycondition holds regardless of the observer’s position,
and so if the topology is potentially detectable (or is undetectable) by an observer atx∈ M, it is potentially detectable
(or is undetectable) by an observer at any other point in the 3-spaceM. However, in globally inhomogeneous manifolds
the detectability of cosmic topology depends on both the observer’s positionx and the survey depthχobs. Nevertheless,
even for globally inhomogeneous manifolds the above defined‘global’ injectivity radius r in j can be used to state
an absolute undetectabilitycondition, namelyr in j > χobs, in the sense that if this condition holds the topology is
undetectable for any observer at any point inM. Reciprocally, the conditionχobs> r in j allows potential detectability (or
detectability in principle) in the sense that, if this condition holds, multiple images of topological origin are potentially
observable at least for some observers suitably located inM. An important point is that for spherical and hyperbolic
manifolds, the ‘global’ injectivity radiusr in j expressed in terms of the curvature radius, is a constant (topological
invariant) for a given topology.

Before proceeding further we shall recall some relevant results about spherical and hyperbolic 3–manifolds, which
will be used to illustrate the above detectability condition. The multiply connected spherical 3-manifolds are of the
form M = S3/Γ, whereΓ is a finite subgroup ofSO(4) acting freely on the 3-sphere. These manifolds were originally
classified by Threlfall and Seifert [21], and are also discussed by Wolf [22] (for a description in the context of cosmic
topology see [23]). Such a classification consists essentially in the enumeration of all finite groupsΓ ⊂SO(4), and then
in grouping the possible manifolds in classes. In a recent paper, Gausmannet al. [24] recast the classification in terms
of single action, double action, and linked action manifolds. In table 1 we list the single action manifolds together with
the symbol often used to refer to them, as well as the order of the covering groupΓ and the corresponding injectivity
radius. It is known that single action manifolds are globally homogeneous, and thus the detectability conditions for
an observer at an arbitrary pointp ∈ M also hold for an observer at any other pointq∈ M. Finally we note that the
binary icosahedral groupI∗ gives the known Poincaré dodecahedral space, whose fundamental polyhedron is a regular
spherical dodecahedron, 120 of which tile the 3-sphere intoidentical cells which are copies of the FP.

TABLE 1. Single action spherical manifolds together with the
order of the covering group and the injectivity radius.

Name & Symbol Order of Γ Injectivity Radius

Cyclic Zn n π/n
Binary dihedralD∗

m 4m π/2m
Binary tetrahedralT∗ 24 π/6
Binary octahedralO∗ 48 π/8
Binary icosahedralI∗ 120 π/10

Despite the enormous advances made in the last few decades, there is at present no complete classification of
hyperbolic 3-manifolds. However, a number of important results have been obtained, including the two important
theorems of Mostow [25] and Thurston [26]. According to the former, geometrical quantities of orientable hyperbolic
manifolds, such as their volumes and the lengths of their closed geodesics, are topological invariants. Therefore
quantities such as the ‘global’ injectivity radiusr in j (expressed in units of the curvature radius) are fixed for each
manifold. Clearly this property also holds for spherical manifolds.

According to Thurston’s theorem, there is a countable infinity of sequences of compact orientable hyperbolic
manifolds, with the manifolds of each sequence being ordered in terms of their volumes. Moreover, each sequence
has as an accumulation point a cusped manifold, which has finite volume, is non-compact, and has infinitely long
cusped corners [26].

Closed orientable hyperbolic 3-manifolds can be constructed from these cusped manifolds. The compact manifolds
are obtained through a so-called Dehn surgery which is a formal procedure identified by two coprime integers, i.e.
winding numbers(n1,n2). These manifolds can be constructed and studied with the publicly available software
package SnapPea [27]. SnapPea names manifolds according tothe seed cusped manifold and the winding numbers.
So, for example, the smallest volume hyperbolic manifold known to date (Weeks’ manifold) is named as m003(−3,1),
where m003 corresponds to a seed cusped manifold, and(−3,1) is a pair of winding numbers. Hodgson and
Weeks [27, 28] have compiled a census containing 11031 orientable closed hyperbolic 3-manifolds ordered by
increasing volumes. In table 2 we collect the first ten manifolds from this census with the lowest volumes, ordered by
increasing injectivity radiusr in j , together with their volumes.



TABLE 2. First seven manifolds in the Hodgson-
Weeks census of closed hyperbolic manifolds, ordered
by the injectivity radiusr in j , together with their corre-
sponding volume.

Manifold Injectivity Radius Volume

m003(-4,1) 0.177 1.424
m004(3,2) 0.181 1.441
m003(-3,4) 0.182 1.415
m004(1,2) 0.183 1.398
m004(6,1) 0.240 1.284
m003(-4,3) 0.287 1.264
m003(-2,3) 0.289 0.981
m003(-3,1) 0.292 0.943
m009(4,1) 0.397 1.414
m007(3,1) 0.416 1.015

To illustrate now the above condition for detectability (undetectability) of cosmic topology, in the light of recent
observations [9] we assume that the matter content of the universe is well approximated by dust of densityρm plus a
cosmological constantΛ. In this cosmological setting the current curvature radiusa0 of the spatial section is related to
the total density parameterΩ0 through the equation

a2
0 =

k

H2
0(Ω0−1)

, (2)

whereH0 is the Hubble constant,k is the normalized spatial curvature of the RW metric (1), andwhere here and in
what follow the subscript 0 denotes evaluation at present time t0. Furthermore, in this context the redshift-distance
relation in units of the curvature radius,a0 = R(t0), reduces to

χ(z) =
√
|1−Ω0|

∫ 1+z

1

dx√
x3Ωm0+ x2(1−Ω0)+ΩΛ0

, (3)

whereΩm0 andΩΛ0 are, respectively, the matter and the cosmological densityparameters, andΩ0 ≡ Ωm0+ΩΛ0. For
simplicity, on the left hand side of (3) and in many places of this article, we have left implicit the dependence of the
functionχ on the density components.

A first qualitative estimate of the constraints on detectability of cosmic topology from nearflatness can be obtained
from the functionχ(Ωm0,ΩΛ0,z) given by (3) for a fixed survey depthz. Figure 3 clearly demonstrates the rapid way
χ drops to zero in a narrow neighbourhood of theΩ0 = 1 line. This can be understood intuitively from (2), since the
natural unit of length (the curvature radiusa0) goes to infinity asΩ0 → 1, and therefore the depthχ (for any fixed
z) of the observable universe becomes smaller in this limit. From the observational point of view, this shows that the
detection of the topology of the nearly flat universes becomes more and more difficult asΩ0 → 1, a limiting value
favoured by recent observations. As a consequence, by usingany method which relies on observations of repeated
patterns the topology of an increasing number of nearly flat universes becomes undetectable in the light of the recent
observations, which indicate thatΩ0 ∼ 1.

From the above discussion it is clear that cosmic topology may be undetectable for a given survey up to a depthzmax,
but detectable if one uses a deeper survey. At present the deepest survey available corresponds tozmax= zLSS∼ 1000,
with associated depthχ(zLSS). So the most promising searches for cosmic topology throughmultiple images of
radiating sources are based on CMBR.

As a concrete quantitatively example we consider universeswith that possess a cyclic single action spherical
topologies forΩ0 = 1.08 andΩΛ = 0.66. From table 1 we haver in j = π/n which together with the undetectability
condition give

χobs< r in j =⇒ n< n∗ = int (
π

χobs
) , (4)

where int(x) denotes the integer part ofx.
In table 3 for distinct redshiftszmax we collect the corresponding survey depthχobs and the limiting value below

which the cyclic single action manifold is undetectable. According to this table the cyclic group manifoldsZ2 andZ3



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

Ωm

Ωm

ΩΛ

ΩΛ

χhor

χhor

FIGURE 3. The behaviour ofχhor = χ(Ωm0,ΩΛ0,z), in units of curvature radius, forz= 1100 as a function of the density
parametersΩΛ0 andΩm0 . These figures show clearly the rapid wayχhor falls off to zero for nearly flat (hyperbolic or elliptic)
universes

are undetectable even if one uses CMBR, while the manifoldsS3/Zp for p ≥ 4 are detectable with CMBR. For the
same values of the density parameters (besidesZ2 andZ3 manifolds) the manifoldsZ4, Z5 andZ6 are undetectable
using sources of redshifts up tozmax= 6.

TABLE 3. For eachzmax the corresponding valuesχobs for Ω0 =
1.08 andΩΛ = 0.66. The integer numbern∗ is the limiting value
below which the corresponding cyclic topology is undetectable.

Redshift zmax Depth χobs Limiting value n∗

1100 0.811 4
6 0.496 7
1 0.209 16

To quantitatively illustrate the above features of the detectability problem in the hyperbolic case (Ω0 < 1) , we shall
examine the detectability of cosmic topology of the first tensmallest (volume) hyperbolic universes. To this end we
shall take the following interval of the density parametersvalues consistent with current observations:Ω0 ∈ [0.99,1)
andΩΛ0 ∈ [0.63,0.73]. In this hyperbolic sub-interval one can calculate the largest value ofχobs(Ωm0,ΩΛ0,z) for the
last scattering surface (z= 1100), and compare with the injectivity radiir in j to decide upon detectability. From (3) one
obtainsχmax

obs = 0.337.
Table 4 summarizes the results for CMBR (z= 1100), which have been refined upon by Weeks [19]. It makes

explicit the very important fact that there are undetectable topologies by any methods that rely on pattern repetitions
even if one uses CMBR, which corresponds to the deepest survey depthχ(zLSS).

Hitherto we have considered the detectability of nearly flatuniverse, but one can alternatively ask what is the region
of the density parameter spaces for which topologies are detectable. To this end, we note that for a given (fixed) survey
with redshift cut-offzobs, and for a given manifold with injectivity radiusr M

in j one can solve the equation

χ(Ω0,ΩΛ,zobs) = r M
in j , (5)

which amounts to finding pairs (Ω0,ΩΛ0) in the density parameterΩ0– ΩΛ0 plane for which eq. (5) holds.2

2 SinceΩ0 = Ωm0+ΩΛ0 we can clearly takeχ as function of either (Ω0,Ωm0) or (Ωm0,ΩΛ0).



TABLE 4. Restrictions on detectability of cosmic topology forΩ0=0.99 withΩΛ0 ∈
[0.63,0.73] for the first ten smallest known hyperbolic manifolds. A survey depth cor-
responding to CBMR (zmax= 1100) was used. The manifolds are ordered by increasing
volumes.

Manifold Volume Injectivity radius Detectability with CMBR

m003(-3,1) 0.943 0.292 Potential Detectable
m003(-2,3) 0.981 0.289 Potential Detectable
m007(3,1) 1.015 0.416 Undetectable
m003(-4,3) 1.264 0.287 Potential Detectable
m004(6,1) 1.284 0.240 Potential Detectable
m004(1,2) 1.398 0.183 Potential Detectable
m009(4,1) 1.414 0.397 Undetectable
m003(-3,4) 1.415 0.182 Potential Detectable
m003(-4,1) 1.424 0.177 Potential Detectable
m004(3,2) 1.441 0.181 Potential Detectable

Consider now the set of the 19 smallest manifolds of the Hodgson-Weeks census in conjunction with the hyperbolic
region

Ω0 ∈ [0.98,1) and ΩΛ0 ∈ [0.62,0.79] , (6)

and the eqs. (3) and (5). The manifold in this set with the lowest r in j(= 0.152) is m003(−5,4) (see [27]). Figure 4
gives the solution curve of equation (5) in theΩ0– ΩΛ0 plane forr in j = 0.152 andr in j = 0.081, where a survey of
depthzmax= 1100 (CMBR) was used. This figure also contains a dashed rectangular box, representing the relevant
part of the recent hyperbolic region (6). For each value ofr in j undetectability is ensured for the values of cosmological
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of the parameter space given by recent observations. The undetectable regions of the parameter space (Ω0,ΩΛ0), corresponding to
each value ofr in j , lie above the related curve.

parameters (region in theΩ0– ΩΛ0 plane) which lie above the corresponding solution curve of (5). Thus, considering
the solution curve of (5) forr in j = 0.152, for example, one finds that the topology of none of the 19 smallest manifolds
of the census would be detectable, ifΩ0 & 0.9971. On the other hand, one has that this value is a lower bound for the
total density parameterΩ0 if it turns out that one of these 19 hyperbolic manifolds is detected.

For a given survey with redshift cut-offzobs, the redshift distance functionχobs clearly depends on the way one
models the matter-energy content of the universe. This point has been recently discussed by Motaet al. in a unifying
dark matter and dark energy framework [13].

In what follows we shall briefly discuss two important results related to detectability of cosmic topology. For more
details we refer the readers to refs. [11] and [12]. Regarding the first, consider again the solution curve of (5) in the



parameter plane. For a given survey depthzobs we define the secant line as the line joining the points(Ω̃m0,0) and
(0,Ω̃Λ0) where the contour curve intersects the axesΩm0 andΩΛ0, respectively. Clearly the equation of this line is
given by

Ωm0

Ω̃m0
+

ΩΛ0

Ω̃Λ0
= 1 . (7)

It is possible to show that the solution curve of (5) is convexand concave, respectively, in the hyperbolic and spherical
regions of the parameter planeΩΛ0 – Ωm0. This property can also be gleaned from the parametric plot of the solution
curve of (5), and ensures that the secant line crosses the contour line only at theΩm0 andΩΛ0 axes. As a consequence
the region between the secant line and the flat lineΩΛ0+Ωm0 = 1 lies inside the undetectability region of the parameter
plane. Thus, the secant line approximation to the solution curve of (5) gives a sufficient condition for undetectability
of the corresponding topology with injectivity radiusr M

in j . A closed form for this sufficient condition can be obtained
from (7) in the limiting casez→ ∞. As a result one has that a universe with space section M has undetectable topology
if

cosh2 ( r M
in j /2) Ωm0+ΩΛ0 > 1 , for Ω0 < 1 ,

cos2 ( r M
in j /2) Ωm0+ΩΛ0 < 1 , for Ω0 > 1 .

(8)

Despite its simple form, this result is of considerable interest in that it gives a test for undetectability forany z.
The condition (8) can easily be written in terms of eitherΩ0 andΩΛ0 or Ω0 andΩm0 [11]. So, for example, a

universe space section M has undetectable topology if

Ω0 > 1− sinh2 ( rM
in j /2) Ωm0 , for Ω0 < 1 ,

Ω0 < 1 + sin2 ( rM
in j /2) Ωm0 , for Ω0 > 1 .

(9)

From table 1 we have the injectivity radius for the single action cyclicZn and binary dihedralD∗
m families are given,

respectively, byr in j = π/n andr in j = π/2m. This allows to solve the equation corresponding to (9) to obtain

n∗ = int





π
2

[
arcsin

√
Ω0−1

Ωm0

]−1


 ,

m∗ = int





π
4

[
arcsin

√
Ω0−1

Ωm0

]−1



 ,

(10)

where int[x] denotes the integer part ofx. Thus, for these two classes of manifold there is alwaysn∗ andm∗ such that
the corresponding topology is detectable forn> n∗ andm> m∗, given in terms of the density parameters.

The second important result is related to detectability of very nearly flat universes, for which|Ω0−1| ≪ 1 [12]. If
in addition to this condition we make two further physicallymotivated assumptions: (i) the observer is at a positionx
where the topology is detectable, i.e.r in j(x)< χobs; and (ii) the topology is not excludable, i.e. it does not produce too
many images so as to be ruled out by present observations. Thus, these main physical assumption can be summarized
as

r in j(x) . χobs ≪ 1 . (11)

These assumptions severely restricts the set of detectablenearly flat manifolds. Thus in the case of spherical manifolds,
only cyclic (r in j = π/n) and binary dihedrical spaces (r in j = π/2m) of sufficiently high order ofn or 4mare detectable.
In the hyperbolic case, the only detectable manifolds are the so-called nearly cusped manifolds, which are sufficiently
similar to the cusped manifolds (cusped manifolds are non-compact, and possess regions with arbitrarily smallr in j(x).)

In a recent study [12] we considered both classes of manifolds and showed that a generic detectable spherical or
hyperbolic manifold is locally indistinguishable from either a cylindrical (R2 × S1) or toroidal (R×T2) manifold,
irrespective of its global shape. These results have important consequences in the development of search strategies
for cosmic topology. They show that for a typical observer ina very nearly flat universe, the ’detectable part’ of the
topology would be indistinguishable from eitherR2×S1 orR×T2 manifold.

To conclude this section, we mention that Makleret al. have examined, in a recent article [14], the extent to what
a possible detection of a non-trivial topology of a low curvature (Ω0 ∼ 1) universe may be used to place constraints



on the matter content of the universe, focusing our attention on the generalized Chaplgygin gas (GCG) model, which
unifies dark matter and dark energy in a single matter component. It is shown that besides constraining the GCG
parameters, the detection of a nontrivial topology also allows to set bounds on the total density parameterΩ0. It is also
studied the combination of the bounds from the topology detection with the limits that arise from current data on SNIa,
and shown that the detection of a nontrivial topology sets complementary bounds on the GCG parameters (and onΩ0)
to those obtained from the SNIa data alone (for examples of local physical effect of a possible nontrivial topology see,
e.g., refs. [15] – [? ]).

4. PAIR SEPARATIONS STATISTICAL METHODS

On the one hand the most fundamental consequence of a multiply connected spatial sectionM for the universe is the
existence of multiple images of cosmic sources, on the otherhand a number of observational problems render the direct
identification of these images practically impossible. In the statistical approaches to detect the cosmic topology instead
of focusing on the direct recognition of multiple images, one treats statistically the images of a given cosmic source,
and use (statistical) indicators or signatures in the search for a sign of a nontrivial topology. Hence the statistical
methods are not plagued by direct recognition difficulties such as morphological effects, and distinct stages of the
evolution of cosmic sources.

The key point of these methods is that in a universe with detectable nontrivial topology at least one of the
characteristic sizes of the space sectionM is smaller than a given survey depthχobs, so the sky should show multiple
images of sources, whose 3–D positions are correlated by theisometries of the covering groupΓ. These methods rely
on the fact that the correlations among the positions of these images can be couched in terms of distance correlations
between the images, and use statistical indicators to find out signs of a possible nontrivial topology ofM.

In 1996 Lehoucqet al. [29] proposed the first statistical method (often referred to as cosmic crystallography),
which looks for these correlations by using pair separations histograms (PSH). To build a PSH we simply evaluate a
suitable one-to-one functionF of the distanced between a pair of images in a catalogueC , and defineF(d) as the
pair separation:s= F(d). Then we depict the number of pairs whose separation lie within certain sub-intervalsJi
partitions of(0, smax], wheresmax= F(2χmax), andχmax is the survey depth ofC . A PSH is just a normalized plot of
this counting. In most applications in the literature the separation is taken to be simply the distance between the pair
s= d or its squares= d2, Ji being, respectively, a partition of(0,2χmax] and(0,4χ2

max].
The PSH building procedure can be formalized as follows. Consider a catalogueC with n cosmic sources and denote

byη(s) the number of pairs of sources whose separation iss. Divide the interval(0,smax] in mequal sub-intervals (bins)
of lengthδs= smax/m, being

Ji = (si −
δs
2
, si +

δs
2
] , ; i = 1,2, . . . ,m ,

and centered atsi = (i − 1
2)δs. The PSH is defined as the following counting function:

Φ(si) =
2

n(n−1)
1

δs ∑
s∈Ji

η(s) , (12)

which can be seen to be subject to the normalization condition ∑m
i=1 Φ(si) δs= 1 . An important advantage of using

normalizedPSH’s is that one can compare histograms built up from catalogues with different number of sources.
An example of PSH obtained through simulation for a universewith nontrivial topology is given in Fig. 5. Two

important features should be noticed: (i) the presence of the very sharp peaks (called spikes); and (ii) the existence ofa
’mean curve’ above which the spikes stands. This curve corresponds to an expected pair separation histogram (EPSH)
Φexp(si), which is a typical PSH from which the statistical noise has been withdrawn, that isΦexp(si) = Φ(si)−ρ(si) ,
whereρ(si) represents the statistical fluctuation that arises in the PSH Φ(si).

The primary expectation was that the distance correlationswould manifest as topological spikes in PSH’s, and that
the spike spectrum of topological origin would be a definite signature of the topology [29]. While the first simulations
carried out for specific flat manifolds appeared to confirm this expectation [29], histograms subsequently generated
for specific hyperbolic manifolds revealed that the corresponding PSH’s exhibit no spikes [30, 31]. Concomitantly, a
theoretical statistical analysis of the distance correlations in PSH’s was accomplished, and a proof was presented that
the spikes of topological origin in PSH’s are due to just one type of isometry: the Clifford translations (CT) [32], which
are isometriesgt ∈ Γ such that for allp∈ M̃ the distanced(p,gt p) is a constant (see also in this regard [30]). Clearly
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FIGURE 5. Typical PSH for a flat universe with a 3–torus topology. The horizontal axis gives the squared pair separations2,
while the vertical axis provides a normalized number of pairs.

the CT’s reduce to the regular translations in the Euclideanspaces (for more details and simulations see [33] – [35]).
Since there is no CT translation in hyperbolic geometry thisresult explains the absence of spikes in the PSH’s of
hyperbolic universes with nontrivial detectable topology. On the other hand, it also makes clear that distinct manifolds
which admit the same Clifford translations in their covering groups present the same spike spectrum of topological
origin. Therefore the topological spikes are not sufficientfor unambiguously determine the topology of the universe.

In spite of these limitations, the most striking evidence ofmultiply-connectedness in PSH’s is indeed the presence
of topological spikes, which result from translational isometriesgt ∈ Γ . It was demonstrated [32, 33] that the other
isometriesg manifest as very tiny deformations of the expected pair separation histogramΦsc

exp(si) corresponding to
the underlying simply connected universe [36, 37]. Furthermore, in PSH’s of universes with nontrivial topology the
amplitude of the sign of non-translational isometries was shown to be smaller than the statistical noise [33], making
clear that one cannot use PSH to reveal these isometries.

In brief, the only significant (measurable) sign of a nontrivial topology in PSH are the spikes, but they can be used
merely to disclose (not to determine) a possible nontrivialtopology of universes that admit Clifford translations: any
flat, some spherical, and no hyperbolic universes.

The impossibility of using the PSH method for the detection of the topology of hyperbolic universes motivated
the development of a new scheme calledcollecting correlated pairs method(CCP method) [38] to search for cosmic
topology.

In the CCP method it is used the basic feature of the isometries, i.e., that they preserve the distances between pairs
of images. Thus, if(p,q) is a pair of arbitrary images (correlated or not) in a given catalogueC , then for eachg∈ Γ
such that the pair(gp,gq) is also inC we obviously have

d(p,q) = d(gp,gq) . (13)

This means that for a given (arbitrary) pair(p,q) of images inC , if there aren isometriesg∈ Γ such that both images
gpandgqare still inC , then the separations(p,q) will occur n times.

The easiest way to understand the CCP method is by looking into its computer-aimed procedure steps, and then
examine the consequences of having a multiply connected universe with detectable topology. To this end, letC be a
catalogue withn sources, so that one hasP= n(n−1)/2 pairs of sources. The CCP procedure consists on the following
steps:

1. Compute theP separationss(p,q), wherep andq are two images in the catalogueC ;
2. Order theP separations in a list{si}1≤i≤P such thatsi ≤ si+1 ;
3. Create a list ofincrements{∆i}1≤i≤P−1, where∆i = si+1− si ;.



4. Define the CCP index as

R =
N

P−1
,

whereN =Card{i : ∆i = 0} is the number of times the increment is null.

If the smallest characteristic length ofM exceeds the survey depth (r in j > χobs) the probability that two pairs of
images are separated by the same distance is zero, soR ≈ 0. On the other hand, in a universe with detectable nontrivial
topology (χobs> r in j ) given g ∈ Γ, if p andq as well asgp andgq are images inC , then: (i) the pairs(p,q) and
(gp,gq) are separated by the same distance; and (ii) whenΓ admits a translationgt the pairs(p,gt p) and(q,gtq) are
also separated by the same distance. It follows that when a nontrivial topology is detectable, and a given catalogue
C contains multiple images, thenR > 0, so the CCP index is an indicator of a detectable nontrivialtopology of the
spatial sectionM of the universe. Note that althoughR > 0 can be used as a sign of multiply connectedness, it gives
no indication as to what the actual topology ofM is. Clearly whether one can find out thatM is multiply connected
(compact in at least one direction) is undoubtedly a very important step, though.

In more realistic situations, uncertainties in the determination of positions and separations of images of cosmic
sources are dealt with through the following extension of the CCP index: [38]

Rε =
Nε

P−1
,

whereNε = Card{i : ∆i ≤ ε}, andε > 0 is a parameter that quantifies the uncertainties in the determination of the
pairs separations.

Both PSH and CCP statistical methods rely on the accurate knowledge of the three-dimensional positions of the
cosmic sources. The determination of these positions, however, involves inevitable uncertainties, which basically
arises from: (i) uncertainties in the determination of the values of the cosmological density parametersΩm0 andΩΛ0;
(ii) uncertainties in the determination of both the red-shifts (due to spectroscopic limitations), and the angular positions
of cosmic objects (displacement, due to gravitational lensing by large scale objects, e.g.); and (iii) uncertainties due to
the peculiar velocities of cosmic sources, which introducepeculiar red-shift corrections. Furthermore, in most studies
related to these methods the catalogues are taken to be complete, but real catalogues are incomplete: objects are
missing due to selection rules, and also most surveys are notfull sky coverage surveys. Another very important point
to be considered regarding these statistical methods is that most of cosmic objects do not have very long lifetimes, so
there may not even exist images of a given source at large red-shift. This poses the important problem of what is the
suitable source (candle) to be used in these methods.

Some of the above uncertainties, problems and limits of the statistical methods have been discussed by Lehoucqet
al. [39], but the robustness of these methods still deserves further investigation. So, for example, a quantitative study of
the sensitivity of spikes and CCP index with respect to the uncertainties in the positions of the cosmic sources, which
arise from unavoidable uncertainties in values of the density parameters is being carried out [40].

For completeness we mention the recent articles by Mareckiet al.[41], and by Bernuiet al.[42]. Bernui and Villela
have worked with a method which uses pair angular separationhistograms (PASH) in connection with both discrete
cosmic sources and CMBR.

To close this section we refer the reader to references [43, 44], which present alternative statistical methods (see
also the review articles [45]).

5. LOOKING FOR THE TOPOLOGY USING CMBR

The CMB temperature anisotropy measurements by WMAP combine high angular resolution, and high sensitivity,
with the full sky and the deepest survey (zLSS∼ 1100) currently available. These features make very promising the
observational probe of cosmic topology with CMBR anisotropies on length scales near to or even somewhat beyond
the horizonχhor.

Over the past few years distinct approaches to probe a non-trivial topology of the universe using CMBR have been
suggested. In a recent paper Souradeep and Hajian [46, 47] have grouped these approaches in three broad families.
Here, however, we shall briefly focus on the most well known method that relies on multiple images of spots in the
CMBR maps, which is known as circles-in-the-sky [48] (for more detail on the other methods see, e.g., refs. [49] –
[56]).



For an observer in the Hubble flow the last scattering surface(LSS) is well approximated by a two-sphere of radius
χLSS. If a non-trivial topology of space is detectable, then thissphere intersects some of its topological images, giving
rise to circles-in-the-sky, i.e., pairs of matching circles of equal radii, centered at different points on the LSS sphere,
with the same pattern of temperature variations [48]. Thesematched circles will exist in CMBR anisotropy maps of
universes with any detectable nontrivial topology, regardless of its geometry.

The mapping from the last scattering surface to the sky sphere is conformal. Since conformal maps preserve angles,
the identified circle at the LSS would appear as identified circles on the sky sphere. A pair of matched circles is
described as a point in a six-dimensional parameter space. These parameters are the centers of each circle, which are
two points on the unit sphere (four parameters), the angularradius of both circles (one parameter), and the relative
phase between them (one parameter).

Pairs of matched circles may be hidden in the CMBR maps if the universe has a detectable topology. Therefore to
observationally probe nontrivial topology on the available largest scale, one needs a statistical approach to scan all-sky
CMBR maps in order to draw the correlated circles out of them.3 To this end, letn1 = (θ1,ϕ1) andn2 = (θ2,ϕ2) be
the center of two circlesC1 andC2 with angular radiusρ . The search for the matching circles can be performed by
computing the following correlation function [48]:

S(α) =
〈2T1(±φ)T2(φ +α)〉

〈T1(±φ)2+T2(φ +α)2〉
, (14)

whereT1 andT2 are the temperature anisotropies along each circle,α is the relative phase between the two circles, and
the mean is taken over the circle parameterφ : 〈 〉 =

∫ 2π
0 dφ . The plus(+) and minus(−) signs in (14) correspond to

circles correlated, respectively, by non-orientable and orientable isometries.
For a pair of circles correlated by an isometry (perfectly matched) one hasT1(±φ) = T2(φ +α∗) for someα∗, which

givesS(α∗) = 1, otherwise the circles are uncorrelated and soS(α) ≈ 0. Thus a peaked correlation function around
someα∗ would mean that two matched circles, with centers atn1 andn2, and angular radiusρ , have been detected.

From the above discussion it is clear that a full search for matched circles requires the computation ofS(α), for any
permittedα, sweeping the parameter sub-space(θ1,ϕ1,θ2,ϕ2,ρ), and so it is indeed computationally very expensive.
Nevertheless, such a search is currently in progress, and preliminary results using the first year WMAP data failed to
find antipodal and nearly antipodal, matched circles with radii larger than 25◦ [58]. Here nearly antipodal means circles
whose centers are separated by more than 170◦. At a first sight this preliminary result seems to rule out topologies
whose isometries produce antipodal images of the observer,as for example the Poincaré dodecahedron model [59], or
any other homogeneous spherical space with detectable isometries. In this regard, it is important to note the results of
the recent articles by Roukemaet al.[60] and Aurichet al.[61], Gundermann [62], and some remarks by Luminet [63],
which support the dodecahedron model.

Furthermore, since detectable topologies (isometries) donot produce, in general, antipodal correlated circles, a little
more can be inferred from the lack of nearly antipodal matched circles. Thus, in a flat universe, e.g., any screw motion
may generate pairs of circles that are not even nearly antipodal, provided that the observer’s position is far enough
from the axis of rotation [64, 65]. As a consequence, our universe can still have a flat topology, other than the 3-torus,
but in this case the axis of rotation of the screw motion corresponding to a pair of matched circles would pass far from
our position, making clear the crucial importance of the position of the observer relative to the ’axis of rotation’ in the
matching circles search method.
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