View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Crossref

A brief introduction to cosmic topology

M.J. Reboucas

Centro Brasileiro de Pesquisas Fisicas
Rua Dr. Xavier Sigaud 150
22290-180 Rio de Janeiro - RJ, Brazil

Abstract. Whether we live in a spatially finite universe, and what itgfghand size may be, are among the fundamental long-
standing questions in cosmology. These questions of tgpibnature have become particularly topical, given thaltire

of increasingly accurate astro-cosmological observatiespecially the recent observations of the cosmic mioreveack-
ground radiation. An overview of the basic context of costafology, the detectability constraints from recent obstons,

as well as the main methods for its detection and some reesults are presented.

1. INTRODUCTION

Whether the universe is spatially finite and what is its steapksize are among the fundamental open problems that
the modern cosmology seeks to resolve. These questiongabtgical nature have become particularly topical, given
the wealth of increasingly accurate astro-cosmologicaeolkations, especially the recent observations of the icosm
microwave background radiation (CMBR) [1]. An importantimtan these topological questions is that as a (local)
metrical theory general relativity leaves the (global)dlmgy of the universe undetermined. Despite this inablity
predict the topology of the universe at a classical levelsh@uld be able to devise strategies and methods to detect it
by using data from current or future cosmological obseovesti

The aim of these lecture notes is to give a brief review of tlannopics on cosmic topology addressed in four
lectures in the XI' Brazilian School of Cosmology and Gravitation, held in Maragiba, Rio de Janeiro from July 26
to August 4, 2004. Although the topics had been addressédseine details in the lectures, here we only intend to
present a brief overview of the lectures. For more detailsefer the readers to the long list of references at the end
of this article.

The outline of this article is a follows. In section 2 we dissthow cosmic topology arises in the context of the
standard Friedmann-Lemaitre—Robertson—Walker (FLRWinodogy, and what is the main observational physical
effect used in the search for a nontrivial topology of thetigphaection of the universe. We also recall in this section
some relevant results about spherical and hyperbolic 3folds, which will be useful in the following sections. In
section 3 we discuss the detectability of cosmic topologgsent examples on how one can decide whether a given
topology is detectable or not according to recent obsermafiand review some important results on this topic. In
section 4 we review the two main statistical methods to detesmic topology from the distribution of discrete
cosmic sources. In section 5 we describe two methods defas¢lde search of signs of a non-trivial topology in the
CMBR maps.
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2. BASIC CONTEXT

General relativity (GR) relates the matter content of thesense to its geometry, and reciprocally the geometry
constrains the dynamics of the matter content. As GR is alyuretrical (local) theory it does not fix the (global)
topology of spacetime. To illustrate this point in a very glenway, imagine a two-dimensional (2—D) world and its
beings. Suppose further these 2—D creatures have a gecah#teory of gravitation [an (3 2) spacetime theory],
and modelling their universe in the framework of this thetbrgy found that the 2—D geometry of the regular space is
Euclidean — they live in a spatially flat universe. This knedde, however, does not give them enough information
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to determine the space topology of their world. Indeed,dessthe simply-connected Euclidean pl&rte the space
section of their universe can take either of the followingtiply-connected space forms: the cylindéf = R x S*,
the torusT? = S* x St, the Klein bottlek? = S* x S and the Mébius banii?> = R x SL. In brief, the local geometry
constrains, but does not dictate the topology of the spdts.ig the very first origin of cosmic topology in the context
of GR, as we shall discuss in what follows.

Within the framework of the standard FLRW cosmology in thateat of GR, the universe is modelled by a 4 —
manifold .# which is decomposed intoZ = R x M, and is endowed with a locally isotropic and homogeneous
Robertson—-Walker (RW) metric

ds? = —dt?+ a2(t) [dx?+ f2(x)(d6? +sirf 6d¢?)] , €y

wheref(x) = (x, siny, or sinhyx) depending on the sign of the constant spatial curvature@, 1, —1), anda(t) is
the scale factor.

The spatial sectioM is usually taken to be one of the following simply-connecpédces: EuclideaRi® (k = 0),
sphericaB® (k= 1), or hyperbolid® (k= —1) spaces. However, since geometry does not dictate topdlug3-space
M may equally well be any one of the possible quotient mansfMd= M /I, wherel is a discrete and fixed point-free
group of isometries of the covering spade= (E3,S3,H3). In forming the quotient manifold®! the essential point
is that they are obtained froM by identifying points which are equivalent under the actiéithe discrete group.
Hence, each point on the quotient manifddrepresents all the equivalent points on the covering mihNb The
action of " tessellates (tilesM into identical cells or domains which are copies of what iswn as fundamental
polyhedron (FP). An example of quotient manifold in thremelsions is the 3—torig® = S* x S* x S = E3/T,
The covering space clearly B%, and a FP is a cube with opposite faces identified as indicatdajure 1, by the
equal opposite letters. This FP tiles the covering sfigicd he group = Z x Z x Z consists of discrete translations
associated with the face identifications.
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FIGURE 1. A fundamental polyhedron of the Euclidean 3—torus. The sjgpdaces are identified by the matching through
translations of the pairs of equal opposite letters.

In a multiply connected manifold, any two given points maydieed by more than one geodesic. Since the radiation
emitted by cosmic sources follows (space-time) geodegiesmmediate observational consequence of a non-trivial
spatial topology oM is that the sky may (potentially) show multiple images ofiaéidg sources: cosmic objects or
specific correlated spots of the CMBR. At large cosmologscales, the existence of these multiple images (or pattern
repetitions) is a physical effect often used in the searcla foontrivial 3-space topolodyin this article, in line with
the usage in the literature, by cosmic topology we mean {hadogy of the space sectidvi of the space-time manifold
M

A question that arises at this point is whether one can uséofh@ogical multiple images of the same celestial
objects such as cluster of galaxies, for example, to determinontrivial cosmic topology (see, e.g., refs [2] — [8])
In practice, however, the identification of multiple images formidable observational task to carry out because it

1 Clearly we are assuming here that the radiation (light) rhase sufficient time to reach the observer from multipledicms, or put in another
way, that the universe is sufficiently 'small’ so that thipe&tions can be observed. In this case the observabledmoxiz, exceeds at least the
smallest characteristic size Bf. A more detailed discussion on this point will be given int&st3.



involves a number of problems, some of which are:

- Two images of a given cosmic object at different distancesespond to different periods of its life, and so they
are in different stages of their evolutions, rendering peoiatic their identification as multiple images.

- Images are seen from different angles (directions), whiaken it very hard to recognize them as identical due
to morphological effects;

« High obscuration regions or some other object can mask or leide the images;

These difficulties make clear that a direct search for mlekigmages is not very promising, at least with available
present-day technology. On the other hand, they motivatesearch strategies and methods to determine (or just
detect) the cosmic topology from observations. Beforeudising in section 4 the statistical methods, which have been
devised to search for a possible nontrivial topology fromdistribution of discrete cosmic sources, we shall discuss
in the next section the condition for detectability of cosittipology.

3. DETECTABILITY OF COSMIC TOPOLOGY

In this section we shall examine the detectability of costalogy problem for the nearly flafXy ~ 1) universes
favored by current observation [9], and show that a numbanpbrtant results may be derived from the very fact that
the cosmic topology is detectable. Thus, the results ptés#nis section are rather general and hold regardlesseof th
cosmic topology detection method one uses, as long asésreti images or pattern repetitions.

The extent to which a nontrivial topology of may or may not le¢edted for the current bounds on the cosmological
density parameters has been examined in a few articles [20]-The discussion below is based upon our contribution
to this issue [10] — [13].

In order to state the conditions for the detectability ofro@stopology in the context of standard cosmology, we
note that for non-flat metrics of the form (1), the scale faet@) can be identified with the curvature radius of the
spatial section of the universe at timeT hereforey is the distance of a poirt = (x, 8, ) to the coordinate origi®
(in the covering space) in units of the curvature radiuscWiis a natural unit of length that shall be used throughout
this paper.

The study of the detectability of a possible non-trivialdtggy of the spatial sectioMl requires a topological typical
length which can be put into correspondence with obsematiovey depthgons Up to a redshifz = zyps A suitable
characteristic size dl, which we shall use in this paper, is the so-called injestiradiusrinj, which is nothing but the
radius of the smallest sphere ‘inscribableNh and is defined in terms of the length of the smallest closedegics
Im by rinj = 0m/2 (see fig. 2).

FIGURE 2. A schematic representation of two fundamental cells, ardritiication of the injectivity radiusinj, which is the
radius of the smallest sphere ‘inscribable’ in the fundamaledomain. The radius of the largest sphere ‘inscribabl&* is also
shown.



Now, for a given survey deptifops @ topology is said to be undetectablexifys < rinj. In this case no multiple
images (or pattern repetitions of CMBR spots) can be deddntéhe survey of deptlyops On the other hand, when
Xobs > Tinj, then the topology is detectable in principle or potenyiditectable.

In a globally homogeneous manifold the above detectahibitydition holds regardless of the observer’s position,
and so if the topology is potentially detectable (or is uerdt&tble) by an observerat M, it is potentially detectable
(oris undetectable) by an observer at any other point in thgs®eM. However, in globally inhomogeneous manifolds
the detectability of cosmic topology depends on both theonfes’s positionk and the survey depthyns Nevertheless,
even for globally inhomogeneous manifolds the above defigledbal’ injectivity radiusri,j can be used to state
an absolute undetectabilitgondition, namelyrinj > Xops in the sense that if this condition holds the topology is
undetectable for any observer at any poiritinReciprocally, the conditiofops > rinj allows potential detectability (or
detectability in principle) in the sense that, if this caiah holds, multiple images of topological origin are pdtalty
observable at least for some observers suitably locat®tl iAn important point is that for spherical and hyperbolic
manifolds, the ‘global’ injectivity radiusij expressed in terms of the curvature radius, is a constapol(igical
invariant) for a given topology.

Before proceeding further we shall recall some relevantltegbout spherical and hyperbolic 3—-manifolds, which
will be used to illustrate the above detectability conditi@he multiply connected spherical 3-manifolds are of the
formM = S3/I", wherel is a finite subgroup o8Q(4) acting freely on the 3-sphere. These manifolds were orilgina
classified by Threlfall and Seifert [21], and are also disedlsby Wolf [22] (for a description in the context of cosmic
topology see [23]). Such a classification consists esdbritidhe enumeration of all finite grougsc SQ4), and then
in grouping the possible manifolds in classes. In a recepep&ausmaneat al.[24] recast the classification in terms
of single action, double action, and linked action mani$old table 1 we list the single action manifolds togethehwit
the symbol often used to refer to them, as well as the orddreofbvering group and the corresponding injectivity
radius. It is known that single action manifolds are glopalbmogeneous, and thus the detectability conditions for
an observer at an arbitrary poipte M also hold for an observer at any other pajrg M. Finally we note that the
binary icosahedral group gives the known Poincaré dodecahedral space, whose fumti@melyhedronis a regular
spherical dodecahedron, 120 of which tile the 3-sphereid®otical cells which are copies of the FP.

TABLE 1. Single action spherical manifolds together with the
order of the covering group and the injectivity radius.

Name & Symbol Order of I Injectivity Radius
Cyclic Zy n m/n
Binary dihedral D, 4m 1m/2m
Binary tetrahedralT * 24 /6

Binary octahedralO* 48 /8
Binary icosahedral * 120 /10

Despite the enormous advances made in the last few dechees,is at present no complete classification of
hyperbolic 3-manifolds. However, a number of importanuttsshave been obtained, including the two important
theorems of Mostow [25] and Thurston [26]. According to thenfier, geometrical quantities of orientable hyperbolic
manifolds, such as their volumes and the lengths of thesetlogeodesics, are topological invariants. Therefore
quantities such as the ‘global’ injectivity rading; (expressed in units of the curvature radius) are fixed foheac
manifold. Clearly this property also holds for sphericahifialds.

According to Thurston’s theorem, there is a countable ityfiof sequences of compact orientable hyperbolic
manifolds, with the manifolds of each sequence being ordgréerms of their volumes. Moreover, each sequence
has as an accumulation point a cusped manifold, which has fiolume, is non-compact, and has infinitely long
cusped corners [26].

Closed orientable hyperbolic 3-manifolds can be constdifiom these cusped manifolds. The compact manifolds
are obtained through a so-called Dehn surgery which is adbpmocedure identified by two coprime integers, i.e.
winding numbers(ny,ny). These manifolds can be constructed and studied with thécpulavailable software
package SnapPea [27]. SnapPea names manifolds accordhmgdeed cusped manifold and the winding numbers.
So, for example, the smallest volume hyperbolic manifoldmn to date (Weeks’ manifold) is named as m0e3,1),
where m003 corresponds to a seed cusped manifold,(adl) is a pair of winding numbers. Hodgson and
Weeks [27, 28] have compiled a census containing 11031 tabé closed hyperbolic 3-manifolds ordered by
increasing volumes. In table 2 we collect the first ten mdd&érom this census with the lowest volumes, ordered by
increasing injectivity radiusp;, together with their volumes.



TABLE 2. First seven manifolds in the Hodgson-
Weeks census of closed hyperbolic manifolds, ordered
by the injectivity radiusrinj, together with their corre-
sponding volume.

Manifold Injectivity Radius Volume
m003(-4,1) 0.177 1.424
mO004(3,2) 0.181 1.441
mO003(-3,4) 0.182 1.415
mO004(1,2) 0.183 1.398
mO004(6,1) 0.240 1.284
mO003(-4,3) 0.287 1.264
mO003(-2,3) 0.289 0.981
mO003(-3,1) 0.292 0.943
m009(4,1) 0.397 1.414
mO007(3,1) 0.416 1.015

To illustrate now the above condition for detectability detectability) of cosmic topology, in the light of recent
observations [9] we assume that the matter content of thetsd is well approximated by dust of dengity plus a
cosmological constamt. In this cosmological setting the current curvature radyisf the spatial section is related to
the total density paramet&, through the equation

k
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whereHy is the Hubble constank is the normalized spatial curvature of the RW metric (1), esmeére here and in
what follow the subscript O denotes evaluation at preseme tjy. Furthermore, in this context the redshift-distance
relation in units of the curvature radius = R(tp), reduces to

142 d
X@ = V=0l | e ©

2(1— Qo)+ Qno

whereQn andQng are, respectively, the matter and the cosmological depsitgmeters, anQy = Qno + Qag. For
simplicity, on the left hand side of (3) and in many placeshid farticle, we have left implicit the dependence of the
functiony on the density components.

A first qualitative estimate of the constraints on deteditgtnf cosmic topology from nearflatness can be obtained
from the functiony (Qmo, Qao,2) given by (3) for a fixed survey depth Figure 3 clearly demonstrates the rapid way
X drops to zero in a narrow neighbourhood of bg= 1 line. This can be understood intuitively from (2), since th
natural unit of length (the curvature radiag) goes to infinity aQg — 1, and therefore the depph (for any fixed
2) of the observable universe becomes smaller in this limantthe observational point of view, this shows that the
detection of the topology of the nearly flat universes bemere and more difficult a8y — 1, a limiting value
favoured by recent observations. As a consequence, by asyngnethod which relies on observations of repeated
patterns the topology of an increasing number of nearly fiatarses becomes undetectable in the light of the recent
observations, which indicate th@g ~ 1.

From the above discussion it is clear that cosmic topology Ineeundetectable for a given survey up to a depth,
but detectable if one uses a deeper survey. At present tipestesirvey available correspondgi@x = z ss~ 1000,
with associated deptly(z ss). So the most promising searches for cosmic topology thraughiple images of
radiating sources are based on CMBR.

As a concrete quantitatively example we consider univevg#s that possess a cyclic single action spherical
topologies forQg = 1.08 andQa = 0.66. From table 1 we have,; = 11/n which together with the undetectability
condition give

Xobs< finj = n<n“=int (i) , 4)
Xobs
where in{x) denotes the integer part ®f

In table 3 for distinct redshiftanax we collect the corresponding survey deptls and the limiting value below

which the cyclic single action manifold is undetectablecéwling to this table the cyclic group manifolds andZs



FIGURE 3. The behaviour of{hor = X(Qmo, Qn0,2), in units of curvature radius, fa= 1100 as a function of the density
parameterfpg and Q. These figures show clearly the rapid wayo, falls off to zero for nearly flat (hyperbolic or elliptic)
universes

are undetectable even if one uses CMBR, while the maniiﬁ?gzl%p for p > 4 are detectable with CMBR. For the
same values of the density parameters (besidesndZ3; manifolds) the manifold%.,, Zs andZg are undetectable
using sources of redshifts upzgax = 6.

TABLE 3. For eactznaxthe corresponding valuggpsfor Qg =
1.08 andQp = 0.66. The integer number* is the limiting value
below which the corresponding cyclic topology is undeteleta

Redshift znax Depth Xobs Limiting value n*

1100 0.811 4
6 0.496 7
1 0.209 16

To quantitatively illustrate the above features of the deeteility problem in the hyperbolic cas@§ < 1) , we shall
examine the detectability of cosmic topology of the first $emallest (volume) hyperbolic universes. To this end we
shall take the following interval of the density parameteaties consistent with current observatiofig:€ [0.99,1)
andQno € [0.63,0.73. In this hyperbolic sub-interval one can calculate thedatyalue of(opsQmo, Qno, 2) for the
last scattering surface £ 1100), and compare with the injectivity radii; to decide upon detectability. From (3) one
obtains{}2*= 0.337.

Table 4 summarizes the results for CMBR={ 1100), which have been refined upon by Weeks [19]. It makes
explicit the very important fact that there are undeteaabpologies by any methods that rely on pattern repetitions
even if one uses CMBR, which corresponds to the deepestysdeyhx (z sg).

Hitherto we have considered the detectability of nearlyutaverse, but one can alternatively ask what is the region
of the density parameter spaces for which topologies aeetigile. To this end, we note that for a given (fixed) survey
with redshift cut-offzy,s, and for a given manifold with injectivity radiu:ﬁ]"’j' one can solve the equation

X(Q()7Q/\720b5) = rir!l\/jI ) (5)

which amounts to finding pair€Xp, Qo) in the density paramet€o— Qag plane for which eq. (5) holds.

2 SinceQq = Qmo + Qao We can clearly takg as function of either@q, Qmo) or (Qmo, Qno)-



TABLE 4. Restrictions on detectability of cosmic topology f2g=0.99 withQxg €
[0.63,0.73 for the first ten smallest known hyperbolic manifolds. A syndepth cor-
responding to CBMRZnax= 1100) was used. The manifolds are ordered by increasing

volumes.

Manifold Volume Injectivity radius Detectability with CMBR
mO003(-3,1) 0.943 0.292 Potential Detectable
mO003(-2,3) 0.981 0.289 Potential Detectable
m007(3,1) 1.015 0.416 Undetectable

mO003(-4,3) 1.264 0.287 Potential Detectable
mO004(6,1) 1.284 0.240 Potential Detectable
mO004(1,2) 1.398 0.183 Potential Detectable
m009(4,1) 1.414 0.397 Undetectable

mO003(-3,4) 1.415 0.182 Potential Detectable
mO003(-4,1) 1.424 0.177 Potential Detectable
m004(3,2) 1.441 0.181 Potential Detectable

Consider now the set of the 19 smallest manifolds of the Hodg&eeks census in conjunction with the hyperbolic
region
Qp €[0.98 1) and  Qap€[0.62,0.79, (6)

and the egs. (3) and (5). The manifold in this set with the Eiwg;(= 0.152) is m003(—5,4) (see [27]). Figure 4
gives the solution curve of equation (5) in tily—Qno plane forriy; = 0.152 andrin; = 0.081, where a survey of
depthzynax = 1100 (CMBR) was used. This figure also contains a dashedngat@r box, representing the relevant
part of the recent hyperbolic region (6). For each valug.gfundetectability is ensured for the values of cosmological
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FIGURE 4. The solution curves fops(Qo, Qn0,2) = rinj, as plots 0 versusQg for rinj = 0.081 andjnj = 0.152 . A survey
with depthzmax= 1100 (CMBR) was used. The dashed rectangular box repretentslevant part of the hyperbolic region (6)
of the parameter space given by recent observations. Thetesteble regions of the parameter spa2g Qao0), corresponding to
each value ofjyj, lie above the related curve.

parameters (region in tHeg— Qg plane) which lie above the corresponding solution curve&spf Thus, considering
the solution curve of (5) forn; = 0.152, for example, one finds that the topology of none of ther&@lest manifolds
of the census would be detectableQi = 0.9971. On the other hand, one has that this value is a lowerdfmurthe
total density parametéy if it turns out that one of these 19 hyperbolic manifolds itedéed.

For a given survey with redshift cut-off,s the redshift distance functioxyps clearly depends on the way one
models the matter-energy content of the universe. Thistais been recently discussed by Metal. in a unifying
dark matter and dark energy framework [13].

In what follows we shall briefly discuss two important resultlated to detectability of cosmic topology. For more
details we refer the readers to refs. [11] and [12]. Regarttie first, consider again the solution curve of (5) in the



parameter plane. For a given survey depjly we define the secant line as the line joining the po(ﬁso,O) and
(O, Eon) where the contour curve intersects the a®gg and Qag, respectively. Clearly the equation of this line is
given by
Qg Do, )
Qmo  Qno
Itis possible to show that the solution curve of (5) is conaas concave, respectively, in the hyperbolic and spherical
regions of the parameter plafgo — Q. This property can also be gleaned from the parametric pitteosolution
curve of (5), and ensures that the secant line crosses theurdime only at theQ o andQpg axes. As a consequence
the region between the secant line and the flatlirg+ Qo = 1 lies inside the undetectability region of the parameter
plane. Thus, the secant line approximation to the solutiomecof (5) gives a sufficient condition for undetectability
of the corresponding topology with injectivity radiq#’}. A closed form for this sufficient condition can be obtained
from (7) in the limiting case — . As a result one has that a universe with space section M hiegentable topology
if

cosif (i /2) Qmo+Qpo > 1, for Qo<1,

8
coS (i /2) Qmo+Qpo < 1, for Qo>1. ®

Despite its simple form, this result is of considerableriast in that it gives a test for undetectability gy z
The condition (8) can easily be written in terms of eitli®y and Qag or Qp and Qng [11]. So, for example, a
universe space section M has undetectable topology if

Qo > 1-sinkf(rli/2) Qmo, for Qo<1,

9
Qo < 1+4siP(rl)/2) Qmo, for Qo>1. ®)

From table 1 we have the injectivity radius for the singleactyclic Z, and binary dihedr&Dy,, families are given,
respectively, byinj = 71/n andrinj = 11/2m. This allows to solve the equation corresponding to (9) tiaiob

n* = int

NS

m0

-1
arcsi M
Qmo ’

where infx] denotes the integer part ®f Thus, for these two classes of manifold there is alwgyandm* such that
the corresponding topology is detectablerios n* andm > m*, given in terms of the density parameters.

The second important result is related to detectabilityesf\nearly flat universes, for whid — 1| <« 1 [12]. If
in addition to this condition we make two further physicathptivated assumptions: (i) the observer is at a position
where the topology is detectable, i@ (X) < Xobs and (i) the topology is not excludable, i.e. it does notdree too
many images so as to be ruled out by present observations, tffase main physical assumption can be summarized
as

1
larcsi Q-1 ] ,

(10)

m° = int

B~ |

Finj (X) < Xobs < 1. (11)
These assumptions severely restricts the set of detectasity flat manifolds. Thus in the case of spherical mangpld
only cyclic (rinj = 17/n) and binary dihedrical spaces.{ = 17/2m) of sufficiently high order ofi or 4mare detectable.
In the hyperbolic case, the only detectable manifolds arestiicalled nearly cusped manifolds, which are sufficiently
similar to the cusped manifolds (cusped manifolds are remnpact, and possess regions with arbitrarily smgl(x).)

In a recent study [12] we considered both classes of masifafdl showed that a generic detectable spherical or
hyperbolic manifold is locally indistinguishable from ledtr a cylindrical R? x S) or toroidal ® x T?) manifold,
irrespective of its global shape. These results have irmpbdonsequences in the development of search strategies
for cosmic topology. They show that for a typical observeaivery nearly flat universe, the 'detectable part’ of the
topology would be indistinguishable from eitigf x St or R x T2 manifold.

To conclude this section, we mention that Mald¢al. have examined, in a recent article [14], the extent to what
a possible detection of a non-trivial topology of a low cuwva Qg ~ 1) universe may be used to place constraints



on the matter content of the universe, focusing our attardgiothe generalized Chaplgygin gas (GCG) model, which
unifies dark matter and dark energy in a single matter compgoiteis shown that besides constraining the GCG
parameters, the detection of a nontrivial topology alsovadito set bounds on the total density param@teit is also
studied the combination of the bounds from the topologyatite with the limits that arise from current data on SNla,
and shown that the detection of a nontrivial topology setslementary bounds on the GCG parameters (ar@dgn

to those obtained from the SNla data alone (for examplesoal lghysical effect of a possible nontrivial topology see,
e.g., refs. [15] -7 ).

4. PAIR SEPARATIONSSTATISTICAL METHODS

On the one hand the most fundamental consequence of a mutiphected spatial sectidvi for the universe is the
existence of multiple images of cosmic sources, on the difwed a number of observational problems render the direct
identification of these images practically impossible Ha statistical approaches to detect the cosmic topologgads

of focusing on the direct recognition of multiple imagesedreats statistically the images of a given cosmic source,
and use (statistical) indicators or signatures in the $efoca sign of a nontrivial topology. Hence the statistical
methods are not plagued by direct recognition difficultieshsas morphological effects, and distinct stages of the
evolution of cosmic sources.

The key point of these methods is that in a universe with daidée nontrivial topology at least one of the
characteristic sizes of the space sectibis smaller than a given survey depthys SO the sky should show multiple
images of sources, whose 3-D positions are correlated hgdheetries of the covering grodp These methods rely
on the fact that the correlations among the positions oftliresiges can be couched in terms of distance correlations
between the images, and use statistical indicators to fihdigns of a possible nontrivial topology bf.

In 1996 Lehouccet al. [29] proposed the first statistical method (often referrech$ cosmic crystallography),
which looks for these correlations by using pair separattustograms (PSH). To build a PSH we simply evaluate a
suitable one-to-one functidf of the distancel between a pair of images in a catalogéieand defing=(d) as the
pair separations = F(d). Then we depict the number of pairs whose separation lieinvithrtain sub-interval;
partitions of(0, Smax, WhereSmax= F (2Xmax), andxmaxis the survey depth of’. A PSH is just a normalized plot of
this counting. In most applications in the literature thpasation is taken to be simply the distance between the pair
s=d or its squares = d?, J; being, respectively, a partition 08, 2Xmax and(0,4x32-

The PSH building procedure can be formalized as follows Sittar a catalogu& with n cosmic sources and denote
by n (s) the number of pairs of sources whose separatisrévide the interval 0, smay in mequal sub-intervals (bins)
of lengthds = Smax/m, being
os _ 0s, . .
27S+2]7' 3 et

and centered & = (i — %) 0s. The PSH is defined as the following counting function:

J=(s—

2 1

which can be seen to be subject to the normalization comdjt[b, ®(s) ds= 1. An important advantage of using
normalizedPSH’s is that one can compare histograms built up from cagtede with different number of sources.

An example of PSH obtained through simulation for a univevith nontrivial topology is given in Fig. 5. Two
important features should be noticed: (i) the presencesoféhy sharp peaks (called spikes); and (ii) the existenee of
'mean curve’ above which the spikes stands. This curve spomrds to an expected pair separation histogram (EPSH)
Pexp(S), Which is a typical PSH from which the statistical noise hasrbwithdrawn, that i®ex(S) = P(s) — p(S),
wherep(s) represents the statistical fluctuation that arises in B ®(s).

The primary expectation was that the distance correlatimgd manifest as topological spikes in PSH’s, and that
the spike spectrum of topological origin would be a definigmature of the topology [29]. While the first simulations
carried out for specific flat manifolds appeared to confirms thipectation [29], histograms subsequently generated
for specific hyperbolic manifolds revealed that the coroesfing PSH'’s exhibit no spikes [30, 31]. Concomitantly, a
theoretical statistical analysis of the distance cori@testin PSH’s was accomplished, and a proof was presented tha
the spikes of topological origin in PSH’s are due to just gipetof isometry: the Clifford translations (CT) [32], which
are isometrieg € I' such that for allp € M the distancel(p,g:p) is a constant (see also in this regard [30]). Clearly
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FIGURE 5. Typical PSH for a flat universe with a 3—torus topology. Theizuntal axis gives the squared pair separat@n
while the vertical axis provides a normalized number ofair

the CT’s reduce to the regular translations in the Euclidgeates (for more details and simulations see [33] — [35]).
Since there is no CT translation in hyperbolic geometry thgult explains the absence of spikes in the PSH’s of
hyperbolic universes with nontrivial detectable topolo@y the other hand, it also makes clear that distinct magsfol
which admit the same Clifford translations in their covgrgroups present the same spike spectrum of topological
origin. Therefore the topological spikes are not sufficfentuinambiguously determine the topology of the universe.

In spite of these limitations, the most striking evidencenfltiply-connectedness in PSH’s is indeed the presence
of topological spikes, which result from translationalrigetriesg: € I'. It was demonstrated [32, 33] that the other
isometriesy manifest as very tiny deformations of the expected pair 5o histogrambgf(p(s) corresponding to
the underlying simply connected universe [36, 37]. Furtiame, in PSH's of universes with nontrivial topology the
amplitude of the sign of non-translational isometries wasas to be smaller than the statistical noise [33], making
clear that one cannot use PSH to reveal these isometries.

In brief, the only significant (measurable) sign of a nonélitopology in PSH are the spikes, but they can be used
merely to disclose (not to determine) a possible nontrigipblogy of universes that admit Clifford translationsyan
flat, some spherical, and no hyperbolic universes.

The impossibility of using the PSH method for the detectiérthe topology of hyperbolic universes motivated
the development of a new scheme caltedlecting correlated pairs metho@CP method) [38] to search for cosmic
topology.

In the CCP method it is used the basic feature of the isonsefre, that they preserve the distances between pairs
of images. Thus, ifp,q) is a pair of arbitrary images (correlated or not) in a givetalcegue@, then for eaclg e I
such that the paifgp,gq) is also in% we obviously have

d(p,q) =d(gp,gq) - (13)

This means that for a given (arbitrary) p&i, q) of images iné, if there aren isometriegy € I' such that both images
gpandgqare still in%, then the separatios{p, g) will occur ntimes.

The easiest way to understand the CCP method is by lookingtsicomputer-aimed procedure steps, and then
examine the consequences of having a multiply connecteersa with detectable topology. To this end, #%be a
catalogue wittn sources, so that one hBis= n(n— 1) /2 pairs of sources. The CCP procedure consists on the folfpwi
steps:

1. Compute thd separations(p,q), wherep andq are two images in the catalogié
2. Order theP separations in a lisfs }1<i<p such tha < s 1;
3. Create a list oincrementgA }1<j<p_1, WhereAj =541 —5;.



4. Define the CCP index as
N

P-1’
where.#” = Card{i : Aj = 0} is the number of times the increment is null.

%:

If the smallest characteristic length bf exceeds the survey depthn{ > Xons the probability that two pairs of
images are separated by the same distance is ze#230. On the other hand, in a universe with detectable nontrivia
topology (Xons > rinj) giveng e I, if p andq as well asgp andgq are images ir¢, then: (i) the pairgp,q) and
(gp,gq) are separated by the same distance; and (ii) whadmits a translatiog: the pairs(p,g:p) and(q,g:q) are
also separated by the same distance. It follows that whemuivial topology is detectable, and a given catalogue
% contains multiple images, the# > 0, so the CCP index is an indicator of a detectable nontrigiablogy of the
spatial sectioM of the universe. Note that although > 0 can be used as a sign of multiply connectedness, it gives
no indication as to what the actual topologyMfis. Clearly whether one can find out tHdtis multiply connected
(compact in at least one direction) is undoubtedly a veryartgmt step, though.

In more realistic situations, uncertainties in the deteation of positions and separations of images of cosmic
sources are dealt with through the following extension ef@CP index: [38]

N

Yepo1

where ¢ = Card{i : A < €}, ande > 0 is a parameter that quantifies the uncertainties in themétation of the
pairs separations.

Both PSH and CCP statistical methods rely on the accurate/llkedge of the three-dimensional positions of the
cosmic sources. The determination of these positions, henvewolves inevitable uncertainties, which basically
arises from: (i) uncertainties in the determination of théues of the cosmological density parametgg andQnp;

(ii) uncertainties in the determination of both the redftsh{due to spectroscopic limitations), and the angulaitipos

of cosmic objects (displacement, due to gravitationalitenby large scale objects, e.g.); and (iii) uncertainties tb

the peculiar velocities of cosmic sources, which introdpeeuliar red-shift corrections. Furthermore, in most tsid
related to these methods the catalogues are taken to be etemiplit real catalogues are incomplete: objects are
missing due to selection rules, and also most surveys arilheky coverage surveys. Another very important point
to be considered regarding these statistical methodstisrithst of cosmic objects do not have very long lifetimes, so
there may not even exist images of a given source at largshi#id-This poses the important problem of what is the
suitable source (candle) to be used in these methods.

Some of the above uncertainties, problems and limits oftétéstical methods have been discussed by Leheticq
al. [39], but the robustness of these methods still deservéssinvestigation. So, for example, a quantitative stuidy o
the sensitivity of spikes and CCP index with respect to theeuainties in the positions of the cosmic sources, which
arise from unavoidable uncertainties in values of the dgpsirameters is being carried out [40].

For completeness we mention the recent articles by Maet@ii[41], and by Bernuét al.[42]. Bernui and Villela
have worked with a method which uses pair angular separhistagrams (PASH) in connection with both discrete
cosmic sources and CMBR.

To close this section we refer the reader to references B3 which present alternative statistical methods (see
also the review articles [45]).

5. LOOKING FOR THE TOPOLOGY USING CMBR

The CMB temperature anisotropy measurements by WMAP coentbigh angular resolution, and high sensitivity,
with the full sky and the deepest survey{s~ 1100) currently available. These features make very priogithe
observational probe of cosmic topology with CMBR anisoieson length scales near to or even somewhat beyond
the horizonynor.

Over the past few years distinct approaches to probe a noattopology of the universe using CMBR have been
suggested. In a recent paper Souradeep and Hajian [46, ¥&]dgnauped these approaches in three broad families.
Here, however, we shall briefly focus on the most well knowrthoé that relies on multiple images of spots in the
CMBR maps, which is known as circles-in-the-sky [48] (fornmaletail on the other methods see, e.g., refs. [49] —
[56)).



For an observer in the Hubble flow the last scattering surfla8&) is well approximated by a two-sphere of radius
XLss If a non-trivial topology of space is detectable, then Hyikere intersects some of its topological images, giving
rise to circles-in-the-sky, i.e., pairs of matching cieclef equal radii, centered at different points on the LSS sphe
with the same pattern of temperature variations [48]. Timeatehed circles will exist in CMBR anisotropy maps of
universes with any detectable nontrivial topology, retesslof its geometry.

The mapping from the last scattering surface to the sky gpbaonformal. Since conformal maps preserve angles,
the identified circle at the LSS would appear as identifiedles on the sky sphere. A pair of matched circles is
described as a point in a six-dimensional parameter spaeas€elparameters are the centers of each circle, which are
two points on the unit sphere (four parameters), the angatiius of both circles (one parameter), and the relative
phase between them (one parameter).

Pairs of matched circles may be hidden in the CMBR maps if tiieeuse has a detectable topology. Therefore to
observationally probe nontrivial topology on the avaitlalrgest scale, one needs a statistical approach to seskyall
CMBR maps in order to draw the correlated circles out of tiéfo.this end, leth; = (61, ¢1) andn, = (6>, ¢,) be
the center of two circle€; andC, with angular radiup. The search for the matching circles can be performed by
computing the following correlation function [48]:

2Ti(XQ)T2(p+a))
(M(£9)?+T2(@+a)?)’

S(a) = (14)
whereT; andT, are the temperature anisotropies along each ciecie the relative phase between the two circles, and
the mean is taken over the circle parameter ) = _foz"d(p. The plus(+) and minug —) signs in (14) correspond to
circles correlated, respectively, by non-orientable amehtable isometries.

For a pair of circles correlated by an isometry (perfectlyechad) one ha$; (+¢) = T»(¢+ a.) for someq.,., which
givesS(a.) = 1, otherwise the circles are uncorrelated an@m) ~ 0. Thus a peaked correlation function around
somea, would mean that two matched circles, with centens;aindn,, and angular radiug, have been detected.

From the above discussion it is clear that a full search fachea circles requires the computatiorSor ), for any
permitteda, sweeping the parameter sub-spe@e ¢1, 6>, ¢, p), and so it is indeed computationally very expensive.
Nevertheless, such a search is currently in progress, atidyprary results using the first year WMAP data failed to
find antipodal and nearly antipodal, matched circles withi targer than 253 [58]. Here nearly antipodal means circles
whose centers are separated by more than.1&a first sight this preliminary result seems to rule outdimgies
whose isometries produce antipodal images of the obsewény example the Poincaré dodecahedron model [59], or
any other homogeneous spherical space with detectableises In this regard, it is important to note the results of
the recent articles by Roukemagal.[60] and Aurichet al.[61], Gundermann [62], and some remarks by Luminet [63],
which support the dodecahedron model.

Furthermore, since detectable topologies (isometriegpdproduce, in general, antipodal correlated circlegtla li
more can be inferred from the lack of nearly antipodal madahecles. Thus, in a flat universe, e.g., any screw motion
may generate pairs of circles that are not even nearly atdlpprovided that the observer’s position is far enough
from the axis of rotation [64, 65]. As a consequence, ourensi& can still have a flat topology, other than the 3-torus,
but in this case the axis of rotation of the screw motion gpoading to a pair of matched circles would pass far from
our position, making clear the crucial importance of theijpms of the observer relative to the 'axis of rotation’ ireth
matching circles search method.
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