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Abstract 

 

The gastrointestinal (GI) tract of vertebrates is inhabited by a vast array of organisms, that is, the 

microbiota and macrobiota. The former is composed largely of commensal microorganisms, 

which play vital roles in host nutrition and maintenance of energy balance, in addition to 

supporting the development and function of the vertebrate immune system. By contrast, the 

macrobiota includes parasitic helminths, which are mostly considered detrimental to host health 

via a range of pathogenic effects that depend on parasite size, location in the GI tract, burden of 

infection, metabolic activity, and interactions with the host immune system. Sharing the same 

environment within the vertebrate host, the GI microbiota and parasitic helminths interact with 

each other, and the results of such interactions may impact, directly or indirectly, on host health 

and homeostasis. The complex relationships occurring between parasitic helminths and 

microbiota have long been neglected; however, recent studies point towards a role for these 

interactions in the overall pathophysiology of helminth disease, as well as in parasite-mediated 

suppression of inflammation. Whilst several discrepancies in qualitative and quantitative 

modifications in gut microbiota composition have been described based on host and helminth 

species under investigation, we argue that attention should be paid to the systems biology of the 

gut compartment under consideration, as variations in the abundances of the same population of 

bacteria inhabiting different niches of the GI tract may result in varying functional consequences 

for host physiology.   
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1. Worms and bacteria in the vertebrate gastrointestinal tract 

The mammalian gastrointestinal (GI) tract is inhabited by trillions of microbes including bacteria, 

archaea, fungi, protozoa and viruses, that together form the gut microbiota (Table 1) [1,2]. This 

complex community of organisms plays essential roles in vertebrate physiology that include, for 

instance, nutrient metabolism, immune system development and protection against pathogens (cf. 

[3]). In many areas of the world, the GI tract is also home to other organisms, i.e. parasitic 

helminths, which are primarily pathogens [4]. Being co-habitants of the GI tract, the gut 

microbiota and parasitic helminths interact with each other, with likely consequences for host 

homeostasis and overall health (cf. [5]). For instance, significant disturbances in microbiota 

formation and stabilisation in early life due to high burdens of helminth infections (such as those 

occurring in endemic areas) may have far-reaching and long-term detrimental effects on host 

welfare [5,6]. On the other hand, the known immune-suppressive properties of GI helminths have 

been hypothesized to stem, at least in part, from direct and/or immune-mediated interactions 

between the parasites and the resident microbiota (cf. [7]).  

Over the last few years, several studies have attempted to better understand the effect(s) that GI 

helminth infections exert on the composition and function of the vertebrate gut microbiota, with 

a view towards identifying key microbial players that could be exploited for the development of 

novel parasite control strategies and/or of helminth-based anti-inflammatory therapeutics (cf. 

[8,9]). Thus far, studies of helminth-microbiota interactions have been conducted in a range of 

host and parasite species of both public health and veterinary relevance, in substantially different 

geographical areas and experimental settings and with varying methodologies [8,10]. While 

published studies often acknowledge the intrinsic difficulties of performing comparative analyses 

of datasets generated from distinct host-parasite pairs, geographical locations, and/or with 

different experimental protocols, one aspect that is often overlooked is the specific site of the GI 

tract where helminth infections and/or associated changes in gut microbiota composition occur. 

Indeed, the functions of the resident microbiota (Table 1) vary according to the site of colonisation 

[3]; in addition, GI helminths are characterised by substantially different modes of interaction 
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with the gut mucosa (e.g. luminal vs. tissue-dwellers), as well as feeding strategies (e.g. grazers 

vs. blood-feeders) that may directly and/or indirectly shape their crosstalk with the resident 

bacteria. Studies of the systems biology of helminth-microbiota interactions must therefore 

consider these aspects. In this article, we review current knowledge of helminth-microbiota 

relationships according to infection site and parasite biology, and discuss potential functional 

differences and similarities between alterations in selected microbial populations following 

helminth colonisation of various GI compartments.  

 

2. A hotchpotch of parasites, hosts and (micro)environments 

In this review, and according to available published studies on helminth-gut microbiota crosstalk, 

the GI tract will be cursorily divided into stomach, small and large intestine. When available, 

details on GI sub-compartments (e.g. duodenum and colon within the small and large intestine, 

respectively) will be provided. 

2.1. Stomach 

To date, and to the best of our knowledge, studies that have characterised changes of gut microbial 

composition associated with parasitic helminths residing in the stomach of vertebrate hosts have 

involved nematodes of the abomasum of ruminants [11,12,13,14]. The abomasum is the fourth 

and last compartment of the ruminant stomachs, and is often referred to as the ‘true stomach’ due 

to its primary digestive function, that resembles that of monogastric animals. In the abomasum, 

the secretion of hydrochloric acid inactivates rumen microorganisms, while pepsins carry out the 

initial digestion of microbial and dietary proteins, which are further digested and absorbed in the 

small intestine [15,16]. Notwithstanding, the abomasum is still an important colonisation site for 

several microorganisms and acts as a barrier for bacterial transfer to the lower GI tract [17].  

Abomasal infections by the trichostrongyle nematodes Haemonchus contortus and Teladorsagia 

circumcincta in small ruminants, and Ostertagia ostertagi in cattle, are characterised by 

alterations of the secretory activities of the stomach epithelium, and result in increased abomasal 
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pH (from ~2 to >6) and hyper-gastrinemia [18,19,20]. Early studies based on bacterial culture had 

reported that elevated abomasal pH is associated with the expansion of populations of anaerobic 

bacteria [18,20]. Thus, recently, high-throughput sequencing of the bacterial 16S rRNA gene 

(Table 1) has been applied to the characterisation of qualitative and quantitative changes of the 

composition of the microbiota colonising the abomasum of trichostrongyle-infected livestock, in 

order to better understand the potential metabolic and pathophysiological consequences of these 

alterations. In particular, a study conducted in partially immune cattle following reinfection with 

O. ostertagi reported negligible differences in abomasal microbiota structure prior to and 

following infection, and no significant changes in microbial alpha diversity (Table 1) nor in the 

relative abundances of any of the bacterial taxa identified [11]. This result led the authors to 

hypothesize that partially immune animals may develop the ability to maintain the stability of the 

abomasal microbial ecosystem, and thus of the gastric functions, in the presence of parasite 

infections [11].  

Microbial alpha diversity was also unchanged in the abomasa of naïve goats following infection 

with H. contortus [12] and in faecal samples of lambs infected with T. circumcincta [14], which 

suggests that other yet unknown factors, independent of previous exposure to parasites and 

development of protective immunity, may participate in the interplay between helminths and 

bacteria residing in the vertebrate stomach. However, in spite of the lack of alpha diversity 

modifications in the abomasal microbiota of H. contortus- and T. circumcincta-infected goats and 

lambs, respectively, alterations in the relative abundances of several microbial taxa were detected 

in the stomachs of these animals [12,14]. In particular, several genera belonging to the family 

Prevotellaceae, including Prevotella, were expanded in the abomasa of infected goats [12], as 

well as in faecal samples of lambs infected with T. circumcincta [14] (Fig. 1). Members of the 

genus Prevotella participate in a range of metabolic functions in the rumen, including peptide 

degradation (e.g. [21,22]). Thus, the increased abundance of abomasal Prevotella that follows 

nematode infection has been hypothesised to represent a possible compensatory mechanism 

aimed to counteract infection-associated protein deficiency [12]. However, given that, in 
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ruminants, most of the microbiota-mediated proteo- and peptidolysis occurs in the rumen (i.e. the 

second gastric compartment; [15,16]), the role(s) of helminth-associated modifications in 

abomasal microbial flora in maintaining protein metabolism remain(s) unclear.  

Intriguingly, the proliferation of Prevotella species in the gut has been associated with local (i.e., 

intestinal; [23,24,25,26]) and systemic [27,28] inflammation. Therefore, it seems plausible that, 

in addition to their roles in protein metabolism, expanded populations of Prevotella may 

contribute to the inflammation caused by the developing larvae [14]. Moreover, along with the 

expansion of Prevotella species, reduced populations of bacteria of the family Lachnospiraceae, 

and of the genus Butyrivibrio in particular, were detected in the abomasa of goats infected with 

H. contortus [12] (Fig. 1). These bacteria produce butyrate, a short-chain fatty acid (SCFA; see 

Table 1) with anti-inflammatory properties [3]. Thus, the reduction of these populations may 

exacerbate mucosal inflammation caused by helminth infections, a hypothesis that is yet to be 

tested.  

 

2.2 Small intestine 

The small intestine of vertebrates is the primary site of nutrient absorption and, due to its 

proximity to the stomach, it hosts a relatively small number of resident microorganisms [29]. 

Notwithstanding, the small intestinal flora participates in key biological pathways that include 

vitamin synthesis, lipid absorption and amino and bile acids metabolism, in addition to providing 

signals that regulate gut development and function [3].  

A number of GI helminths of public health and veterinary importance inhabit the small intestine, 

including nematodes, trematodes and cestodes (e.g. [4]). Given the profound heterogeneity of 

these groups, studies investigating helminth-microbiota interactions involving small intestinal 

parasites will be considered according to their biology, i.e. as blood-feeders (hookworms), and 

tissue- and luminal-dwelling helminths, respectively (i.e. species characterised by an intra-

intestinal tissue stage of development and species that establish in the gut lumen).  
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2.2.1. Blood-feeding helminths (hookworms). Hookworms, e.g. Necator americanus and 

Ancylostoma duodenale, are small blood-feeding nematodes (~1 cm in length) that, at the adult 

stage, reside in the small intestine of their vertebrate hosts; here, hookworms use ‘teeth’ or ‘cutting 

plates’ (depending on species) to attach to the mucosal lining and lacerate capillaries, causing 

small albeit chronic haemorrhages [30]. The effects that natural infections by N. americanus 

and/or A. duodenale exert on the composition of the gut microbiota of human hosts has been 

assessed mostly in individuals from geographical areas where soil-transmitted helminths (STHs) 

are endemic [31,32,33]. Thus, given that such infections commonly involve multiple parasite 

species, attributing observed modifications in gut microbial profiles to sole hookworm infections 

is unattainable [34]. Nevertheless, quantitative and qualitative changes in the composition of the 

human microbial flora in response to infections by N. americanus have been explored in studies 

in which hookworms were experimentally administered to a cohort of volunteers suffering from 

coeliac disease [35,36,37]. In these studies, hookworm infection was associated with an increase 

in gut microbial richness (Table 1), detected both in faecal and duodenal tissue samples, that was 

maintained following gluten challenge; such increase was hypothesised to contribute to the anti-

inflammatory properties of these parasites via the restoration of microbial and immune 

homeostasis [36,37].  

However, in order to gain a better understanding of the role(s) that parasite-associated changes in 

gut microbiota play in helminth-mediated immune-suppression, suitable experimental models are 

required (cf. [9]). A key study conducted in mice experimentally infected with the murine 

hookworm Nippostrongylus brasiliensis has provided experimental evidence of the role of the gut 

flora in helminth-driven immune-modulation [38]. In particular, the ileal microbiota of mice 

infected with N. brasiliensis was characterised by a significantly decreased beta diversity (Table 

1), alongside expanded populations of Lactobacillaceae, and reduced Turicibacteriaceae and 

Candidatus Arthromitus (the latter belonging to the segmented filamentous bacteria = SFB) [38]. 

Notably, the contraction of SFB populations in the small intestine was dependent on the ability 

of the vertebrate host to initiate Th2-mediated immune responses against N. brasiliensis that 
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resulted in IL-13-driven changes in the architecture of the intestinal mucus and production of 

antimicrobial peptides, and were accompanied by significant downregulation of IL-17-encoding 

transcripts [38].  

2.2.2. Tissue-dwelling helminths. Alterations in gut microbiota composition following infection 

with tissue-dwelling helminths of the small intestine have been best studied in mice 

experimentally infected with the duodenal nematode Heligmosomoides polygyrus [39,40,41,42]. 

Nevertheless, since ingested H. polygyrus larvae penetrate the submucosa of the small intestine 

of the rodent hosts and moult twice before emerging into the lumen as adult worms (cf. [43]), it 

must be pointed out that reported quantitative and qualitative changes in gut microbiota 

composition following H. polygyrus infection may be associated, at least partially, with the 

colonisation of the intestinal lumen by the adult stages of these parasites. 

  

Investigations conducted in this host-parasite pair have provided key evidence of the interplay 

between helminth parasites, small intestinal microbiota and host immunity [41,42]. Whilst 

significantly expanded populations of Lactobacillaceae and/or the genus Lactobacillus have been 

consistently detected in the small intestine of susceptible C57BL/6 mice following infection by 

H. polygyrus [41,39,44], significant reductions in communities of Lactobacillaceae have been 

reported in partially resistant BALB/c mice (cf. [41,42]), which suggests the existence of a fine 

interplay between H. polygyrus, lactobacilli and host susceptibility to infection. Indeed, a causal 

relationship amongst these players was demonstrated by Reynolds and co-authors [41] in an 

elegant study showing positive correlations between intestinal loads of Lactobacillaceae, worm 

burdens and Treg frequencies within mesenteric lymph nodes (Fig. 1). In addition, in a separate 

study, the small intestinal microbiota of C57BL/6 mice infected with H. polygyrus was 

characterised by expanded populations of Lachnospiraceae (another family of SCFA-producing 

bacteria) and elevated SCFA levels [45] (Fig. 1). Intriguingly, Lactobacillaceae and 

Lachnospiraceae were also increased in the small intestinal microbiota of mice infected with the 

intracellular nematode Trichinella spiralis [46], while the genus Lactobacillus was expanded in 
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the same GI compartment of mice infected with Strongyloides venezuelensis [47]; however, 

whether these alterations participate in mechanisms of regulation of Treg responses in these 

models of infection is yet to be ascertained (Fig. 1). 

Alongside studies conducted in murine models of parasite infection, investigations of the impact 

of helminth colonisation on the composition of the gut flora have also been conducted in naturally 

parasitized humans [48], as well as experimentally infected rabbits [49]. The former study 

explored the effects of long-term, subclinical monoparasitic infections by the nematode of the 

small bowel of humans, Strongyloides stercoralis, on resident bacterial populations [48]. S. 

stercoralis is characterised by a complex life cycle, that involves endogenous reinfections (= 

‘autoinfection’) via filariform larvae that invade the mucosa of the large intestine, before 

emerging and establishing in the small intestine, where parthenogenetic adult females live 

threaded in the epithelium (reviewed by [50]). The faecal microbiota of chronically infected 

individuals from a non-endemic area of Europe was characterised by an increased microbial alpha 

diversity in comparison with that of uninfected controls from the same region [48]; this was 

accompanied by lower abundances of opportunistic and/or potentially pathogenic bacteria (e.g. 

Bacteroides eggerthi and Pseudomonas spp.), as well as increased proportions of bacteria within 

the class Clostridia [48]. Members of the latter class are known to contribute to the maintenance 

of gut homeostasis and modulation of immune tolerance via the production of SCFAs, amongst 

other mechanisms [51]. However, in this study, levels of SCFAs in the faecal metabolome of 

Strongyloides-infected individuals were comparable to those detected in samples from uninfected 

controls [48].  

Other studies have suggested that host nutrition may play a key role in helminth-associated 

alterations in gut microbiota composition [49,52]. Amongst these, a recent investigation 

conducted in rabbits experimentally infected with Trichostrongylus retortaeformis highlighted 

the impact of diet in host-parasite-microbiota crosstalk [49]. This trichostrongyle colonizes the 

lumen of the duodenum, where adult parasites establish following a brief phase of larval 

development within the mucosa [53]. In coprophagic rabbits, T. retortaeformis infection was 
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accompanied by reduced gut microbial diversity and overall bacterial loads at the site of adult 

establishment [49], whilst restriction of coprophagy resulted in increased microbial diversity and 

bacterial community abundance in the duodenal mucosa of helminth-infected animals [49]. 

Furthermore, a number of compositional changes were associated with helminth infection 

irrespective of the nutritional input (i.e. coprophagy restriction/allowance), which could also 

impact on the metabolic capacity of the gut microbiota; for instance, the reported expansion of 

Desulfocella could contribute to fatty acid oxidizing functions in infected rabbits, whilst 

cellulolytic bacteria of the genera Ruminoccocus and Bacteroides were less abundant in infected 

animals compared to uninfected controls [49]. In addition, in the same study, changes in gut 

microbiota composition following infection were linked to the onset of host immune responses; 

in particular, expanded populations of Lactobacillaceae in the small intestine of T. retortaeformis-

infected rabbits were positively correlated with levels of expression of T-bet, a key transcription 

factor defining Th1 cells [54], but not with those of the Treg-related molecules Foxp3 and IL-10 

[49] (Fig. 1). This finding differs from the abovementioned commensal-pathogen-immunity 

interplay observed in mice experimentally infected with H. polygyrus [41]; however, it agrees 

with observations from two independent studies conducted in a murine model of chronic infection 

with the large intestinal nematode Trichuris muris ([55,56] – see section 2.3). Overall, this 

information adds weight to the hypothesis that, in spite of the similarities in bacterial taxa whose 

abundances are affected by helminth infections, the functional consequences of such changes may 

not be equal across host-parasite pairs. 

In addition to the extensive research involving parasitic nematodes, recent studies have started to 

elucidate the impact that schistosome egg migration through the intestinal wall exerts on gut flora 

homeostasis [57,58]. Whilst Schistosoma mansoni and S. japonicum eggs penetrate the mucosa 

of both the small and large intestines [59], for the purpose of this review these parasites are 

considered helminths of the small intestine since in mice (the host species in which relevant 

investigations have been conducted) S. mansoni eggs egress preferentially via the Peyer’s patches 

[60]. A key study conducted in S. mansoni-infected mice in which the gut microbiota had been 
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depleted by long-term exposure to broad-spectrum antibiotics showed significantly reduced faecal 

egg counts and decreased intestinal granuloma formation, thus supporting a role for the resident 

microbial populations in infection immunopathology [61]. In a more recent study, 

Lactobacillaceae were up-regulated in the small intestine of infected mice before the onset of S. 

mansoni egg laying, which led the authors to hypothesize that, similarly to H. polygyrus (cf. [40]), 

S. mansoni establishment could stimulate the early expansion of populations of bacteria with 

immune-regulatory functions [57] (Fig. 1). It must be however pointed out that pre-patent 

infections by S. mansoni in mice are dominated by a Th1-type phenotype [59] and that 

associations between populations of Lactobacillaceae and Th1-mediated immune responses have 

been reported in other experimental models of helminth infection [49,55,56]. Furthermore, the 

genus Lactobacillus was negatively associated with patent infections by S. japonicum in two 

mouse strains [58] and associations between S. mansoni infections and Lactobacillaceae 

abundance were no longer detected following the onset of egg laying [57] (Fig. 1).  

During patent infections, both S. mansoni and S. japonicum colonisation were associated with 

significantly reduced alpha diversity and increased beta diversity of gut microbial populations, 

likely a result of the initiation of inflammatory responses against the egressing eggs [57,58]. 

Excretion of S. mansoni eggs through the Peyer’s patches is known to cause an overall decrease 

in the lymphoid cellularity of this tissue, that includes IgA-producing B cells [60]. Given that 

diversified repertories of secretory IgA (sIgA) are pivotal for the maintenance of gut microbial 

community homeostasis, and that the Peyer’s patches are the main inductive sites for GI sIgA 

responses (reviewed by [62]), it is conceivable that disturbances of patch structure and sIgA 

production due to egressing eggs could contribute to the observed shift in gut microbial 

composition towards a ‘dysbiotic’ phenotype (Table 1) (cf. [57,58]). Alongside changes in 

microbial diversity, Schistosoma spp. infection was also associated with expanded populations of 

putative pro-inflammatory bacteria (e.g. Dorea and Bacteroides acidifaciens) following the onset 

of egg-laying [57], an observation consistent with the reduced intestinal pathology detected in S. 

mansoni infected, gut microbiota-depleted mice [61]. 
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Whilst the abovementioned studies have been conducted in rodent models of schistosome 

infections, the impact of hepatointestinal and urogenital schistosomiasis on the composition of 

the human gut flora has been investigated by examining faecal samples of children from a disease-

endemic region [63]; in particular, infection-associated alterations of microbial profiles were 

found to be moderate in comparison with uninfected controls [63]. Notwithstanding, in some 

subjects, patent infections were associated with the expansion of bacteria within the phylum 

Proteobacteria (family Enterobacteriaceae), and the presence of overt clinical signs (e.g. blood 

in stool and splenomegaly, simple splenomegaly or vomiting within three hours following 

praziquantel treatment; [63]). The growth of Enterobacteriaceae is exacerbated by inflammatory 

microenvironments and, in turn, contributes to the worsening of inflammation and disease (cf. 

[64]). Together, data obtained from studies conducted in both humans and animal models of 

schistosomiasis point towards a profound impact of parasite infection on gut microbial 

composition and/or potential role of different pro-inflammatory bacteria in disease 

immunopathology [57,58,63]. Furthermore, whilst the pro-inflammatory profile of the 

schistosome-associated microbiota is often attributed to egg migration through the intestinal wall 

[57,58], it is well established that hepatic disorders have an enormous impact on gut microbiota 

structure and composition [65] and, therefore, the potential contribution of egg-related liver 

fibrosis to the gut microbial dysbiosis observed in schistosome-infected hosts should not be 

disregarded.  

2.2.3. Luminal-dwelling helminths. A number of helminth species from several taxonomic groups 

establish in the lumen of the small intestine of the vertebrate hosts. Amongst these, ascarid larvae 

undergo intra- or extra-intestinal tissue migration before establishing as adult worms in the small 

intestine of their vertebrate host; this phase of parasite migration and development is likely to 

affect (directly and/or indirectly) the composition and function(s) of gut microbial communities; 

nevertheless, to the best of our knowledge, data on the impact of the migratory phases of ascarid 

infections on the host gut microbiota is still unavailable, whereas several studies have examined 

the effect(s) of patent infections by ascarid parasites on populations of gut microbial communities 
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of human and animal hosts. In particular, the effects of infection by the large roundworm Ascaris 

lumbricoides on the human gut microbiota have been assessed in combination with other STHs 

in endemic areas [31,32,33,34,66,67]. Nevertheless, alterations in gut flora composition have 

been characterised in pigs experimentally infected with Ascaris suum and cats naturally infected 

by a phylogenetically related nematode species, i.e. Toxocara cati [52,68]. Acute swine infection 

by A. suum was associated with a trend towards an increased alpha diversity and expanded 

populations of Succinivibrio and Turicibacter along with reductions in Lactobacillus [52] (Fig. 

1). In addition, a decrease in the concentration of gut microbiota-derived SCFAs was observed in 

the proximal colon of infected pigs [52]. This result contrasts observations by Zaiss and co-

authors [45], who reported increased levels of these mediators in faeces of pigs chronically 

infected with A. suum; nonetheless, this discrepancy could be related to differences between the 

acute and chronic phases of the infection (i.e. 14 versus 56 days post infection, respectively) [52]. 

Similar to Ascaris spp., adult Toxocara spp. attach to the intestinal mucosa of the definitive hosts, 

where they establish following somatic migration of larval stages that begins with the invasion of 

the small intestinal mucosa [69]. Patent infections with T. cati were associated with increased 

abundances of gut members of the order Lactobacillales (similarly to H. polygyrus- and S. 

mansoni-infected mice, and rabbits infected with T. retortaeformis [41,49,57]; Fig. 1), as well as 

of the family Enterococcaceae and the genera Enterococcus and Dorea, and reduced populations 

of several members of the class Gammaproteobacteria in faecal samples from these animals [68].  

For trematodes, a single study has investigated the compositional gut microbial alterations of mice 

infected with the hypo-virulent food-borne trematode Metagonimus yokogawai [70]. No 

significant changes in caecal microbial alpha diversity were detected in infected mice compared 

to uninfected controls; however, the former were characterised by a reduced beta diversity [70], 

suggesting a ‘stabilising’ effect of the infection on the host gut microbiota. In addition, infection 

was accompanied by the expansion of several families within the phylum Firmicutes and members 

of the Bacteroidetes; in particular, Lactobacillus spp. were significantly more abundant in the gut 

microbiota of mice following infection [70] (Fig. 1), in accordance with the findings from 
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previous studies conducted using faecal samples of hamsters and mice (C57BL/6 strain) infected 

with the liver flukes Opisthorchis viverrini [71] and Clonorchis sinensis [72], respectively, as 

well as in several abovementioned murine models of GI helminth infection (cf. [41,46,48]). 

Alterations in gut microbial profile composition have also been assessed in several studies 

conducted in rats experimentally infected with the cyclophilid cestode Hymenolepis diminuta 

[73,74,75,76]. This parasite anchors to the small intestinal mucosa via the four suckers located on 

its scolex, without causing major disturbances in the host gut (e.g. [4]). Considerable 

inconsistencies have emerged from these studies, both regarding the specific gut microbial taxa 

affected by infection, as well as the magnitude of the recorded changes [73,74,75,76]. In spite of 

these discrepancies, most of these investigations reported no significant alterations in gut 

microbial alpha diversity following H. diminuta infection of naïve rats. Nonetheless, a single 

study observed that, following experimental induction of colitis, H. diminuta infection was 

associated with a rapid restoration of gut microbial alpha diversity compared to uninfected rats 

[76]. This finding further supports the hypothesis that the anti-inflammatory properties of selected 

GI helminths may be linked, at least in part, to their ability to promote a shift towards a ‘healthy’ 

gut microbiota phenotype by stimulating an increase in microbial alpha diversity [35,36,37,77].  

In addition, it has been suggested that H. diminuta colonisation may promote the stability of the 

gut microbiota in response to inflammatory stimuli, such as enteric bacterial infections [74]. This 

hypothesis was not supported by the findings of Pomajbíková et al. [76], who detected large 

disruptions in microbiota composition following the induction of colitis in animals infected by H. 

diminuta; however, given the substantial differences between the experimental protocols 

employed in these studies (e.g. the nature of the inflammatory stimuli, age of the animals at 

infection, and site and time of sampling [74,76]), direct comparisons are unwarranted.  

 

2.3. Large intestine 
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The large intestine of vertebrates houses the largest number of microbial species along the GI 

tract (~1010–1011 bacteria per gram of intestinal content in humans [29]); the vast majority of these 

species are strict anaerobes that perform a variety of key biological functions, including vitamin 

synthesis, amino acid metabolism and production of SCFAs [3,29]. Substantial differences in the 

anatomy of the large intestine exist amongst vertebrate species, which likely reflect the adaptation 

of this organ to the relative proportions of indigestible food in the host diet and may influence the 

diversity and composition of the microbial communities inhabiting this GI compartment across 

different hosts [78].  

Thus far, studies of the interactions between the large intestinal microbial flora and parasitic 

helminths have focussed solely on tissue-dwelling species, and particularly on whipworms 

(Trichuris spp.), whose adults live partially embedded in the colonic and caecal mucosa, feeding 

on host tissues via a yet not fully understood mechanism [79]. A milestone study has explored the 

potential role(s) of Trichuris-induced changes in gut microbial profiles in parasite-mediated 

suppression of clinical signs of chronic idiopathic diarrhea (CID) in a primate model [77]. In 

particular, the mucosal microbiota of the colon of macaques with CID (a model of human 

inflammatory bowel disease) exposed to infection by T. trichiura was characterised by increased 

alpha diversity, as well as variations in the abundances of several bacterial phyla, including 

decreased Cyanobacteria alongside expanded Bacteroidetes and Tenericutes, which were 

accompanied by significant amelioration of diarrhoea and weight gain [77]. The authors 

hypothesized that reversion of intestinal inflammation linked to parasite-elicited Th2-mediated 

immune responses might have been responsible for significant changes in the mucosal 

environment which, in turn, might have limited the growth of Cyanobacteria and favoured that 

of Tenericutes [77]. 

The relationships between whipworm colonisation, host immunity and gut microbiota 

composition have been the focus of recent studies conducted in murine models of T. muris 

infection [55,56,80]. In particular, in two independent studies, chronic (low-dose) T. muris 

infection was associated with a significant decrease in faecal/colonic microbial alpha diversity, 
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alongside increased beta diversity and alterations of the abundances of several bacterial taxa 

[55,56]. However, in contrast to these findings, T. muris infection did not result in significant 

changes in caecal microbial alpha- and beta diversities in mice exposed to acute (high-dose) T. 

muris infection [80]. The infection dose is known to influence the relative resistance/susceptibility 

of mice to T. muris [81]. In particular, low Trichuris burdens promote Th1-mediated immune 

responses that lead to the establishment of chronic infections, whereas high doses of whipworm 

ova lead to the onset of Th2-dependent protective immunity that result in the expulsion of 

parasites [82]. Thus, it is tempting to speculate that alterations in the composition of the large 

intestinal microbiota may depend upon the type of host immune response mounted against the 

parasite and the subsequent alterations in the mucosal environment. This hypothesis is supported 

by the results of a study by Ramanan et al. [83], that demonstrated that the ability of infections 

by T. muris to suppress intestinal inflammation in a mouse model of Crohn’s disease is dependent 

on Th2-mediated immune responses that result in significant reductions of populations of pro-

inflammatory bacteria [83].  

On the other hand, chronic T. muris infections were consistently associated with significant 

reductions in members of the phylum Bacteroidetes, together with expansion of the order/family 

Lactobacillales/Lactobacillaceae and the genus Mucispirillum in the gut microbiota of colonised 

mice [55,56]. A significant expansion in populations of Lactobacillaceae has been reported 

following infection of rodents, lagomorphs and felids with a range of nematodes and trematodes 

inhabiting the small intestine (see above). Notably, similar to findings from rodent models of S. 

mansoni [59] and T. retortaeformis infection [49], the expansion of 

Lactobacillales/Lactobacillaceae in the gut microbiota of T. muris-chronically infected mice 

occurred in an environment where Th1-mediated immune responses are dominant, whereas no 

correlation was reported between the relative abundances of these bacterial taxa and populations 

of Tregs [55,56] (Fig. 1). Potential roles of GI populations of Lactobacillaceae in type 1 

inflammation are yet to be characterised; nevertheless, the data above are supported by 
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observations from Duque-Correa et al. [80], who detected expanded Lactobacillaceae populations 

following T. muris infection in mice lacking IL-10 signalling. 

On the other hand, decreased numbers of Treg cells in the colonic lamina propria during chronic 

T. muris infection, corresponded to reduced abundances in populations of Bacteroidetes, and in 

particular of Prevotella and Parabacteroides [55,56]. Members of the Bacteroidetes, including 

Prevotella, play key roles in the anaerobic breakdown of dietary carbohydrates that result in the 

production of SCFAs [84] (Fig. 1). Consequently, it has been hypothesized that reduced 

populations of these bacterial taxa following T. muris infection could negatively impact on the 

microbial-dependent metabolism of the large intestine (whose microbial communities, 

particularly in hind gut fermenting omnivores and herbivores, play crucial roles in host nutrition 

via the metabolism of plant material) and the production of immunomodulatory SCFAs.  

The colonic microbiota of pigs experimentally infected with T. suis was also characterised by 

significant changes in the relative abundances of several microbial taxa, that included reduced 

populations of Ruminococcus, Succinivibrio and Oscillibacter, and increased Paraprevotellaceae 

[85,86] and Mucispirillum [85]; the latter was consistent in mice chronically infected with T. 

muris [55,56] and, since this genus colonizes the mucus layer of the GI tract [87,88], their 

expansion has been attributed to the increased mucus production following infection [55,85]. This 

hypothesis is supported by observations by Duque-Correa et al. [80], who reported concomitant 

reduction of populations of Mucispirillum and loss of mucin-secreting goblet cells in IL-10 

signalling-deficient mice infected by T. muris.  

Moreover, in the gut microbiota of T. suis-infected pigs, the abundance of Campylobacter was 

significantly higher than that detected in the microbiota of uninfected controls, which raised the 

question of whether parasite infections could increase the susceptibility of pigs to colonisation by 

pathogenic Campylobacter [86]. A higher abundance of Campylobacter spp. has also been 

reported in the gut microbiota of horses with patent large intestinal helminth infections [89,90] 

(Fig. 1). 
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In equine species, the impact of large intestine-dwelling nematodes, i.e. the Cyathostominae, on 

gut microbiota composition has been recently investigated using faecal samples from chronically 

infected adult mares [91], as well as from foals with acute cyathostominosis [90]. Once ingested, 

cyathostomin larvae invade and encyst within the large intestinal mucosa of their equine hosts, to 

subsequently emerge in the gut lumen to complete their development to adult males and females 

[92]. Whilst a reduced gut microbial richness was associated with acute infection in young 

parasitized animals, a trend towards an increased gut microbial alpha diversity was observed in 

chronically infected adults [90,91]. These differences suggest that parasite-mediated alterations 

in gut microbiota composition in this host-parasite pair differ according to age-based alterations 

in immune responses mounted against these helminths, a hypothesis that requires thorough 

testing. Indeed, a separate study showed that anthelmintic treatment resulted in a rapid and 

transient decrease in faecal alpha diversity following cyathostomin removal in both yearlings and 

adult horses [93]. Comparative analyses of microbial populations whose abundances were altered 

in the presence of cyathostomin infection between adult and young animals suggest that 

compositional changes in gut microbiota composition could be also linked to the stage of infection 

[90,91]. In particular, chronic infections were associated with expanded populations of 

Elusimicrobia and Deltaproteobacteria, and reduced Methanomicrobia [91]. Conversely, acute 

infections were linked to expanded Eubacteriaceae and reduced Lachnospiraceae, both 

belonging to the class Clostridia [90].  Interestingly, reduced populations of Prevotella were also 

observed in the gut microbiota of infected yearlings [88], in accordance with previous 

observations in rodent models of T. muris infection [56], whilst reduced populations of 

Lachnospiraceae have been reported in the gut microbiota of horses susceptible to strongyle 

infection when compared to animals with natural resistance to these parasites [89] (Fig. 1). 

Notably, reductions in Lachnospiraceae communities were partially attributed a role in abomasal 

inflammation of goats infected with H. contortus [12] (Fig. 1). 

 

3. Concluding remarks and future directions 
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The three-way interactions occurring between helminth parasites, the GI microbiota and the host 

gut are highly diverse in nature. On one hand, the vertebrate gut is a complex system that includes 

different compartments with specialised physiological functions, each populated by a highly 

diverse microbiota, in both composition and immune and metabolic activities [29]. As a result of 

such a diversity, the impact of GI helminth infections on populations of resident microbes largely 

depends on the host and parasite species under investigation [8].  

In spite of such variation, some findings have been repeatedly observed in a number of hosts 

parasitized by helminths occupying different niches along the GI tract; amongst these, the 

expansion of populations of lactobacilli upon helminth colonisation is one the most frequently 

reported observations [41,46,47,49,55,56,57,70,80] (Fig. 1). Whilst the expansion of these 

bacteria was demonstrated to promote the establishment of H. polygyrus infections via the 

enhancement of Treg-mediated responses in mice [41], increased populations of 

Lactobacillaceae/Lactobacillus in other host-parasite systems was not associated with activation 

of regulatory immune responses [49,55,56,57,80] (Fig. 1). These contrasting observations suggest 

that the ability of lactobacilli to regulate host adaptive immune responses may be dependent on 

the activation of other immune-molecular pathways at the site of the infection that are yet to be 

elucidated. The frequently observed discrepancies between the ‘gut microbial phenotype’ 

resulting from helminth infections and the functional consequences of alterations in gut microbial 

composition highlight the need for thorough investigations aimed to identify the biological 

mechanisms regulating host-parasite-gut microbiota interactions, as well as their biological 

significance [9]. 

Furthermore, in studies of host-parasite-microbiota interactions, attention should be paid to the 

systems biology of the gut compartment under consideration (i.e. the interplay between the gut 

physiology, the resident microbiota and the mucosal immune system), as variations in the 

abundances of the same population of bacteria inhabiting different GI compartments may result 

in varying functional consequences for the host.  
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In addition to this, future studies should address the suitability of investigating faecal microbial 

composition as a proxy of bacterial populations inhabiting different compartments of the GI tract. 

Indeed, whilst consistent findings were reported for both stool samples and abomasal content 

from ruminants infected by abomasal nematodes [12,14], gut microbial alterations that followed 

infection by H. diminuta could not be consistently reproduced from caecal and faecal samples 

[2,49,80].  

The establishment of a public repository compiling currently available bacterial 16S rRNA 

datasets from available studies of helminth-host-microbiota interactions may assist comparative 

analyses of the effects that a range of GI helminth infections exert on the microbial composition 

of different gut compartments and host species. Notwithstanding, in order to gain further insights 

into the biological significance of these observed alterations, sequencing data must be 

accompanied by additional investigations using other ‘omics’ technologies (e.g. transcriptomics, 

proteomics, metabolomics and immunomics), thus enabling a ‘systems biology’ view of the host-

parasite-gut microbiome triad. In turn, this improved knowledge will represent a solid basis for 

translational applications aimed to discover and develop novel parasite control/treatment 

strategies and/or helminth-based anti-inflammatory therapeutics via the rational manipulation of 

the host gut microbiota.  
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LEGENDS TO FIGURES 

Fig. 1. Populations of gut bacteria reportedly affected by gastrointestinal helminth 

infections. Double-entry chart summarising the alterations in the abundances of populations of 

selected members of the vertebrate gut microbiota (rows) that have been repeatedly reported 

following infection with gastrointestinal helminths, listed according to the gastrointestinal 

compartment where parasite infection occurs (columns). For each pair of bacteria/infection site, 

the reported change in bacterial population abundance (increase/decrease; arrows), host (icon) 

and parasite pair, and site of sampling (in brackets) are indicated. The proposed effects on host 

metabolism and/or immunity are summarised in the right column (grey). NR = no changes 

reported. 
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