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Abstract 7 

Delaminations caused by impact or indentation are a major cause of strength reduction in 8 

composite laminated structures. Since delaminations seldom occur in just one location through 9 

the thickness, the effect of multiple delaminations on the geometrical nonlinearity and response 10 

of scaled composite laminated plates subjected to a transverse concentrated load is studied here 11 

through analytical formulations. The scaling includes in-plane dimension scaling and 12 

sublaminate scaling based on a Reference plate with a stacking sequence of [45o/90o/0o/-45o]2S. 13 

The analytical approximation obtained under point loading quasi-static indentation is also 14 

suitable for studying large-mass low-velocity impact or for experiment and laminate design. 15 

The analytical approximations were compared with axisymmetric finite element model and 16 

static indentation tests conducted in a previous study. The novel achievement of this work is 17 

that it includes analytical expressions to predict the evolution of damage and load-displacement 18 

curves as a simpler alternative to the complex nonlinear finite element models.  19 

Keywords: Impact Damage, Energy release rate, Analytical approximation, Finite element 20 

analysis. 21 

1 Introduction 22 

The use of composite structures has increased in many industries because of their 23 

advantage in weight reduction and advanced mechanical properties over traditional metal 24 

alloys. However, due to lack of reinforcement in the though thickness direction of laminated 25 

composites, they become vulnerable under out-of-plane (or transverse) loading, where 26 

interlaminar shear stresses develop. Amongst all transverse loading scenarios, static 27 

indentation and low-velocity impacts, that can induce Barely Visible Impact Damage (BVID), 28 

receive the greatest design consideration. This is because internal delamination damage, that is 29 
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not easily visible from the structures’ surface, can grow under continuous loading, leading to 30 

catastrophic structure failure especially under compressive loading [1]. As this is an important 31 

factor in design considerations, many studies use analytical or numerical approaches to predict 32 

the structural response and damage of composites under transverse loading to understand the 33 

system kinematics and material failure mechanisms. 34 

Numerical approaches provide full-field accurate solutions for such loading scenarios. 35 

With the help of commercial finite element packages and various material failure models, the 36 

nonlinear structural response, material damage behaviour and failure mechanisms can be 37 

modelled, validated and predicted. Studies such as found in references [2–7] used continuum 38 

or discrete approaches to predict inter- and intraply damage of laminated composites under 39 

static indention or low-velocity impact, and their modelling results were validated against 40 

experimental observations with good correlations. Numerical modelling is in general accurate 41 

and suitable for structural level analysis and for investigating detailed damage behaviour. 42 

However, time spent for pre- and post-processing and CPU run times makes these methods 43 

relatively slow compared to analytical approaches.  44 

In contrast, analytical modelling uses closed form expressions from classic theories i.e. 45 

Classic Laminate Theory (CLT), thin plate or shell theory, contact theories, solid mechanics, 46 

instead of applying computational mechanics. The advantage of analytical modelling over 47 

numerical modelling is that it provides insights on the governing parameters of impact response 48 

and identifies damage initiation, providing better understanding of the damage mechanisms 49 

during impact with considerably less computational effort. However, analytical 50 

approximations are not able to be simulate geometric nonlinearity for complex structures in 51 

most of the cases. In addition, one of the major limitations of most analytical models is that 52 

they are only available for laminate response in the elastic regime and up to damage initiation 53 

but do not take damage growth into account due to the complexity of the stress state in 54 

composite laminates. However, such difficulties can be avoid by using sensible 55 

homogenisation methods and non-dimensionalisation [8]. In low-velocity impact modelling, 56 

the analysis is generally assumed to be a quasi-static process and equivalent to static 57 

indentation [9]. Analytical study of impact on composites can be broadly categorised into four 58 

methods, as follows:  59 

1. Analysing impact response through local deflection, using various contact laws in 60 

conjunction with experimental static indentation laws  61 
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1. Using discrete spring-mass model to predict elastic response of a laminate during impact  62 

2. Analytically derived damage thresholds (or failure criteria) for the BVID  63 

Since the laminate response during impact is a complex process and varies with the 64 

physical configuration of the laminate, impactor, boundary conditions, and impact energies, it 65 

is important to understand and generalise the behaviour of laminates into different types of 66 

impact. The information can then be used for predicting the resulting damage incurred. Olsson 67 

[10] defined three impact types based on impactor velocity, and the mass of the impactor and 68 

substrate. Similar studies in the literature include those of Christoforou and Yigit [11], Abrate 69 

[9] and Lin and Fatt [12]. Some early studies [13–15] used the modified Hertzian contact law 70 

in the loading phases and a power law in the unloading phase to characterise the relationship 71 

between contact load and indentation in different laminates under transverse loading. They 72 

suggested that the contact force is proportional to the transverse modulus and that the contact 73 

law is significantly influenced by the indentation level and the deflection of the laminate; as 74 

indentation and the curvature of the laminate increase, the effects of the large contact area and 75 

membrane stiffening on contact stress redistribution lead to deviation from the Hertzian contact 76 

law in the experimental results [15]. Suemasu et al [16] used a superposition approach between 77 

local indentation derived by the contact law and forced vibration as a Boussinesq problem to 78 

study the force-indentation relationship of a transversely isotropic plate; the analytical results 79 

were in agreement with numerical FE solutions. In more recent studies [17,18], both qualitative 80 

and quantitatively predictions on the maximum force incurred during impact and the region at 81 

which it acts and the corresponding stress states everywhere inside the laminate, even with 82 

damage, were derived analytically. These were analysed by using a modified Hertzian contact 83 

pressure distribution together with plate theory, using numerical formulations to capture 84 

relatively detailed impact response and damage mechanisms in a circular plate under transverse 85 

loading. Due to the complexity of the calculations, most of the analytical studies available in 86 

the literature do not account for the evolution of contact stiffness with laminate deflection and 87 

the development of impact damage.  88 

The most applicable analytical solution for delamination failure to the current work, the 89 

critical load for delamination initiation, was developed by Suemasu and Majima [8] and Davies 90 

et al. [19] based on linear elastic fracture energy. The case of multiple delaminations induced 91 

during low velocity impact of composite plate has been simplified to a problem of a single 92 

delamination and two ‘bonded’ axisymmetric beam-like plates under transverse point loading. 93 
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This prediction has been comprehensively verified and has been made use of in numerous 94 

experimental, analytical and FE modelling studies [20–23]. 95 

In this work, the complete force response of scaled laminates under static central 96 

transverse loading up to elastic, damage initiation and then in the growth regime was modelled. 97 

The governing parameters of damage growth and geometric nonlinearity due to damage growth 98 

were investigated using a nonlinear analytical solution. This method is based on fracture energy 99 

and thin homogenised plate mechanics under point loading with the assumptions that are 100 

otherwise similar to those in the linear analysis of Davies et al. [19] that considered only a 101 

single delamination. The occurrence of multiple delaminations is considered in this work, 102 

which is necessary to capture the full evolution of damage and the load curves, beyond the 103 

point of initiation. The laminate is modelled as a thin circular plate with fully-fixed boundary 104 

conditions at its edge. This arrangement allows one to perform axisymmetric finite element 105 

analysis to validate the proposed nonlinear analytical approximations. The preliminary 106 

analytical method was introduced previously [24], and is further developed and validated in 107 

this study. The experimental observations obtained in [6] are compared in detail with the 108 

predictions of the new analysis. This study demonstrates the predictive capabilities of the 109 

analytical modelling on the response of the composite under transverse loading and the scaling 110 

effects of laminates under transverse load. A superposition method is also developed here to 111 

model for the first time the complete load-displacement curves of scaled laminates under 112 

transverse loading with damage progression, as well as the load drop in the force-displacement 113 

relation indicating unstable delamination propagation.  114 

2 Description of Analytical Model  115 

A brief background of this approach is introduced here for the sake of completeness but 116 

is not elaborated in detail. The preliminary formulation can be found in [24]. For the case of a 117 

laminate under transverse loading, the deflection profile and underlying delaminated region are 118 

easily identifiable. The plate can then be divided into two portions. One is the intact (or 119 

‘undamaged’) plate without delamination. The other is the damaged portion with multiple 120 

delaminations, as shown in Figure 1. It is assumed that the multiple delaminations cover a full 121 

circular area, with radius ‘a’, and are uniformly distributed through the thickness of the 122 

laminate, situated between two neighbouring sublaminates [45o
n/90o

n/0
o
n/-45o

n] (See cross-123 

section A’B’C’D’ in Figure 1). The delaminated part therefore can be modelled as a circular 124 

plate with N sublaminates and N-1 circular delaminations. 125 
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 126 

Figure 1: Illustration of circular plate under transverse point loading with multiple delamination 127 
formed at the centre of the plate.  128 

 129 

Figure 2: A circular plate with multiple circular delaminations subjected to a concentrated load at 130 
its centre can be expressed as superposition of three problems [23]. (a) circular plate with radius R 131 
containing N-1 number of delaminations with radius of a, (b) intact plate, (c) delaminated portion, 132 

(c’) individual sublaminate.    133 

The superposition technique is applied to describe the overall central mid-plane 134 

deflection of the plate. This superposition consists of two components: an intact (‘undamaged’) 135 

plate with nonlinear response subjected to a concentrated load at its centre, a circular plate with 136 

radius ‘a’ and a thickness the same as that of the delaminated portion. The delaminated portion 137 

is fixed at its periphery connecting to the intact plate, and they both are subjected to the same 138 

central point load. Cross-section views, corresponding to cross-section ABCD and A’B’C’D’ 139 

in Figure 1, of the damaged plate and the displacement superposition mechanics are shown in 140 

Figure 2. 141 

2.1 Displacement and Load Superposition 142 

If considering a circular quasi-isotropic laminate with radius R and overall thickness h 143 

subject to a fully-fixed boundary condition, when the plate with the N-1 multiple circular 144 

delaminations of radius a is loaded at its centre as shown in Figure 2a, the damaged portion 145 
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significantly deforms and exhibits large geometric nonlinearity, whereas the deflection of the 146 

intact portion is relatively small and under the elastic regime, with only a slight geometric 147 

nonlinearity. The simple expression for the deflection of a plate under transverse loading is 148 

governed by two parameters; bending-shearing stiffness and membrane stiffness [25]. The 149 

flexural stiffness of a plate is proportional to the cube of the thickness (h3). Assuming the 150 

uniformly distributed N-1 multiple delaminations divide the whole damaged portion into N 151 

sublaminates with equal individual thickness (t), then the flexural stiffness is reduced to the 152 

sum of the flexural stiffness of the N sublaminates. This is expressed as 1/N2 of the flexural 153 

stiffness of the intact plate. Due to fact that the membrane stiffness is proportional to the first 154 

order of the thickness (h), the reduction caused by multiple delaminations in the total membrane 155 

stiffness of the intact plate is assumed to be negligible. The overall response of a delaminated 156 

plate under transverse loading can be simplified by the superposition of three scenarios (b), (c) 157 

and (c’) in Figure 2. The sum of the applied load (P) of the three scenarios is the same as that 158 

of scenario (a) in Figure 2. 159 

In scenario (b), it is assumed that the shear stress distribution through the thickness at 160 

the delaminated surfaces is equal to that in the intact plate at the corresponding interfaces. The 161 

solution of scenario (b) is therefore simplified to the same as an intact plate. Then, the applied 162 

load can be decomposed into the linear bending load (Pb) and the nonlinear membrane load (Pm) 163 

components. Note that the nonlinearity in the plate response is with respect to the central 164 

deflection. Scenario (c) has N circular panels (delaminated sublaminates) with a radius of ‘a’ 165 

and a fully fixed boundary condition at delamination periphery. All the delaminated 166 

sublaminates are assumed to deflect together and have the same deflection. Because the change 167 

of membrane stiffness is negligible, the load required for the delaminated sublaminates to 168 

generate the same deflection as the intact plate reduces at the same rate as the bending stiffness. 169 

For a given deflection level, the load corresponding to the bending stiffness reduction (ΔPb) 170 

can be written as: 171 

𝛥𝑃𝑏 = 𝑃𝑏 (1 −
𝑁𝐷𝑑

𝐷0
) (1) 

where D0 and Dd are the bending rigidities of intact laminate and individual sublaminates 172 

(subscript ‘0’ and ‘d’ to denote the intact and damaged states). 𝛥𝑃𝑏 results in local deflection 173 

𝛿1at the delaminated portion, as shown in Figure 2c. If the plate is assumed to be homogenised 174 

to an equivalent isotropic plate, Dd = D0/N 3.  175 
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If there is no constraint between the delaminated surfaces and the sublaminates have 176 

the same deflection, then the overall deflection of a delaminated laminate (see Figure 2a) 177 

becomes equal to the sum of the two individual nonlinear component plates, namely the global 178 

intact plate (see Figure 2b) with radius ‘R’ and the local delaminated sublaminates with radius 179 

‘a’ (see Figure 2c’). 180 

2.2 Non-dimensionalisation  181 

The load-displacement relation of the global intact plate in scenario (b) is independent 182 

of the presence of multiple delaminations. A non-dimensional relation of the intact plate based 183 

on thin plate theory can be expressed as: 184 

𝑝0 = 𝑞0 + 𝑘𝑞0
𝛾                                                  (2) 

where k is a dimensionless coefficient of the nonlinear term relating to the geometry and 185 

mobility of the plate and it can be assumed that it is consistent in the global intact plate and in 186 

the local damaged portion. Factor 𝛾 is also a dimensionless factor that controls the level of 187 

nonlinearity of the plate, as previously stated, it is normally close to ‘3’. Both non-dimensional 188 

coefficients k and 𝛾 can be numerically determined by layered shell finite element analysis. 189 

The normalised load p0 and displacement q0 are defined as follows: 190 

𝑝0 =
𝜓𝑃𝑅2

16𝜋𝐷ℎ
 

(3) 

𝑞0 =
𝛿0

ℎ
 

And the normalising term 𝑅2/16𝜋𝐷h comes from thin plate theory, assuming linear 191 

deflection of a solid circular plate with fully constrained edges under a concentrated load [26].  192 

Using the assumptions made earlier, the boundary of the local additional multiple 193 

delamination deformation shown in Figure 2c' can be fixed at the delamination periphery to the 194 

global plate. Then, the same relation is applied to the single circular plate with radius of ‘a’, 195 

and the relation between a non-dimensional local load p and a normalised local displacement 196 

q can be derived: 197 

 𝑝 = 𝑞 + 𝑘𝑞𝛾                                                       (4) 

where 198 

𝑝 =
𝛥𝑃𝑏𝑎2

16𝜋𝐷𝑑𝑡
 (5) 



 

 
8 

𝑞 =
𝛿1

𝑡
 

where t denotes the thickness of individual sublaminate and equal to h/N. 199 

 200 

Figure 3: Local ply-level deflection components of damaged portion and global plate. 201 

Because the starting point for the local deflection at the damaged portion (δ1) is in the 202 

globally deformed frame, as shown in Figure 3, the initial global deflection level (δ2) in  the 203 

damaged frame (bcd in Figure 3) needs to be taken into account in the overall load-displacement 204 

relation. This additional displacement in the bcd frame, from the global deformation in the bc0 205 

frame, is the difference in displacement of the intact plate centre and the delamination boundary 206 

(see Figure 3) and can be expressed by normalisation s = δ2/t. The additional normalised load 207 

p can be considered as the load resulting in δ1 that is the difference between the normalised 208 

load resulting in deflection δ1 + δ2 and that resulting in δ2, which gives: 209 

𝑝 = {(𝑞 + 𝑠) + 𝑘(𝑞 + 𝑠)𝛾} − (𝑠 + 𝑘𝑠𝛾) = 𝑞 + 𝑘{(𝑞 + 𝑠)𝛾 − 𝑠𝛾} (6) 

𝑠 =
𝛿2

𝑡
 (7) 

Eq.6 and Eq.7 sufficiently explain the nonlinear relationship between the load and 210 

displacement of the damaged plates [23]. From linear solutions of an isotropic plate [22,26], s 211 

can be written as follows: 212 

𝑠 = 𝑁𝑞0𝛼2(1 − 2 𝑙𝑛 𝛼) (8) 

where α is the non-dimensional delamination radius, α=a/R. The bending load reduction ΔPb 213 

due to multiple delaminations can be given as a linear expression with global non-dimensional 214 

deflection q0 as follows: 215 

∆𝑃𝑏 =
16𝜋𝐷0ℎ

𝜓𝑅2
(1 −

1

𝑁2
) 𝑞0 (9) 

And the normalised local load p due to the bending stiffness reduction is derived as a 216 

linear function of q0 using the same normalising method as for the intact plate: 217 
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𝑝 =
𝑁3𝑎2

16𝜋𝐷𝑑
𝛥𝑃𝑏 =

1

𝜓
𝑁(𝑁2 − 1)𝛼2𝑞0 (10) 

Then, substituting Eq.10 into Eq.6, gives 218 

𝑞 + 𝑘{(𝑞 + 𝑠)𝛾 − 𝑠𝛾} = 𝑁(𝑁2 − 1)𝛼2𝑞0 (11) 

Up to here, three normalised deflection functions for the undamaged plate q0 are 219 

available; the delaminated deflection starting from global deformation q, the transverse 220 

distance s representing the relative normalised displacement between the global deformed plate 221 

centre and the delamination boundary (i.e. at delamination size ‘a’). Therefore, the term 𝑞0 is 222 

a function of q and s, s is a function of q0, and q is a function of both s and q0. Figure 3 can thus 223 

be fully described by those non-dimensional terms. 224 

2.3 Deriving Strain Energy Release Rate 225 

When the size of the damage is constant, the complementary energy (𝛱𝐶 ) can be 226 

calculated by integrating the displacement δ (i.e. δ0+ δ1) with respect to the overall applied 227 

load P. The expression is: 228 

𝛱𝐶 = ∫ 𝛿
𝑃

0

𝑑𝑃 = ∫ 𝛿0𝑑𝑃
𝑃

0

+ ∫ 𝛿1

𝑃

0

𝑑𝑃 = 𝛱𝐶0 + 𝛱𝐶1 (12) 

where 𝛱𝐶0 and 𝛱𝐶1are complimentary energy of undamaged laminate and that of sublaminates, 229 

respectively, corresponding to the localised deformation. Considering the relationships 230 

between the global load and displacement in Eq.2, each term of the strain energy can be written 231 

as follows: 232 

𝑈0 =
16𝜋𝐷ℎ2

𝜓𝑅2
∫ 𝑞0

𝑑𝑝0

𝑑𝑞0
𝑑𝑞0

𝑞0

0

=
16𝜋𝐷ℎ2

𝜓𝑅2
(

1

2
𝑞0

𝛾−1 + 𝑘¾ 𝑞0
𝛾+1) 

(13) 

𝑈1 =
16𝜋𝐷ℎ2

𝜓𝑁𝑅2
∫ 𝑞

𝑞0

0

𝑑𝑝0

𝑑𝑞0
𝑑𝑞0 =

16𝜋𝐷ℎ2

𝜓𝑁𝑅2
∫ 𝑞(1 + 3𝑘𝑞0

𝛾−1)𝑑𝑞0

𝑞0

0

 

where q0 can be considered as the final deflection of the global intact plate. 233 

As U0 is independent of the damage, the strain energy release rate of uniform growth 234 

of all delaminations can be given by differentiating the strain energy U0 with respect to the sum 235 

of the N-1 incremental delamination areas ‘𝜕𝐴’.  236 

𝐺 = [
𝜕𝑈1

𝜕𝐴
]

𝑃=𝑐𝑜𝑛𝑠𝑡
= [

𝜕𝑈1

2𝜋𝑎(𝑁 − 1)𝜕𝑎
]

𝑃=𝑐𝑜𝑛𝑠𝑡

= [
𝜕𝑈1

2𝜋𝛼𝑅2(𝑁 − 1)𝜕𝛼
]

𝑃=𝑐𝑜𝑛𝑠𝑡

 (14) 
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            =
1

𝑁(𝑁 − 1)

8𝐷ℎ2

𝜓𝑅4
∫

1

𝛼
[
𝜕𝑞

𝜕𝛼
]

𝑃=𝑐𝑜𝑛𝑠𝑡

(1 + 𝛾𝑘𝑞0
𝛾−1)𝑑𝑞0

𝑞0

0

 

 

𝑞 + 𝑘{(𝑞 + 𝑠)𝛾 − 𝑠𝛾} =
1

𝜓
𝑁(𝑁2 − 1)𝛼2𝑞0 = 𝑔(𝑞, 𝑠, 𝛼) (15)     

Differentiating both sides of Eq.15 by α under the condition of constant P, the following 237 

relation is derived after some manipulation. 238 

𝜕𝑞

𝜕𝛼
 
1

𝛼𝑃=𝑐𝑜𝑛𝑠𝑡.
= 𝑞0

2
1
𝜓 𝑁(𝑁2 − 1) − (

𝜕𝑔
𝜕𝑠

) (
1
𝛼

𝜕𝑔
𝜕𝛼

)

𝜕𝑔
𝜕𝑞

 (16) 

where  239 

𝜕𝑔

𝜕𝑞
= 1 + 𝛾𝑘(𝑞 + 𝑠)𝛾−1 

 
𝜕𝑔

𝜕𝑠
= 𝛾𝑘{(𝑞 + 𝑠)𝛾−1 − 𝑠𝛾−1} 

𝜕𝑔

𝜕𝛼
= −4𝑁𝑞0𝛼 𝑙𝑛 𝛼 

Substituting Eq.15 into Eq.14 yields a normalized strain energy release rate Γ with 240 

normalising term (8𝐷ℎ2)/𝑅4  as follows:  241 

𝐺̃ =
𝐺𝐼𝐼

(
8𝐷ℎ2

𝑅4 )
=

2(𝑁 + 1)

𝜓
∫

1 −
2 𝑙𝑛 𝛼

𝑁2 − 1
𝜓𝛾𝑘{(𝑞 + 𝑠)𝛾−1 − 𝑠𝛾−1}

1 + 𝛾𝑘(𝑞 + 𝑠)𝛾−1
𝑞0(1 + 3𝑘𝑞0

2)𝑑𝑞0

𝑞0

0

 

 (17) 

The normalized strain energy release rate 𝐺̃ value can be derived by integrating Eq.17 242 

numerically. Since q and s are functions of q0, and q0 is related to the applied load p0, 𝐺̃ is a 243 

function of q0 and, in turn, the transverse load. When 𝐺̃ is equal to unity, that is when the 244 

condition GII  = GIIC is met in Eq.17, the equilibrium path of load, P (from Eq.2 & 3), and 245 

overall displacement, δ (i.e. δ0 + δ1) derived from q and q0, can be obtained numerically with 246 

increasing delamination size a. When the strain energy release rate is equal to the fracture 247 

energy, the expressions of the load and the displacement are as follows:  248 

𝑃𝑐𝑟 =
16𝜋𝐷h

𝑅2
 𝑝0𝑐𝑟 =  

16𝜋𝐷h

𝑅2
 (𝑞0𝑐𝑟 + 𝑘𝑞0𝑐𝑟

𝛾) 

(18) 

𝛿 = ℎ (𝑞0𝑐𝑟 +
𝑞𝑐𝑟

𝑁
) 
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3 Implementation to Scaled Plates 249 

Table 1: Characteristics of four types of specimens used in this study 250 

 251 

 252 

 253 

 254 

Variations of the full expression (Eq. 17) can be applied to scaled plates that were 255 

investigated experimentally in a previous study [6]. The scaled plates were made using carbon 256 

/epoxy system IM7/8552 manufactured by HexcelTM, with layups and dimensions given in 257 

Table 1. It can be seen that these laminates present different scaling methods which can be 258 

compared in different scaling pairs. The Reference (Ref) and  in-plane dimension scaled (Is) 259 

are one scaling pair (in-plain dimensions only); the Ref and Ply blocked scaled (Ps) plates are 260 

the fully scaled pair (all dimensions including ply block thickness); the Ref and Sublaminate 261 

scaled (Ss) plates are the direct scaling pair without ply thickness scaling; and the Ps and Ss is 262 

the ply thickness scaling only. 263 

3.1 Linear solution  264 

Depending on the required output, a full analysis based on Eq.17 may not provide the 265 

greatest benefits from the analytical study as it can be even less efficient than simplified FE 266 

analysis. In order to identify the key driving parameters small and non-critical terms and factors 267 

can be removed from the full expression, but these depend on the properties of the laminate. 268 

For thicker laminates in this work, such as the Ps and Ss cases under low-velocity impact or 269 

static indentation loading, the bending stiffness is considerably larger than the membrane 270 

stiffness. Laminates usually reach the critical state before geometric nonlinearity effects in the 271 

intact plate become significant. If considering only up to damage initiation, the nonlinear terms 272 

of the intact plate can be neglected. When the nonlinear terms associated with membrane 273 

stiffness of the global plate and delaminated portion are removed, Eq. 2 and 4 become p0 = q0 274 

and p = q, respectively. Also neglecting the nonlinear membrane terms associated with higher 275 

order components, Eq.17 simplifies to the following: 276 

Case Lay-up 

In-plane 

dimensions 

(mm)  

Thickness 

(mm) 

Reference (Ref) [45o /0o /90o/-45o]2S 75 x 50 2 

In-plane Scaling (Is) [45o /0o /90o/-45o]2S 150 x 100 2 

Ply-blocked Scaling (Ps) [45o
2
 /0o

2
 /90o

2/-45o
2]2S 150 x 100 4 

Sublaminate scaling (Ss) [45o /0o /90o/-45o]4S 150 x 100 4 
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𝐺̃𝑙𝑖𝑛𝑒𝑎𝑟 = 2(𝑁 + 1) ∫ 𝑞0𝑑𝑞0 =
𝑞0

0

(𝑁 + 1)𝑞0
2 ⇒ 𝐺𝑙𝑖𝑛𝑒𝑎𝑟 =

𝑃2

32𝜋2𝐷
(𝑁 + 1) (19) 

The right hand side equation of Eq. 19 coincides with the theoretical solution given in 277 

[8] for a linear circular plate under transverse loading. The geometric nonlinearities associated 278 

with a global intact plate and delaminated portion are important after the delamination initiation. 279 

The above expression may also be useful to determine the influencing factors at the critical 280 

state. Considering N = 2, that is, delamination occurring only at the mid-plane of the plate, 281 

Eq.19 reduces to the analytical expression in [19] that is 𝑃𝑐𝑟
2 = 8𝜋2 𝐸ℎ3 𝐺𝐼𝐼𝐶/9(1 − 𝜐2 )   where 282 

Pcr is the critical load for delamination. 283 

3.2 Thick laminate with multiple delaminations 284 

 285 

Figure 4 Deflection mechanics of a circular ply with delaminated portion. The central deflection at 286 
the delaminated region in intact plate is assumed as a flat surface. 287 

Due to the linearity of the solution for thick laminates up to damage initiation, as 288 

described above, terms with higher order of q0 can be assumed to be equal to zero. In addition, 289 

‘s’ as the distance between central deflection of the global intact plate and the deflection level 290 

at the location where the local deformation starts, can also be ignored. The term ‘s’ associated 291 

with the damaged region initial deformation, thus coincides with the deformed shape of the 292 

undamaged plate. It becomes significant if the nonlinear term of the undamaged plate and the 293 

damage propagation are considered. This can be explained by the observation that CT-images 294 

and high-fidelity finite element models show the region immediately beneath the 295 

impactor/indenter to be free of delamination [6], due to the interlaminar shear stresses 296 

decreasing to zero at the centre of the laminate. There is also a strong indentation effect in 297 

laminates under transverse loading, and the region beneath the impactor is nearly a flat surface 298 

(See Figure 4).  If s ≈ 0, then the corresponding Eq. 8 does not hold anymore and Eq.6 and 299 

Eq.4 become equivalent. s ≈ 0 also means that the terms (𝜕𝑔/𝜕𝑠)(𝜕𝑔/𝜕𝛼)(1/𝛼)can be 300 

neglected in Eq.16. After some manipulation the expression below can be obtained for the 301 

strain energy release rate G, which under the growth condition equals Gcr.     302 
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𝐺 =
8𝐷ℎ2

𝑎4(𝑁 − 1)𝑁2(𝑁2 − 1)
(𝑞2 +

1

2
𝑘𝑞4) = 𝐺𝑐𝑟 (20) 

Solving for the non-dimensional local deflection, q, at the growth condition can be 303 

written as follows: 304 

𝑘𝑞4 + 2𝑞2 −
(𝑁 − 1)𝑁2(𝑁2 − 1)𝑎4

4𝐷ℎ2
𝐺𝑐𝑟 = 0  

𝑞 = √√
1

𝑘2
+

𝑁2(𝑁 − 1)2(𝑁 + 1)𝑎4𝐺𝑐𝑟

4𝑘𝐷ℎ2
−

1

𝑘
  

= √
𝑁2(𝑁 − 1)2(𝑁 + 1)𝛼4(𝐺𝑐𝑟𝑅4 4𝐷ℎ2⁄ )

{√1 + 𝑁2(𝑁 − 1)2(𝑁 + 1)𝑘𝛼4(𝐺𝑐𝑟𝑅4 4𝐷ℎ2⁄ ) + 1}
 (21) 

Substituting 𝑝 = 𝑞 + 𝑘𝑞𝛾 into Eq.11 then gives 305 

𝑃0 =
16𝜋𝐷ℎ

𝑁(𝑁2 − 1)𝑎2
𝑝 =  

16𝜋𝐷ℎ

𝑁(𝑁2 − 1)𝑎2
(𝑞 + 𝑘𝑞𝛾) (22) 

Total displacement  𝛿 = 𝛿0 + 𝛿1  can be calculated from: 306 

𝛿0 =  
𝑅2𝑃0

16𝜋𝐷
 (23) 

𝛿1 =  
ℎ

𝑁
𝑞 =  

√

(𝑁 − 1)2(𝑁 − 1)𝑎4𝐺𝑐𝑟

4𝐷 {√1 +
𝑁2(𝑁 − 1)2(𝑛 + 1)𝑘𝑎4𝐺𝑐𝑟

4𝐷ℎ2 + 1}

 
(24) 

                           307 

4 Finite Element Model Descriptions 308 

  309 

Figure 5: Schematic of axisymmetric finite element model. 310 

Simple finite element simulations using axisymmetric elements were performed to 311 

evaluate and improve the approximations given by the present closed form solutions. The finite 312 

element models are based on the same assumptions made for the analytical solution and the 313 
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circular plate structure shown in Figure 5. Model descriptions are briefly presented in the 314 

following.   315 

The model uses axisymmetric elements with area weighted mass definition (ELFORM 316 

14 in LS-Dyna), and the material is modelled with isotropic material properties, which is 317 

consistent with the assumption of the analytical solutions. Figure 5 shows a schematic of the 318 

axisymmetric finite element model. To avoid  problems due to a singularity in the model, the 319 

transverse point load assumption in the analytical solution is modelled by a uniformly 320 

distributed pressure load over 5% of the full span of the plate at the tip of the axisymmetric 321 

model, as shown in Figure 5. Cases when N = 4 and N = 8 are considered, and each case 322 

contains three individual models with four different sizes of delamination radius (i.e.  = 0, 323 

0.1, 0.3 and 0.6). The delamination surfaces are modelled by lines of overlapping nodes with 324 

frictionless contact between delaminated surfaces. A biased mesh was used near the 325 

delamination boundaries in order to acquire more accurate results. Load was calculated from 326 

the uniform pressure, and displacement was taken as the deflection of the bottom most node at 327 

the bottom sublaminate. A single degree of freedom linear spring element with zero initial 328 

length and stiffness of 105 N/mm was used to connect nodes at the ‘crack tip’ to quantify the 329 

Mode II strain energy using the relative nodal displacements and spring force. The numerical 330 

strain energy release rate from these models is compared with the theoretical solution in the 331 

following sections. 332 

5 Analytical Results and Discussions 333 

5.1 Full Non-dimensional Solutions 334 

Results based on the governing Eq.17 are presented in this section to identify the key 335 

parameters for the severity of multiple delaminations in a fixed circular plate under transverse 336 

loading. Using the 𝛾 value from the thin circular plate theory (i.e. 𝛾 = 3), the coefficient of the 337 

linear term in Eq.3 is obtained for the circular plate with a fixed boundary. Non-dimensional 338 

loads are plotted in Figure 6 against normalized displacements for an undamaged circular plate. 339 

The numerical stiffness of the plate is obtained from the finite element analysis. The analytical 340 

solution from Eq.2 is in agreement with the finite element results when k = 0.4. The coefficients 341 

𝛾 = 3 and k = 0.4 are therefore chosen for the load-displacement relation in both the global 342 

plate (Eq.2) and delaminated portion (Eq.4).  343 
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Figure 6: Linear and nonlinear relation between the normalised load and deflection for the fixed 344 
circular plate with different k coefficient obtained by Eq.2 and the axisymmetric finite element 345 

model. 346 

 347 

  

(a) (b) 

Figure 7: Comparison of non-dimensional load and displacement relation for circular plate with 348 
(a) N = 4 and (b) N = 8 and finite element modelling results with increasing delamination radius a. 349 

The normalised (non-dimensionalised) relations between applied load (p0) and 350 

displacement (d where d=δ/h) for the fixed circular plates with four delamination sizes  = 0, 351 

0.1, 0.3 and 0.6 obtained by the present theory (based on Eq. 17) are compared with the finite 352 

element results in Figure 7. These figures show the significance of the geometric nonlinearity 353 

associated with multiple delaminations in the load-displacement relations with increasing 354 

delamination size. The level of nonlinearity increases with the size of delaminations and the 355 

number of delaminations for a given normalised load level. There is good agreement with the 356 

finite element solutions. The nonlinearities of the finite element model are slightly higher 357 

compared to the analytical solutions when the delamination size and number are large. This 358 
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could possibly be because the approaches used for deflection measurement are different. 359 

However, the general trend of plates with different delamination sizes is well captured by the 360 

analytical models. When comparing the load-displacement relations of laminates with different 361 

numbers of delaminations (i.e. N = 4 and N = 8) for a given delamination size, no significant 362 

differences can be found except for the case when α = 0.1, which shows that once delamination 363 

is present, the influence of the number of delaminations, for a given delamination size, is less 364 

important. The nonlinearity of laminate with N = 8 appears to be higher than that of laminate 365 

with N = 4. The comparison of the numerical analysis shows that the present solution is valid 366 

to represent the load-displacement relation in cases of multiple delaminations, i.e. the damage 367 

accumulation behaviour due to indentation and large mass low velocity impact. 368 

Figure 8 shows the variation of s with overall displacement level and increasing 369 

delamination size for the N = 4 and N = 8 cases. It is noted that the s and d are normalised by  t 370 

and h, respectively. It can be seen that s appears to be almost constant and insensitive to the 371 

overall deflection when the delamination is small (i.e. when α ≤ 0.1). As the delamination 372 

grows from α = 0.1 to 0.3, the increase in s is dramatic. In addition, for a given overall 373 

deflection level, the laminates with N = 8 have a relatively larger s value compared to laminates 374 

with N = 4. Therefore, the number of delaminations also significantly influences the initial 375 

local deflection of the global plate.  376 

 377 

Figure 8 Relation between initial defection of global plate (s) and overall defection (d) in plates 378 
with N = 4 and N = 8. 379 

In the low-velocity impact and static indentation tests, after the initial delamination is 380 

induced, delamination growth is a fairly stable process, which can be considered as an 381 

equilibrium condition and solved by the closed-form formulae.  382 
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Figure 9 compares the two equilibrium paths associated with delamination propagation 383 

when GIIC = 0.8 N/mm in laminates with N = 4 and 8, and the same delamination sizes are 384 

marked on each curve. 0.8 N/mm was also used in [6]. The two cases of N = 4 and 8 are 385 

representative of the Ps and Ss laminates if considering each N as a sublaminate group of 386 

[45o/0o/90o/-45o] plies. The overall load-displacement curves of the laminates with N = 4 and 387 

N = 8 are quite similar after delamination initiation, which implies that the normalised strain 388 

energy available for delamination propagation of both cases is similar. Because of the 389 

difference in the number of delaminations between the two cases, the delamination size growth 390 

rate in the laminate with N = 8 is slower than in the laminate with N = 4. This suggests that the 391 

strain energy available is relatively insensitive to the number of delaminations in the given 392 

condition. This is backed up by the experimental observations of the close similarities in level 393 

of nonlinearity between the Ps and Ss cases in scaled indentation experiments [6].  394 

 395 

Figure 9 Comparison of normalised load-displacement curves of plates with N = 4 and N = 8 and with 396 
constant non-dimensional critical strain energy release rate 397 

  
(a) (b) 
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Figure 10 Variation of normalised strain energy release rate with normalised load for plate with (a) 398 
N=4 and (b) N=8 as increasing delamination area. Results from finite element models are compared 399 

against theoretical value for each case. 400 

The normalised strain energy release rate (ERR), 𝐺̿ =  √𝐺̅, normalised by the critical 401 

value is plotted against the applied normalised load for cases of α = 0, 0.1, 0.3 and 0.6 when 402 

N = 4 and 8 in Figure 10a and b, respectively. These figures show that the larger the 403 

delamination radius α is, the less the strain energy release rate increases with load. This 404 

tendency is more obvious when the delamination number N is large. This is because the 405 

membrane component becomes dominant with increasing delamination size and number, and 406 

the effect of the delaminations’ growth on the stored strain energy release rate decreases. The 407 

load must therefore be increased to keep the delaminations growing. The current solution again 408 

is in good agreement with the finite element results. 409 

5.2 Analytical Modelling of Scaled Indentation Test 410 

The predicted load-displacement relations were derived analytically for the 411 

experimental study in reference [6], using the full analytical expressions (based on Eq.17) 412 

including geometric nonlinear effects in both the global intact plate and delaminated portion as 413 

well as the initial local deflection (s) for each laminate configuration (see Table 1). In order to 414 

fully apply the theoretical solutions developed so far, it is additionally necessary to account for 415 

the boundary conditions and determine an equivalent radius for the rectangular shaped plates. 416 

The solution applied also allowed for simply supported boundary conditions for the global plate, 417 

whilst the fully constrained condition for local delaminated portion remains the same. The 418 

method is modified from the clamped circular plate, with the size of the plate corrected in order 419 

to fit the deflection field of the simply supported rectangular plate by comparing two analytical 420 

solutions. The radius of the equivalent circular large plates (the Is, Ps and Ss cases) and the 421 

reference plate was corrected to 70 mm and 35 mm, respectively. Dimensions used for the four 422 

scaled laminates in the analytical modelling can be found in Table 2. To account for the effects 423 

of orthotropic laminates on indentation response, the bending stiffness of isotropic material D 424 

used throughout in the analytical approach was replaced by the effective bending stiffness D* 425 

obtained from [27] considering orthotropy of the laminate. 426 

Comparison between experimental result and analytical solution for each laminate 427 

configuration is shown in Figure 11; the damage initiation point (when α → 0) for each case is 428 

marked in red. It was assumed that the N value represents the number of stacking groups of 429 
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[45o/0o/90o/-45o], which is frequently used to approximate the number of circular delaminations 430 

in laminated composite under transverse loading in the literature [8,21].  In order to be 431 

consistent between the Ps and Ss cases, N = 8 was used for the Ss case and N = 4 was applied 432 

for the rest of the laminates. Table 3 shows the total, projected and experimentally derived 433 

averaged N values from the experimental results (CT-scan) across the four scaled laminates 434 

from [6]. It can be seen that the experimental N value for all cases are roughly similar and close 435 

to ‘4’. N = 8 is used for the Ss case as it has twice number of stacking groups as the rest of the 436 

cases.  437 

 
(a) (b) 

 

(c) (d) 

Figure 11: Comparison of experimental results and full analytical solution (based on Eq. 17) for 438 
each laminate configuration tested, with indication of delamination (α = a/R) growth as load 439 

increases. (a) Reference laminate; (b) In-plane scaling laminate; (c) Ply-blocked scaling laminate; 440 
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(d) Sublaminate scaling laminate. Damage initiation data point for each analytical solution is 441 
marked in red.  442 

Table 2 Dimensions used for modelling scaled laminates under transverse point loading using full 443 
analytical expressions. (ttheo = N/h). 444 

Laminate 

configurations 

D*
 

(kN·m) 
N 

h 

(mm) 

ttheo. 

(mm) 

Actual In-

plane simply 

supported size 

(mm) 

Equivalent 

clamped circular 

plate radius 

(mm) 

Reference (Ref) 
45.6 

4 
2 0.5 

37.5 x 62.5 35 

In-plane scaling (Is) 

75 x 125 70 Ply-blocked scaling (Ps) 
364.5 

4 

 

1 

Sublaminate-scaling (Ss) 8 0.5 

 445 

As shown in Figure 11, analytical solutions also show good agreement with experiment 446 

results for both the general trend and nonlinearity during delamination propagation for most of 447 

the cases. Similar to what is presented in [6], and using nonlinear force-displacement 448 

expressions based on circular plate theory, the overestimations of initial stiffness presented 449 

here are also caused by the assumption of equivalent circular plate, as well as the indentation 450 

effect in the experiment. Despite these overestimates, the analytically derived stiffnesses during 451 

delamination propagation (i.e.  > 0) for each case are in good agreement with the experimental 452 

results. It can be found that the delamination growth of the Ss case is much slower due to a 453 

higher N value compared to the Ps case for given indentation load, which is again in line with 454 

the experimental observations presented in [6]. In general, the load-displacement relation 455 

across the four scaled laminates are well captured by the analytical solution. For more accurate 456 

analysis, the full stiffness matrix and the actual dimensions of the laminates should be taken 457 

into account [28]. 458 

Table 3: Experimental results of delamination areas and N value of the four scaled laminated in 459 
[6]. Note that the experiment N value is calculated by total delamination area divided by projected 460 

delamination area for each case.  461 

Laminate  

configurations 

Exp. total delamination 

area (mm2) 

Exp. projected 

delamination area 

(mm2) 

Exp. 

N 

value 

Reference (Ref) 106 34 3 

In-plane scaling (Is) 147 57 3 

Ply-blocked scaling (Ps) 666 142 5 

Sublaminate-scaling (Ss) 1188 300 4 

 462 
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The sudden load drops at damage initiation were not able to be modeled with the current 463 

analytical solution in a single step as there are two equilibrium states. Prediction of the level of 464 

the initial load drop for laminated composites under transverse loading due to delamination 465 

onset, which is an unstable event, is an important topic for scaling tests and has not been 466 

quantitatively addressed in the literature.  467 

Plate behaviours before and after the critical load of indentation/impact can be 468 

considered as two equilibrium stages. If assuming a constant critical strain energy release rate 469 

for delamination initiation and propagation, it can be considered that the load drop at damage 470 

onset is the result of unstable delamination propagation, i.e. a ‘jump’ between two equilibrium 471 

paths at constant displacement. This constant displacement is considered as a critical 472 

displacement. Therefore, one can approximate the load drop and complete indentation/impact 473 

loading process by the superposition of two equilibrium paths (before and after delamination 474 

propagation), which is here called the ‘superposition method’. The level of load drop can be 475 

derived as the difference between the critical load on the first equilibrium path and the load 476 

corresponding to the critical displacement on second equilibrium path. The displacement level 477 

is that at which PC in Eq. 19 is reached, when N = 2. This interpretation is backed up by the 478 

high-fidelity modelling results presented in [29]. The maximum interlaminar stresses are at the 479 

mid-plane of the laminate before the critical load during indentation and the high-fidelity FE 480 

models showed the first delaminations to occur at interfaces near the mid-plane, which is 481 

similar to the scenario when N = 2. Then, the FE prediction showed delaminations migrating 482 

and propagating into multiple interfaces (i.e. when N > 2, giving N = 4 or 8 as previously 483 

assumed). Therefore, the initial behaviour of the plate can be represented by an intact global 484 

plate under concentrated load as per the above analysis (see Figure 11); the load drop is 485 

modelled by joining the two equilibrium paths, N = 2 with  → 0 and N = 4 for the Ref, Is and 486 

Ps cases and N = 8 for the Ss case, at the critical displacement.  487 

Figure 12 compares the experimental results and analytical results using the newly 488 

proposed superposition method. In general, the analytical solution using the superposition 489 

method gives good approximations for the cases compared. In addition, predictions of the level 490 

of load drop (ΔP) and delamination size (α) corresponding to the critical load (initial 491 

delamination size) are available. It seems that the response of the Ref plate is sufficiently well 492 

modelled using only the equilibrium path of N = 4 (see Figure 11a) as no significant load drop 493 

was observed in this experimental case. The difference between the levels of load drop of the 494 

Ps and Ss cases suggests the level of load drop depends on the number of interfaces available 495 
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for delaminations (i.e. N value). The same observation has been found in similar tests in the 496 

literature [30,31]. Multiple delaminations accompanied by extensive matrix cracks were 497 

observed for all types of laminates. Given that both analytical solutions, based on a single 498 

equilibrium path and the superposition method, correlate with experimental results well (see 499 

Figure 11 and Figure 12), it can be confirmed that although matrix cracks help delamination 500 

migration , their effects on the global behaviour are insignificant.  501 

 502 

 
                (a)               (b) 

 
                  (c)                   (d) 

Figure 12: Comparison of experimental results and analytical results using superimposing of two 503 
equilibrium paths. (a) Reference case, (b) Ply-blocked case and (c) Sublaminate scaling case. 504 

 505 

Table 4: Experimental and analytical results of load drop level and initial delamination size. 506 

Laminate 

configurations 

N value used 

for 

superposition 

method 

Exp. 

load 

drop (N) 

Theo. load 

drop (N) 

Exp. initial 

delamination 

Dia. (mm) 

Theo. initial 

delamination 

Dia. (mm) 

Reference 4 44.8 299.1 6.6 7.8 
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In-plane scaling 62.9 112.4 8.5 6.9 

Ply-blocked scaling 831.6 956.2 13.5 17.3 

Sublaminate-

scaling 
8 1164.4 1316.1 19.5 11.4 

 507 

Table 4 lists the experimental and analytical results from the superposition method. The 508 

predictions of the level of load drop are in good agreement with the experimental results for 509 

the Ps and Ss cases. Again, the Ref case can be better modelled using only the N = 4 equilibrium 510 

path without modelling the load drop. When comparing the Ps and Ss cases, the initial 511 

delamination area predicted for the Ss plate is 30% smaller than the Ps case. This is because of 512 

the higher N value and critical load for the Ss case compared to the Ps case and the delayed 513 

delamination growth in the Ss case (see  514 

Figure 9, and Figure 11 c and d). The analytical results for the initial delamination size 515 

scaling (ratio of initial delamination size) of the truly scaled pair of laminates (i.e. the Ref and 516 

Ps cases), roughly agrees with the experiment result; and it gives a scaling factor of 2.2.  517 

The superposition method is the solution that is best for capturing the overall behaviour 518 

of the plates, but the damage predictions are highly dependent on the choice of N. Moreover, 519 

the boundary condition assumed for the delaminated portion being fully clamped could fall 520 

short when the delamination size is small. Thus, it may not be sufficient to quantitatively 521 

compare the estimates with the experimental results of delamination size across all laminate 522 

types. In general, the superposition method describes the overall load-displacement curve very 523 

well for the Ps and Ss cases, and it provides reasonable approximations on the level of critical 524 

load and order of magnitude of initial delamination size for most of the cases.    525 

The geometric nonlinearity associated with multiple delamination propagation may 526 

unnecessarily over complicate most of the cases, except for the Is plate. The other cases do not 527 

exhibit strong geometric nonlinearity before and right after the load drop (see Figure 11 and 528 

Figure 12). It therefore allows one to apply a simplified expression to the truly scaled pair (the 529 

Ref and Ps case) to obtain the level of load drop. The level of load drop can be simply treated 530 

as the difference between critical loads when N = 2 and N = 4 based on Eq.19. This yields:   531 

𝛥𝑃 = √
32𝜋2𝐷∗𝐺𝐼𝐼𝐶

3
− √

32𝜋2𝐷∗𝐺𝐼𝐼𝐶

6
= √

32𝜋2𝐷∗𝐺𝐼𝐼𝐶

3
(1 −

1

√2
) ≈ 0.26𝑃𝐶  (25) 
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Compared to the experimental values, Eq.25 appears to give a reasonable estimate of 532 

the load drop for the thick Ps plate, while it greatly overestimates the experimental response 533 

for the thin Ref plate, which is similar to the results of the improved solution. 534 

The above approaches provide useful insights into the nonlinear load-displacement 535 

response of scaled laminates and scaling mechanisms involved. However, there seems no 536 

single analytical method available to predict all the experimental results in full. This may be 537 

attributed to the limitations of the assumptions made in using thin plate theory of isotropic 538 

plates. To improve this modelling, the high-fidelity numerical models that are presented and 539 

validated in [29] are required, where the damage is explicitly modelled by formulations based 540 

on combined stress and fracture energy criteria, and the effects of nonlinearity, boundary 541 

conditions and delamination on the response of laminate under transverse loading are fully 542 

captured. 543 

6 Conclusions  544 

An analytical approximation based on plate theory and its application were presented 545 

in this study, it was validated against numerical simulation and applied to investigate scaled 546 

laminates under transverse loading. Different simplification approaches were presented and 547 

shown to be suitable for various scenarios. In general, results show the significance of the 548 

geometric nonlinearity associated with multiple delaminations in the load-displacement 549 

relations with increasing delamination size for laminates under transverse loading. The level 550 

of nonlinearity increases with the size of delaminations and the number of delaminations. The 551 

load drop in a laminate’s response to transverse loading and associated initial delamination was 552 

modelled with a combination of two equilibrium analytical solutions, and comparison was 553 

made with numerical and experimental results. It was found that the solution is highly 554 

dependent on the value chosen for N, as this value governs the starting point of unstable 555 

delamination propagation. The analytical results correlate very well with the experimental 556 

results when N = 2, whilst the estimations when N > 2 appear to fall below for the experimental 557 

critical load. The superposition method is able to accurately capture the full nonlinear response 558 

across all laminate configurations tested, as well as the level of load drop. Although it is 559 

difficult to derive a single closed-form analytical method to interpret all experimental 560 

observations for all laminate configurations, analytical approaches based on plate theory were 561 

generalised and discussed here. These analytical solutions complement the advanced finite 562 
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element analysis solutions presented in [5,29] which investigate the full damage behavior and 563 

structural scaling effects. 564 
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