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H I G H L I G H T S

• A computationally efficient mod-
elling framework for the mechanical
response of soft layered structures is
proposed.

• The effect of microstructural features
is captured, and the predicted
behaviours are independent of the
mesh size.

• The prediction of wrinkles formed
during the manufacture of laminated
composites illustrate the scheme’s
performances.

• Run times were reduced from 2
weeks (using a high-fidelity model)
to below 30 minutes with minimal
compromise in accuracy.
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A B S T R A C T

The consolidation of uncured material is an important factor in the design and manufacture of thick lam-
inated composite structures since it is a key driver for part quality and the formation of defects. A new
modelling approach and its implementation is presented here. The constitutive relation, based on kinematic
enrichment, has been derived from the orientation and volume of the micro-constituents of the material,
their respective constitutive laws and the orientation of the interfaces between them. It is applicable for any
layered structures, in particular those made of soft anisotropic materials. The proposed method has been
implemented into a commercial Finite Element (FE) software via a user material. Its ability to predict wrin-
kles during the manufacture of laminated composites demonstrates its performance as a design tool, as this
provides a challenging test case for any numerical platform.

© 2019 Published by Elsevier Ltd.

1. Introduction

The macroscale mechanical properties of materials are intimately
linked to the way their micro-structure responds to loading and
the interaction between different phases within the material. There-
fore, a current trend in engineering is to design materials at the

* Corresponding author.
E-mail address: jonathan.belnoue@bristol.ac.uk (J.P. Belnoue).

meso-, micro- and even nano-scale in order to obtain specific struc-
tural properties. Many examples can be found in the fields of
composite materials [1,2] and additive manufacturing [3,4]. How-
ever, as manufacturing a structure and subsequently testing it is both
costly and time consuming, the full potential of the concept can only
be realised if fast and predictive design tools, allowing the “ virtual”
exploration of as much of the design space as possible, are available.

Modelling the influence of the inner micro-structure on the
apparent macroscopic properties of a material has been an active
field of research since the early 1900s and the formulation of the
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generalised continuum theory [5]. However, it only started to gain
momentum in the end of 1960s [6]. Since then, a number of meth-
ods aiming at amending the classical continuum theory to include a
length characteristic of the material inner structure have been pro-
posed. These methods include nonlocal [7] and gradient theories [8].
Although these have mainly been used to predict failure, recent work
has shown the relevance of these methods to model the influence of
microstructural mechanisms (e.g. yarn bending) in the simulation of
the deformation of technical textiles [9] and 3D woven fabrics [10]
and to model how the deformation of each individual layer affects
the formation of out-of-plane wrinkles during the manufacture of
laminated composites [11]. The main idea behind generalised contin-
uum theory is to smooth the deformation over a volume of the size
of the localisation area. Hence, to allow proper regularisation, the
spatial discretisation needs to be refined enough. Moreover, these
methods require some refinement of the continuum mechanics the-
ory that involve either the use of additional degrees of freedom [11]
or the extra computation of gradient [9,10] or non-local terms. As a
result, they tend to be difficult to implement and CPU-intensive.

Multi-scale modelling is a more direct way of accounting for
micro-structural effects on the macro-structural response. Several
frameworks have been proposed over the years (see Ref. [12]) and
they can roughly be classified into 2 categories which can be com-
bined, as in Ref. [13]. Concurrent methods refer to cases where
different sub-volumes of the global domain are solved with vari-
ous resolutions and scales. Hierarchical methods, on the other hand,
describe the set of techniques where different scales are solved and
coupled in the same part of the domain. The underlying assumption
behind classical multi-scale modelling is that, at the structural scale,
the material appears to be homogeneous. Under this assumption,
the effective properties for the macro-scale can be formulated by
investigating the behaviour of a “small” heterogeneous statistically
representative volumes of material at the micro-scale across the
macro-domain (i.e. the RVE). The requirement for how “small” the
RVE needs to be (i.e. the scale separation principle) to capture size-
effects properly has been recently studied in Ref. [14]. It was shown
that, for classical homogenisation, the RVE needs to be at least 1
order of magnitude smaller than the size of the macro-domain but
that this requirement becomes less stringent as the homogenisation
order increases. As they require to run multiple analyses for the dif-
ferent scales considered, multi-scale methods need a lot of memory
and are CPU-intensive. Therefore, they are not well suited for the
modelling of full-size components (e.g. an Airbus A320 wing is about
15 m-long) or design studies which are required to run hundreds or
thousands of simulations of the same model with slightly different
parameters each time.

Recently, aiming at modelling localised failure in geomaterials,
Nguyen et al. [15] proposed an homogenisation framework that
allows to enrich the macro-scale strain field by considering the
strains in each of the micro-constituents of the material and the
internal equilibrium conditions at each of their interfaces. The devel-
oping crack is described as a weak discontinuity linked to the rest
of the otherwise homogenous block of material through the macro-
homogeneity condition [16]. Only inelastic loading inside the weak
discontinuity and elastic unloading outside it was originally consid-
ered [17,18] but this was later generalised as an homogenisation
tool for heterogeneous structures where the micro-constituents are
non-linear [19]. The scheme allows to formulate a constitutive rela-
tion that possesses an intrinsic length scale and provides the same
degree of enhancement as more mathematically complex theories.
Despite being memory intensive, the scheme allows fast simulations
using minimal CPU resources and is well adapted for design pur-
poses. Moreover, it can be used in frameworks other than FE such as
mesh-free methods [20].

Fibre reinforced polymers (FRP) are a good example of heteroge-
neous materials (see Fig. 1) that can be designed at the meso- and

Fig. 1. A severely tapered section characteristic of FRP-based designs.

micro-scale to obtain desired mechanical performance. To minimise
weight, FRP parts are designed with non-constant thickness. This leads
to the existence of thickness transition regions where the periodic-
ity of the repeating pattern is lost and where continuum mechanics
rules cannot apply. Similarly, in thin sections, the size of the het-
erogeneities (i.e. the layers or plies) through the thickness violate
the scale separation principle. Therefore, most of the predictive tools
currently available to composites designers have been developed for
composite structures only. They are based on analytical formulations
and plate theories [21] that often assume that the material is elas-
tic and are only applicable to thin parts. Another limitation is that
they seldom account of manufacturing-induced defects and design
features that inevitably occur [22] and that can have significant knock-
down effect on a part structural performance [23,24]. Hence, safety
factors used across the industry are high and the resulting designs
are over-conservative.

The present contribution shows how the kinematic enrichment
approach can provide a viable way to analyse the manufacture of
laminated structures, as a customized version of a method that is
otherwise more general and can be deployed for any type of mate-
rials. The paper focuses on the analysis of the numerically challeng-
ing case of consolidation-induced wrinkling defects formed in the
manufacturing of composites for which the kinematic enrichment
approach is reformulated within the large deformation framework.
It is shown that in comparison to previous work [25,26] where every
single ply of the structure were modelled, the approach allows for
considerably faster run time, with minimal compromise in accuracy.

2. Theoretical background

2.1. Large deformation quantities definitions

This section gives the definition of certain tensorial quantities
used to reformulate the kinematically enriched constitutive mod-
elling scheme in the large deformation framework. Fig. 2 shows that
the deformation gradient, F, can be multiplicatively decomposed as
the superposition of a rigid body rotation, R, and the right stretch
tensor, U. As R is independent of the type of material considered,
it is preferable to keep any constitutive law independent of it. This
justifies the choice made here to characterise the material deforma-
tion through, the Green-Lagrange strain, E (see Eq. (1) where C is the
right Cauchy-Green deformation, I is the identity tensor and AT is the
transpose of A).

E =
1
2

[C − I] =
1
2

[
U2 − I

]
=

1
2

[
FT F − I

]
(1)

The Cauchy stress, s, is a measure of the force, d f, acting on
an element of area dS in the deformed configuration (Y on Fig. 2).
It is an Eulerian quantity expressed as: d f = sT • ndS (where n
is the normal to dS). Its determination requires the definition of a
new frame every time the material undergoes deformation which
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Fig. 2. Deformation of a continuum body.

makes the formulation of a constitutive law in the finite strain the-
ory framework tedious. Therefore, it is usually preferred to formulate
constitutive laws based on other stress measures (and their work
conjugate so that the strain energy is conserved). Hence here, the
2nd Piola-Kirchhoff stress, S, is used. S is a symmetric tensor (i.e. it is
purely defined in the material frame) and is work-conjugate with E.
As illustrated in Fig. 2, S is formed by pulling back d f into the ref-
erence configuration so that we have: d f = F • d f0 = F • ST • n0dS0

(where n0 is the normal vector to the element of area (dS0) in the
undeformed configuration (Y0)). It follows that s can be determined
through the relation:

s = J−1F • S • FT (2)

where J controls the volume change of the material and is defined as
J = det(F).

2.2. Kinematic enrichment

In this section, the concept of kinematically enriched constitutive
modelling is reformulated in the large deformation theory frame-
work. The apparent response of a material made from two phases that
join at an interface of normal n is derived from the knowledge of the
material laws of the two micro-structural constituents and their vol-
ume fractions (f (1) and f (2)) defined as the ratio of their volumes (V1

and V2) by the total volume of the material (i.e. V = V1 + V2). The case
where the two phases are non-linear, anisotropic and exhibit large
deformation is considered. Finally, the concept is both generalised
and particularised for the description of laminated structures.

The formulation of the apparent constitutive law of a bi-material
(Fig. 3) starts by making the assumption widely used in multi-scale
mechanics (see Ref. [12]), that the apparent deformation gradient is
the unweighted volume average of the deformation gradient in each
of the phases:

F =
1
V

∫
V

F(m)(X, t)dV = (1 − f )F(1) + f F(2) (3)

where A denotes the apparent value of A in the bi-material.
The second main equation used comes from the assumption that

the two constitutive materials can not separate. This implies that the
deformation is continuous in the interface’s plane and that the strain
components in that plane are the same in the two phases. As these
have different properties, the stress tensor is discontinuous across
the interface. On the other hand, the stress equilibrium imposes
the continuity of the out-of-plane stresses and the discontinuity of
the out-of-plane strains (hence the analogy made here with the
modelling of material failure). In the original kinematic enrichment
formulation [15], the strain in material 2 (see Fig. 3) was expressed
as the sum of the stain in material 1 and of an extra term acting

only perpendicularly to the interface. Similar considerations were
made by Leone [27] in the context of failure in composite materials
at large deformation. They proposed a decomposition of the defor-
mation gradient which holds many similarities with Nguyen et al.’s
kinematic enrichment. Inspired by these examples, the deformation
gradient in material 2 is decomposed as:

F(2) = F(1) +
(

n ⊗ F̃
)

(4)

F̃ is a kinematic enrichment term for the deformation gradient which

can be written as

⎡
⎢⎣ F̃n−13

F̃n−23

F̃n−33

⎤
⎥⎦, if n =

⎡
⎣ nx

ny

nz

⎤
⎦ points towards the

direction 3 of a local coordinate system attached to the interface.
To simplify the equations derived, the Mandel-Voigt notation

(where stress and strains entities and their related rates are stored
as column vectors rather than matrices) is adopted in the rest of
Section 2. Conveniently, in the simple case of a bi-material considered
here, the averaging scheme of Eq. (3) is carried over to the Green-
Lagrange strain and its rate. Thus, starting by combining Eq. (3) with
Eq. (4), it is demonstrated in Appendix A (where tensorial rather
than Voigt notations are used) that the apparent strain rate in the
bi-material is expressed as:

Ė = (1 − f )Ė(1) + f Ė(2) (5)

where Ė(m) is the strain rate in material m (m = 1 or 2) and it is,
similarly, shown in Appendix B that Eq. (4) yields to:

Ė(2) = Ė(1) + N ˙̃E (6)

where N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

nx 0 0
0 ny 0
0 0 nz

ny nx 0
0 nz ny

nz 0 nx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and ˙̃E =

⎡
⎢⎢⎣

˙̃En−13˙̃En−23˙̃En−33

⎤
⎥⎥⎦ is a strain rate

enrichment term.
The last equation coming into play derives from the Hill-Mandell

macro-homogeneity condition [16] that expresses the apparent vir-
tual work done by the bi-material as the volume average of the
virtual works done by each of the constituent materials:

S̄T Ė =
1
V

∫
V

S(m)T
Ė(m)(X, t)dV = (1 − f )S(1)T

Ė(1) + f S(2)T
Ė(2) (7)

It is important to note that, although different physical quantities are
used, Eqs. (5)– (7) are mathematically completely equivalent to those
derived in the multiple publications by Nguyen et al. (see Ref. [15]
for example). From now on the same mathematical development is
therefore followed. Substituting Eq. (5) into Eq. (6) gives rise to:

Ė(1) = Ė − f N ˙̃E
Ė(2) = Ė + (1 − f )N ˙̃E (8)

Eq. (8) can then be inserted into Eq. (7) thus leading to:

[
S̄T − (1 − f )S(1)T − f S(2)T]

Ė − f (1 − f )
[
S(1)T

N − S(2)T
N

] ˙̃E = 0 (9)

Since Eq. (9) must be verified for any values of Ė and ˙̃E, it follows
that:

S = (1 − f )S(1) + f S(2) (10)
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Fig. 3. Homogenisation procedure for a bi-material.

and

S(1)T
N = S(2)T

N (11)

Eq. (10) provides a direct link between the apparent stress in the
bi-material and the respective stresses of its constituents. Eq. (11)
ensures that the continuity of the traction vector across the interface
between the two homogeneous materials is met. In the case of non-
linear materials, these equations are used in their incremental forms:

Ṡ = (1 − f )Ṡ(1) + f Ṡ(2) (12)

Ṡ(1)T
N = Ṡ(2)T

N (13)

The two phases of the bi-material, are assumed to be locally homoge-
neous. Their mechanical behaviour (i.e. deformation) is controlled by
a strain energy density function (X(m)) that, in the most general case,
depends on the Green-Lagrange strain, its rate and as many tensorial
state variables as necessary, P(m)

1 , · · · , P(m)
n . The non-linear mechani-

cal behaviour described by X(m)
(

E(m), Ė(m), P1
(m), · · · , Pn

(m)
)

can be
approximated by a piecewise-linear function so that incremental
constitutive relation of material m (m = 1or2) can be expressed as:

Ṡ(m) =

[
∂2X(m)

∂E(m)∂E(m)

]
Ė(m) = D(m)Ė(m) (14)

2.3. Finite element implementation

2.3.1. Tangent stiffness
Eqs. (8) and (12)– (14) completely describe the apparent

behaviour of the bi-material based on the individual behaviours of its
constituents. The implementation of this behaviour as a user mate-
rial subroutine for any FE package is based on the expression of the
kinematic enrichment term ˙̃E as a function of the apparent strain rate
in the bi-material, the respective volume fractions of the two phases
and their mechanical behaviours, which are controlled by their tan-
gent stiffnesses D(1) and D(2). Inserting Eq. (8) into Eq. (14) leads to:

Ṡ(1) = D(1)
(

Ė − f N ˙̃E
)

Ṡ(2) = D(2)
(

Ė + (1 − f )N ˙̃E
)

(15)

Eq. (15) can then be introduced into Eq. (13) and rearranged to give:

˙̃E =
[
(1 − f )NT D(2)N + f NT D(1)N

]−1
NT

(
D(1) − D(2)

)
Ė (16)

which can be simplified noting: C =
[
(1 − f )NT D(2)N + f NT D(1)n

]
.

The combination of Eqs. (16), (15) and (12), finally allows to
express the apparent stiffness matrix of the bi-material that relates
the increment of the apparent 2nd Piola-Kirchhoff stress to the
increment of the apparent Green-Lagrange strain:

Ṡ =
[
f D(2) + (1 − f )D(1) − f (1 − f )

(
D(1) − D(2)

)
NC−1NT

(
D(1) − D(2)

)]
Ė

(17)

2.3.2. Stress return algorithm
As the constituent materials are nonlinear and the strain rates are

not infinitesimal, the insertion of Eq. (15) into Eq. (13) is not suffi-
cient to guarantee that the traction continuity condition is satisfied.
Small residual stresses will progressively build-up at the interface
increment after increment and lead to increasingly inaccurate solu-
tion and convergence difficulty of the numerical scheme. An itera-
tive procedure (Newton-Raphson) which ensures that these residual
stresses (r) stay minimal is therefore required. The procedure starts
by defining:

r = NT S(1) − NT S(2) (18)

Based on the previously reached stress states in the two constituent
materials, the first order Taylor expansion of r gives:

rnew = rpevious + NTdS(1) − NTdS(2) (19)

where dS(1) and dS(2) are the iterative stresses in materials 1 and 2
respectively. An incremental form of Eq. (15) then allows to write:

rnew = rpevious −
[
(1 − f )NT D(2)N + f NT D(1)N

]
dẼ (20)

As r should be null, rnew = 0 is enforced finally leading to:

dẼ =
[
(1 − f )NT D(2)N + f NT D(1)N

]−1
rpevious (21)

DE is given by the FE code at the beginning of the increment. It is
used to calculate a first guess for ˙̃E using Eq. (16). This then feeds into
Eq. (15) and allows to calculate an estimate for r = rprevious. If the
convergence criterion ‖rprevious‖

‖nT S(1)‖ < TOLERANCE is met, then ˙̃E is used

to calculate Ṡ using Eq. (17). If, on the other hand, convergence is
not achieved, the value of ˙̃E is updated using Eq. (21) and the whole
process is repeated until the convergence is reached. Throughout the
paper, TOLERANCE = 10e−4 is used.
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2.3.3. Implementation of the laminate constitutive relation
The proposed scheme derived for a bi-material lends itself well

to be generalised to laminated structures. Instead of deriving cum-
bersome analytical equations, a laminate is constructed by a series
of homogenisation steps of two layers, which follows the proce-
dure described above. The macroscopic response obtained from the
homogenisation of the first 2 layers of the laminate is homogenised
with the 3rd layer. The results of this procedure is then homogenised
with a fourth layer and so on up to n-th layer of the laminate. The
method holds some similarities with the work by Nguyen et al. [28]
who have described the progressive development of multiple shear
bands in porous sandstones subjected to high compressive load-
ing. In the present case, however, the volume of the homogenised
material evolves as new layers are being considered.

The implementation of this procedure in the commercial FE pack-
age Abaqus (see Fig. 4) starts with the mapping of the structure’s
layup (see Fig. 1) onto the FE mesh (more details are provided later in
Section 4.2). As a function of their zone of influence, each integration
point is assigned with a layup description containing information on

material’s stacking sequences, properties and dimensions. The infor-
mation is saved as .csv files. To avoid multiple file opening, writing
and closing slowing down the code’s execution, a UEXTERNALDB sub-
routine was written. This allows to extract and store (before any
calculation was made) the information contained in these .csv files
into a Fortran module that makes the data accessible at any time
during the simulation. Additional modules are created to store each
material strain and strain rate at each integration point and at both the
current previous increments. The “strains and their rates in the pre-
vious increment” module is updated with the values of the “Current
strains and strain rates” module when the subroutine is called at the
beginning of an increment.

The stress tensors and the stiffness matrix are calculated in the sub-
routine and returned to the software. Each time the UMAT is called (i.e.
at each integration point and at each increment), the layup descrip-
tion at a given integration point is read from the “Layup description”
module. This data is then stored in an allocatable array, the size of
which is controlled by the number of materials in the laminate at the
integration point under consideration. The homogenised deformation

Fig. 4. Flowchart of the implementation of the kinematically enriched modelling scheme of a laminate into a UMAT subroutine for the commercial FE package Abaqus.
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gradient and velocity gradient (passed by the software) are used to
calculate the Green-Lagrange strain and its rate for the homogenised
block (Eq. (1)). A loop, ranging from the number of materials in the
laminate (n) to 2, is then initiated to progressively decompose the
homogenised strains and their rates into strains and strain rates in
the different layers of the structure (Eqs. (14), (16) and (8)). At each
increment of the loop, the size of the homogenised block decreases.
Eq. (15) finally allows to calculate the corresponding stress tensors.
If the stress residual on the interface between the material and the
homogenised block is greater than a certain tolerance, the kinematic
strain enrichment term is updated (Eq. (21)) and the procedure is
repeated. When r is small enough, the loop on the material’s con-
stituents is incremented by −1. Finally, once all the stresses in the
different constituents have been updated, a re-homogenisation pro-
cess, that allows to determine the homogeneous approximation of the
stress and of the tangent stiffness matrix of the laminated structure, is
triggered. Starting from the second layer, Eqs. (16) and (15) are repet-
itively used to homogenise material i with the already homogenised
blockresponseresultingfromtheprevious i − 1homogenisationsteps.
i is incremented of 1 each time and the process stops when i = n.

The approach allows for a full 3D approximation of the stress dis-
tribution in laminated composites. It is well suited for the modelling
of structures that fall outside of the traditional domain of application
of laminated plate theory [21]. It is, thus, able to handle thick struc-
tures made of non-linear material. Unlike other methods [29, 30],
there is no need to decompose the stress and strain tensors and in-
plane/out-of-plane coupling phenomenon are intrinsically present in
the formulation.

3. The mechanics of prepreg stacks

In the rest of the paper, some of the characteristics of the kine-
matic enrichment framework developed in Section 2 are showcased
in the context of the modelling of wrinkle formation in the consolida-
tion of thick stack of fibrous reinforcements impregnated with resin,
which is particularly relevant for applications in composite manufac-
turing and design. The present section, briefly recalls the nature of
the physical phenomena involved and presents some baseline model
verification.

3.1. Consolidation-driven defect generation in composite manufacture

During the manufacturing of a composite, the consolidation of a
(thick) stack of fibre reinforcements impregnated with viscous resin,
may lead to the formation of wrinkle defects following the creation
of excess length. Hence, as illustrated in Fig. 5, upon consolidation
(under an applied pressure P), the thickness and the length of the
path on top of the part (l) reduce. If the layers cannot compress nor

Fig. 5. Consolidation of prepreg stacks over curved tools (schematic adapted from
Ref. [26]).

slip with respect to another, the only way to accommodate the length
change is through out-of-plane deformation of the plies. On the other
hand, if the plies can move freely the “book-end” effect is observed.

The thickness reduction of a prepreg (i.e. a sheet of fibre reinforce-
ment impregnated with resin) under an applied pressure is intimately
linked to the flow mode of the resin. At low resin viscosity, a filtration
mode (also known as bleeding) is observed. Under bleeding, the resin
flows through the fibre network, the configuration of which is almost
unaffected. For high viscosity systems, however, fibre squeezing is
observed i.e. the fibres are carried by the resin when it transversely
expands under the application of the compaction load. The pioneering
work of Hubert and Poursartip [31] showed that in a manufactur-
ing cycle, the two flow modes may coexist. A more quantitative
relation between flow transition and thickness evolution of prepreg
stacks was proposed in Belnoue et al. [32]. Recent work performed
at the École Centrale de Nantes highlighted the necessity to prop-
erly understand the coupling effect between thickness change and
ply interface properties. Hence, the study of the kinematics of copper
threads inserted between plies of a stack of unidirectional (UD) car-
bon prepreg [33], revealed that the application of through-thickness
compression can result in the relative rotation of the fibrous rein-
forcements. Later, in situ observations (through a glass compressive
plattern) of the consolidation of impregnated fibrous reinforcements
demonstrated the influence of the interfacial properties on the flow
mode transition [34].

Another, better known, phenomenon is the influence of the
interactions between the reinforcement (i.e. fibres) themselves [35,
36] and also between the plies [37-40] on the apparent bending
behaviour of the stack.

3.2. Hyper-viscoelastic modelling of UD viscous prepreg and resin rich
interfaces

The physical phenomena described in the above section show
that stack of prepreg sheets should be modelled at the ply level
with the ply interfaces explicitly modelled. The model proposed in
Belnoue et al. [32] was chosen to describe the behaviour of the com-
posite plies. To account for the influence of ply interactions on the
apparent bending and shear responses of the stack, ply interfaces
are represented as thin extra layers of viscous fluid connecting the
plies (i.e. 10% of the initial ply thickness that is set as 0.2 mm for
IMA-M21). As the ply-scale model already considers ply interaction
and its implications on the compressive response of the stack, the
role of interfaces in the laminate-scale model is to include the rel-
ative movement of the plies. For consistency of the formulation,
the interfaces are modelled in the same way as the plies, but with-
out including the stiff elastic response in the fibre direction. As a
result, the compaction response is unaffected, whilst the very com-
pliant nature of the resin rich regions under shear is accounted for.
It is worth noting that, for a woven material, a constitutive relation
accounting for nesting and yarn friction may be required but that the
overall kinematic enrichment scheme would remain the same.

The general thermodynamic potential underlying the model, is
additively decomposed into an elastic part (Xe) related to the defor-
mation of the tape in fibre direction and a viscous part (Xv) control-
ling the resin flow. The corresponding second Piola-Kirchhoff stress
tensor is expressed as:

S = Se + Sv =
∂Xe

∂E
+

∂Xv

∂ Ė
(22)

To ensure that the deformation stays the same regardless of the coor-
dinate system, Xe and Xv are expressed as a function of invariants
of the Green-Lagrange strain and strain rates. I1 = Tr(C) registers
the average stretches of all lines and I3 = J2 = det(C) controls the



J-H. Belnoue and S. Hallett / Materials and Design 187 (2020) 108388 7

volume change of the material. I4 = Tr(A0C) (where A0 is a struc-
tural tensor that characterises the local directional properties of the
material and is defined as A0 = a0 ⊗ a0) determines the mate-
rial’s longitudinal extension and compression. The physical meaning
of I5 = Tr(A0C2) is more difficult to establish but it influences
both the shear and bending behaviour in the fibre direction. Finally,
J2 = 1

2 Tr
(

Ċ2
)

is used to bring in the dependence of the material
upon the loading rate.

Xv takes the general form:

Xv =
(

w0

h0

)2 4Jkeb

a + 2
F (I1, I3) J2

a+2
2 (23)

where F (I1, I3) =
√
wl
wf

(
1
Is1

) 3
2

⎛
⎜⎝

⎛
⎝ k√

I1
s− k√

wf

⎞
⎠

2

+ 3wf

⎞
⎟⎠

(
1

2
[
(I1−1)2+2I3

]
) a+2

2

upon squeezing and F (I1, I3) =
(

l0
d

)2 wl
wf

(
1

I1
b

)⎛
⎜⎝ k(√

I1
b− k√

wf

)
⎞
⎟⎠

2(
1

2I1
b2

) a+2
2

under bleeding. l0, w0 and h0 are

the initial length, width and thickness of the prepreg sheet. wl and
wf are the aspect ratios of a unit cell at the squeeze/bleed transition
and on the compaction limit and d is the size of the fibres in the
plane perpendicular to the fibre direction. To simplify the expres-

sions, I1
s = 1

2

(
(I1 − 1) −

√
(I1 − 1)

2 − 4I3

)
and I1

b = I1 − (1 + wl)

are used. At constant temperature, only 4 material parameters (as
b takes different values under squeezing and bleeding) need to be
determined [32]. The parameters a and b are linked to the viscosity
of the resin, whilst the parameter k controls the size of the initial
size of the inter-fibre channels.

The expression of Xe follows:

Xe =
1
2
k(J − 1)

2 +
[
−lL +

b

8
(I4 − 1)

]
(I4 − 1) − 1

2
lL (I5 − 1) (24)

where k controls the material incompressibility upon squeezing
through a penalty method and is set as: k = EL (where is the Young’s
modulus in the fibre direction). The shear modulus in the longitudi-

nal direction, lL, is set as lL =
√

1e−3×EL
2 so that it is in the same order

of magnitude as in Ref. [41]. Upon the transition between squeezing
and bleeding, k is ramped down to k = lL

2 allowing the fibre volume
fraction to increase. b controls the material (in)extensibility in the
direction of the fibres and can be expressed as b = EL − 2lL.

Throughout the paper, Hexcel® IMA-M21 prepreg is considered.
All the models were run assuming that the process is isothermal
(the values of the material parameters at 90 ◦C from Table 1 were
applied). This can be justified by the fact that, past 70 ◦C the resin
viscosity is very low and there is no evolution of the parameters a, b
and k beyond this point. In a thick laminate made from IMA-M21 it
takes two and a half hours for the resin to gel. This means that all of
the laminate’s flow and deformation up to vitrification occurs very
early in the cure cycle. Based on these considerations, it is assumed
that a cure simulation model is not required. In the resin rich layers,
EL = 0 is set.

Table 1
Material parameters controlling Hexcel® IMA-M21 pre-preg viscous behaviour at
90◦C, as derived in Refs. [32] and [26].

k a b (squeezing) b (bleeding) EL (MPa)

0.79 −0.86 −14.58 −31.31 573.50

3.3. The role of the interfaces

To illustrate how the interfaces affect the apparent bending
behaviour of a prepreg stack and to verify that the new model frame-
work behaves as intended, a cantilever bending test of 3 different
layups was simulated. The stacks were 170 mm-long, 20 mm-wide
and 3.2 mm-thick. The 3 different configurations considered were a
quasi-isotropic layup [0/ + 45/ − 45/90]2S (Case 1), a UD layup [0]16

(Case 2) and a UD layup, identical to Case 2 but where the pure resin
layers were artificially stiffened by setting k = 100,000(Case 3).

In each model, the beams were fully-fixed at one end (right-hand
side in Fig. 6) and left to deform under self weight (a gravity load was
applied) for 30 min. Incompatible mode eight-node solid elements
C3D8I were used. A dynamic implicit analysis in Abaqus/Standard
was run. The resulting deformed shapes are presented in Fig. 6. The
quasi-isotropic layup with fewer fibres aligned with the beam longi-
tudinal direction was the most compliant. Cases 2 and 3 also behave
differently. The stiff interfaces in Case 3 are responsible for a stiffer
apparent bending response of the stack, as it is more difficult for the
layers to slide with respect to one another.

3.4. Consolidation

Initial model assessment was performed by simulating com-
paction experiments on small uncured laminates (see Fig. 7). Cross-ply
[90/0]8 (CP) and blocked-ply [904/04/904/04] (BP) laminates with
15 mm by 15 mm in-plane dimensions were considered. The experi-
ments performed at T = 90◦C in Ref. [32] were simulated. Reduced
integration linear solid elements C3D8R (with hourglass control) were
used and a static analysis in Abaqus/Standard was run. The samples
were modelled as square blocks of material with 1 element through
the thickness, thus only considering the effective gauge section of the
cruciform-shaped samples. These blocks were embedded between
2 rigid plates. A surface to surface contact with a Coulomb friction
of 0.2 [42] was defined to model the interaction between the com-
paction plates and the samples. Load cycle was applied through a
point load acting at the reference point of one of the plates. The results
are presented in Fig. 7 a/. Similar evolution with time of the specimen
thicknesses compared to the experiments were observed, thus prov-
ing that the homogenisation scheme does not affect the results. The
layup effects reported were well captured, with BP specimens behav-
ing fundamentally differently from CP samples, despite the material
parameters used having been extracted from the experiments on the
CP samples only. The more stepped behaviour of the BP model com-
pared to the experiments is due to inaccuracies of the underlying ply
model and was also reported in Ref. [32].

Finally, an additional case of a [0/45]8 laminate of the same
geometry and subjected to the same thermo-mechanical loading as

Fig. 6. Simulation of a cantilever bending test in the case of 3 different layups showing
that the model is able to capture the effect of different layups but also the effect of
layer sliding on the apparent bending behaviour of a prepreg stack.
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Fig. 7. Simulation of consolidation experiments — a/ Thickness evolution with time for BP and CP specimens. Experimental results (dotted lines) are superimposed with model
predictions. b/Top view of a [0/45]8 sample showing apparent macroscopic in-plane shearing. The original mesh is superimposed to the deformed specimen.

in Ref. [32] was also simulated. Fig. 7 b/ shows that the laminate
is macroscopically under shear which corresponds to the relative
rotation of the plies. The fibre rotation captured is close to the 14◦
reported in Ref. [33]. This deformation mode would not be possi-
ble without the interaction between the plies being modelled (see
Ref. [11]).

4. Numerical simulations

4.1. Consolidation over an external radius

More robust validation was performed by simulating the auto-
clave consolidation of a 6 mm-thick specimen with 300 mm by 80 mm
in-plane dimensions over a convex L-shaped tool (see Fig. 5). The tool
radius was 15 mm. A UD layup with the fibres running along the path

of the tool was used. Micrographs of a physical demonstrator and the
high fidelity model for this case were presented in Ref. [26] and are
used to compare with and validate the new numerical approach. The
FE model using the kinematically enriched model was set-up with
C3D8R solid elements with hourglass control. A dynamic implicit
analysis in Abaqus/Standard was run. 191 elements were used for the
“homogenised” laminate (to compare with 41,000 elements reported
in Ref. [26] for the high fidelity model). The tool was modelled as a
rigid body. The interaction between the tool and the elements repre-
senting the prepreg stack was represented through the definition of
a penalty contact with the same frictional behaviour as in Section 3.4.
The autoclave pressure was applied, on the top of the laminate, as
an homogeneous pressure ramping from 0 to 7 bar in 600 s and then
held at 7 bar for 3000 s. As illustrated in Fig. 8, the wrinkle severity
predicted by the new approach is very similar to that made using
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Fig. 8. The kinematic enrichment approach allows similarly good predictions of wrinkle formation in corner section (see comparison with experimental results on the left) than
the high fidelity approach.

the high resolution model. More importantly, the time necessary to
run an analysis was reduced from 3 days down to 30 min using the
same system configuration.

4.2. Severely tapered laminate

The final validation case was to compare predictions for wrinkle
formation in a severely tapered part manufactured with hard tool-
ing on both side of the laminate. This was also studied extensively in
Ref. [26] where it was shown that a combination of excess length gen-
eration and an initial mismatch between the mould (designed based
on the final part’s shape) and the unconsolidated stack of prepreg
leads to the formation of wrinkles. Only the most computationally
challenging case showing the most severe wrinkles is considered.
A ply-by-ply illustration of half a sample (with the symmetry plane
on the right hand-side of the picture) prior to consolidation is pro-
vided in Fig. 1. The sample consisted of a double taper laminate
of 300 mm × 300 mm in-plane dimensions and was manufactured
with 137 plies in the thick section and 23 plies in the thin section of
the sample. The model was set-up as in Section 4.1 with the excep-
tion of the pressure being applied through the reference point of
the top tool modelled as a rigid body. The symmetry of the problem
was used to reduce the model size. The complexity of the stacking
sequence in the tapered region (see Fig. 1) and the amount of differ-
ent layup files (see Section 2.3.3) to be created made it difficult to
build the model manually. Therefore, a pre-processor which auto-
matically creates an input file for Abaqus using a ply book (i.e. a file
containing the definition of the stacking order, orientation, geome-
try and position of all the constituent plies of the part) and a CAD
geometry of the bottom surface of the part (in the .stp format) as
inputs, was written.

Fig. 9, illustrates the workflow of the pre-processor which
was written as a Python script for the 3D parametric modeller
FreeCAD [43]. The bottom surface of the part is first meshed in 2D,
with quadratic elements, using the finite element mesh generator
Gmsh [44] (included within FreeCAD). The information contained in
the ply book is then used to generate surfaces of the same geom-
etry, with the same in-plane position as the plies but that are all
placed on the same plane (i.e. the plies thicknesses are not accounted
for). Searching for the intersections between each node and the plies
collapsed on a single plane then allows to determine the number
of plies stacked at each position and to attribute an unconsolidated
“thickness” to each node. It also allows to map the part layup onto
each element by checking for the intersection between the elements’
centroids and each “collapsed” ply. With the knowledge of the part’s
thickness at each node, it is then straight forward to build a 3D mesh
from the 2D mesh. Finally, an Abaqus input file and layup definition
files are written.

Results of the analysis are presented in Fig. 10 where the micro-
graph of the physical component and the high fidelity model already
presented in Ref. [26] are also displayed. As in the corner section
example, the kinematically enriched constitutive modelling is much
more efficient than the high fidelity approach (about 30× faster per

CPU). Yet, the compromise in accuracy is minimal, as illustrated
by the contour plots of the displacement field in the compaction
direction extracted from the two different fidelity analyses. More-
over, the wrinkles’ wavelength, that is not captured very well by
the high fidelity model, seems to be better represented by the new
“homogenised” scheme. It is believed to be related to the inability
of the current model to allow for ply separation at the interfaces
accounting for some level of tack between the plies. On the other
hand, the “resin rich” regions in the middle of the wrinkles that
originate from the ply separation cannot be captured by the new
approach. Such capability could, however, be added in the future
providing that a ply tack and separation model becomes available.

4.3. Performance and limitations of the scheme

The speed improvement reported in the 2 previous sections orig-
inates, mostly, from the reduction of the degrees of freedom used
in comparison to the high fidelity modelling approach. Moreover,
the number of contacts, that are notoriously responsible for slowing
down the convergence of implicit FE schemes, is also reduced. Lastly,
stress concentration regions and highly anisotropic plies are smeared
out into an homogenised response when communicating with the
solver which also helps improve the convergence of the numerical
scheme.

A small study was performed to investigate the minimum number
of elements and modelling fidelity required. The size of the base-
line mesh for the double taper model was set-up so that the average
size of the elements (in-plane) was about 1

4 of the expected wave-
length of the wrinkles. To capture bending properly, four elements
through the thickness were used. Two extra cases were run: one with
the same through thickness resolution but with a refined mesh in-
plane; and one with the same in-plane resolution but with only two
elements through thickness. 3D views of the three tested cases are
presented in Fig. 11. Highly irregular unstructured meshes were pur-
posely used as this is more general and challenging for the model.
This helped to highlight some of the limitations of the approach.
The two main wrinkles predicted the baseline model branched out
and joined in two places (see white lines highlighting the wrin-
kles path on Fig. 11). This is an artefact of the mesh pattern that
can be associated with mesh-bias dependency. The phenomenon is
removed when the in-plane size of the mesh is finer but this is at
the expense of the computational cost. Hence, the accuracy of the
prediction of the wrinkles’ path needs to be a trade-off against the
run-time. One solution to improve the computational efficiency of
the scheme is to decrease the resolution of the through-thickness
mesh. The simulation that uses only two elements through the thick-
ness of the stack give very similar results to the higher resolution
baseline mesh but allows to decrease the computational cost of the
simulation, more than halving the run-time. However, it must be
noted that a simulation with only one element through the thick-
ness failed to converge as the complex kinematics of the prepreg
stack can not be captured accurately when too few degrees of free-
dom are used. The last case presented in the bottom right corner of
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Fig. 9. Flowchart illustrating the different operations performed by the pre-processor.

Fig. 11 corresponds to a model with similar in-plane mesh density
to that of the baseline case, but where the mesh is more regular. As
highlighted on the figure, this allowed to eliminate wrinkle branch-
ing. The run time was kept low through the use of only 2 elements
through the thickness. Finally, it must be noted that, the wave length,
k, of the predicted wrinkles stay the same whatever the level of mesh
refinement. This highlights the good level of regularisation obtained
through the kinematic enrichment approach.

One of the particular problems faced by the composite man-
ufacturing community (see Ref. [45]) is the stochastic nature of
material properties and variability in processing conditions. This can

be responsible for the location and severity of defects diverging from
the tight tolerances required by industry (especially in the aerospace
sector). The formation of such defects can thus not be predicted from
only a knowledge of the geometry and ideal manufacturing cycle. The
run-times obtained with the new approach now makes it possible
to numerically study these phenomena and brings us a step closer
to design for manufacturing of composite structures. This would, in
particular, be eased by recent developments in the artificial intelli-
gence principles in the field of materials (e.g. Ref. [46]). On a slightly
longer term, a kinematic enrichment-based multi-level homogeni-
sation procedure, where a prepreg architecture and composition is

Fig. 10. Comparison of the predictions for wrinkle formation in severely tapered laminate made by the ply-by-ply and the kinematic enrichment approaches.
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Fig. 11. 3D views of the deformed configurations of FE models of the double taper specimen with different mesh densities and patterns.

designed on a computer to improve a components manufacturability
(see Ref. [47] for example), would also be feasible. Lastly, the frame-
work derived here is flexible enough to be used with any constituent
materials and can find applications beyond the field of composites
manufacturing. Additive manufacturing, biomechanics or the struc-
tural performance of micro-electronics components are amongst the
fields where the method could find a direct application route.

5. Conclusions

In this paper, a new framework is proposed for modelling struc-
tures made from soft anisotropic layered materials, which is compu-
tationally efficient enough to be used in the early stages of design.
For example this can show how different layups and geometry can
affect part quality in the case of laminated composites. The kinemat-
ically enriched constitutive modelling approach used is inspired by
the work by Nguyen et al. [15] on failure in geomaterials and was
reformulated in the large deformation framework. The new approach
allows to take account of discontinuities at the material level, mak-
ing its implementation into commercial FE codes much easier than
other methods providing similar degrees of enhancement of the dis-
placement field (i.e. Cosserat models, XFEM etc.). In the case of large
lab-scale specimens, significant reduction of the number of elements

required can be achieved, thus suppressing the need for the ply-
by-ply modelling approach. This new approach makes the prospect
of modelling real-size components much more feasible, especially if
coupled with new software architectures that allow better scaling of
the FE method with the number of CPUs [48].
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Appendix A. Role of mixture for the Green-Lagrange strain rates

The derivation of the expression for the Green-Lagrange strain
rate starts with the combination of Eqs. (1) and (3).

Ė =
1
2

(
Ḟ

T
F + F̄T Ḟ

)
(A.1)

Ḟ
T
F =

(
(1 − f )Ḟ(1)T

+ f Ḟ(2)T
) (

(1 − f )F(1) + f F(2)
)

= (1 − f )2Ḟ(1)T
F(1) + f 2Ḟ(2)T

F(2) + f (1 − f )
(

Ḟ(1)T
F(2) + Ḟ(2)T

F(1)
)

(A.2)

We can then remark that: Ḟ(1)T
F(2) = Ḟ(1)T

F(1)F(1)−1
F(2) which

combined with Eq. (4) leads to:

Ḟ(1)T
F(2) = Ḟ(1)T

F(1)
(

I + F(1)−1
(

n ⊗ F̃
))

(A.3)

We can, similarly, prove that:

Ḟ(2)T
F(1) = Ḟ(2)T

F(2)
(

I − F(2)−1
(

n ⊗ F̃
))

(A.4)

F(2)T
Ḟ(1) =

(
I +

(
n ⊗ F̃

)T
F(1)−T

)
F(1)T

Ḟ(1) (A.5)

F(1)T
Ḟ(2) =

(
I −

(
n ⊗ F̃

)T
F(2)−T

)
F(2)T

Ḟ(2) (A.6)

Remarking that for any second order tensor A : AT Ȧ =
(

ȦT A
)T

and
inserting expressions A.3 and A.4 into Eq. (A.2) and doing the same
with Eqs. (A.5) and (A.6) into the transpose equation of Eq. (A.2) gives
rise to two equations that can be inserted into Eq. (A.1):

Ė =(1 − f )2Ė(1) + f 2Ė(2) + f (1 − f )
(

Ė(1) + Ė(2)
)

+
1
2

f (1 − f )
((

Ḟ(1)T
(

n ⊗ F̃
)

−
(

n ⊗ F̃
)T

Ḟ(2) − Ḟ(2)T
(

n ⊗ F̃
)

+
(

n ⊗ F̃
)T

Ḟ(1)
)

=(1 − f )
(

(1 − f )Ė(1) + f Ė(1)
)

+ f
(

f Ė(2) + (1 − f )Ė(2)
)

− f (1 − f )
2

((
Ḟ(2) − Ḟ(1)

)T (
n ⊗ F̃

)
+

(
n ⊗ F̃

)T (
Ḟ(2) − Ḟ(1)

))
(A.7)

Remarking that
(

Ḟ(2) − Ḟ(1)
)

=
( ˙n ⊗ F̃

)
and calling Ė(n⊗F̃) the Green-

Lagrange strain rate associated with
(

n ⊗ F̃
)

we finally obtain:

Ė = (1 − f )Ė(1) + f Ė(2) − f (1 − f )Ė(n⊗F̃) (A.8)

In other words, the apparent Green-Lagrange strain rate of the bi-
material is the sum of the weight average of the Green-Lagrange
strain rates in the constitutive materials and a corrective term. In
the case where the volume fraction of one of the materials is signif-
icantly higher than the other, the factor f(1 − f) is very small and
the corrective term can be neglected. If both the volume fractions of
the constitutive materials and the deformations of the 2 constitutive
materials are similar, the term Ė(n⊗F̃) becomes very small and the
corrective term can be neglected again. Finally, in the case where the
volume fractions are similar but with one of the materials deforming
significantly more than the other, the term where the volume frac-
tion multiplies the Green-Lagrange strain in this material dominates
and again we can neglect the corrective term.

Appendix B. Compatibility condition in terms of Green-Lagrange
strain rates

Eq. (4) also leads to a similar decomposition in terms of the Green-
Lagrange strain rates. This can be proven by first differentiating Eq.
(4) as a function of time. Left multiplying the result by FT gives:

F̄T Ḟ(2) = F̄T Ḟ(1) + F̄T
( ˙n ⊗ F̃

)
(B.1)

Transposing Eq. (B.1) then leads to:

Ḟ(2)T
F = Ḟ(1)T

F +
( ˙n ⊗ F̃

)T
F (B.2)

Introducing Eq. (3) into Eqs. (B.1) and (B.2), then using Eqs. (A.3)–
(A.6) and rearranging the obtained equations leads to:

F(2)T
Ḟ(2) = F(1)T

Ḟ(1) +
(

n ⊗ F̃
)T

Ḟ(2) + F(1)T
( ˙n ⊗ F̃

)
(B.3)

and

Ḟ(2)T
F(2) = Ḟ(1)T

F(1) +
( ˙n ⊗ F̃

)T
F(1) + Ḟ(2)T

(
n ⊗ F̃

)
(B.4)

Noting AS = 1
2

(
A + AT

)
(where A is a second order tensor) gives rise

to:

Ė(2) = Ė(1) + Ė(n⊗F̃) +
( ˙

F(1)T
(

n ⊗ ˜ )
F

)S

(B.5)

The two last terms in Eq. (B.5) only add to the components related to
the direction n and Eq. (B.5) can, therefore, be simplify as:

Ė(2) = Ė(1) +
˙(

n ⊗ ˜)S
E (B.6)

where ˙̃E is a Green-Lagrange strain kinematic enrichment term. It
is interesting to note that the full expression for this term does not
need to be derived here.
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