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Abstract The Huff model is designed to estimate the probability of shopping
centre patronage based on a shopping centre’s attractiveness and the cost of a
customer’s travel. In this paper, we attempt to discover some general shopping
trends by calibrating the Huff model in Shenzhen, China, and New York, USA,
using taxi trajectory GPS data and sharing bikes GPS data. Geographical and
Temporal Weighted Regression (GTWR) is used to fit the model, and calibration
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results are compared with Ordinary Least Squares (OLS) regression, Geographical
Weighted Regression (GWR), and Temporal Weighted Regression (TWR). Results
show that GTWR gives the highest performance due to significant geographical
and temporal variation in the Huff model parameters of attractiveness and travel
cost. To explain the geographical variation, we use residential sales’ and rental
prices in Shenzhen and New York as a proxy for customers’ wealth in each region.
Pearson product-moment correlation results show a medium relationship between
localised sales’ and rental prices and the Huff model parameter of attractiveness:
that is, customer wealth explains geographic sensitivity to shopping area attrac-
tiveness. To explain temporal variation, we use census data in both Shenzhen and
New York to provide job profile distributions for each region as a proxy to esti-
mate customers’ spare leisure time. Regression results demonstrate that there is
a significant linear relationship between the length of spare time and the param-
eter of shopping area attractiveness. In particular, we demonstrate that wealthy
customers with less spare time are more sensitive to a shopping centre’s attrac-
tiveness. We also discover customers’ sensitivities to travel distance are related to
their travel mode. In particular, people riding bikes to shopping areas care much
more about trip distance compared with people who take taxi. Finally, results
show a divergence in behaviours between customers in New York and Shenzhen
at weekends. While customers in New York prefer to shop more locally at week-
ends, customers in Shenzhen care less about trip distance. We provide the GTWR
calibration of the Huff model as our theoretical contribution. GTWR extends the
Huff model to two dimensions (time and space), so as to analyse the differences
of residents’ travel behaviours in different time and locations. We also provide the
discoveries of factors affecting urban travel behaviours (wealth and employment)
as practical contributions that may help optimise urban transportation design.
In particular, the sensitivity of residents to the attraction of shopping areas has
a significant positive linear relationship with the housing price and a significant
negative linear relationship with the residents’ length of spare time.

Keywords GTWR - Huff model - shopping area analysis - shopping area’s
attractiveness

1 Introduction

The ubiquitous rise of shopping malls provides more shopping choices for cus-
tomers. However, it also causes a series of issues for urban planners, such as high
business competition, traffic congestion, and inefficient land use (Yue et al., 2011).
To increase positive business competition, reduce traffic congestion, and improve
land use efficiency, a possible countermeasure is to predict journeys to shopping
areas (Bohnet and Gutsche, 2007). Previously, researchers have analysed travel
behaviours to shopping areas to optimise the locations of shopping malls (Sudrez-
Vega et al., 2015), reduce traffic congestion (Tang et al., 2016), predict shopping
demand (Cartlidge et al., 2018), and to model activity choices and spatial be-
haviours (Gong et al., 2019a,b). Often, shopping areas analysis is used to discover
the key determinants that affect customers’ spatial choices (Olsson, 1970; South-
worth, 1983). By quantitatively modelling internal relationships between determi-
nants and journeys to shopping areas, researchers are able to systematically un-
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derstand travel behaviours, and ultimately, discover potential shopping demands
for future urban planning.

Data, which is used to fit the model, is traditionally collected from surveys
and interviews. These subjective collection methods are highly dependent on the
participants’ perceptions and assumptions (Sudrez-Vega et al., 2015). In addition,
the data collection process is labour intensive, time consuming, and costly (Gong
et al., 2017). Apart from surveys and interviews, GPS data is another popular
source for model calibration; with large-scale human mobility data being collected
with relatively little cost (Wang et al., 2017). Previous studies on shopping areas
analyses can be divided into two categories. The first category comprises modelling,
which is used to discover influential factors of journeys to shopping areas (Yan
et al., 2017). Examples include the gravity model (Huff, 1964), discrete choice
model (Gracia and de Magistris, 2008), and logit model (Chu, 1989). The second
category consists of the studies on model calibration. These studies increase the
models’ accuracy and are predicated on the fact that a model is essentially useless
for either description or prediction without careful calibration (Rodrigue et al.,
2013).

In this paper, Geographically and Temporally Weighted Regression (GTWR)
is used to calibrate a traditional geographic model: the Huff model. The Huff
model includes two attributes: a shopping centre’s attractiveness, and customer’s
travel cost. Experiment showed that an attractive shopping mall is considered to
have large area, including more requirements for a large range of goods, and is
mostly located in city centres; while some people travel to relatively unattractive
stores located far from city centres in order to benefit from lower prices (Yue
et al., 2011). Previous research has demonstrated that shopping area size, traveller
volume and customers’ reviews on social media are able to represent shopping
area’s attractiveness with high performance (Gong et al., 2017; Gong et al., 2018).
Therefore, we use three proxies (size, customer volume, and social media reviews)
to estimate a shopping area’s attractiveness, and use route distance to estimate
travel cost. To test the generality of GTWR, we use taxi journeys in Shenzhen, and
taxi journeys and sharing bikes journeys in New York to train and test the Huff
model. Results demonstrate that the exponents of attractiveness, «, and distance,
[, are spatially and temporally variant.

To explain the geographical variation of parameters, we hypothesise that the
values of o and § are related to customers’ wealth. In particular, the people who are
more wealthy are more likely to: (i) select more attractive shopping areas, and (ii)
travel farther to a shopping area. We test these hypotheses using two case studies
in Shenzhen and New York. We collect open source house price sales’ data and
rental data in both Shenzhen and New York to estimate customers’ wealth, and
use Pearson’s product-moment correlation and t-test to explore their relationship.

To explain the temporal variation of parameters, our hypothesis is: the length of
people’s spare time is negatively correlated to their sensitivities to attractiveness.
In particular, people care more about attractiveness when they have less spare
time. We estimate that the length of spare time is the length of time people do
not work during the opening hours of the mall. We test the hypothesis both in
Shenzhen and New York by using typical working schedules of different jobs to
estimate people’s time routine, and perform Pearson’s product-moment correlation
and t-test on two variables.
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The rest of the paper is organised as follows. In Section 2, we review previous
studies and state the motivation of this paper. In Section 4, the models used in the
paper are introduced. In Section 5, we conduct the first case study, using Shenzhen
taxi data to calibrate the Huff model. We use house price data (including house
sales’ data and rental data) and population census data to explain the spatial and
temporal variation of parameters in the Huff model for Shenzhen. In Section 6,
we conduct the second case study, using taxi data and sharing bikes data in New
York to calibrate the Huff model. We use house price and people’s spare time in
New York to explain the variation of parameter « in the Huff model, and compare
the results with Shenzhen taxi data. Finally, Section 7 concludes.

2 Literature review

First introduced in 1964, the Huff model is one of the most widely used models
for shopping areas analyses (Huff, 1964). Following simple gravity assumptions,
the Huff model estimates the probability of shopping centre patronage based on
two factors: a shopping area’s attractiveness and the passenger’s cost of travel.
Generally, an attractive store can be quantified by factors such as a shopping
mall’s size, the traveller volume (number of visits to the shopping area), and
customers’ reviews on social media platforms. Travel cost is often represented by
travel route distance (Yue et al., 2012) or Euclidean distance (Brunsdon et al.,
1996). Gong et al. (2017); Gong et al. (2018) discovered that customer volume
has highest performance to estimate a shopping centre’s attractiveness. Lu et al.
(2014) set up a house price model and used Euclidean distance and route distance,
respectively, to fit the model. The results suggested that using route distance in
spatial models performs better than using Euclidean distance. In this paper, we
apply the Huff model in two cities, Shenzhen and New York, to discover journeys
to shopping areas in different time and locations.

Ordinary least squares (OLS) linear regression is a representative approach
to unravel complex relationships (Ma et al., 2018). Nakanishi and Cooper (1974)
demonstrated that the Huff model can be easily calibrated using OLS procedures.
The basic assumption of OLS is that, in a model, variables are independent and
spatially stationary. However, Lloyd (2010) showed the necessity and effectiveness
to build regression methods for model calibration with dependent variables and
non-stationary parameters. Therefore, the OLS approach is criticised for strong
(and unrealistic) assumptions placed on variables and parameters. Since, according
to the study by Gong et al. (2016), the two variables in the Huff model are closely
related, we consider OLS insufficient to calibrate the Huff model accurately.

Alternative techniques have been proposed to overcome the drawbacks of OLS,
including: distance-decay weighted regression (Gutiérrez et al., 2011), two-stage
least squares regression (Estupindn and Rodriguez, 2008), the passion model (Chu,
2004), and geographically weighted regression (GWR) (Sudrez-Vega et al., 2015).
Compared to other methods, GWR is specifically designed to deal with spa-
tial data (Brunsdon et al., 1996). A weight matrix is used for each observation,
such that the matrix depends on the distance between the locations of observa-
tions (Cardozo et al., 2012). Therefore, GWR can capture the spatial pattern of
data via spatially varying parameters. Because of this, GWR has been widely used
on urban planning, for instance: Sudrez-Vega et al. (2015) used GWR to select an
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optimum location for a new store; Ma et al. (2018) developed a GWR model to
explore the spatial variation of house prices; and Gong et al. (2017) demonstrated
that GWR performs better than global OLS when calibrating the Huff model.

However, when dealing with temporally non-stationary variables, time is an-
other critical dimension for which GWR is unable to capture. Cartlidge et al.
(2018) showed that journeys to shopping areas have high time regularity and both
spatial and temporal non-stationarity. Therefore, GWR has limitations when used
to analyse journeys to shopping areas.

In recent years, a series of methods for spatio-temporal analysis have been
proposed in studies on geographic information systems (GIS) and transport sys-
tems. Zhang et al. (2016) used Deep Neural Networks (DNN) to predict traffic
flow spatially and temporally. Yue et al. (2009) proposed a clustering approach
to discover attractive areas and movement patterns using taxi trajectory data.
Mao et al. (2016) proposed a spatial clustering method using taxi data to dis-
cover spatio-temporal patterns of household travels. Wang et al. (2017) utilized
taxi trajectory data to detect trip purpose with Hawkes processes. Li et al. (2019)
proposed multinomial logit models for tourism destination choice analysis, which
is able to analyse the temporal and spatial patterns of visitors. Rashidi et al.
(2017) constructed a methodology to capture the temporal and spatial changes of
emergency events from social media. Wang et al. (2018a) and Wang et al. (2018b)
researched geographic consumption behaviour data with check-in data to under-
stand urban vibrancy and popularity. In this paper, we use a spatio-temporal
method (GTWR; introduced in Section 4.2.4) to calibrate the Huff model and to
discover spatio-temporal patterns of journeys to shopping areas.

3 Problem definition

As introduced in Section 2, previous works on shopping areas analysis are con-
strained, since they did not consider multiple dimensions (both spatial and tempo-
ral) when analysing journeys to shopping areas. Moreover, the estimated shopping
centre attractiveness is singular, and lack of comparison. The objectives of this
study are: (i) to discover shopping patterns geographically and temporally; (ii)
to discover whether the influential factors have spatial and temporal impacts on
customers’ choices (iii) to understand the reason why journeys to shopping areas
are geographically and temporally different.

In this paper, we employ GTWR to fit the Huff model parameters of shopping
centre attractiveness («), and parameter of travel cost (8). We consider two di-
mensions: location and time, and conduct two case studies using: (i) taxi data in
Shenzhen; and (ii) taxi data and bike sharing data in New York. To make com-
parisons, we also use OLS (classical regression), GWR, and TWR to calibrate the
Huff model.
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4 Methodology
4.1 The Huff model

The Huff model (Huff, 1964) is designed to estimate shopping probabilities of
customers when there exists more than one shopping areas. The classic form of
the Huff model is: 5
SeCr.
Pij= ooty (1)
Zj:l 5705
where P;; represents the probability that customer from origin ¢ goes to shopping
centre j; C;; stands for the travel cost from origin 4 to shopping centre j; S; denotes
the shopping centre j’s attractiveness; a and g are the parameters associated with
the attractiveness and the costing factors (a>0, 8<0); and m is the number of
shopping centres.
In this paper, we use GPS data to estimate shopping probabilities P from
location ¢ to shopping centre j in time t¢:

Nijt
- )
DPijt Zj gt ( )

where n;;; means the number of customers who pick-up at location ¢ and drop-
off at shopping centre j at time t. We use O-D route distance returned from
baidu. com to estimate C' in Shenzhen case study (Section 5), and from google.com
to estimate C' in New York case study (Section 6). To calculate S;, we use three
variables: (i) shopping area size; (ii) the number of journeys (i.e., the number of
taxi journeys with destination within the buffer radius of each shopping centre);
and (iii) customers’ reviews about shopping areas on social media (The reviews
are the comprehensive evaluations of shopping malls and surrounding areas, while
the overall evaluations of all shopping malls can be regarded as the comprehensive
evaluations of a shopping area).

4.2 Huff model calibration

Parameters of the Huff model can be calibrated using trajectory data. Here, we
compare four calibration methods: (i) OLS (Section 4.2.1), which gives one global
best fit for the Huff model parameters, a and f; (ii) GWR (Section 4.2.2), which
fits the model geographically such that parameters are a function of spatial locality;
(iii) TWR (Section 4.2.3), which fits the model temporally such that parameters
are a function of time; and (iv) GTWR (Section 4.2.4), which fits the model such
that parameters are functions of both space and time.

To estimate the Huff model parameters a and 3, O’Kelly introduced four
combinations of attraction and cost functions (O’Kelly, 1999), to cover linear and
exponential decay of variables S and C. These cost functions are described as:

K1 : Ln(Ti;) = aS; + BC;; (3)

K2: Ln(Ti;) = aS; + BLn(Cij) (4)
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K3 : Ln(Ti;) = aLn(S;) + BCy; (5)

K4 : Ln(Ti;) = aLn(S;) + BLn(Cij) (6)

where T;; equates to the numerator in (1), with « and § parameters a power of
S and C, respectively. The four formulae linearise the Huff model equation (1) to
enable calibration through regression. In his initial work, O’Kelly (1999) found
K1 (3) resulted in best fit for global OLS calibration of the Huff model, when
using shopping area size as a proxy for attraction S. However, a later study has
shown that K2 (4) gives best fit for regression calibration when using number of
journey drop-offs as a proxy for attraction S (Gong et al., 2017). In this paper, we
explore all four linearisations, to investigate their effect on regression calibration
performance. To fit the Huff model parameters, a and f, calibration is performed
using OLS regression, GWR, TWR, and GTWR.

4.2.1 OLS regression

Ordinary Least Squares (OLS) regression is a linear regression method. By min-
imising the sum of squared residuals, it estimates best fit parameters in a linear
model. OLS calibration of the Huff model returns fixed values for a and 3. The
general form of OLS regression is:

y= Brar+e (7)
k=1

where y is the dependent variable; xj is the k-th independent variable; m is the
number of independent variables; ) is the regression coefficient for the k-th inde-
pendent variable; and ¢ is the random error.

4.2.2 GWR calibration

GWR is a non-stationary technique that models spatially varying relationships.
Compared with global regression, the coefficients in GWR are functions of spatial
location (Brunsdon et al., 1996). The general form of GWR is:

yi = Bio(us, vi) + Z Bik (us, vi)Tik + € (8)

k=1

where y; is the dependent variable at location i; x; is the k-th independent vari-
able at location 7; m is the number of independent variables; B;o is the intercept
parameter at location ¢; 3;1 is the local regression coefficient for the k-th indepen-
dent variable at location ¢; and ¢; is the random error at location ¢. In particular,
u; and v; represent the geographical location of i. Since the Huff model has two
parameters (parameter of attractiveness, o, and parameter of travel cost, /), so
m = 2 for the Huff model and S;x in (8) corresponds to o and S in (1).
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4.2.8 TWR calibration

Similar to GWR, TWR is another non-stationary technique that models tempo-
rally varying relationships. The general form of TWR is:

vi = Bio(t) + Y Bir(t)win + € (9)
k=1

where y; is the dependent variable at time ¢; x;x is the k-th independent variable
at time t; m is the number of independent variables; 8;0 is the intercept parameter
at time t; B,k is the local regression coefficient for the k-th independent variable
at time t; and ¢; is the random error at time t.

4.2.4 GTWR calibration

Since GWR cannot deal with temporal variation of parameters, Ma et al. (2018)
proposed GTWR (an extension of GWR), which assumes that variables are non-
stationary in both time and space. GTWR is expressed as follows:

m
yi = Bio(us, vi, ti) + Zﬁik(ui7vi7ti)xik +e (10)
k=1
where y; is the dependent variable at location i; x; is the k-th independent variable
at location i; m represents the number of the variables in the model. Since there
are two variables in the Huff model (k1 = «, and k2 = ), therefore m = 2; B¢ is
the intercept parameter at location i; 8,1 is the local regression coefficient for the
k-th independent variable at location ¢; and e€; is the random error at location ¢;
and ¢ represents each space-time location. In particular, u; and v; represent the
geographical location of i; while ¢; represents the time location of 1.

In this paper, we consider customers with the similar drop-off times and ori-
gin locations as a group, and estimate one pair of parameters in the Huff model
(parameter « of shopping centre attractiveness, and parameter 8 of travel dis-
tance) for each group. In this way, we use GTWR to calibrate the Huff model
both spatially and geographically.

5 Case study using taxi trajectory data in Shenzhen
5.1 Data

In this case study, we use GPS taxi trajectory data in Shenzhen to analyse journeys
to shopping areas. The taxi data includes taxi location (longitude, latitude), time
(seconds), speed, direction angle, and status (0: taxi has no passenger; 1: taxi has
passenger). For each taxi, the data collection time interval is between 30 seconds
to one minute. One month of taxi data (24 hours/day) are collected from 24th
September to 20th October in 2015, and there are 15,000 taxis in the data set. As
1st October is the Chinese National Day, the total number of journeys to shopping
areas on 1st October is significantly larger than that of any other days. Although
the number of journeys to shopping areas on 1st October have similar average trip
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Fig. 1 The locations of 5 shopping areas in Shenzhen, China

distance compared with normal weekends, we exclude taxi data on 1st October
from our analysis to avoid bias and outliers.

We collect 712 questionnaires from the five study shopping areas in Shenzhen in
2015. The questionnaire surveys show that taxi journeys take 7.3% in all journeys
to shopping areas. We initially segment Shenzhen and all taxi data into a grid of
square cells of 400x400 metres (cell size chosen so that, each day, there are at least
50 taxi journeys in every cell; thus enabling statistical significance of analysis), with
range boundary 113.80°-114.63° longitude and 22.46°-22.80° latitude.

Previously, researchers have selected taxi journeys that drop-off within 500
metres outside shopping malls as shopping journeys, and this method is called
buffer radius (Yue et al., 2012; Gong et al., 2017). To validate the efficacy of this
buffer radius, we tested four different buffer radii: 100, 300, 500, and 700 metres.

Once drop-off (or destination) points are selected, we extract their correspond-
ing taxi pick-up points (i.e., the origins of the trips), which gives us a set of Origin-
Destination (O-D) pairs. As most of the shopping centres in Shenzhen open from
10am to 10pm, O-D pairs are further filtered to remove those that occur outside
of this window.

To verify the prediction accuracy of the calibrated Huff model, we split the data
into two subsets: training data (used for calibrating the Huff model), and testing
data (used to verify the prediction accuracy of the calibrated model). The data is
initially sorted by time in origin location. Every tenth O-D pair is then selected
for the test set, the other 90% of data are used for the Huff model calibration.
Both sets are further segmented into two subsets: weekdays and weekends.

Here, we select five representative shopping areas in Shenzhen as our study
area: Dongmen, Huagiangbei, Futian, Nanshan, and Baoan. The location of each
shopping area is shown in Fig. 1. Since the five shopping areas include most rep-
resentative shopping malls in Shenzhen, we only consider these shopping areas in
the experiments. There are multiple shopping malls inside each shopping area (see
Table 1). Following the method of Yue et al. (2012), all shopping malls in the same
area are aggregated to estimate attractiveness.

To calculate S, we use three variables: (i) shopping centre size; (ii) the number
of journeys (i.e., the number of taxi journeys with destination within the buffer
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Table 1 Customers’ rating data on Dianping

Shopping centre ~ Number of malls Number of reviews  Rating

Dongmen 33 2496 4.76
Huaqgiangbei 31 1941 4.94
Futian 10 1727 4.23
Nanshan 16 1401 4.44
Baoan 4 506 4.37

radius of each shopping centre); and (iii) customers’ reviews on social media. (Gong
et al., 2017; Gong et al., 2018). When using social media reviews to estimate
shopping centre attractiveness, we collect reviews of 94 shopping malls in our
study areas from dianping.com, a social media platform where customers can
share their comments and give a rating up to five (where five represents the best
review) to each shopping mall. We collect 8070 reviews in total. For each mall, we
collect the number of reviews for each rating score.

A summary of reviews is presented in Table 1. To obtain the review ranking
of the shopping areas, Bayesian Average is used to pre-process the data. Bayesian
Average is a statistical method based on Bayes’ Rules, which had been used to
calculate the rating of the customer reviews (Yang and Zhang, 2013).1 Bayesian
Average is calculated as follows:

Z?:lri—i—BXm
B+n

(11)

where ¢ is the rating value of each shopping centre, r is the rating of each mall, n is
the number of votes for each shopping mall, B is the mean number of votes across
the whole set for each shopping centre (considering both shopping experiments
and other POIs located around), and m is overall average rating in the whole set.

We use Z-Score, presented in the final column of Table 1, to normalize the
social media reviews. After normalization, the data is in the range [-1,1]. The form
of Z-Score is calculated as follows:

z=(x—p)/o (12)

where x is the input data, p is the average value of x, and o is standard deviation
of z. After normalization, we consider Z-Score values as an estimation of shopping
centre attractiveness, S, in the Huff model. We label this estimation method as
S = Sreview-

To calibrate these models, we use K1-K4 to estimate parameters (Eq. (3)—
Eq. (6)). In particular, five factors are considered, which are the shopping centre
attractiveness (5), route distance (C), pick-up longitude, pick-up latitude, and
drop-off time (hours).

After calibrating the Huff model, the prediction accuracy is verified using Mean
Absolute Percentage Error (MAPE) on the test data. MAPE is defined as:

q:

1 n
MAPE = —
2
i=1
where lower values indicate higher predictive accuracy.

y— f(z)

” (13)

1 For example, Bayesian Average is used by Internet Movie Data Base (IMDB; imdb.com),
the world’s most popular source for movie, TV and celebrity content.
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Table 2 Global parameter calibration on training data using best estimators (highest R2,
lowest sum of squares) in 500 meters buffer radius (shown to have the best performance). K1
estimator has best performance when S = Sg;.e Or S = Sieview, and K2 has best performance
when S = Sjourney. Best fit presented in bold.

Time S Buffer radius  Est. a B S.E. R?
size K1 0.79 -0.58 1.43  0.76

weekday journey 500 m K2 0.92 -0.58 1.24 0.83
review K1 0.43 -0.57 145 0.75
size K1 0.61 -0.18 142 0.74

weekend journey 500 m K2 0.66 -0.18 1.19 0.86
review K1 -0.04 -0.18 1.44 0.73

5.2 Huff model calibration results

We first perform a global calibration of the Huff model, with results shown in
Table 2. The buffer radius of 500 metres gives best performance (with lowest
residual S.E. and highest R? values), confirming the choice of buffer size used in
previous studies (e.g., Yue et al. (2012)). Therefore, compared with results with
100m, 300m, and 700m buffer sizes, 500m buffer radius is most suitable to estimate
shopping centre’s influence area.

The global parameters, using a 500 metre buffer size, are a = 0.92, and 8 =
—0.58 in weekdays, and o = 0.66, and 8 = —0.18 during weekends. We see that
the absolute values of & and 8 are much higher in weekdays than in weekends. This
suggests that customers are more sensitive to a shopping centre’s attractiveness
and travel distance in weekdays. One interpretation of this could be that since
people have less free time on weekdays (due to work constraints), for convenience,
customers choose to shop at more attractive malls (that are larger, more popular,
and more highly rated in reviews) to ensure that they are able to more quickly find
the products they want; while cutting down on travel times by shopping at malls
closer to their origin location. We further explore this interpretation in Section 5.6.

In Table 2, we see that all three proxies of S (shopping centre size, customer
volume, and social media reviews) have good performance—i.e., low errors—on
estimating shopping centre attractiveness. Therefore, from the results, we infer
that an attractive shopping centre is one that: (i) has large size and therefore sells
a greater variety of products; (ii) is popular and has higher customer volumes
compared with other malls; and (iii) is well liked and customers are satisfied with
the available products and services. Moreover, using the number of customers,
Sjourney, to estimate a shopping centre’s attractiveness provides best performance
on the Huff model calibration compared with shopping centre size, Ss;.e, and social
media reviews, Sreview-2

2 A multiplicative model was also considered, such that attractiveness, S, is calculated as
a linear function of size, reviews, and number of journeys. However, results showed that the
three variables are colinear, thus rendering the model unusable.
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Table 3 Predictive accuracy on Shenzhen test data, using 500m buffer radius. Best accuracy
presented in bold.

Method | Est. | Time | MAPE (%) | Time | MAPE (%)

Global 21.22 10.43
GWR 19.32 9.40
TWR K2 weekday 1515 weekend 13.34
GTWR 14.67 8.33

Table 4 Shenzhen: number of significant local parameters from GWR calibration.

weekday weekend
a B a g

Not significant 1314 371 1711 500
Significant 6217 7160 5808 7019

95% Significance

5.3 Validation of Huff model calibration

Table 3 shows the predictive accuracy (MAPE) of the calibrated models on the
test data, using a buffer radius of 500 metres. We can make the following observa-
tions: (1) the Huff model with GTWR calibration has highest prediction accuracy
(smallest MAPE), while the Huff model calibrated with a single pair of global
parameters performs worst (highest MAPE). This indicates that customers’ sen-
sitivities to both attractiveness and travel distance are closely related to time; (2)
the predictive accuracy of the model is better for weekends than for weekdays. One
interpretation is that since people are more likely to be working during weekdays,
some taxi journeys that drop-off close to shopping malls are aimed for work rather
than shopping—i.e., the “shopping journeys” pulled from the raw data for week-
ends is cleaner. The method of using a fixed buffer radius is unable to distinguish
between shopping journeys and non-shopping journeys.

5.4 Spatial distribution of parameter « and

Table 4 shows the number of significant parameters found in the GWR calibra-
tion, where significance is calculated using the multiple testing method (da Silva
and Fotheringham, 2016). Fig. 2 presents the results of GWR, calibration, such
that only significant parameters are displayed. Four districts are mapped: Baoan,
Nanshan, Futian, and Luohu. Fig. 2(a) shows the geographic variation in « for
weekdays. We see « takes highest positive values (red) in Nanshan and Futian dis-
tricts, and highest negative values in some areas in Baoan district. This suggests
that people who live in Nanshan and Futian are more likely to prefer shopping at
attractive stores, whereas people who live in Baoan care least on the attractiveness
of stores. Compared with journeys to shopping areas in weekdays, customers’ sen-
sitivities to shopping centre attractiveness during weekends tend to be lower, apart
from in Futian. People who live in Futian pay similar attention on shopping centre
attractiveness in weekend and weekday. One interpretation is that Futian is the
city centre, where there are many attractive shopping areas. People do not need
to travel far to go shopping in attractive stores. Therefore, at anytime, citizens in
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Fig. 2 Spatial Huff model calibration for Shenzhen using GWR. Only significant parameters
are shown. The Mercator projection (the standard map projection) is used to set up projected
coordinates. Black points represent the locations of shopping areas.

Futian have quite high attention on shopping centre attractiveness. In particular,
in Fig. 2(a), the value of « is close to zero in Nanshan, and negatively highest in
most areas of Baoan. This suggests that people living in these areas in Shenzhen
pay relatively less attention to shopping centre attractiveness during weekends. In
some areas, people even prefer unattractive stores. We have previously discussed
attractive malls in Section 5.2, which are large size, popular, and quality goods
and services. On the contrary, unattractive stores are relatively small, with lower
customer volume, and lower quality services. These shopping areas tend to be
located far from city centres (where business competition is high), but close to
suburban population centres, such as Baoan. Therefore, it is unsurprising that in
some areas in Baoan, people prefer to select relatively unattractive stores in return
for the convenience of shorter travel costs. In contrast, in city centre area such as
Futian, the value of « is positively highest (red). This indicates that people who
live in city centres, where multiple malls are in closer proximity, are likely to select
the most popular centres to shop.

Compared with Fig. 2(a) and Fig. 2(c), we see that there is one area in Nanshan,
where « value is positive in weekday and close to zero in weekend. From Google
map, we see the Shenzhen University is located in this area. We therefore provide
a possible interpretation: in weekday, University students study and live in school,
they do not have much time for shopping, so they prefer to select a shopping mall
that is large, and contain more items that they need; in weekends, students have
more spare time, and their journeys to shopping areas are more random. We can
also see this phenomenon in Fig. 2(b) and Fig. 2(d). In the same area in Nanshan,
students in Shenzhen University have more spare time in the weekend than in
weekdays, and they pay less attention on trip distance in weekends.

Fig. 2(b) and Fig. 2(d) display the geographic variation in 8. We see that
customers’ sensitivities to travel distance are similar between weekdays and week-
ends. In particular, in most area in Baoan, Nanshan and Luohu, the value of 3 is



14 Shuhui Gong et al.

0.7 0
06 10 11 12 13 14 15 16 17 18 19 20 21

R e
05

@
% 04 g !
> 03 S .15
s ]
a 02 aed o]
< e o -2
0.1 Jafe=T
P I N (N S s 25
oy o1 7313 14 15 16 17 18 19 20 21 3
Time (24 hours) Time (24 hours)
—weekday ~ -weekend —weekday ~ -weekend
(a) a (b) B

Fig. 3 The temporal distribution of o and S, using GTWR calibration.

consistently high and negative, indicating that people living in this area prefer to
shop a short distance from home. While in some area (e.g. Futian), the value of
is close to 0. Given that Futian is a city centre district (large shopping malls are
located near the region) this is perhaps unsurprising. This suggests that, in these
regions, people do not need to travel far for necessities, but they are prepared to
travel far to visit an attractive shopping centre. We infer that popular shopping
centres have more individuality.

5.5 Temporal distribution of parameter o and f

Fig. 3 shows the temporal distribution of o and 8 using GTWR calibration re-
sults. From Fig. 3(a), we see that the value of « varies over time. In particular,
on weekdays, « is highest in the morning and then gently falls. At weekends, «
exhibits an opposite trend, starting very low in the morning, and then gently ris-
ing. Moreover, the value of « is much higher in weekdays than in weekends. Since
people often work in weekday morning and afternoon, we infer that the customers’
sensitivities to shopping centre’s attractiveness is negatively related to the length
of their spare time. We test this hypothesis in Section 5.6.2.

In Fig. 3(b), we see that when time is varying, 5 values are relatively stable.
However, customers’ sensitivity to travel distance is negatively lower in weekends
than in weekdays. One interpretation is that when people have more time, they
care less about travel distance.

5.6 Factor analysis of travel behaviours in Shenzhen
5.6.1 Geographical distribution of parameters o and 3

We have seen that there is significant geographic and temporal variability in sen-
sitivity to a and S. To explain this variability, we hypothesise that more affluent
shoppers are more sensitive to a and 3, such that people with more wealth are:
(i) more likely to select a more attractive shopping mall; and (ii) more likely to
travel farther to a shopping mall. To test our hypothesis, we consider house price
sales” data and rental data for each region in Shenzhen as a proxy of wealth,
and perform Pearson’s product-moment correlation and t-test to identify whether
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Fig. 4 Geographic distribution of residential sales’ prices (RMB) and monthly rental prices
(RMB/m?) in Shenzhen, China. Sales and rental prices are strongly correlated (r = 0.8).

there is a relationship. We collect house price sales’ data and rental data in Shen-
zhen during the first quarter of 2017.% The distribution of house price for each
area is presented in Fig. 4, where Fig. 4(a) shows the distribution of sales’ prices,
and Fig. 4(b) presents the distribution of rental prices. We see that two distribu-
tions are visually similar. The proportion of rental properties for each region are
presented in Fig. 5.

Pearson’s product-moment correlation and t-test are performed using R’s ‘stats’
package. Results, shown in Table 5, show that there is a significant (p < 0.01)
medium correlation (r = 0.37) between house sales’ prices and «, and a signifi-
cant (p < 0.01) medium correlation (r = 0.31) between house rental prices and «.
The results also show the distribution of sales’ prices and rental prices are signif-
icantly (p < 0.01) strongly correlated (r = 0.80). No significant relationship was
discovered between house prices and 8 (not presented).

5.6.2 Temporal distribution of parameters o and (8

GTWR calibration demonstrates high temporal variability in sensitivity to « (see
Fig 3). To explain this variability, we hypothesise that people who have more spare

3 These data were collected from an open source website fang.com, which is the largest and
most comprehensive open source repository for house price sales in China.
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Fig. 5 Rentals as a proportion of all residential property in four districts in Shenzhen.

Table 5 Pearson’s product-moment correlation and t-test results on geographical « values,
residential sales’ prices, and rental prices in Shenzhen. The results show medium correlation.

Variable 1 Variable 2 Coefficient  95% confidence interval P value

@ sales price 0.37 (0.30, 0.44) 2e-16
o rental price 0.31 (0.24, 0.37) <2.2e-16
sales price  rental price 0.80 (0.78, 0.83) <2.2e-16

time (i.e., more time they are not working during shop opening hours) are less
sensitive to shopping centre attractiveness. We test this hypothesis by discovering
the relationship between the spare time of customers and the value of a.

To calculate the length of spare time, we use time schedules of different job
categories to estimate spare time in Shenzhen. The data is collected from the 6th
national population census and 58.com.* The proportion of employees working in
different professions are presented in Fig. 6.

To estimate length of spare time, we select all types of jobs in Shenzhen from
58.com, which is the largest job search website in China.® Based on working time
in different jobs, we estimate the length of spare time as:

T = Z(Pmi X tmi) (14)

where m means the job number, and in this study, the total number of job is 18.
T; means the length of spare time at time i. For example, if a potential customer
finishes work at ¢ = 5pm, spare time for shopping is 10pm — 5pm = 5, while spare
time at 4 pm is 0 (since the potential customer is still at work).

P,,; corresponds the percentage of people who work in job m at time ¢, and ¢t
corresponds the length of spare time for job m at time i. For example, a teacher
often finishes work after 5 pm, and 3.46% of people in Shenzhen are engaged in
education related jobs, therefore, Pegucation,apm = 3.46%, and tequcation,dpm =
0. After calculating people’s spare time distribution, we use Pearson’s product-
moment correlation and t-test to discover the relationship between the spare time
distribution and the temporal distribution of .

4 The data of the 6th national population census is available open source from http://www.
stats.gov.cn/ztjc/zdtjgz/zgrkpc/dlcrkpc/dlcrkpezl.
5 The open source website is: sz.58.com.
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Fig. 6 Employment distribution for Shenzhen residents, showing manufacturing accounts for
nearly 50% of all employment, more than fifteen times the number employed in education.

Data taken from sz.58.com.

Table 6 Pearson’s product-moment correlation and t-test results on the length of spare time
and temporal a values in Shenzhen.

Variable 1 Variable 2 Coefficient  95% confidence interval P value
«a spare time length -0.86 (-0.94, -0.70) 9.3e-08

The regression results are shown in Table 6. We see that there is a significant
(p < 0.01) and strong negative correlation (r = —0.86) between the length of
spare time and the customers’ sensitivity to shopping centre attractiveness, «.
This suggests that people who have more spare time pay less attention on shopping
centre attractiveness. One interpretation is that when people are urgent to buy
a particular product (with less spare time), they are willing to choose a more
attractive shopping mall (higher a value), since it is more likely to sell the product
that they want. On the contrary, when people have more time for shopping (more
spare time), they would shop in different malls, and do not pay much attention on
shopping centre attractiveness (lower a value).

6 Case study in New York using taxi data and sharing bikes data

To test the generality of the Huff model calibration using GTWR, we use both
taxi data and sharing bikes data in New York to perform Huff model calibration
using OLS, GWR, TWR, and GTWR, before comparing results with those from
Shenzhen. We select four representative shopping areas in New York as our study
areas. The locations of the shopping areas are shown in Fig. 7(a), which are: Mid-
town Manhattan shopping area, Downtown Manhattan shopping area, Westfield
trade centre, and Fulton shopping area. There are multiple shopping malls within
one shopping area. We aggregate the different shopping malls in the same shopping
area to estimate the attractiveness and calibrate Huff model.
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Fig. 7 The shopping areas’ locations and passenger volumes in New York.

Table 7 New York: customers’ rating data on shopping areas using Google map

Shopping centre ~ Number of Malls Number of Comments  Z-Score

Midtown 26 93424 0.221
Downtown 15 3860 -0.631
Fulton 18 14903 -0.683
Westfield 12 28186 -0.294

Similar to the case study in Shenzhen, we use 100 m, 300 m, 500 m, and 700
m as buffer radii to calibrate the Huff model using New York data. To estimate
shopping centre attractiveness, S, we use the same three proxies of attractiveness
used for the Shenzhen study: (i) shopping centre size; (ii) customer volume; and
(iii) social media reviews. We collect customers comments directly from Google
map, and the descriptions of the rating data in social media are shown in Table. 7.
From the table we see that the shopping malls in Midtown Manhattan have the
highest rating (highest satisfaction), while Fulton shopping area has the lowest
rating (lowest satisfaction).

6.1 Huff model calibration using taxi data

For taxi data, we use over one million taxi journeys with destination near shopping
malls (within 500 metres) to calibrate the Huff model. From 6003 trip diaries
collected in New York in 2017, we see that taxi journeys take 3.2% of all journeys.®
The taxi journeys are dated between June 3 and June 7 (three weekdays and two
weekend days) in 2015. Although we only use five days’ of taxi data, we employ
Augmented Dickey Fuller Test on the passengers’ volume in June 2015 in New York
(shown in Fig. 7(b)). Results show that passengers’ volume is stationary, and we
therefore consider the 5 days’ taxi data can represent passengers’ travel behaviours

6 The open source questionnaire website is: opendata.cityofnewyork.us
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Table 8 Global taxi calibration results for New York (highest R2, lowest S.E.) using 500
metres buffer radius (shown to have best performance). Best fit presented in bold.

Time S Est. « B Residual S.E. R?
size 0.38 -0.12 0.18 0.88
weekday journey K2 0.26 -0.12 0.17 0.89
social media 0.39 -0.12 0.17 0.88

size 0.38 -0.36 0.16 0.89
weekend journey K2 0.30 -0.36 0.15 0.91
social media 0.39 -0.36 0.15 0.88

Table 9 Predictive accuracy on test data for New York. Best accuracy presented in bold.

Method | Est. |  Time | MAPE (%) | Time | MAPE (%)
Global 31.66 18.61
GWR 24.30 15.39
TWR K2 weekday 24.89 weekend 21.02
GTWR 19.08 14.60

in New York. The global results are shown in Table 8, and the testing results are
shown in Table 9. We see GTWR has highest accuracy (lowest MAPE) on the
Huff model calibration, and customer volume has highest accuracy on estimating
shopping centre attractiveness. These are consistent with the calibration results
in Shenzhen. We therefore infer that GTWR has higher performance on the Huff
model calibration than the other three methods.

Comparing calibration results using New York taxi data (Table 8) and Shen-
zhen taxi data (Table 2), we see: (i) in weekdays, the value of a = 0.92 in Shenzhen
is much higher than o = 0.35 in New York; (ii) the value of § = —0.58 in Shen-
zhen has greater magnitude than 8 = —0.12 in New York. This suggests that in
weekdays, people who live in Shenzhen often have more considerations (more at-
tractive shopping malls with short trip distance) when they go to shopping areas,
while journeys in New York are less predictable, with New Yorkers caring less
about shopping centre attractiveness and travel distance; and (iii) in weekends,
the values of a = 0.43 in Shenzhen and o = 0.35 in New York are similar, while
the value of § = —0.16 in Shenzhen has smaller magnitude than f = —0.36 in
New York. This indicates that at weekends, people who live in Shenzhen prefer to
travel farther to a shopping mall, while more citizens in New York prefer to select
shopping malls that are closer to home.

This is an interesting finding, since it indicates that people who live in New
York are more likely to purchase in different shopping areas in weekday, while
people in Shenzhen spend more time travelling to shopping areas at weekends.
This is perhaps indicative of the fact that, in Shenzhen, workers have fewer free
hours during weekdays to shop.

We also use the trip diaries in New York to test our findings and interpretations.
The trip diaries show that during weekends, 87% of taxi journeys that aim for
shopping malls are within 30 minutes, while during weekdays, only 35% of taxi
journeys that aim for shopping malls are within 30 minutes. We consider it as
evidence to prove that people who live in New York care much about trip distance
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Table 10 New York: number of significant local parameters from GWR calibration.

95% Significance weekday weekend
a B a B
Not significant 103 799 158 559
Significant 1677 981 1526 1125
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Fig. 8 GWR calibration for New York. Only significant parameters are shown. The Mercator
projection (the standard map projection) is used to set up projected coordinates. The black
points represent the locations of shopping areas.

in weekends when they taking taxis. This is quite different to people in Shenzhen.

6.2 Factor analysis of travel behaviours in New York
6.2.1 Geographical distribution of parameters o and (3

Similar to the case study in Shenzhen, Table 10 shows the number of significant
parameters found in the GWR calibration, where significance is calculated using
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Fig. 10 Rentals as a proportion of all residential property in four districts in New York.

the multiple testing method (da Silva and Fotheringham, 2016). We only display
the parameters in 95% significance in the figure. Fig. 8 shows the geographical
distribution of o and 3, where we see the values of a are highest in Manhattan
(northwest in the map), and close to zero in other areas. On the contrary, the
values of 8 are negatively highest in Downtown Manhattan (in the west of the
map), while close to zero in other areas. We therefore infer that people who live
in Manhattan prefer more attractive stores and short trip distance when they go
shopping.

Following the method used for the case study in Shenzhen, we use Pearson’s
product-moment correlation and t-test on geographical a values and house prices
(sales’ prices and rental prices) in New York. The house sales’ price data in New
York is collected from the government open source website, which includes house
locations and sale prices.7 The house rental prices data are collected from RENT-
Cafe.com, which is a nationwide Internet Listing Service (ILS) that enables citizens

7 https://wwwl.nyc.gov/assets/finance/downloads/pdf/rolling_sales/rollingsales_
manhattan.pdf
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Table 11 Pearson’s product-moment correlation and t-test results on geographical « values,
residential sales’ prices, and rental prices in New York. The results show medium correlation.

Variable 1 Variable 2 Coefficient  95% confidence interval P value

e sales price 0.43 (0.37, 0.48) 2e-16
e rental price 0.54 (0.49, 0.59) <2.2e-16
sales price  rental price 0.46 (0.40, 0.51) <2.2e-16
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Fig. 11 The temporal distribution of a and 8

to find apartments and houses for rent throughout the United States.® The spatial
distribution of prices is shown in Fig. 9, and the proportion of rental properties
for each region are presented in Fig. 10.

Pearson correlation and t-test results are shown in Table 11. We see that « and
house prices have significant (p < 0.01) correlation. In particular, medium corre-
lation between « and sales’ prices (0.3 < r = 0.43 < 0.5), and strong correlation
between a and rental prices (r = 0.54 > 0.5). We also discover the sales’ prices and
rental prices have significant (p < 0.01) medium correlation (0.3 < r = 0.46 < 0.5).

6.2.2 Temporal distribution of parameters o and

Fig. 11 shows the temporal distribution of o and 8. We see that the value of «
varies over time, while the value of 8 is relatively stable. Comparing temporal
distribution of parameters in Shenzhen (Fig. 3) and New York (Fig. 11), we find
similarities: in both Shenzhen and New York, people’s sensitivities to shopping
centre attractiveness varies over time. In particular, people pay most attention
on shopping centre attractiveness on weekday morning, and least attention on
weekend morning; moreover, sensitivities to trip distance are relatively stable in
both Shenzhen and New York. However, journeys to shopping areas also differ.
In Shenzhen, customers pay more attention to trip distance on weekdays than at
weekends, while people who live in New York care more about trip distance at
weekends than on weekdays.

Similar to case studies in Shenzhen, we test the relationship between the tempo-
ral distribution of a and people’s spare time length. Fig. 12 shows the job distribu-
tion in New York, which is collected from the open survey data (NYC-OpenData,
2018). Following the method of Section 5.6.2, we use Pearson’s product-moment

8 https://www.rentcafe.com
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Fig. 12 Employment distribution for New York residents, showing education accounts for
17% of all employment, approximately eight times larger than manufacturing. Data taken
from open survey (NYC-OpenData, 2018), sample size n = 1952.

Table 12 Pearson’s product-moment correlation and t-test results on length of spare time
and temporal a values in New York

Variable 1 Variable 2 Coefficient  95% confidence interval P value
« spare time length -0.80 (-0.91, -0.58) <3.52e-6

correlation and t-test to discover the relationship between the parameter o and
length of people’s spare time (see Table 12). We see there is a significant (p < 0.01)
strong negative correlation (—1 < r = —0.8 < —0.5).

6.3 Huff model calibration using sharing-bike data

Here, we use one million sharing bikes journeys from June 1 to July 4 in 2015
in New York for Huff model calibration. From 6,003 trip diaries collected in New
York, we see that sharing bike journeys take 2.5% of all journeys. Since there are
rental and return sites for sharing bikes next to shopping centres, we therefore
directly select sharing bikes’ journeys that drop-off near shopping centres. When
S = Sjourney, and linear format is K2, the results have best performance, which
are shown in Table 13.

From the results, we see that MAPE is lowest for GTWR and highest for global
calibration. Therefore, GTWR has best calibration for both taxi data and sharing
bikes data in New York. This result is consistent with the Huff model calibration
results for Shenzhen taxi data. We take this as conclusive proof that GTWR is the
best approach of the three alternatives for calibrating the Huff model. Comparing
sharing bikes and taxi journeys, we see that the value of « is lower and § is much
higher for sharing bikes than for taxis. This is intuitive. Since riding a bicycle
takes physical effort, customers on bikes are much more sensitive to distance than
shopping mall attractiveness. For taxi journeys, the opposite is true.



24 Shuhui Gong et al.

Table 13 Sharing bike calibration results in global, GWR, TWR, and GTWR when S =
Sjourney- Mean Average Percentage Error (MAPE) is used to test the performance. K2 has
best performance. Best results bold.

Time Global Huff Calibration MAPE

o Jé] Residual S.E. R? | global GWR TWR GTWR
weekday  0.29 -0.96 0.17 0.80 | 39.56 15.72 16.28  12.42
weekend  0.33  -0.80 0.21 0.72 | 30.07 2648 2721  14.79

7 Conclusion

We have presented a Huff model calibration for shopping areas analysis using
taxi data and sharing bikes data in the cities of Shenzhen, China, and New York,
USA. Four calibration methods are used: OLS, which results in a single, global
model fit; GWR, which returns localised calibration values for each geographical
region; TWR, which returns temporal calibration values for each drop-off time (24
hours), and GTWR, which returns local and temporal calibration values for each
local region and each drop-off hour. Results demonstrate that fitting the model ge-
ographically and temporally using GTWR provides much higher predictive power
than other three methods, as parameter values for the Huff model are sensitive to
both geographic location and time. We therefore suggest that GTWR is a superior
regression technique that should be widely used on shopping areas analysis.

The results also demonstrate that the geographical variation of customers’
behaviours can be largely explained by consumers’ wealth, while the temporal
variation of journeys to shopping areas can be explained by consumers’ work pat-
terns. Using residential sales’ and rental prices to estimate customers’ wealth, and
population census data to estimate employee’s spare time, we observe two highly
significant linear relationships: (i) between wealth and sensitivity to store attrac-
tiveness, and (ii) between spare time and sensitivity to store attractiveness.

We also demonstrate that using 500 metres as buffer radius makes the Huff
model more accurate compared with 100, 300, and 700 metres. This suggest that
passengers that drop-off within 500 metres to shopping areas are potential cus-
tomers. This corresponds with survey data in China (Bureau, 2009), which shows
passengers often walk up to 500 metres to their destinations.

Furthermore, we compare the travel behaviours to shopping areas between
people in Shenzhen and New York. The results show that customers in Shenzhen
have more consideration on shopping areas (high attractive shopping area, close
travel distance) in weekdays, while people who live in New York spend more time
on shopping during weekdays and prefer shorter trip journey at weekends. We
believe this to be due to cultural differences between Chinese and American shop-
ping and employment patterns. We use survey data in New York in 2015 to prove
that Americans pay much more attention on trip distance in weekends than in
weekdays.

The findings in this paper have several potential applications. For example: (i)
since travel behaviours to shopping areas vary spatially and temporally, GTWR
could be widely used on spatio-temporal analysis on travel behaviours, which could
benefit urban design. In particular, combined with data for housing costs, GTWR
can be used to estimate spending habits at shopping centres in different time
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and areas. For new shopping malls, GTWR could help to estimate the residential
locations of target customers, and therefore optimise the location selection of trad-
ing malls. (ii) For transportation analysis, this paper provides evidence that all
points of interest (POI) attract passengers who drop-off within 500 metres from
a taxi, which lead to the influence of travel demand. By analysing the activities
in attractiveness zones, GTWR could help estimate the travel flow in order to
reduce traffic congestion, and improve passengers’ mobility; (iii) For commercial
areas, since customers’ sensitivities to stores’ attractiveness are largely influenced
by customers’ income and spare time, we suggest shopping malls could use this
result to optimise marketing strategies by targeting customers.

Future work will consider integrating the findings presented here into a dynamic
agent-based model (ABM) to simulate individual behavioural patterns for shop-
ping. City-scale dynamics will emerge from the complex interactions between indi-
vidual agents, network infrastructure, and resources. A coevolutionary framework
(e.g., see Cartlidge and Ait-Boudaoud (2011)) will be used to optimise shopping
centre locations and transportation network design to minimise traffic congestion
and reduce travel times across the city.
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