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ABSTRACT  

The hydrological response is changeable for catchments with hydro-meteorological variations, which 

is neglected by the traditional calibration approach through using time-invariant parameters. This study 

aims to reproduce the variation of the hydrological response by allowing parameters to vary over 

clusters with hydro-meteorological similarities. The Fuzzy C-means algorithm is used to partition 1-

month periods into temperature-based and rainfall-based clusters. 1-month periods are also classified 

based on seasons and random numbers for comparison. This study is carried out in three catchments in 

the southwest of UK, with the use of the IHACRES rainfall-runoff model. Results show when using 

time-varying parameters to account for the variation of the hydrological process, it is important to 

identify the key factors that cause the change of the hydrological response, and the selection of the time-

varying parameters should correspond to the identified key factors. In the study sites, temperature plays 

a more important role in controlling the change of the hydrological response than rainfall. It is found 

the number of clusters has an effect on model performance, model performances for calibration period 

become better with the increase of cluster number; however, the increase of model complexity leads to 

poor predictive capabilities of the model due to overfitting. It is of great importance to select the 

appropriate number of clusters to achieve a balance between model complexity and model performance.  

INTRODUCTION 

Understanding the hydrological response of catchments is crucial for various issues related to water 

resources management. Hydrological models with varying degrees of complexity have been developed 

to represent the rainfall-runoff transformation relationship. The accuracy of hydrological models is 

affected by multiple factors. The error associated with the observed data is one of these factors. 

Although improving the measuring technology could reduce the error, for the existing data, noise 

reduction could be an effective pre-processing method and has been widely explored and applied (Chou 

2014; Li et al. 2018). The model's representation of the hydrological process (or model structure) also 

affects the model performance. Melsen et al. (2016) studied the representation of spatial and temporal 

variability in large-domain hydrological models through investigating parameter transferability across 

different temporal and spatial resolutions. Magnusson et al. (2015) demonstrated the usefulness of 

multimodel framework for identifying appropriate model structures according to data availability, 

properties of interest and computational cost. Due to the lack of field measurements, hydrological model 

parameters are generally estimated through calibration, which is also a key procedure controlling the 

model capability. Some works investigated the role of the multi-objective calibration in improving 

model accuracy (Zhang et al. 2016; Her & Seong 2018; Zhang et al. 2018b), and some works aimed at 

the improvement of the optimization algorithm for calibration (Wang et al. 2012). Taking into account 
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the variation of the hydrological response during model calibration is another way to improve the model 

performance, which is also the task of this study.  

 

It is widely accepted that the more stable the catchment conditions are, the better should the estimated 

parameters represent the hydrological response, and the more similar the calibration data is to the 

validation data, the better should the performance of hydrological models be. Based on these cognitions, 

many studies attempt to use varying model parameters to capture the variation of the hydrological 

response which is caused by climatic variation or land-cover changes in catchments. Efstratiadis et al. 

(2015) simulated the hydrological process of the Ferson Creek basin (USA) that has experienced 

growing urbanization over the past 30 years through employing a lumped conceptual model with one 

time-varying parameter and a semi-distributed scheme based on two hydrological response units with 

the time-varying surface area. Pathiraja et al. (2016a, 2016b) investigated the potential of data 

assimilation techniques to detect temporal patterns in hydrological model parameters from streamflow 

observations, and then examined the proposed method to paired catchment systems in Western Australia 

that have different extents of deforestation. The results demonstrate that the time-varying model 

structures are able to improve both predictions and modelling of changing catchments. Sadegh et al. 

(2019) proposed the Nonstationary Rainfall-Runoff Toolbox (NRRT) to permit time-varying 

realizations of hydrological models to predict nonstationary hydrological response in watersheds, where 

the physical changes are manifested in time-varying parameters in a conceptual model. Their case study 

in the Wights catchment in Australia shows that the decrease of the maximum capacity of the production 

store (S1max) of the GR4J model adequately represents the loss of near surface storage due to 

deforestation.  

 

In addition to employing time-varying model parameters to capture the variation of the hydrological 

response that is caused by land-use changes, time-varying parameters are also used to account for the 

effect of climatic temporal variations on hydrological processes, including intra-annual variations (or 

seasonal variations) and inter-annual variations. For attempts focusing on seasonal variations of 

hydrological responses, explorations are made under the hypothesis that the hydrological response of 

different seasons can be reproduced by using different parameter sets. Paik et al. (2005) proposed a 

seasonal tank model to calibrate season-varying parameters for three 4-month seasons. The application 

of the seasonal tank model to a watershed located in central South Korea indicates that the seasonal 

tank model has a smaller sum of square errors than those of the non-seasonal tank model for the 

calibration period. LÉVesque et al. (2008) evaluated the hydrological behaviour of the SWAT model 

by distinguishing the hydrological dynamics related to winter and summer seasons for two watersheds 

in southeastern Canada. the summer performance was considerably improved when only summer 

streamflow was provided for calibration. However, calibration based solely on winter observations 
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resulted in minor improvements in performance. Luo et al. (2012) explored the possible effects of the 

hydrologic non-stationarity by testing ten parameterization schemes at 12 catchments in eastern 

Australia. Results show that among all parameterization schemes, calibrating the model using the data 

from each individual month benefits the seasonal streamflow forecasting. Zhang et al. (2018a)   

configured a season-based probability-distributed model (PDM-CEMADEN) to simulate different 

hydrological responses during wet and dry seasons. The season-based models constructed for five 

basins in southeastern Brazil are adequate to reproduce the intra-annual and inter-annual variability of 

the streamflow.  

 

As for the impact of inter-annual climatic variations on hydrological processes, KlemeŠ (1986) initially 

considered the necessity of verifying the hydrological model under different climate conditions. He 

proposed a differential split-sampling test to identify two periods with different climatic characteristics, 

the hydrological model was then calibrated and validated by the contrast periods. This method was 

applied to 273 catchments in Austria by Merz et al. (2011). They found that parameters representing 

snow and soil moisture processes have high correlations to changing climatic conditions in the more 

recent years, such as higher evapotranspiration and drier soil conditions. Under these changing climatic 

conditions, the simulation errors clearly increase as the time lag between the simulation and calibration 

periods increases. Brigode et al. (2013) classified the available records to four 3-year sub-periods on 

the basis of the Aridity Index (here defined as the ratio of mean Penman potential evapotranspiration to 

mean precipitation): a wet sub-period, two dry ones and an intermediate one. The driest sub-period was 

used as the validation period and the three others were used as calibration periods separately. The results 

show that the model performance is the worst when the wet sub-period is used for calibration.  Kim et 

al. (2016) investigated the calibration scheme where one parameter of the IHACRES model is selected 

to vary against time and climate conditions while other parameters remain the fixed. They found that 

the model that takes into account the nonstationary effects works well for both calibration and validation 

periods. 

 

When using time-varying parameters to account for the variation of hydrological responses caused by 

climatic variations, clustering methods are commonly used to identify periods with similar climatic 

characteristics, during which parameter sets are assumed the same. Choi & Beven (2007) classified sub-

periods with the length of 30 days into 15 clusters using Fuzzy C-Means algorithm, where the climatic 

conditions are described with six variables. They then calibrated and validated the TOPMODEL for 

each cluster in the GLUE framework. Although the satisfactory model performance could be achieved 

at the global level, there was no parameter set that performs well for all 15 clusters. de Vos et al. (2010) 

employed the k-means clustering algorithm to classify the historical data into 12 clusters with similar 

characteristics in terms of precipitation and soil moisture, and model parameters are allowed to vary 
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over clusters. They improved the model structure by analyzing the variation pattern of parameters. A 

clustering method based on Self-Organising Maps (SOM) was also used to partition climatic conditions 

by Toth (2009). They found that an adequate distinction of the climatic conditions may considerably 

improve the rainfall-runoff modeling performance.  

 

Although it is widely recognized that allowing parameters to vary according to the variations of climatic 

conditions could improve the hydrological modeling performance, there are some issues remaining 

unexplored. For example, when identifying similar climatic conditions, which climatic factor is more 

related to the variation of the hydrological response. Besides, despite the time-varying parameters could 

better reproduce the real hydrological response, it will increase the model complexity and has an effect 

on the predictive capabilities of the model. This study aims to investigate these problems. In order to 

identify periods with climatic similarities, the Fuzzy C-means (FCM) algorithm is used to partition 1-

month periods to different clusters. Here the FCM algorithm is executed based on the temperature 

information and rainfall information of 1-month periods separately. 1-month periods are also classified 

on the basis of seasons and random numbers for comparison. Parameters are allowed to vary over 

clusters during the calibration procedure. Model performances are then evaluated using the criteria R2, 

R𝑙𝑛
2  and relative bias to represent high flows, low flows and water balance. The trade-off between the 

model complexity and model performance is studied by evaluating the model performance under 

different numbers of the cluster. Three catchments in the southwest of UK are selected to carry out this 

study, with the use of a lumped conceptual rainfall-runoff model IHACRES.  

STUDY SITES 

Three catchments located in the southwest of UK are explored in this study: Exe River at Thorverton 

(45001), Brue River at Lovington (52010) and Avon River at Great Somerford (53008). The main land 

use of these three catchments is grassland and horticulture, presenting little changes in recent decades. 

Figure 1 shows the location of the selected catchments and the corresponding stream gauging stations. 

Information on these three catchments and available data are listed in Table 1. The average daily rainfall 

data are obtained from the NERC Environmental Information Data Centre (Tanguy et al. 2016). The 

catchment average temperatures are calculated with the use of the UKCP09 gridded observation data 

sets, and the National River Flow Archive (NRFA) provides the daily time series of observed 

streamflow data. All data have been checked for possible outliers and missing data, etc. The data during 

the period from 2003 to 2015 is selected for analysis because this period has minimal missing records 

for all types of data for all catchments. 

 

Table 1. Information and characteristics of the study sites 
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Basin 
Gauging 

Station 

Area 

(km2) 
Available records Annual rainfall (mm) 

Annual 

streamflow 

(mm) 

Exe River 
Thorverton 

(45001) 
600.9 

Temperature 

Rainfall 

Streamflow 

1960-2016 

1961-2015 

1956-2016 

1295 850 

Brue River 
Lovington 

(52010) 
135.2 

Temperature 

Rainfall 

Streamflow 

1960-2016 

1961-2015 

1964-2016 

865 440 

Avon River 
Great Somerford 

(53008) 
303 

Temperature 

Rainfall 

Streamflow 

1960-2016 

1961-2015 

1964-2016 

841 345 

 

 

Figure 1. Location of study sites 

Figure 2 shows the average temperature characteristics at the study sites. UK has four seasons: spring 

(March to May), summer (June to August), autumn (September to November) and winter (December 

to February). From the distribution of the average monthly temperature in Figure 2a, it is seen that the 

temperature difference between summer and winter months is not significant, ranging from 4.4 °C in 

February to 16.3 °C in July. The studied catchments are hardly affected by snow. Figure 2b shows the 

temporal variations of monthly temperature, a clear seasonal pattern is seen. The average annual 

temperature indicates the temperature rise during the study period is not distinct compared with 

temperature intra-annual variations, therefore the climate change could be neglectable in this study. 
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Figure 2. Temperature characteristics of the studied sites over the period 2003-2015, a) the average of 

monthly temperature, b) the change of monthly temperature 

 

The distribution of the average monthly rainfall and measured streamflow for three catchments is shown 

in Figure 3. The three catchments show a similar pattern for both rainfall and streamflow. They have 

heavy rainfall all year round, and there is a seasonal pattern, with wet autumns and winters and relatively 

dry springs and summers. It is clear that the monthly rainfall varies a lot over years, especially for the 

summer season. The average monthly streamflow shows a similar pattern to rainfall, where the autumn 

and winter have high streamflow, while the spring and summer have low streamflow. Despite this 

similar pattern, it is interesting to find that the decrease of streamflow in summer is more distinct 

compared with that of rainfall, and the summer streamflow has less interannual variations. This could 

be explained by the high temperature of summer, which plays a key role in controlling the runoff 

through affecting the evapotranspiration process. Given the location of these three catchments, it is 

found that the monthly rainfall and monthly streamflow decrease from the west (Thorverton catchment) 

to the east (Great Somerford catchment). 
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Figure 3. The distribution of the average monthly rainfall (left) and streamflow (right) for three 

catchments over the period 2003-2015, a) Thorverton catchment, b) Lovington catchment, c) Great 

Somerford catchment 

METHODS 

Rainfall-runoff model 

The IHACRES model (Jakeman & Hornberger 1993) is a lumped conceptual rainfall-runoff model, 

which has been widely applied to a range of catchments for hydrological analysis and climate impact 

studies due to its simple structure and less requirement for input data (Jakeman et al. 1993; Letcher et 

al. 2001; Kim & Lee 2014; Kim et al. 2016). 
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The IHACRES model consists of two modules in series: the non-linear loss module and the linear 

routing module, as shown in Figure 4. The non-linear loss module calculates effective rainfall by 

calculating the catchment wetness index on the basis of rainfall and temperature. The percentage of 

rainfall that becomes effective rainfall varies linearly from 0% to 100% as the catchment wetness index 

varies between zero to unity. The linear routing module then converts the effective rainfall to 

streamflow based on the unit hydrograph theory, where the catchment is conceptualized as a 

configuration of linear storages acting in series and/or parallel. Model parameters are listed in Table 2.  

 

Table 2. List of parameters in the IHACRES model 

Module Parameter Description 

Non-linear 𝐶 Mass balance 

 
𝜏𝑤 Reference drying rate 

 
𝑓 Temperature modulation of drying rate 

Linear 𝜈𝑞 Relative volume of quick flow to total flow, 𝜈𝑞 = 𝛽𝑞/(1 − 𝛼𝑞) 

 
𝜈𝑠 Relative volume of slow flow to total flow, 𝜈𝑠 = 1 − 𝜈𝑞 

 
𝜏𝑞 Quick flow recession time constant, 𝜏𝑞 = −∆/𝑙𝑛(𝛼𝑞) 

 
𝜏𝑠 Slow flow recession time constant, 𝜏𝑠 = −∆/𝑙𝑛(𝛼𝑠) 

 

 

 

Figure 4. Structure of the IHACRES model 

Calibration schemes 

The parameters of the hydrological model are allowed to vary over clusters during the calibration 

procedure. These clusters consist of 1-month periods in the calibration period, and the 1-month period 

is divided based on the calendar month. There are four types of the cluster, which are identified based 

on temperature similarity, rainfall similarity, calendar seasons and random numbers, respectively. 

Temperature and rainfall are crucial variables affecting the hydrological response. Clusters considering 

their similarities are classified using the Fuzzy C-means (FCM) algorithm. The reason of exploring 
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seasons is that the study areas show seasonal variations of hydro-meteorological conditions, therefore 

cluster based on seasons could take into account the similarity of both temperature and rainfall, although 

these similarities are not as distinct as those identified using the Fuzzy C-means (FCM) algorithm. 

Clusters based on random numbers are just used for comparison. In addition, for the purpose of better 

evaluating the parameter-varying calibration scheme, we also studied the traditional calibration 

approach which uses time-invariant parameters. As a result, there are five calibration schemes, referred 

as Tradition scheme, FCM_T scheme, FCM_R scheme, Season scheme, and Random scheme. 

Fuzzy C-Means (FCM) algorithm 

The Fuzzy C-Means (FCM) algorithm is an unsupervised clustering algorithm, initially proposed by 

Bezdek (1981). During clustering, objects with similar characteristics are classified into one cluster, 

and objects in different clusters are dissimilar in terms of the same characteristics (Sbai 2001; Pakhira 

et al. 2004). In this study, the FCM algorithm was used to partition multiple 1-month periods based on 

hydro-meteorological conditions in terms of temperature and rainfall. The temperature information of 

the 1-month period was described with 4 variables: average monthly temperature, maximum monthly 

temperature, minimum monthly temperature, and monthly temperature variance. The rainfall 

information of the 1-month period was described with the following variables: monthly rainfall, 

maximum monthly rainfall, the rate of rainy days and monthly rainfall variance.  

 

When classifying the multiple 1-month periods  𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} into k clusters represented as fuzzy 

sets (𝐹𝑗 , 𝑗 = 1, … , 𝑘 ) , the algorithm is carried out by minimizing the following objective function: 

𝐽𝑚 = ∑ ∑(µ𝑖𝑗)𝑚‖𝑥𝑖 − 𝑐𝑗‖
2

𝑘

𝑗=1

𝑛

𝑖=1

 (1) 

where µ𝑖𝑗  is the membership degree of  𝑥𝑖 to the fuzzy cluster set  𝐹𝑗  , ∑ µ𝑖𝑗𝑗 = 1.  m ∈ [1,∞) is a 

weight exponent controlling the degree of fuzzification.  𝑐𝑗 is the cluster centroids of the fuzzy cluster 

set 𝐹𝑗 , and ‖𝑥𝑖 − 𝑐𝑗‖ is an Euclidean norm between  𝑥𝑖  and  𝑐𝑗. In this study, 𝑥𝑖  is the  𝑖𝑡ℎ variable of 

each hydro-meteorological factor. 

 

Fuzzy partitioning is performed through an iterative optimization of the above objective function, with 

the membership degree µ𝑖𝑗  and the cluster centroids  𝑐𝑗 updated until 𝐽𝑚 cannot be further improved .  

The number of clusters needs to be defined before the FCM algorithm is conducted. When exploring 

the performance of different calibration schemes, to avoid the effect of the difference in model 

complexity which is associated with the number of clusters, we define the number of clusters as 4, 

which equals the number of seasons. When investigating the effect of model complexity, model 

performance under different numbers of clusters are tested.  
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Model calibration 

When calibrating the parameter-varying hydrological model, there are two calibration methods, the 

parallel calibration scheme (PCS) and the serial calibration scheme (SCS) (Kim & Han 2017). For the 

PCS approach, parameter sets for different clusters are calibrated parallelly. Each time the model is run, 

only the data belonged to one cluster is used in the objective function although the model is run for the 

whole calibration period. In this way, the parameter set for this cluster could be calibrated. When there 

are n clusters, the model needs to be run for n times to calibrate n sets of parameters. With all parameter 

sets, the simulated streamflow could be obtained by extracting and combining the streamflow of each 

cluster that is simulated with its corresponding parameter set. As for the SCS approach, all parameter 

sets are calibrated simultaneously. Parameters vary according to the cluster the data belong to. When 

the calibration procedure switches from one 1-month period to the following one, the subsequent 

period’s state variables and streamflow are updated with the prior period’s ones. The PCS approach is 

easy to implement and widely used; however, the state variables and simulated streamflow are 

discontinuous, which does not make sense. The SCS approach increases the complexity of the model 

while overcoming the discontinuous problem. In this study, the SCS approach is employed to calibrate 

the varying parameters.  

 

The IHACRES model has six parameters, as listed in Table 2: three parameters in the non-linear loss 

module and three parameters in the linear routing module (𝜈𝑠 = 1 −  𝜈𝑞 ). During calibration, all 

parameters except for 𝐶  vary over clusters, and a value of 𝐶  is selected such that the volumes of 

effective rainfall and observed streamflow are equal over the calibration period. Therefore, when there 

are n clusters, the number of parameters is 5n + 1. The calibration procedure is illustrated in Figure 5, 

which takes the season-based clusters as an example. As is seen, each cluster (here is the season) are 

assigned one set of parameters, when the data switch from one season to another, the parameters vary 

accordingly.  

 

Figure 5. Illustration of the calibration procedure which allows parameters to vary over clusters 

(clusters here are classified based on four seasons in the UK, and there are 21 parameters) 

 

During the calibration procedure, Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe 1970) is used to 

minimize the difference between the observed and simulated streamflow, defined as: 
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𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑖

𝑜 − 𝑄𝑖
𝑚)2𝑛

𝑖=1

∑ (𝑄𝑖
𝑜 − 𝑄𝑜)

2𝑛
𝑖=1

 (2) 

where 𝑄𝑖
𝑜 and 𝑄𝑖

𝑚  are the 𝑖𝑡ℎ observed and simulated streamflow, respectively. 𝑄𝑜
̅̅̅̅   is the arithmetic 

mean of the observed streamflow. 𝑛 is the total number of days in the calibration period. The Nash-

Sutcliffe Efficiency can vary from −∞ to 1. An efficiency of 1 corresponds to a perfect match of the 

simulated streamflow to the observed streamflow. 

 

The shuffled complex evolution (SCE-UA) method (Duan et al. 1992) is used to maximize the above 

objective function. We first used the period from 2003 to 2010 as the calibration period and the rest 

period 2011 to 2015 as the validation period. In order to improve the reliability of results, period 2008 

to 2015 was then used to calibrate the model, and the rest period 2003 to 2007 was for validation. The 

first year of the calibration period was for the warm-up of the model. Model performance was assessed 

based on the average values of two calibration periods and two validation periods.  

Model evaluation 

When validating the hydrological model, for FCM_T scheme, FCM_R scheme and Season scheme, 

each 1-month period in the validation period are assigned one parameter set according to its similarity 

to the existing clusters. As for the Random calibration scheme, the 1-month periods in the validation 

period are assigned parameter sets randomly. Once the parameter sets are assigned to the 1-month 

period, the model is run with parameters varying. 

 

Model performance is assessed for all the calibration periods and validation periods based on three 

evaluation criteria: R2, Rln
2  and relative bias. 

𝑅2 = 1 −
∑ (𝑄𝑖

𝑜 − 𝑄𝑖
𝑚)2𝑛

𝑖=1

∑ (𝑄𝑖
𝑜 − 𝑄𝑜)

2𝑛
𝑖=1

 (3) 

  

𝑅𝑙𝑛
2 = 1 −

∑ [ln(𝑄𝑖
𝑜 + 𝑄90

𝑜 ) − ln(𝑄𝑖
𝑚 + 𝑄90

𝑜 )]2𝑛
𝑖=1

∑ [ln(𝑄𝑖
𝑜 + 𝑄90

𝑜 ) − ln(𝑄𝑜 + 𝑄90
𝑜 )]

2
𝑛
𝑖=1

 (4) 

  

bias(%) =
∑ (Qi

o − Qi
m)n

i=1

∑ Qi
on

i=1

× 100 (5) 

where 𝑄𝑖
𝑜 and 𝑄𝑖

𝑚  are the 𝑖𝑡ℎ observed and simulated streamflow, respectively. 𝑄𝑜
̅̅̅̅   is the arithmetic 

mean of the observed streamflow. 𝑛 is the total number of days in the calibration period. 𝑄90
𝑜  represents 

the 90𝑡ℎ percentile of the observed non-zero streamflow. 𝑅2 is commonly used to assess the overall fit 

of a hydrograph which is sensitive to high flow events (Croke 2009). 𝑅𝑙𝑛
2 , which is the logarithmic form 
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of  𝑅2, is often used to reduce the sensitive of extreme values and results in the increasing sensitivity of 

low flows (Krause et al. 2005; Kim & Lee 2014). The value of 𝑅2 and 𝑅𝑙𝑛
2   can vary from  −∞ to 1, 

with the value of 1 corresponding to an optimal model. According to Moriasi et al. (2007), the model 

performance is considered very good when both 𝑅2 and 𝑅𝑙𝑛
2  are greater than 0.75, good when the values 

in the range of 0.65-0.75, and satisfactory if they are in 0.50-0.65. The relative bias is used to assess the 

water balance error for a certain period. The perfect result is achieved when the bias equals zero. The 

larger the absolute value, the worse the result, and the positive and negative values correspond to the 

underestimation and overestimation of streamflow, respectively.  

RESULTS 

Classification of 1-month periods 

Figure 6 shows the distribution of clusters identified based on temperature, rainfall, season and random 

numbers, respectively. Clusters for temperature are numbered according to the value of average 

monthly temperature, and clusters for rainfall are numbered based on the value of monthly rainfall (from 

a low level to a high level). As for seasons, the number from 1 to 4 refers to winter, autumn, spring and 

summer, respectively. As is seen, for clusters identified using the FCM algorithm, the same month of 

different years not always belongs to the same cluster, indicating there are inter-annual variations in 

terms of temperature and rainfall. From the distribution of temperature-based clusters, it is found that 

there is a similar pattern to the seasonal-based clusters, where the warm clusters are distributed in the 

middle of the year and the temperature of months at the start and end of the year is lower. As for the 

rainfall-based cluster, it shows a big difference in annual rainfall over the study period. Taking the 

Thorverton catchment (Figure 6a) as an example, most months in 2003 belong to Cluster 1 and Cluster 

2, while months in 2012 mostly belong to Cluster 3 and Cluster 4, which indicates the year 2003 has 

less rainfall than 2012. In summary, the clustering algorithm shows superiority in considering the inter-

annual and intra-annual variation of temperature and rainfall, compared with the season-based 

approach. By comparing the cluster distribution of these three catchments, it is found that clusters based 

on temperature and rainfall have a similar distribution, indicating the variations in terms of temperature 

and rainfall is similar for these three catchments.  

 

The distribution of average monthly temperature and monthly rainfall of the objects in different clusters 

is explored. It is found that the three catchments have a similar distribution, therefore, we take the 

Thorverton catchment as an example, whose corresponding distribution is shown in Figure 7. As is 

seen, the difference of average monthly temperature among clusters is most significant for temperature-

based clusters, followed by season-based clusters. Clusters identified based on rainfall and random 

numbers have no distinct difference in terms of the average monthly temperature. As for the monthly 
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rainfall, the distinct difference can be found among rainfall-based clusters, while the difference among 

other clusters is not significant. In addition to the difference among clusters, it is also found that the 

similarity of the objects in the same cluster varies a lot. For instance, the objects in each temperature-

based cluster are highly similar in terms of the average monthly temperature, and the objects in each 

rainfall-based cluster also have the high level of similarity in terms of the monthly rainfall. As the 

temperature-based cluster and rainfall-based cluster are identified using the FCM algorithm, it is 

inferred that FCM algorithm has a better performance in grouping objects with similar characteristics 

and separating objects that are dissimilar in terms of the same characteristics. 

 

Figure 6. Distribution of clusters identified based on temperature, rainfall, season and random 

numbers for the study period 2003-2015, a) Thorverton catchment, b) Lovington catchment, c) Great 

Somerford catchment 
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Figure 7. Distribution of average monthly temperature and monthly rainfall of the objects in different 

clusters for the Thorverton catchment 

Model performance in calibration 

Figure 8 shows the model performance of five calibration schemes (Tradition scheme, FCM_T scheme, 

FCM_R scheme, Season scheme and Random scheme) over the calibration period. During calibration, 

the parameter 𝐶  is determined to ensure that the volumes of the effective rainfall and observed 

streamflow are equal over the calibration period, so the relative bias of the calibration period is equal 

to zero. Therefore, only the criteria R2 and  R𝑙𝑛
2  are used to evaluate the model performance in the 

calibration period. The value of these criteria is the average value of two calibration periods. The model 

performance in terms of R2 is greater than 0.8 for almost all calibration schemes at the three catchments. 

However, the value of R𝑙𝑛
2  is relatively low. This indicates that the model performs better in simulating 

high flows than low flows. It could be explained by the fact that the model is calibrated only based on  

Nash-Sutcliffe Efficiency (NSE), so the calibration procedure only focuses on matching one aspect of 

the hydrological process reflected in the observations and ignores other hydrological processes, as NSE 

is sensitive to high flows, the calibrated model has a better performance in simulating high flows. 

Through comparing the model performance of different calibration schemes, it is found the same result 

could be found for the three catchments. Calibration schemes that allow parameters to vary produce 

perform better than the tradition calibration approach in terms of R2 and R𝑙𝑛
2 , indicating that allowing 

parameters to vary could better reproduce the hydrological process by considering the change of the 

hydrological response. Among calibration schemes that allow parameters to vary, the FCM_T scheme 

has the best performance, followed by the Season scheme, though the extent of the improvement caused 

by these two calibration schemes varies among three catchments. Given the temperature-based clusters 
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and season-based clusters have similar patterns in recognizing the temperature variation, it could be 

inferred that allowing parameters to vary according to temperature similarities could achieve better 

model performance in the calibration period for the studied catchments.  

 

Figure 8. Model performance (R2 and Rln
2 ) of different calibration schemes over the calibration 

period, a) Thorverton catchment, b) Lovington catchment, c) Great Somerford catchment 

 

The FCM_T scheme and Season scheme were further explored by analyzing their seasonal performance 

with the use of R2, as shown in Figure 9. The seasonal R2 is calculated by using the seasonal data of 

the observed and simulated streamflow. From Figure 9, the model performance shows a distinct 

seasonal variation in terms of R2. Winter and spring have better performance, while the accuracy of 

summer streamflow simulations is poor. The possible reason is that the summer streamflow of the study 

sites is much lower compared with other seasons, and the model performs better in simulating high 

flows than low flows due to the high sensitivity of the objective function NSE to high flows. Despite 

the poor performance of summer, it is found there is a significant improvement produced by the FCM_T 

scheme and Season scheme. For other seasons, their R2 values are also improved with the use of the 

FCM_T scheme and Season Scheme at different extents.  

 

Figure 9. Seasonal model performance (R2) of calibration schemes (Tradition, FCM_T, Season) over 

the calibration period, a) Thorverton catchment, b) Lovington catchment, c) Great Somerford 

catchment 
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Model performance in validation 

The calibrated parameter sets for the five calibration schemes over two calibration periods (2003-2010 

and 2008-2015) were validated using the data in the period 2011-2015 and 2003-2007 respectively. The 

model performance of the five calibration schemes for validation periods is compared in Figure 10 with 

the use of the average value of two validation periods. The improvement produced by parameter-varying 

calibration schemes (except for the Random scheme) is more significant compared with that of the 

calibration period. The FCM_T scheme and the Season scheme have relatively higher values of R2 and 

R𝑙𝑛
2  compared with other calibration schemes for all catchments, which is similar to the results of the 

calibration period. In the validation period, not all calibration schemes that allow parameters to vary 

could lead to better performances than the traditional scheme. For example, the model performance of 

the Random scheme in R2 is poorer than the traditional scheme for both Lovington catchment and Great 

Somerford catchment. This indicates although allowing parameters to vary could improve the 

hydrological model performance, it is of great importance to define the appropriate cluster which could 

represent the variation of the hydrological response, otherwise, the increased model complexity may 

have adverse impacts on the model's predictive capabilities. The value of R𝑙𝑛
2  is still lower than that of 

R2 for all calibration schemes, indicating the calibrated model has better capabilities in simulating high 

flows than low flows, this is caused by the choice of the objective function for the calibration procedure. 

For the relative bias, it is seen that the FCM_T scheme has the smallest bias for three catchments. 

Although the bias of the Season scheme is not as good as the FCM_T scheme, it is still better than the 

traditional approach. Despite the three catchments present similar results in terms of the improvement 

caused by the parameter-varying calibration schemes, it is clear that their model performance differs. 

In general, the Thorverton catchment has a better performance than the other two catchments, with 

relatively higher R2 and R𝑙𝑛
2  and lower bias, which also applies to the calibration period. The difference 

in model performance could be caused by the difference of the catchment properties, for example, the 

Lovington catchment and the Great Somerford catchment have less rainfall than the Thorverton 

catchment, the vegetation conditions of the three catchments may show differences, etc. Although it is 

important to find the reasons that lead to the model performance difference, it is beyond the scope of 

this study and will be investigated in the future works.  
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Figure 10. Model performance (𝑅2, 𝑅𝑙𝑛
2  and Bias) of different calibration schemes over the validation 

period, a) Thorverton catchment, b) Lovington catchment, c) Great Somerford catchment 

 

The FCM_T scheme has a better performance in terms of R2, R𝑙𝑛
2  and relative bias in validation, and 

the Season scheme has higher values of R2 and R𝑙𝑛
2 . The seasonal model performance (R2) of these two 

schemes for validation periods are also compared with that of the Tradition scheme, as shown in Figure 

11. The pattern of the improvement caused by the FCM_T scheme and the Season scheme in the 

validation period is similar to that in the validation period. The value of  R2 are improved in almost all 

seasons at different extents with the use of the FCM_T scheme and Season Scheme. The improvement 

in summer is the most significant, though the value of R2 for summer is still low.  

 

Figure 11. Seasonal model performance (R2) of calibration schemes (Tradition, FCM_T, Season) over 

the validation period, a) Thorverton catchment, b) Lovington catchment, c) Great Somerford 

catchment 

The variation of model parameters 

As the FCM_T calibration scheme has the superior model performance for both calibration and 

validation periods, the model parameters of this calibration scheme are used to analyze the variation of 

parameters against clusters. It is found that the variation pattern of parameters is the same for two 

calibration periods. Figure 12 shows the distribution of model parameters calibrated during the period 

2003-2010 for three catchments. The average monthly temperature is lowest for 1-month periods in 

Cluster 1 and highest for 1-month periods in Cluster 4. It is seen that the parameter 𝜏𝑤 and f in the non-

linear loss module show distinct variation patterns against clusters for all catchments, while there is no 

obvious variation pattern of the parameter 𝜏𝑞 , 𝜏𝑠 and 𝑣𝑠 in the linear routing module. The reference 

drying rate 𝜏𝑤 shows a decrease trend with the increase of temperature. This is plausible since when 

the reference drying rate is small, according to the equations of the non-linear module in Figure 4, the 

soil tends to be drier (smaller catchment wetness index), which is achieved when the temperature is 

high. The temperature modulation of drying rate f controls the sensitivity of drying rate 𝜏𝑘 to changes 

in temperature, showing an increase trend with the increase of temperature. For the cluster with lower 

temperatures, the difference between the real temperature and the reference temperature 20C is 
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relatively larger and the reference drying rate 𝜏𝑤 is higher. Due to these two factors, the drying rate 𝜏𝑘 

may have a larger variation range even the temperature varies within a small range. In this case, a 

smaller value of the parameter f could decrease the variation range of the drying rate 𝜏𝑘 in this cluster. 

In contrast, for the cluster with higher temperatures, the difference between the real temperature and 

the reference temperature 20C is relatively smaller and the reference drying rate 𝜏𝑤 is lower, which 

makes the variation of the drying rate 𝜏𝑘 insignificant even when the temperature shows an obvious 

difference. Here a larger value of the parameter f could solve this problem. Therefore, the variation 

pattern of the parameter f is also plausible. 

 

It is interesting to find that the water loss process controlled by the parameter 𝜏𝑤  and f has a high 

correlation with the temperature, this is also the reason why these two parameters show distinct variation 

patterns against the change of temperature. The linear routing module aims at converting the effective 

rainfall to the streamflow, so the parameter 𝜏𝑞  , 𝜏𝑠  and 𝑣𝑠  in this module are more related to the 

catchment characteristics. They are also associated with the rainfall characteristics, for instance, the 

higher intensity rainfall facilitates the quicker surface water flow. However, from Figure 7, the 

difference of the monthly rainfall is not significant among temperature-based clusters, so even these 

parameters are associated with the rainfall characteristics, they do not show significant variations among 

temperature-based clusters. Based on the above results, it is inferred that after identifying the key factors 

that cause the change of the hydrological response in the catchment, the selection of the time-varying 

parameters should correspond to the identified key factors. In this study, the key factor controlling the 

change of the hydrological response is temperature, because the FCM_T calibration scheme presents 

the superior model performance for both calibration and validation periods than other calibration 

schemes. And the parameters that are related to the effect of temperature in the IHACRES model are 

the parameter 𝜏𝑤 and f, so these two parameters vary significantly among clusters.  
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Figure 12. Distribution of model parameters calibrated during the period 2003-2010 for the FCM_T 

calibration scheme (the average monthly temperature is lowest for 1-month periods in Cluster 1 and 

highest for 1-month periods in Cluster 4) 

The effect of the cluster number 

The FCM_T calibration scheme is used to explore the effect of the cluster number on model 

performances, owing to its superior performance in both calibration and validation periods than other 

schemes. The effect of the cluster number is based on the trade-off between the bias and variance, as 

shown in Figure 13 (Han, 2011). If the number of clusters is too small, the classification may not be 

flexible enough to recognize specific similarities, and the corresponding calibration scheme may have 

limitations to capture the variation of the hydrological response. In this case, underfitting will be caused, 

with high bias and low variance. On the other hand, if the number of clusters is too large, even the noise 

will be recognized, which will lead to overfitting, with low bias and high variance. 

 

In order to avoid too many parameters, the FCM_T calibration scheme with the cluster number ranging 

from 1 to 6 is explored. Their model performance in terms of R2 is compared in Figure 14. The typical 

trend of bias trade-off (Figure 13) could be found in Figure 14 for all catchments. The model 

performance for the calibration period becomes better with the increase of the cluster number. However, 

the increase of model complexity leads to overfitting and poor predictive capabilities of the model. The 

cluster number has an effect on the model performance; therefore, it is important to choose an 

appropriate cluster number to avoid both underfitting and overfitting. From Figure 14, the appropriate 
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number of clusters is 4 for the study sites, where the model performance for both calibration period and 

validation period is the optimal. 

 

Figure 13. Trade-off between the bias and the variance to explain the model overfitting and 

underfitting (Han 2011) 

 

Figure14. Comparison of model performance (𝑅2) for FCM_T calibration schemes with cluster 

number from 1 to 6, a) Thorverton catchment, b) Lovington catchment, c) Great Somerford catchment 

DISCUSSION AND CONCLUSIONS 

This study attempts to improve the hydrological model performance by using time-varying parameters 

to represent the variation of the hydrological response. However, allowing parameters to vary according 

to similarities of catchment conditions will increase the model complexity, which may lead to 

overfitting and affect the predictive capabilities of the model. Two issues of concern are the 

identification of clusters with similarities and the effect of the increased model complexity. In this study, 

four types of clusters are explored. Clusters based on the similarity of temperature and rainfall are 

identified using the Fuzzy C-means (FCM) algorithm. Clusters are also classified based on seasons and 

random numbers. The component of these clusters are the data of 1-month periods which are divided 

according to the calendar month. From the distribution of different clusters, the FCM algorithm 
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performs better in grouping objects with similar characteristics and separating objects that are dissimilar 

in terms of the same characteristics. The clusters identified using the clustering algorithm could better 

account for the inter-annual and intra-annual variation of temperature and rainfall, compared with the 

season-based approach. It is noted when identifying the clusters, we divided the data into multiple 1-

month periods according to the calendar month. For the choice of 1-month periods, there is a problem 

of balance between the computational efficiency and model performance. For example, if daily data are 

used for clustering, it is possible that four consecutive days belong to four different clusters respectively. 

In this case, parameters vary more frequently and decrease the computational efficiency. In contrast, if 

the period length is too long, there may be different hydro-meteorological conditions during this period, 

and the difference cannot be identified when they belong to the same period. The reason of selecting 1 

month as the period length is that the 1-month period is often regarded as the minimum unit to describe 

the hydro-meteorological conditions in the previous studies (LÉVesque et al. 2008; Luo et al. 2012). In 

order to directly compare with the season-based clusters, the 1-month periods are divided according to 

the calendar month.  

 

With the different types of clusters, parameters are calibrated by varying over clusters. For the purpose 

of comparison, the traditional calibration approach which assumes the parameters stable is also 

explored. During the calibration procedure, the difference between the observed and simulated flow is 

minimized by maximizing the Nash-Sutcliffe Efficiency (NSE). The performance of the calibrated 

model for the calibration period and validation period is evaluated with the use of criteria R2, R𝑙𝑛
2  and 

relative bias to represent high flows, low flows and water balance respectively. The studied three 

catchments in the southwest of UK show similar results. The FCM_T calibration scheme provides a 

more accurate simulation in high and low flows and water balance for both calibration period and 

validation period, followed by the Season calibration scheme. Given both temperature-based clusters 

and season-based clusters have capabilities of recognizing the temperature variation, it could be inferred 

that the temperature plays a crucial role in affecting the hydrological response in our study sites, and 

model performances could be improved by allowing parameter sets to vary according to temperature 

similarities. Through analyzing the variation pattern of parameters in the FCM_T calibration scheme, 

it is found that the parameter 𝜏𝑤 and f in the non-linear loss module show distinct variation patterns 

against temperature-based clusters for all catchments, while there is no obvious variation pattern of the 

parameter 𝜏𝑞  , 𝜏𝑠  and 𝑣𝑠  in the linear routing module. Given that the parameter 𝜏𝑤  and f are more 

related to the water loss process which is highly associated with temperature, it could be concluded that 

after identifying the key factors that cause the change of the hydrological response in the catchment, 

the selection of the time-varying parameters should correspond to the identified key factors. This 

conclusion provides inspiration for applying time-varying parameters to more complicated models. 

Complicated hydrological models like the physically based models always involve multiple parameters, 
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for these models, it is not feasible to allow each parameter to vary among clusters because too many 

parameters may lead to overfitting and poor computational efficiency. In this case, the parameters that 

are more related to the changes of the catchment are selected to vary while the other parameters remain 

unchanged, which could avoid too large number of parameters while taking into account the changes 

of the hydrological response.  

 

We also explored the seasonal model performance of the FCM_T scheme and the Season scheme, the 

improvement is found at different extent for different seasons, compared with the Tradition scheme. 

Although the model performance of the summer season is improved most significantly, the value of R2 

for the summer season is still low. This is because the calibrated model has poor performance in 

simulating low flows since the objective function Nash-Sutcliffe Efficiency (NSE) is more sensitive to 

high flows, and for the study sites, the streamflow in summer is much lower than other seasons. The 

use of the single objective of Nash-Sutcliffe Efficiency (NSE) also causes the fact that for all calibration 

schemes, the model performance in terms of R2 is better than that of R𝑙𝑛
2 , indicating the model performs 

better in simulating high flows than low flows. Only using the single objective optimization to calibrate 

the model is one limitation of our study, multiple objective optimization will be investigated in future 

work.  

 

When allowing parameters to vary among clusters with similarities, the model complexity is highly 

correlated with the number of clusters, which raises the question of the trade-off between the model 

complexity and model performance. Through changing the number of clusters in the FCM_T calibration 

scheme, the effect of the cluster number on model performance is investigated. It is found that the model 

performance for the calibration period becomes better with the increase of the cluster number; however, 

the increase of model complexity leads to poor predictive capabilities of the model due to overfitting. 

 

Overall, the main findings of this paper are as follows: among two hydro-meteorological factors: rainfall 

and temperature, temperature plays a more crucial role in controlling the change of the hydrological 

response in the study sites, so allowing parameters to vary among temperature-based clusters could 

improve the model performance. When using the time-varying parameters to account for the variation 

of the hydrological response, it is important to identify the key factors that cause the change of the 

hydrological response, and the selection of the time-varying parameters should correspond to the 

identified key factors. Clustering algorithm is an effective method to identify data with similarities of 

characteristics of interest. The number of clusters has an effect on model performance, therefore, it is 

of great importance to select the appropriate cluster number to achieve a balance between the model 

complexity and model performance. In this study, the optimal performance for both calibration period 

and validation period is achieved when the cluster number is equal to four.   
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This study only used one hydrological model at three catchments, which really limits the generalization 

of conclusions. However, the methodology proposed in this study is generic and applicable to other 

catchments and hydrological models. We hope this paper will stimulate more studies to explore a variety 

of sites with different hydrological models using the proposed methodology to gain more knowledge 

about the variation of the hydrological response.  
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