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Abstract

Validated measures of animal affect are crucial to research spanning numerous

disciplines. Judgement bias, which assesses decision-making under ambiguity,

is a promising measure of animal affect. One way of validating this measure

is to administer drugs with affect-altering properties in humans to non-human

animals and determine whether the predicted judgement biases are observed.

We conducted a systematic review and meta-analysis using data from 20 pub-

lished research articles that use this approach, from which 557 effect sizes were

extracted. Pharmacological manipulations overall altered judgement bias at

the probe cues as predicted. However, there were several moderating factors

including the neurobiological target of the drug, whether the drug induced a

relatively positive or negative affective state in humans, dosage, and the pre-

sented cue. This may partially reflect interference from adverse effects of the

drug which should be considered when interpreting results. Thus, the overall

pattern of change in animal judgement bias appears to reflect the affect-altering

properties of drugs in humans, and hence may be a valuable measure of animal
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affective valence.

Keywords: affective state; animal welfare; judgement bias; meta-analysis;

mood disorders; systematic review.

1. Introduction

Measurement of affective state, which is defined as comprising both short-

term emotions and longer-term moods [1], and according to dimensional mod-

els of affect, valence and arousal components [1], is important to a number of

disciplines including psychopharmacology, neuroscience, and animal welfare

science, as well as being of societal interest. For example, mood disorders are

a significant global concern; it is estimated that 780,000 people died by suicide

in 2015, with on average one death every 40 seconds [2]. Major depressive

disorder is ranked as the largest single contributor to global disability, and

anxiety disorders are ranked sixth [2]. The development of pharmacological

treatments for mood disorders has been largely dependent on empirical stud-

ies using non-human animals [3, 4]. Reliable and validated measures of af-

fective state in non-human animals are therefore crucial to understanding the

neurobiological aetiology of these disorders and to assist in the development

of novel treatments. In particular, measures should have both predictive valid-

ity (i.e. the extent to which the measure is altered in the predicted direction by

drugs which alter human affect) and construct validity (i.e. the extent to which

they measure precisely what they claim to measure) [5]. Predictive validity

is typically regarded as the ’gold-standard’ for validating novel behavioural

measures of affective state [6, 7].

Numerous behavioural assays have been developed to assess animal affect.

The most common of these include the forced swim test, and its derivative the

tail suspension test, which are considered to measure helplessness [8, 9, 10, 11];

the sucrose preference test which is considered to measure hedonic capacity

[12, 13]; and the elevated plus maze which is considered to assess the rela-

tive value of exploration to safety [14, 15]. Overall, there is good evidence to
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suggest that these assays have predictive validity with a broad range of an-

tidepressant or anxiolytic drugs resulting in changes in the predicted direction

(i.e. increased latency to immobility; preference for greater sucrose levels; and

a greater proportion of time spent in open compared to closed arms of the

plus maze). However, when dosed with antidepressant drugs that are used to

treat generalised anxiety disorder in humans, rodents do not consistently in-

crease their proportion of time spent in the open compared with closed arms of

the open plus maze and hence do not appear to reduce anxiety-like behaviour

[16, 17, 18]. Additionally, the construct validity of these assays has been dis-

puted. For example, it has been argued that the forced swim test and tail sus-

pension test reflect a learnt response rather than helplessness [19, 20, 21, 22, 23].

Similarly, research has shown that humans with depression show no reduction

in their preference for sucrose over water [24, 25] and that body weight may

be a strong confounding factor in the sucrose consumption test [26]. The out-

lined deficiencies in currently used assays means that there is a clear need for

improved methods to measure affective state in non-human animals that have

both construct and predictive validity.

The judgement bias task (sometimes referred to as the cognitive bias task or

ambiguous cue interpretation task) provides an alternative means to examine

affect in non-human animals and has been used widely in the field of animal

welfare science since its conception by Harding et al. (2004) [27, 28, 29]. The

judgement bias task examines decision-making under ambiguity. Although

there is some variation in methodology, the basic principles of the task out-

lined here are applicable to all judgement bias studies. Individuals are first

trained to associate the presentation of one reference cue (e.g. a high frequency

tone) with a reward and presentation of another reference cue (e.g. a lower

frequency tone) with a lower reward or punisher. Once training is complete,

individuals are presented with one or a few untrained probe cues that are inter-

mediate between the reference cues (e.g. medium frequency tones). Their re-

sponses to these ambiguous cues are measured to see whether they treat them

as signalling the more or less positive outcome. This is measured as latency to
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approach the cue or choice to execute or not execute the riskier action which

could lead to either the more or less positive outcome (i.e. not the safe action

which leads to the null outcome). A decreased latency to approach the cue, or

more frequent execution of the riskier action (often deemed ’more optimistic’

or ’less pessimistic’ in the judgement bias literature), is interpreted to reflect a

relatively more positive affective state.

The task is based on the empirical finding that humans experiencing anxi-

ety and depression have a greater expectation of punishing events or reduced

expectation of rewarding events than clinically healthy humans [30, 31, 32]. To

assess the extent to which judgement bias could measure subjective affective

state in humans, the task has been back-translated to human subjects. Studies

using the back-translated judgement bias task have demonstrated a correlation

between judgement bias and measures of subjectively-experienced affect, such

as the State-Trait Anxiety Inventory (STAI), Visual Analogue Scale for Anxi-

ety (VAS-A), and negative affect dimension of the Positive and Negative Affect

Schedule (PANAS) [33, 34, 35]. The finding that judgement bias correlates with

subjective reports of affective state in humans supports judgement bias as mea-

sure of affect, and hence the task appears to have strong construct validity.

A well-established and widely-used approach to validating behavioural

measures of affect in non-human animals, which will be used here to assess

the validity of judgement bias as a potential measure of affect, is to assess

whether drugs with known affect-altering properties in humans produce the

predicted shift in the behavioural measure when administered to non-human

animals [36, 37, 38, 39]. Specifically, we ask whether pharmacological induc-

tion of neurobiological states associated with relatively positive or negative

reported affect in humans produces the predicted effect on judgement bias

in animals. It is thus important to consider the mechanisms by which such

pharmacological manipulations might alter behaviour. There are several cog-

nitive mechanisms that have been proposed to underlie judgement biases and

these include changes in attention, perception, reward and punisher sensitivity,

prior expectation of rewards and punishers, and action selection (see [40] for
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review). Computational analyses of judgement bias data have suggested that

both an individual’s sensitivity to rewards and punishers and prior expecta-

tion of rewards and punishment are key sources of variation in judgement bias

[35]. The neurobiological systems underlying these processes and decision-

making in general have been subject to much investigation [41, 42, 43, 40].

Briefly, dopaminergic, adrenergic, glutaminergic, and GABAergic activity (par-

ticularly in the medial prefrontal cortex, anterior cingulate cortex, thalamus,

and locus coeruleus) have been widely implicated in attention and perception

[44, 45, 46, 47], serotoninergic, dopaminergic, opioidergic, and GABAergic ac-

tivity (particularly in the orbitofrontal cortex, nucleus accumbens, mesolimbic

dopamine projections, and amygdala) have been widely suggested to encode

the value and probability of rewards and punishers [48, 49, 40, 43, 50], and

adrenergic, serotinergic, and dopaminergic activity (particularly in the basal

ganglia and locus coeruleus) have been widely implicated in action selection

[51, 52, 53]. Noteably, these neurobiological systems are also considered to

play a role in human mood disorders (see Box 1). Furthermore, neurotrans-

mitter receptor systems are highly conserved across species [54, 55, 56] and

non-pharmacological manipulations designed to induce a positive or nega-

tive affective state in non-human animals also result in changes in the activ-

ity of these systems [57, 58, 59, 60]. Hence, there are a number of routes by

which pharmacologically-induced neurobiological states associated with rela-

tively positive and negative affect (as outlined in Box 1) might alter judgement

bias.

Research has been conducted to assess how judgement bias is influenced

by affect-altering drugs in non-human animals (See Table 1). Synthesis of

these studies would provide an important first step to determine the ability

of the judgement bias task to measure pharmacologically-induced neurobio-

logical states associated with positive or negative affect, and hence elucidate

the potential validity and reliability of judgement bias as a measure of affect

in non-human animals. To this end, we conducted a systematic review and

meta-analysis to assess whether pharmacological manipulations alter judge-
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ment bias and hence assess the predictive validity of the task. In addition to

assessing whether there was an overall effect, we investigated whether the re-

lationship between affect-altering drugs and judgement bias was moderated

by factors relating to the drug and administration of the drug, such as the du-

ration and timing of administration, dosage, and neurobiological target of the

drug (see Box 1). The potential moderating effects of several task-related fac-

tors, such as the presented cue, species used, sex, reinforcement type, response

type, and the outcome measure, were also investigated. While we predicted

that the effects of judgement bias would be greatest at the ambiguous cues and

would depend on dosage, we did not predict that the other moderators would

influence the effect of the pharmacological manipulations on judgement bias.
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Box 1: Neurobiological targets of affect-altering drugs, i.e. those with antidepressant, depres-

sant, anxiolytic, or anxiogenic effects:

Adrenergic system: Epinephrine and norepinephrine are both hormones and neurotransmitters

that bind to adrenergic receptors. The adrenergic system is involved in the early stages of a

stress response [61]. Brains of depressed patients have reduced levels of norepinephrine and

antidepressant drugs such as reboxetine selectively-target the adrenergic system [62, 63].

Dopaminergic system: Dopamine is a neurotransmitter and neuromodulator that can have both

inhibitory and excitatory effects on target dopamine neurons. Dopaminergic-system dysregu-

lation is associated with depression [64]. Antidepressant drugs targeting dopamine (although

non-specifically) such as monoamine oxidase inhibitors (MAOIs) are available but limited in

clinical usage [64].

Gamma-Aminobutyric acid (GABA) system: The neurotransmittor GABA, which binds to GABA

receptors, is the major inhibitory neurotransmitter in the brain [65]. Reduced GABA levels are

associated with panic disorder [66, 65]. A number of commercially available treatments for

anxiety disorders, such as barbituates, benzodiazepines, and gabapentins, are purported to work

by enhancing GABA function.

Glucocorticoid system: Glucocorticoids are a class of steroid hormones that bind to glucocorticoid

receptors. The system is involved in the later stages of a stress response, altering cognitive

functioning, such as attention and memory, following an acute stressor [61]. Elevated secretion

of the glucocorticoid cortisol, specifically upon waking, has been proposed as a biomarker of

depression [67, 68].

Glutaminergic system: Glutamate is the brain’s major excitatory neurotransmitter and targets

glutaminergic receptors that include NMDA, AMPA, and kainite [69]. Several recreational dis-

sociative drugs target the glutaminergic system specifically, such as ketamine and phencyclidine

(PCP). NMDA receptor antagonists, such as ketamine, have been found to have antidepressant

effects [70, 71].

Opioid system: Opioid receptors are targeted by a number of neuropeptides including endorphins

and nociceptin. The opioid system plays a key role in pain modulation, and mediates the euphoric

(mood-improving) and analgesic effects of a number of recreational and clinical drugs such as

morphine and heroin [72].

Oxytocin system: Oxytocin is a hormone and neuropeptide that targets the oxytocin receptor. The

oxytocin system has been implicated in depression; low oxytocin levels have been observed in

depressed patients [73].

Serotoninergic system: Serotonin is a primarily inhibitory neurotransmitter that binds to serotoner-

gic receptors [48]. There is a wealth of evidence indicating a link between low levels of serotonin

and depression [48]. Antidepressant drugs that target the serotonergic system, such as citalopram

and fluoxetine, are commonly prescribed [74].
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2. Methods

2.1. Ethics statement

Although no animal experiments were conducted directly for the purpose

of this meta-analysis, data originating from studies using animals were ob-

tained and analysed. These studies all received ethical approval from the insti-

tution at which the research was conducted.

2.2. Literature search

This study followed the Preferred Reporting Items for Systematic reviews

and Meta-Analyses (PRISMA) statement (see Fig. 1)[75]. A literature search

was first conducted on the 2nd November 2016 to identify all judgement bias

studies; the research articles from this literature search were split into groups

of those that used pharmacological manipulations (to be analysed here) and

those that did not (to be analysed in a separate analysis by Nakagawa et al

(in prep.)). These meta-analyses were conducted separately as they assessed

different research questions; here we specifically want to examine the ability

of judgement bias to detect pharmacological manipulations proposed to alter

affect and to better understand the factors moderating this, but also due to the

complexity the use of different drug doses adds the meta-analysis.

In addition to these articles, a literature search was conducted on the 13th

November 2017 using Scopus and Web of Science to identify more recent re-

search papers, and a further literature search was conducted on the 12th July

2019 using Scopus and Web of Science, as well as additional searches in other

subject databases (including PsycINFO, PsycARTICLES, PsycBOOKS, PsycEX-

TRA, PsycTESTS, EMBASE and Medline), grey literature (using ProQuest Dis-

sertation and Thesis Database, Google Data Search and Dimensions platform),

and snowballing from reviews on the topic (cited and citing references col-

lected) and from already included papers (citing references collected). Further

details on the literature search, including the search-terms used, can be found

in the supplementary material.
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2.3. Inclusion and exclusion criteria

Following removal of duplicates, the identified articles (Fig. 1) were first

screened solely by their abstract. During this abstract-based selection, articles

were selected for tentative inclusion in the meta-analysis if they were deemed

to be an empirical study which compared judgement bias between at least

one control group and at least one treatment group to whom an affect-altering

drug had been administered. Additionally, to be included, these studies had

to be conducted on vertebrate non-human animals. In this analysis, an affect-

altering drug was classified as any substance that was considered to have an-

tidepressant, depressant, anxiolytic, or anxiogenic effects in humans. Where

the terms affect-altering, antidepressant, depressant, anxiolytic, or anxiogenic

are used throughout this article, they describe the known effect of a drug in hu-

man subjects and putative effect of the drug in non-human subjects. Twenty-

eight articles met these inclusion criteria.

In the full-text screening, articles were selected on the basis that they had

used a variant of Harding et al’s (2014) cognitive judgement bias task to com-

pare judgement bias between a group of individuals to whom a vehicle sub-

stance had been administered and at least one treatment group who had been

given an affect-altering drug [27]. To be included, the outcome measure had to

be either latency to approach the cue (e.g. a location in a test arena) on each

trial, where approaching the presented cue had been associated with reward

and hence shorter latencies would be interpreted as more risk-seeking/less

risk-averse behaviour (deemed ’ greater optimism’ or ’positive judgement bias’

within the judgement bias literature), or the proportion of positive responses to

each presented cue where a greater proportion would be interpreted as more

risk-seeking/less risk-averse behaviour (deemed ’greater optimism’ or ’posi-

tive judgement bias’ within the judgement bias literature), or an outcome mea-

sure that could be converted into either form. For example, if the article re-

ported the proportion of negative responses to each presented cue or reported

the percentage of positive responses to each presented cue, the extracted data

would be subtracted from one or divided by 100 respectively. All included arti-
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cles either reported the proportion or latency, but not both, and hence only one

of these measures was extracted for each article. Two articles were excluded at

the full-text selection stage following retraction by their authors, two were ex-

cluded for not meeting the inclusion criteria, and a further two were excluded

as they were conference abstracts that duplicated data presented in a journal

article which was included in the analysis (Table 1). In addition to these six

exclusions, two authors did not provide the requested data and so data from

their articles could not be included in the meta-analysis (Table 1). A total of 20

articles were included in the meta-analysis (Table 1).

*Fig. 1 here* *Table 1 here*

2.4. Data extraction

We extracted the mean and standard deviation of either the latency

to approach the presented cue, or proportion of positive responses to

the presented cue, as well as the sample size (number of subjects), for

every pharmacological treatment and control group for each cue from

each article (JZ and VN extracted the data which were checked by VN

and SN). Data in a graphical format were extracted using GraphClick

3.0.3 (http://www.arizona-software.ch/graphclick/) or WebPlotDigitizer 4.1

(http://automeris.io/WebPlotDigitizer). As we extracted mean values, we ac-

knowledge that there may have been variation in how the authors incorpo-

rated non-responses into their calculation of latency mean values which we

cannot control for. If multiple drug doses had been used, these variables (i.e.

mean, standard deviation, and sample size) were extracted for each dosage,

and similarly, if there were test sessions that varied the duration between ad-

ministration and testing or number of days of chronic drug administration,

these variables were extracted for each test session. Data collected from both a

vehicle and treatment group prior to drug administration were not included as

these data did not provide information about the effect of the pharmacological

manipulation on judgement bias.

The extracted treatment and control group data were categorised accord-
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ing to whether the pharmacological manipulation was expected to induce a

neurobiological state associated with either a more or less positively-valenced

affective state, which the judgement bias test is predicted to measure. If an

anxiogenic or depressant substance had been administered, as determined by

the hypotheses stated in the published article alongside the information out-

lined in Box 1, the treatment group was categorised as the less positive group,

and the vehicle group was categorised as the more positive group (i.e. a rela-

tively negative judgement bias was predicted in the treatment group relative to

the control group). If an anxiolytic or antidepressant drug had been adminis-

tered, which was also determined by the hypotheses stated in the article along-

side the information outlined in Box 1, the treatment group was categorised as

the more positive group and the vehicle group categorised as the less positive

group (i.e. a relatively positive judgement bias was predicted in the treatment

group relative to the control group). If no hypotheses were stated in the arti-

cle, this categorisation was based on the description and pharmacodynamics

of the substance as outlined on the DrugBank database [76] in addition to the

information presented in Box 1. Where multiple doses had been administered,

higher doses of anxiolytic or anxiogenic drugs were categorised as more posi-

tive whereas higher doses of anxiogenic or depressant drugs were categorised

as less positive. This was based on the widespread finding that drugs exert

greater effects at higher doses [77, 78].

Information about the article and authors, drug and drug administration,

and methodology were also extracted (Table 1 and 2). These included; the ar-

ticle title (Table 1), institute or university at which the research was conducted

(extracted but not shown in Table 1 or 2), the name of the drug (Table 2), the

dosing duration (chronic - where drugs were administered repeatedly, acute -

where the drug was administered immediately before testing, or chronic wash-

out - the period after drug administration had stopped following chronic ad-

ministration), the time between administration and testing (acute studies only),

the number of days since the first dose (chronic studies only), the dosage (in

mg/kg), the neurobiological target of the drug, the pharmacological manipu-
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lation type (antidepressant/anxiolytic or depressant/anxiogenic), the species

tested, and the outcome variable used (latency or proportion), cue (positive

reference cue, midpoint probe cue, negative reference cue, and where included

the near negative probe cue and near positive probe cue) (not shown in Table

1 or 2, although number of probe cues given instead), sex of the experimen-

tal subjects (all male, all female, or both male and female), reinforcement type

used for the reference cue (reward-punishment - where the positive reference

cue was rewarded and negative reference cue punished; reward-null - where

the positive reference cue was rewarded and negative reference cue was not

rewarded; or reward-reward - where the positive reference cue was rewarded

with a high reward and negative reference cue was reward with a low reward),

response type which reflected whether both or only one of the reference cues

required an approach response (go/no-go - where the positive reference cue re-

quired an active response and the negative reference cue required no response,

or go/go - where both reference cues required an active response), the pro-

portion of probe trials in relation to the total number of trials, and cue type

(reference or probe) (Table 2). To ensure that dosage was comparable between

substances and species, each drug dose within a species was standardized by

dividing the dosage (in mg/kg) by the standard deviation of all doses admin-

istered within each drug for each species.

*Table 2 here*

2.5. Effect size and sampling variance calculation

As latency data are bounded at zero and proportion data are bounded be-

tween zero and one data obtained from the judgement bias task do not follow

a Gaussian or normal distribution. The delta method (Taylor approximation)

was used to adjust the extracted mean (x̄) and (sampling) variance (sd2) prior

to calculating the effect size to account for the non-normality of the raw data

[79]. For extracted latency data, which were assumed to follow a log-normal

distribution, this adjustment was calculated via the log transformation as:
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ln(x) = ln(x̄) − ln

(√
1 +

sd2

x̄2

)
(1)

sd2ln = ln

(
1 +

sd2

x̄2

)
(2)

In this case, the transformed sampling variance is exact and not an approx-

imation.

For extracted proportion data, which were assumed to follow a binomial

distribution, this adjustment was calculated via the logit transformation as [80]:

logit(x) = logit(x̄) +
sd2

2

(
1

(1 − x̄)2
− 1

x̄2

)
(3)

sd2logit = sd2
(

1

x̄
+

1

1 − x̄

)2

(4)

Hedge’s g [81], a measure of effect size based standardized differences in

means, was then calculated as the difference between the means of the rela-

tively positive treatment (in which a relatively more positive affective state was

expected, as outlined above) x̄+ve and means of the relatively negative treat-

ment (in which a relatively less positive affective state was expected, as out-

lined above) x̄−ve, divided by the pooled standard deviation, sdpool, and then

adjusted for biases arising from small sample sizes by factor J which depended

on the sample size of the relatively positive n+ve and relatively negative n−ve

groups:

SMD =
x̄+ve − x̄−ve

sdpool
J̇ (5)

(6)

sdpool =

√
(n+ve − 1)sd2+ve + (n−ve − 1)sd2−ve

n+ve + n−ve − 2
(7)

(8)

J =

(
1 − 3

4(n+ve + n−ve) − 9

)
(9)
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For the latency data, Hedge’s g was multiplied by minus one to account for

a higher proportion being equivalent to a lower latency, in terms of judgement

bias.

The sampling variance was calculated as follows:

se2SMD =
n+ve + n−ve

n+ven−ve
+

SMD2

2(n+ve + n−ve)
(10)

To account for shared controls, if one vehicle treatment group was com-

pared to multiple drug treatment groups, an additional effect size and sam-

pling variance was calculated based on a sample size for the vehicle group that

had been divided by the number of treatment groups [82].

2.6. Meta-analysis and meta-regression models

The meta-analysis and meta-regression were conducted using the function,

rma.mv from the R [83] package metafor [84]; this function allowed us to

fit multilevel meta-analytic and meta-regression models [85]. All models in-

cluded drug, institution at which the research was conducted, and effect ID (a

unique ID given to each effect size) as random effects to account for the non-

independence of effect sizes from studies conducted at the same institute or

using the same drug [86], and were fit using restricted maximum likelihood.

The Knapp and Hartung adjustment was applied to all analyses [87]. Initially,

an intercept only model was fit to the effect sizes. A p-value for this model was

obtained using a Wald-type test based on a t-distribution. Heterogeneity was

assessed by calculating the I2 values for each random effect in the model and

an overall I2 value for the model, following [88], which is an extension of the

original I2 [89].

Meta-regression was used to examine whether the following categorical

and continuous moderators significantly contributed to variation between ef-

fect sizes: the dosing duration (chronic, acute, or chronic wash-out), the time

between administration and testing (acute studies only), the number of days

since the first dose (chronic studies only), the dosage differences between treat-

ments from which the effect size was calculated, the neurobiological target of
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the drug, the manipulation type (positive or negative affect induction), the

species tested, and the outcome variable used (latency or proportion), pre-

sented cue (positive reference cue, near-positive probe cue, midpoint probe

cue, near-negative probe cue, negative reference cue), sex of the experimen-

tal subjects (all male, all female, or both male and female), reinforcement type

(reward-punishment, reward-null, or reward-reward), response type (go/no-

go, or go/go), cue type (reference or probe), and proportion of probe cues to

reference cues in the test session. An omnibus test based on an F distribution,

which examines the degree of variance explained by a moderator, was used to

assess the significance of each moderator [90]. To further investigate significant

moderators, pairwise comparisons were made between the mean effect size for

each level of the moderator. A Wald-type test was used to assess the signifi-

cance of these pairwise comparisons. Moderators which were significant in the

meta-regression were subsequently included together in a full model and their

influence on the effect sizes was re-assessed. To verify that the model of best fit

included all moderators, Akaike’s information criterion (AIC) was calculated

for the full model and was compared to models where a moderator had been

removed.

2.7. Subset analyses

As affect is hypothesised to exert a greater influence on decision-making

under ambiguity than under certainty, any treatment designed to pharmaco-

logically induce a neurobiological state associated with a relatively more pos-

itive or negative affective state is expected to have the greatest influence on

judgement bias at the ambiguous probe cues (see Fig. 2 for example of hypoth-

esised data) [40, 1]. There are also methodological and theoretical reasons as

to why an effect may be observed at one cue and not others. For example, a

cue may be too perceptually similar to either of the reference cues for there to

be ambiguity about the outcome, or a potential punisher may be much more

aversive than the reward is rewarding, to the extent that all animals will avoid

probe cues that are similar to the negative reference cue. By considering all
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cues equally (including reference cues), the effect of an affective manipulation

might be obscured, potentially leading to the false inference of no significant

effect. To this end, we conducted an additional analysis on a subset of data

that included only the effect sizes from the probe cue with the largest absolute

effect size for each drug within an article. Additionally, we analysed a second

subset of data that included only the effect sizes for the cue with the absolute

largest effect size in the direction of the mean effect size for each drug within

an article to avoid including outlying effects that might not necessarily reflect

the influence of the manipulation. If only one probe cue was presented in a

study, data from this probe cue were included in the subset data.

*Fig. 2 here*

2.8. Publication bias and sensitivity analysis

To assess the reliability of results across different analytical approaches and

to check for a publication bias, the intercept-only and full meta-regression

model were re-fit to the data under a Bayesian statistical framework using the

R package MCMCglmm [91]. The non-independence of effect sizes can also be

accounted for using Bayesian methods. A parameter-expanded prior, allowing

variance components to have different prior distributions, was used for both

the random effect of drug and institution ID, while the prior variance for ran-

dom effect of effect ID was fixed at one. Model fitting had 110,000 iterations,

10,000 burn-in periods, and thinning by every 100, resulting in an effective

sample size of 1000. The result of this intercept-only model was compared to

our initial intercept-only model. The ’meta-analytic residuals’ (sensu [88]) from

full meta-regression model conducted in MCMCglmm were used to produce a

funnel plot and run Egger’s regression, which here regresses the meta-analytic

residuals against precision [92, 88], and hence checks for a publication bias.

Additionally, the intercept-only meta-analysis was repeated but with the effect

size and sampling variance that had been adjusted (via the sample size) for

shared controls, to assess whether this altered the results.
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3. Results

3.1. Data review

We extracted 557 effect sizes from 20 articles that had been published by au-

thors based at 10 different institutions (see Table 1 and 2). Twenty-seven differ-

ent drugs were used across these studies. The majority (328) of the effect sizes

came from studies that had used drugs expected to induce a relatively positive

affective state (anxiolytics or antidepressants, 12 articles), while the remain-

der used anxiogenic or depressant drugs (112 effect sizes, 9 articles). There

were 408 effect sizes (14 articles) that came from studies using acute pharma-

cological manipulations, 97 effect sizes (6 articles) from studies using chronic

pharmacological manipulations, and 52 effect sizes (5 articles) that came from

the wash-out period of a chronic pharmacological manipulation. Most effect

sizes came from studies using drugs that targeted the serotonergic system (198

effect sizes, 7 articles) while a high proportion of studies also used drugs that

targeted a range of neurobiological systems (190 effect sizes, 9 articles) which

included drugs such as cocaine and d-amphetamine which target the dopamin-

ergic, serotoninergic, and adrenal systems. The remaining effect sizes were

from experiments using drugs that specifically targeted GABAergic system (46

effect sizes, 4 articles), adrenergic system (43 effect sizes, 3 articles), dopamin-

ergic system (36 effect sizes, 1 article), opioid system (20 effect sizes, 1 article),

glucocorticoid system (15 effect sizes, 1 article), oxytocin system (9 effect sizes,

2 articles). Five different species were used across the studies; the most fre-

quently used species according to the number of effect sizes was rat (418 effect

sizes, 11 articles), followed by pig (60 effect sizes, 2 articles), sheep (50 effect

sizes, 4 articles), chicken (23 effect sizes, 2 articles), and dog (6 effect sizes, 1

article). Proportion was more commonly used as the outcome measure (435

effect sizes, 12 articles) compared with latency (122 effect sizes, 8 articles). The

majority of effect sizes came from studies using only male subjects (421 effect

sizes, 11 articles), followed by only female subjects (130 effect sizes, 8 articles),

and six effect sizes (1 articles) came from studies that used both male and fe-
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male subjects. The most common reinforcement type was reward-punisher

(420 effect sizes, 16 articles), followed by reward-reward reinforcement (131 ef-

fect sizes, 3 articles), and reward-null (6 effect sizes, 1 article). There were more

effect sizes from studies using a ’go/go’ design (415 effect sizes, 10 articles)

compared with a ’go/no-go’ design (142 effect sizes, 10 articles).

Across the articles from the acute studies, the average time between the

administration of the drug and testing was 32.903±5.530 (mean±SE) minutes.

The average number of days between the start of the chronic drug treatment

and testing was 9.000±1.074, and the average days the animal had been with-

drawn from a drug when tested in the wash-out period was 6.938±0.824. The

mean proportion of probe cues to reference cues used during a test session was

0.341±0.037. There were 11 articles that used more than one probe cue and

three of these articles examined the effect of more than one drug. In total, there

were 14 sets of effect sizes obtained from different articles using different drugs

which used more than one probe cue. The probe cue with the greatest absolute

effect size was the near-positive probe cue on nine occasions, the near-negative

probe cue on four occasions, and the midpoint probe cue on one occasion. The

probe cue with the greatest absolute effect size was also the presented cue with

the greatest absolute effect size in the direction of the mean effect for all but one

of the sets of effect sizes, where the near-positive probe cue had the greatest

absolute effect sizes and the near-negative probe cue had the greatest absolute

effect size in the direction of the mean effect.

3.2. Meta-analysis

Overall, considering all effect sizes equally, affect-altering drugs did not

significantly induce a judgement bias in non-human animals, although a small

effect size (sensu [93]: small=0.20, moderate=0.5, large=0.8) was observed

(mean=0.239, 95% confidence interval or CI=-0.047-0.525, t556=1.639, p=0.102).

However, this needs to be interpreted in the context of the observed high to-

tal heterogeneity in the model, with an I2 value of 89.535 (>75%=high, [89]),

indicative of wide variation in the extent to which pharmacological manipula-
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tions alter judgement bias that warrants further examination. The between-

effect-size effect (i.e., residuals; 42.378%) and the between-drug effect (i.e.,

which drug were used; 35.112%) explained a large percentage of this het-

erogeneity, while a smaller percentage of variability was due to institutional

variation (12.044%). Heterogeneity between effect sizes was further explored

through the meta-regression.

3.3. Subset analyses

However, as aforementioned, given the theoretical framework for judge-

ment bias, we did not anticipate that effect sizes would be equal across all cues.

Instead, we considered it likely that pharmacological manipulations would

exert the greatest influence at only one of the probe cues, with proximity of

this cue to the reference cues differing between studies as a result of different

methodologies. Hence, subset analyses were conducted to assess the extent to

which the pharmacological manipulations of affect altered judgement bias at,

at least, one of the probe cues. Pharmacological manipulations using drugs

which have affect-altering properties were found to have a significant small to

moderate effect on judgement bias when the analysis was repeated on the sub-

set data comprising only data from the ambiguous cue with the largest absolute

effect size (mean=0.394, CI=-0.046-0.7270.017-0.770, t154=2.067, p=0.040), and a

significant small to moderate effect on the subset data comprising only data

from the ambiguous cue with the largest absolute effect size in the direction of

the mean effect (mean=0.455, CI=0.061-0.849, t154=2.279, p=0.024).

3.4. Meta-regression

The meta-regression revealed that several moderators significantly ex-

plained the observed heterogeneity among the extracted effect sizes,

these moderators were: pharmacological manipulation type (Fig. 3:

F(1,555)=16.056, p<0.001), dosage (F(1,519) =6.614, p=0.010), the reinforcement

type (F(2,554)=3.653, p=0.027) and the cue type (F(1,555)=4.725, p=0.030). The

presented cue (F(4,552)=2.002, p=0.093), and the neurobiological target of the
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drug were marginally non-significant moderators (F(8,548)=1.835, p=0.079).

More specifically, pharmacological manipulations expected to induce a rela-

tively negative affective state (either depressant or anxiogenic) had a greater

effect on judgement bias than those expected to induce a relatively positive

affective state (Table 3). Greater differences in dosage between the relatively

positive and negative treatments were associated with smaller effect sizes. The

greatest effect size was found when the reinforcement used for the reference

cues was a high reward and low reward, compared with a reward and pun-

isher. The effect of the pharmacological manipulation was greater at the probe

cues compared with the reference cues (Table 3). The effect of the pharma-

cological manipulation was weaker at the positive reference cue compared to

the midpoint probe cue, and near-positive probe cue, and tended to be weaker

than the negative reference cue (Table 3). There was no difference in effect

size at the positive reference cue compared with the near-negative reference

cue (Table 3). The remaining moderators tested were not found to significantly

explain variation in effect size. The effect of drugs targeting the adrenergic

system differed significantly from all other drugs used apart from drugs tar-

geting the opioid and oxytocin system (Table 3). Drugs targeting the adren-

ergic system had the opposite effect than expected; a negative judgement bias

was induced when a positive judgement bias was hypothesised. Other mod-

erators with non-significant effects included: species (F(4,552)=0.835, p=0.503),

dosing frequency (F(2,554)=0.108, p=0.898), time since last dose (F(1,406) =0.467,

p=0.495), number of days since first treatment (F(1,95)=1.169, p=0.282), sex

(F(2,554)=0.328, p=0.720), response type (F(1,555)=0.040, p=0.842), proportion of

ambiguous cues to reference cues (F(1,555)=1.531, p=0.217), and outcome mea-

sure (F(1,555)=0.139, p=0.709).

*Figure 3 here* *Table 3 here*

The best fitting model included cue (i.e. positive reference cue, midpoint

probe cue, negative reference cue, near negative probe cue and near positive

probe cue) instead of cue type (i.e. reference or probe) (∆AIC (i.e. differ-

ence in AIC values between models)=0.437), and all significant moderators
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identified in the univariate meta-regression. Removal of the neurobiological

target of the drug (∆AIC=13.511), dosage (∆AIC=6.705), cue (∆AIC=3.583),

reinforcement type (∆AIC=7.573), and manipulation type (∆AIC=6.465) re-

sulted in a poorer fit according to the AIC values. The best fitting model

had a marginal R2 value (sensu [94]) of 72.844%. In this model, the differ-

ence between effect sizes where a relatively positive compared with relatively

negative affective state had been induced was significant, with a moderate

effect size (∆mean=0.582, CI=0.054-1.110 t506=2.164, p=0.031). Effect sizes

from drugs targeting the adrenergic system were overall in the opposite di-

rection to expected and there was a large and significant difference in effect

sizes between adrenergic system targeting drugs and multiple system target-

ing drugs (∆mean=0.852, CI=0.043-1.661, t507=2.069,p=0.039) and GABAergic

system targeting drugs (∆mean=1.299, CI=0.369-2.228, t507=2.746, p=0.006 ),

and a large but marginally non-significant difference in effect sizes between

adrenergic system targeting drugs and serotonergic system targeting drugs

(∆mean=0.817, CI=-0.073-1.707, t507=1.803, p=0.072), dopaminergic system

targeting drugs (∆mean=0.936, CI=-0.083-1.956, t507=1.804, p=0.072), gluco-

corticoid system targeting drugs (∆mean=1.451, CI=-0.250-3.151, t507=1.676,

p=0.094). There was a large but non-significant difference between the effect

sizes of drugs targeting the adrenergic and oxytocin system (∆mean=0.961,

CI=-0.894-2.815, t507=1.018, p=0.309) and moderate but non-significant dif-

ference between the effect sizes of drugs targeting the adrenergic com-

pared with opioid targeting drugs (∆mean=0.555, CI=-0.621-1.732, t507=0.927,

p=0.354). Effect sizes were significantly weaker at the positive reference

cue compared with the midpoint probe cue (∆mean=0.163, CI=0.019-0.308,

t507=2.218, p=0.027), and near-positive probe cue (∆mean=0.289, CI=0.025-

0.553, t507=2.148, p=0.032). Effect sizes at the positive reference cue were

not significantly different from effect sizes at the negative reference cue

(∆mean=0.118, CI=-0.028-0.264, t507=1.592, p=0.112) or at the near-negative

probe cue (∆mean=0.206, CI=-0.060-0.472, t507=1.519, p=0.129). There was

a small and significant difference between effect sizes from studies using
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high and low rewards as the more and less favourable outcome, respectively,

compared with studies which used rewards and punishers (∆mean=-0.366,

CI=-0.626–0.106, t543=-2.764 p=0.006), while there was a moderate but non-

significant difference between studies that used high and low rewards and

those that used a reward and null outcome (∆mean=-0.546, CI=-1.548-0.457,

t543=-1.070, p=0.285).

3.5. Study exclusion

As the initial analysis revealed that drugs targeting the adrenergic system

had the opposite effect on judgement bias than hypothesised, which differed

significantly from the majority of the other drugs not specifically targeting the

adrenergic system demonstrating that these drugs produced an anomalous ef-

fect in comparison to all other drugs examined, we re-assessed the rationale for

classification of adrenergic-targeting drugs as either anxiolytic/antidepressant

or anxiogenic/depressant. There is conflicting evidence about the affect alter-

ing properties of adrenergic system targeting drugs in both non-human [95, 96]

and human [97] animals. Moreover, studies have demonstrated that acute neg-

ative affect is associated with increased levels of norepinephrine, while chronic

negative affect is associated with decreased levels of norepinephrine [98, 99],

which further complicates assessment of whether the neurobiological state in-

duced by the pharmacological manipulations most resembled that of a rela-

tively negative or positive affective state. Consequently, we made the post-

hoc decision to re-analyse the data excluding effect sizes from studies using

adrenergic-system targeting drugs. Three studies had used adrenergic-system

targeting drugs; one study had used clonidine and the other two studies had

used reboxetine. Both clonidine and reboxetine are considered to induce a rel-

atively positive affective state. These studies accounted for 7.719% (43) of the

effect sizes analysed.

3.6. Post-exclusion meta-analysis

Following the exclusion of these effect sizes, a moderate overall effect was

observed; pharmacological manipulations which induced a neurobiological
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state associated with relatively more positive or negative affect were found to

significantly influence judgement bias in the predicted direction (mean=0.400,

CI=0.056-0.744, t513=2.287, p=0.023). However, there again existed high hetero-

geneity (I2=89.746%); with 38.362% attributable to between-effect-size effects,

20.732% to between-drug effects, and 30.653% to institutional variation. The

meta-analysis using both data subsets (using only one probe cue) revealed a

significant and moderate overall effect of pharmacological manipulations on

judgement bias (absolute greatest probe cue effect sizes: mean=0.520, CI=0.116-

0.924, t144=2.543, p=0.012; and absolute greatest probe cue effect in direction of

mean: mean=0.579, CI=0.157-1.001, t144=2.711, p=0.008).

3.7. Post-exclusion meta-regression

While manipulation type (Fig. 4: F(1,512)=15.700, p<0.001) and dose (Fig. 4:

F(1,476)=5.169, p=0.023), remained significant as moderators when studies us-

ing adrenergic system targeting drugs were excluded, the presented cue (Fig.

4: F(4,509)=2.396, p=0.049) was now significant as opposed to marginally non-

significant and drug target (F(6,506)=0.578, p=0.748) cue type (F(1,512)=2.594,

p=0.108), and reinforcement type (F(2,511)=0.144, p=0.866) were no longer sig-

nificant. The model which included all three significant moderators provided

a better fit than the models which excluded manipulation type (∆AIC=13.465),

cue (∆AIC=2.299), and dose (∆AIC=5.430). This full model had a marginal R2

value of 61.008%.

The difference between effect sizes at the midpoint probe cue and positive

reference cue was very small but significant (∆mean=0.154, CI=0.011-0.297,

t471=2.111, p=0.035, and the difference between effect sizes at the positive refer-

ence cue and near-positive probe cue was small but marginally non-significant

(∆mean=0.245, CI=-0.035-0.525, t471=1.716, p=0.087). Contrary to the previ-

ous analysis including adrenergic-targeting drugs, a very small but significant

difference was found between effect sizes at the negative and positive refer-

ence cues, with greater effect sizes at the negative reference cue (∆mean=0.183,

CI=0.039-0.327, t471=2.491, p=0.013). The difference in effect sizes between
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the positive reference and near-negative probe cue remained non-significant

(∆mean=0.192, CI=-0.089-0.474, t471=1.341, p=0.181). Effect sizes were still

observed to be greater when the anxiogenic or depressant drugs were used

compared to the antidepressant or anxiolytic drugs with a moderate differ-

ence in effect sizes (∆mean=0.701, CI=0.348-1.055, t471=3.897, p<0.001), and

effect sizes remained significantly greater when there were smaller differences

in dosage between the relatively positive and relatively negative treatment, al-

though the effect was very small (mean=-0.0379, CI=-0.071–0.004, t471=–2.223,

p=0.027).

*Figure 4 here*

3.8. Publication bias and sensitivity analysis

The results of the Bayesian meta-analysis were consistent with the results

of our likelihood-based meta-analyses both prior to and following the removal

of effect sizes from studies using drugs targeting the adrenergic system. The

effect of the pharmacological manipulations on judgement bias was not sig-

nificant prior to data exclusion (mean=0.242, 95% credible interval=-0.097-

0.666, p=0.194), but a marginally non-significant overall effect emerged fol-

lowing data exclusion from studies using adrenergic-system targeting drugs

(mean=0.387, credible interval=0.020-0.864, p=0.056).

Visual inspection of the funnel plots produced from the meta-analytic resid-

uals and raw effect sizes (Fig. 5) did not indicate that a publication bias was

present, nor did the results of Egger’s test on either the analysis prior to (t519=-

0.419, p=0.675) or following (t476=0.568,p=0.570) the exclusion of data.

*Figure 5 here*

Re-analysis of the intercept-only model using the effect sizes and variances

that had been adjusted for shared controls did not alter the results qualitatively.

The result prior to data exclusion was statistically non-significant (mean=0.240,

CI=-0.047-0.527, t522=1.641,p=0.101) while following data exclusion was signif-

icant (mean=0.401, CI=0.057-0.745, t476=2.291, p=0.022).
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4. Discussion

Judgement bias is a relatively new and promising measure of animal af-

fect that may provide a useful alternative to more common behavioural assays

used to assess the efficacy of potential pharmacological treatments of mood

disorders, such as the forced swim test. Empirical studies with human subjects

have supported its construct validity [30, 31, 32, 33, 34]. To examine its predic-

tive validity, we conducted a systematic review and meta-analysis of studies in-

vestigating the effect of affect-altering drugs on judgement bias in non-human

animals. We analysed data from 20 published research articles which yielded

557 effect sizes.

There was high heterogeneity (>75%) between the effect sizes observed

[100] indicating strong variability in the extent to which pharmacological ma-

nipulations of affective state alter judgement bias. The drug used accounted

for some of this variability, as did the institution at which the research was

conducted, yet a high proportion of heterogeneity was also attributed to vari-

ation within drug and institution. Our meta-regression further highlighted a

number of factors which explained variation in effect sizes including the neu-

robiological drug target, manipulation type (whether the drug was hypothe-

sised to induce a negative or positive affective state), dosage, cue, and cue type

(reference or probe).

Initially, considering all effect sizes across all cues equally (including refer-

ences cues), we found no significant overall effect of affect-altering drugs on

judgement bias in non-human animals. However, because there are theoret-

ical and empirical reasons for an effect being more likely at ambiguous cues

as opposed to reference cues, and/or to occur at one ambiguous cue but not

others (e.g. because the others may happen to be too perceptually similar to

the reference cues, see Methods), considering all cues equally may obscure an

effect of a treatment manipulation. Indeed, judgement bias studies often re-

port effects that are observed at only a subset of (ambiguous) cues (e.g. [101]).

Consequently, we also carried out analyses using subsets of data that included
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only (i) effect sizes for the probe cue with the largest absolute effect size; (ii)

effect sizes for the cue with the absolute largest effect size in the direction of

the mean effect size. These analyses revealed that the pharmacological manip-

ulations altered judgement bias in the predicted direction.

The results of the meta-regression showed a clear moderating effect of the

neurobiological drug target, particularly of drugs targeting the adrenergic sys-

tem, whose effect differed significantly from the majority of other drugs used.

A small to medium effect using data from all cues was found following the

removal of data from studies targeting the adrenergic system, and a mod-

erate effect was found when considering data from the subset analyses de-

scribed above. Thus, this meta-analysis provides support for the validity of

judgement bias as measure of affect in non-human animals, having demon-

strated that pharmacological manipulations using drugs known to influence

affect in humans overall alter judgement bias in non-human animals at the

probe cues in the predicted direction. However, there exist a few caveats; it

is important to state that this result should not be interpreted as evidence that

the pharmacological manipulations did alter affect and that this shift in af-

fect directly influenced judgement bias. Instead, this result demonstrates that

pharmacologically-induced neurobiological states associated with relatively

positive or negative affect alter judgement bias in the predicted direction, given

hypotheses about how affect should alter judgement bias - judgement bias re-

liably predicted the affect-altering properties of the pharmacological manipu-

lation. However, the pharmacological manipulations may have altered judge-

ment bias through a variety of mechanisms and we cannot preclude the pos-

sibility that manipulations did not alter affect in non-human animals as they

would in human subjects, or that the observed shift in judgement bias was

directly attributable to a shift in affect.

The three excluded studies used either reboxetine, an antidepressant, or

clonidine, which is used off-licence to treat anxiety disorders. Jointly, these

drugs were found to exert an opposite effect on judgement bias; inducing a

negative judgement bias when a positive judgement bias was predicted. Para-
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doxically, depression and anxiety are known side effects of these drugs [102].

Moreover, these studies both used an acute dose which may explain why their

effects were not in the predicted direction. Both norepinephrine and cortisol

increase in response to stress and acute dosing of drugs which simultaneously

elevate levels of norepineprine and cortisol have been shown to result in stress-

like changes in the neural response to negative stimuli in humans [103]. It

is therefore feasible that the acute delivery of adrenergic-system targeting an-

tidepressant drugs induced a neurobiological state associated with relatively

negative rather than a positive affective state which resulted in the relatively

negative judgement bias observed. This potential explanation is further sup-

ported by studies that have observed anxiety-like states in rodents following

the administration of similar adrenergic-system targeting drugs [95, 96].

An alternative explanation could be related to another side effect of adren-

ergic agonists that has been documented in human and non-human animal

subjects; sedation [104, 102] A sedated animal may not have been able to fully

partake in the experiment or have been considerably slower to respond, lead-

ing to seemingly risk-averse (deemed ’pessimistic’ in the judgement bias litera-

ture) responses. This is perhaps further supported by the finding that clonidine

and reboxetine led to a increased latency to respond to the positive reference

cue, as described by the authors of the studies included in this meta-analysis.

However, further studies would be required to reveal the extent to which the

results from these two studies can be generalised to all adrenergic system tar-

geting drugs.

Depressant and anxiogenic drugs, had a greater effect on measured judge-

ment bias than antidepressant and anxiolytic drugs. This result may reflect an

interaction between the drugs administered and affective states arising from

the process of being tested, which may sometimes be negative in their own

right (e.g. invasive administration of drugs, social isolation during testing, and

potential delivery of an aversive decision outcome). These factors may have

enhanced the neurobiological effect of the depressant and anxiogenic drugs,

while dampening the neurobiological effect of the antidepressant and anxi-
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olytic drugs. Notably, the potential negative affective state induced by testing

may also explain the finding, prior to exclusion of adrenergic targeting drugs,

that effect sizes were greater when only rewards were used as reinforcement, as

opposed to both reward and punishers. Indeed, in humans there is evidence to

suggest that some affect-altering recreational drugs intensify the affective state

of an individual prior to consumption, or result in the exaggerated interpreta-

tion of emotional stimuli [105, 106]. With regards to the development of novel

treatments for mood disorders such as depression and anxiety, this perhaps

suggests that attention should be given to the potential effects of the testing

procedure on affect, and that greater sample sizes may be required to provide

sufficient power for an effect of the potential pharmacological treatment to be

detected.

Another possible explanation for the moderating effect of manipulation

type is that there are floor effects which limit the impact antidepressant and

anxiolytic drugs may have on judgement bias. There will be a physical limit

to how quickly an animal can approach a cue, and the control animals may

already be performing at or close to this limit, meaning that the animals that

had been given a antidepressant and anxiolytic drug could not respond any

quicker. However, this explanation will only be relevant to studies measuring

approach latency. Similarly, the smoke-detector principle states that individu-

als should be overly responsive to potential threats [107]; just as the cost of a

smoke detector not detecting a fire is far greater than the cost of the smoke de-

tector sounding an alarm when there is no fire, false positives are also optimal

in the detection of predators. An individual may continue to appear relatively

cautious even when in a more positive affective state because the cost of not

avoiding punishers (i.e. potential death) is so high that it would be subopti-

mal for an individual to behave in a more risky manner (i.e. making the ’opti-

mistic’ response which could lead to a punisher, as opposed to the ’pessimistic’

response which is the safe option) [107, 108].

Although this meta-analysis did not identify a difference in effect sizes be-

tween studies which analysed proportion or latency data, it is important to
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discuss these two outcome measures. Typically, both latency and proportion

data can be collected from judgement bias studies and it is unclear what drives

a researcher to select either measure. There are merits and disadvantages of us-

ing either measure; while latency contains more information than proportion

data, in the sense that as a continuous variable it may identify variation that

proportion data cannot, it may also be more subject to influences from other

factors such as any effect of the drug on motor responses as outlined above or

other cognitive biases such as attention biases [40].

Greater effects were observed when there were relatively smaller differ-

ences in dosage between treatments. This is consistent with the inverted U-

shaped dose-response function that is sometimes observed in drug studies

[109, 110, 111]. This result may reflect that higher doses increase the probability

of side effects which may interfere with task performance [112, 113]. Adverse

effects that alter the motivation of the animal (e.g. reduced appetite), their con-

summatory behaviour (e.g. nausea), or psychomotor abilities (e.g. sedation)

are likely to affect judgement bias. Such side effects are common to several

affect-altering drugs [102]. It may therefore be sensible to take measures of ac-

tivity or food consumption concurrent to the judgement bias task to assess the

potential impact of side effects of drug manipulations.

The meta-analysis also found that the effects of the pharmacological ma-

nipulations on judgement bias were weakest at the positive reference cue, and

that the effect of pharmacological manipulations was greater when only the

probe cue with the greatest effect size within each drug and article were anal-

ysed. This reflects that pharmacological manipulations using affect-altering

drugs exert a stronger influence on trials where there is ambiguity about the

outcome of the trial compared with trials where the reward is certain. On pre-

sentation of the positive reference cue, there should be little ambiguity about

the outcome, and it would be expected that the animal should make the re-

sponse that allows them to obtain the reward on a high proportion of trials.

The influence of any manipulation which putatively alters affect should be

greatest when there is uncertainty about the outcome as subjective probabil-
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ities of uncertain outcomes are thought to be more strongly informed by an

individual’s affective state [1, 114, 115]. Thus, this finding is consistent with

the theoretical framework underlying judgement bias. However, given that a

number of cognitive processes could lead to a shift in judgement bias at the

probe but not the positive reference cue, this finding does not negate the pos-

sibility that cognitive processes other than probability estimation underlie the

relationship between the pharmacological manipulations and decision-making

on the judgement bias task.

It is unclear why the extracted effect sizes were not smaller at the neg-

ative reference cue following exclusion of effect sizes from studies that had

used adrenergic-targeting drugs. The pharmacological manipulations were

not expected to exert a similar effect at the negative reference cue compared

with the probe cues, as there should be little uncertainty about the outcome

when the reference cues are presented. Moreover, in studies in which multi-

ple probe cues were presented, the pharmacological manipulations rarely ex-

erted the greatest influence at midpoint cue, where there should be the greatest

uncertainty about the outcome. This further suggests that pharmacologically-

induced neurobiological states associated with relatively more positive or neg-

ative affect do not necessarily induce a greater judgement bias as uncertainty

about the decision outcome increases. Both valuation and probability of de-

cision outcomes have been identified as key components of decision-making

that underlie variation in the judgement bias task [35]; an individual might be

more likely to make a risky or more ’optimistic’ response if they considered

the reward to more probable or punisher to be less probable or if they consid-

ered the reward to be more valuable or punisher to be less aversive [40, 43].

Speculatively, it is possible that the pharmacological manipulations altered the

valuation of the punisher, hence altering responses to its presentation. A bet-

ter understanding of the cognitive processes underlying judgement bias and

how they relate to affect, which could be achieved through a battery of tests or

computational modelling of judgement bias data, would be highly valuable.

Similarly, it is possible that some findings reflect differences between the re-
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ward and punisher systems. Indeed, prior to the removal of adrenergic drugs

from the dataset, we found that the effect of the pharmacological manipulation

was greater when no reward was used as the negative outcome compared to

when a punisher was used as the negative outcome.

Our meta-analysis found no evidence to indicate that the species used, the

dosing frequency, the time since last dose in acute studies, the number of days

since first treatment in chronic studies, the outcome variable used, the biologi-

cal sex of the individuals studied, the reinforcement type, or response type had

moderating effects on the influence of pharmacological manipulations of affect

on judgement bias. While this might reflect that there is insufficient power to

detect an effect, it might indicate that judgement bias is robust to variation in

methodology and across species. Interestingly, despite being one of the most

commonly used non-human animal species in research, none of the studies

included in this meta-analysis used mice [116, 117]. As judgement bias tasks

have been successfully conducted in mice [118, 119], we consider that it would

be highly worthwhile to examine the extent to which pharmacological manip-

ulations alter judgement bias in mice. We found no evidence to suggest a pub-

lication bias.

Future studies should attempt to account for the potential side effects of

pharmacological manipulations. Observing behaviour following drug admin-

istration, for example activity levels and food and water consumption, may

help to highlight potential adverse effects. The majority of effect sizes extracted

in this meta-analysis were from studies using serotonergic-system targeting

drugs. While this is unsurprising given that commonly prescribed antidepres-

sants target the serotonin system [74], mood disorders are associated with dys-

function in several neurological systems and further investigation of the in-

fluence of pharmacologically-induced changes in the activity of these systems

may be beneficial [120, 121, 122]. This meta-analysis has highlighted that multi-

ple probe cues may be preferable in future studies. Pharmacological manipula-

tions using affect-altering drugs do not necessarily exert the strongest influence

of judgement bias at the most ambiguous cue, as found in this meta-analysis,
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and using multiple cues would allow a more comprehensive assessment of the

effect of the manipulation. Finally, it would be worthwhile to assess the efficacy

of judgement bias as a measure of pharmacological manipulations of affect in

mice.

5. Conclusion

To conclude, this meta-analysis has provided evidence that judgement bias

has predictive validity as a measure of pharmacologically-induced neurobio-

logical states associated with relatively negative or positive affect, which sup-

ports judgement bias as a measure of affect in non-human animals. A key

issue identified in this study is the potential interference of drug side effects on

judgement bias. In particular, the contrary effect of adrenergic-targeting affect-

altering drugs and the greater effect of drugs on judgement bias at lower doses,

may be attributed to side effects or to the complex nature of adrenergic drug

effects. The effect of depressant and anxiogenic drugs state was greater than

the effect of antidepressant and anxiolytic drugs, and therefore larger sample

sizes may be required when testing the efficacy of potential pharmacological

treatments for mood disorders. However, if consideration is given to these po-

tential shortcomings, the judgement bias task for which there is evidence of

construct validity and now of predictive validity appears to be a viable mea-

sure of whether the neurobiological state of non-human animals is indicative

of a positive or negative affective state.
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[86] W. Van den Noortgate, J. A. López-López, F. Marı́n-Martı́nez, J. Sánchez-

Meca, Three-level meta-analysis of dependent effect sizes, Behavior re-

search methods 45 (2) (2013) 576–594.

[87] G. Knapp, J. Hartung, Improved tests for a random effects meta-

regression with a single covariate, Statistics in medicine 22 (17) (2003)

2693–2710.

[88] S. Nakagawa, E. S. Santos, Methodological issues and advances in bio-

logical meta-analysis, Evolutionary Ecology 26 (5) (2012) 1253–1274.

[89] J. P. Higgins, S. G. Thompson, Quantifying heterogeneity in a meta-

analysis, Statistics in medicine 21 (11) (2002) 1539–1558.

[90] W. Viechtbauer, Conducting meta-analyses in r with the metafor pack-

age, Journal of statistical software 36 (3) (2010) 1–48.

[91] J. D. Hadfield, Mcmc methods for multi-response generalized linear

mixed models: The MCMCglmm R package, Journal of Statistical Soft-

ware 33 (2) (2010) 1–22.

URL http://www.jstatsoft.org/v33/i02/

42

http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v36/i03/
http://www.jstatsoft.org/v36/i03/
http://www.jstatsoft.org/v36/i03/
http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v33/i02/


[92] M. Egger, G. D. Smith, M. Schneider, C. Minder, Bias in meta-analysis

detected by a simple, graphical test, Bmj 315 (7109) (1997) 629–634.

[93] J. Cohen, Statistical power analysis for the behavioral sciences 2nd edn

(1988).

[94] S. Nakagawa, H. Schielzeth, A general and simple method for obtain-

ing r2 from generalized linear mixed-effects models, Methods in Ecology

and Evolution 4 (2) (2013) 133–142.

[95] M. Tanaka, M. Yoshida, H. Emoto, H. Ishii, Noradrenaline systems in

the hypothalamus, amygdala and locus coeruleus are involved in the

provocation of anxiety: basic studies, European Journal of Pharmacology

405 (1-3) (2000) 397–406.

[96] T. Inoue, S. Nakagawa, T. Izumi, Y. Kitaichi, T. Koyama, Effect of com-

bined treatment with noradrenaline and serotonin reuptake inhibitors on

conditioned freezing, European Journal of Pharmacology 540 (1-3) (2006)

91–95.

[97] C. Harmer, J. Heinzen, U. O’Sullivan, R. Ayres, P. Cowen, Dissociable ef-

fects of acute antidepressant drug administration on subjective and emo-

tional processing measures in healthy volunteers, Psychopharmacology

199 (4) (2008) 495–502.

[98] D. A. Morilak, G. Barrera, D. J. Echevarria, A. S. Garcia, A. Hernandez,

S. Ma, C. O. Petre, Role of brain norepinephrine in the behavioral re-

sponse to stress, Progress in Neuro-Psychopharmacology and Biological

Psychiatry 29 (8) (2005) 1214–1224.

[99] K. A. Roth, I. M. Mefford, J. D. Barchas, Epinephrine, norepinephrine,

dopamine and serotonin: differential effects of acute and chronic stress

on regional brain amines, Brain Research 239 (2) (1982) 417–424.

[100] A. M. Senior, C. E. Grueber, T. Kamiya, M. Lagisz, K. O’Dwyer, E. S. San-

tos, S. Nakagawa, Heterogeneity in ecological and evolutionary meta-

43



analyses: its magnitude and implications, Ecology 97 (12) (2016) 3293–

3299.

[101] E. J. Bethell, N. F. Koyama, Happy hamsters? enrichment induces posi-

tive judgement bias for mildly (but not truly) ambiguous cues to reward

and punishment in mesocricetus auratus, Royal Society open science

2 (7) (2015) 140399.

[102] Center for Drug Evaluation and Research, FDA Adverse Event Report-

ing System (FAERS) Public Dashboard.

URL https://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/

surveillance/adversedrugeffects/ucm070093.htm
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Figure Captions

Figure 1: PRISMA Flow Diagram illustrating the number (n) of articles in-

cluded at each stage of the literature review.

Figure 2: Example of hypothesised data from the judgement bias task with

two treatments; one designed to induce a relatively positive affective state (rel-

atively favourable treatment) and another designed to induce a relatively neg-

ative affective state (relatively unfavourable treatment). While the mean pro-

portion of positive responses is almost identical at the positive and negative

reference cue, a treatment difference is observed at the probe cues.

Figure 3: Forest plot with a meta-analytic mean (intercept-only model) and

significant moderators from univariate meta-regression models. Each point

represents the mean effect size for each moderator and error bars represent the

95% confidence interval.
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Figure 4: Forest plot with a meta-analytic mean (intercept-only model) and

significant moderators from univariate meta-regression models following the

exclusion of adrenergic system targeting drugs. Each point represents the

mean effect size for each moderator and error bars represent the 95% confi-

dence interval.

Figure 5: Funnel plots of a) the meta-analytic residual values (residuals +

sampling errors) for the full meta-regression model prior to exclusion of effect

sizes from studies using adrenergic system targeting drugs; b) the raw effect

sizes and the inverse standard errors prior to exclusion of effect sizes from

studies using adrenergic system targeting drugs; c) the meta-analytic residual

values for the full meta-regression model following exclusion of effect sizes

from studies using adrenergic system targeting drugs; d) the raw effect sizes

and the inverse standard errors following exclusion of effect sizes from studies

using adrenergic system targeting drugs.
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Table 3: Pairwise comparison of each level of significant moderators from the meta-regression

Variable Model Mean difference CI lower bound CI upper bound p-value

Cue Midpoint - Positive 0.028 0.307 2.36 0.019

Negative - Positive -0.022 0.26 1.652 0.099

Near Negative - Positive -0.059 0.421 1.479 0.140

Near Positive - Positive 0.015 0.492 2.087 0.037

Midpoint - Near Positive -0.324 0.153 -0.707 0.480

Negative - Near Positive -0.375 0.105 -1.105 0.270

Near Negative - Near Positive -0.357 0.212 -0.501 0.616

Negative - Midpoint -0.190 0.091 -0.686 0.493

Near Negative - Midpoint -0.227 0.253 0.108 0.914

Negative - Near Negative -0.304 0.179 -0.507 0.612

Cue type Reference - Probe -0.232 -0.012 -2.174 0.030

Manipulation Type Negative - Positive 0.38 1.112 4.007 <0.001

Neurobiological Target Serotoninergic - Adrenergic 0.118 1.672 2.262 0.024

Dopaminergic - Adrenergic 0.254 2.049 2.521 0.012

GABAergic - Adrenergic 0.54 2.184 3.254 0.001

Glucocorticoid - Adrenergic 0.017 2.993 1.987 0.047

Multiple - Adrenergic 0.346 1.766 2.922 0.004

Opioid - Adrenergic -0.365 1.729 1.279 0.201

Oxytocin - Adrenergic -0.676 2.324 1.079 0.281

Serotoninergic - Multiple -0.622 0.3 -0.685 0.493

Dopaminergic - Multiple -0.533 0.724 0.298 0.766

GABAergic - Multiple -0.244 0.855 1.092 0.276

Glucocorticoid - Multiple -0.914 1.812 0.647 0.518

Opioid - Multiple -1.208 0.459 -0.882 0.378

Oxytocin - Multiple -1.608 1.144 -0.331 0.741

Dopaminergic - Serotoninergic -0.435 0.948 0.729 0.467

GABAergic - Serotoninergic -0.156 1.088 1.473 0.141

Glucocorticoid - Serotoninergic -0.777 1.996 0.864 0.388

Opioid - Serotoninergic -1.035 0.608 -0.511 0.610

Oxytocin - Serotoninergic -1.471 1.328 -0.1 0.920

GABAergic - Dopaminergic -0.542 0.962 0.548 0.584

Glucocorticoid - Dopaminergic -1.114 1.821 0.473 0.636

Opioid - Dopaminergic -1.469 0.529 -0.924 0.356

Oxytocin - Dopaminergic -1.807 1.152 -0.435 0.664

Glucocorticoid - GABAergic -1.283 1.570 0.198 0.843

Opioid - GABAergic -1.626 0.266 -1.411 0.159

Oxytocin - GABAergic -1.976 0.901 -0.734 0.463

Opioid - Glucocorticoid -2.355 0.708 -1.056 0.292

Oxytocin - Glucocorticoid -2.507 1.145 -0.733 0.464

Oxytocin - Opioid -1.401 1.686 0.181 0.856

Reinforcement Type Reward/Punisher - Reward/Null -0.702 1.002 0.345 0.730

Reward/Reward - Reward/Null -0.395 1.369 1.085 0.279

Reward/Reward - Reward/Punisher 0.089 0.585 2.673 0.008
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