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Abstract—Signal to interference plus noise ratio (SINR) is
a widely common performance metric used in the majority
of massive multiple-input, multiple-output (Ma-MIMO)
research. This metric requires prior knowledge of the user
channel vectors and the interference caused by inaccurate
channel state information (CSI). However, the interference
caused by inaccurate CSI can’t be calculated for real-
world scenarios. On the other hand, a comprehensive
performance indicator can be achieved by the Error Vector
Magnitude (EVM) metric in real-world scenarios. This
considers all impairments upon the transmitted symbol as
seen at the receiver. However, measuring the EVM values
for a subset of users requires each user to retransmit data
symbols. This paper presents an estimation method with
high accuracy by associating EVM to SINR values for Ma-
MIMO with zero-forcing (ZF) and Minimum Mean Square
Error (MMSE). Also introduced is a novel EVM prediction
method for subset of users taken from the original set of
simultaneous users in a single cell Ma-MIMO. This method
jointly relies on the channel correlation between users and
the EVM performance to predict the EVM values for a
subset of the available users without the need to retransmit
data symbols. This method considers the user channel
vector and the interference caused by inaccurate CSI,
which makes it suitable for Ma-MIMO algorithms, such as
user grouping and power control. Real-world experimental
data-sets with real-time results are carried out to validate
the EVM prediction method using software-defined radio
Ma-MIMO testbed.

Index Terms—Massive MIMO, 5G, EVM, SINR estimation

I. INTRODUCTION

Massive multiple-input, multiple-output (Ma-MIMO)

is a multi-user (MU) multiple-input, multiple-output

(MIMO) architecture with a large number of antennas

at the base station (BS) serving several users within

the same time and frequency resource [1]. The signif-

icant capacity enhancements observations and reporting

from various field trials have encouraged the industry

to consider Ma-MIMO as key 5G technology for sub-

6 GHz wireless access [2] [3]. Theory indicates that

the user channel vectors become pairwise orthogonal as

the number of BS antennas is increased, facilitating the

effective use of matched filtering (MF) [1]. The large

number of antennas at the BS affects the MIMO channel

by causing a very slow growth in the variance of mutual

information compared to its mean. It is shown in [4] that

the effects of hardware impairments, small scale fading

and noise could also be averaged out by the law of large

numbers.

For real system deployments the BS has a fixed number

of antennas. The level of spatial orthogonality achieved

when using a practical number of antennas in real chan-

nels may not be ideal. When the individual user channels

become correlated, zero-forcing (ZF) or Minimum Mean

Square Error (MMSE) become necessary for reliable

data transmission [3] [5]. These linear techniques can

suppress the interference between users, but this requires

perfect channel state information (CSI). Errors in CSI

can occur for many reasons such as local oscillator (LO)

phase noise, errors in reciprocity calibration and quan-

tization errors [6]. Although ZF and MMSE algorithms

can suppress interference caused by the channel between

users and the BS, they are unable to suppress interference

caused by inaccuracy in real-time CSI. This raises some

challenges that need to be addressed about the signal to

interference plus noise ratio (SINR) performance metric

used in the majority of Ma-MIMO work. Calculating

the SINR value in real-time is not feasible since the

interference value caused by inaccurate CSI is unknown.

A common measurement of signal quality used in 3
rd

Generation Partnership Project (3GPP) long-term evo-

lution (LTE) standards is the Error Vector Magnitude

(EVM) [6]. This is a comprehensive metric because it

considers all impairments upon the transmitted symbol

as seen at the receiver. Therefore, using the EVM metric

covers the interference caused by inaccurate CSI. The

work in [7] and [8] introduce a relationship between

EVM and signal to noise ratio (SNR) performance met-

rics. This relationship holds for a Single-Input Single-

Output (SISO) link or a single-user (SU)-MIMO system.

The interference between users in MU-MIMO and Ma-

MIMO effect the EVM performance but won’t effect

the SNR value. The work in [9] replaced the SNR by

the SINR to introduce a relationship between SINR and

EVM for Ma-MIMO with ZF decoder. This relationship

could be used in real-time to estimate the SINR value

from the EVM performance. Measuring the EVM value

after removing any user requires all the remaining users

to retransmit data symbols. Hence relying on the mea-

sured EVM to estimate the SINR for a subset of the

available users is not applicable. Many user grouping

and power control algorithms in Ma-MIMO are based on

selecting a subset of the available users and maximising

the SINR value. These algorithms can’t be applied in

real Ma-MIMO system just by relying on the EVM



performance.

This paper introduces an estimation method with high

accuracy associating EVM to SINR values for massive

MIMO with ZF and MMSE. It also introduce a novel

EVM prediction method for subset of users taken from

the original set of simultaneous users in a single cell

Ma-MIMO. An indoor channel, captured from the trial

in [3], and independent and identically distributed (IID)

Rayleigh channel were used to evaluate the proposed

methods in this paper. Two linear decoding techniques

are covered: ZF and MMSE. Real-world experimental

data-sets with real-time results are carried out to validate

the EVM prediction method using software-defined radio

massive MIMO testbed.

II. SYSTEM MODEL

A single-cell Ma-MIMO architecture is considered in

this work. The base station is equipped with a large

number of antennas (M) and serves a number of active

single-antenna users (K), where (M ≫ K). The system

operates in time division duplex (TDD) mode and uses

the same time-frequency resources for all users. The

estimated channel matrix between the users and the BS

is denoted by Ĥ ∈ CM×K. The actual channel matrix

used during the uplink data transmission is denoted by

H ∈ CM×K, which is given by

H = Ĥ + E (1)

where E ∈ CM×K is the difference between the esti-

mated channel and the actual channel used during the

uplink data transmission. In this paper the error in the

channel estimation between the user equipment (UE) and

the BS is modeled as a complex Gaussian distribution

∼ CN
(
0, σ2

e IM
)
, where IM is the M×M identity matrix

and σ2
e is the error variance [10]. Whilst this model

may not be so accurate in reality, it serves to illustrate

the potential effects of uplink (UL) CSI inaccuracies in

massive MIMO. The equalized UL signal x̂ ∈ CK can

be expressed as

x̂ = W (√ρulHx + n) (2)

where x represents the transmitted symbol vector from

all users in the same cell, normalized as E
{
|xk |2

}
= 1.

The corresponding UL transmit power is denoted by ρul .

Simple UL power control is assumed for the work in

this paper. The UL transmit power is adjusted so the

received SNR from all users is the same. The additive

noise vector is denoted by n. The noise variance from

the antennas at the BS is modeled as ∼ CN
(
0, σ2

n IM
)
,

where σ2
n is the noise variance. W ∈ CK×M is the linear

decoder matrix, formed using MMSE, ZF or MF. The

impact of inaccurate CSI is illustrated and validated in

[11] for UL and downlink (DL) data transmission. The

equalized signal for user k can be written as follows:

x̂k =
√
ρulk

K∑

i=1

(WE)k ,i xi
︸                     ︷︷                     ︸

Cumulative Error Amplification

+

Desired Signal + Interference

︷                       ︸︸                       ︷
√
ρulk

K∑

i=1

(
WĤ

)
k ,i

xi +zk

(3)

where zk is the amplified noise for user k. The "Cu-

mulative Error Amplification" part represents the inter-

ference introduced by CSI estimation inaccuracies. The

interference in the "Desired Signal + Interference" part

is caused by the inter-user spatial correlation which can

be mitigated by choosing the proper decoder such as ZF.

III. EVM PREDICTION & SINR ESTIMATION FOR

MASSIVE MIMO

In this section, two different scenarios were considered

to evaluate the accuracy of the SINR estimation and the

EVM prediction. An IID Rayleigh channel was used in

the first scenario with perfect and imperfect CSI, where

M=128 and K ∈ {2,12,22}. In the second scenario,

the real channel captured from the trial in [3] was

used. The trial took place at the University of Bristol.

A patch panel antenna array was setup in a 32×4 to

serve 22 user clients in line-of-sight (LOS) and placed

24.8m away with 2.5 wavelength spacing at a 3.51 GHz

carrier frequency between users. These scenarios were

run through an uplink Ma-MIMO simulator developed

at the University of Bristol. In addition to randomly

generated channels, new vectors can be transmitted

through channels previously captured by the physical

system for more extensive analysis. For imperfect CSI

in both scenarios, the error in the channel estimation

between the UEs and the BS is modeled as a complex

Gaussian distribution ∼ CN
(
0, σ2

e IM
)

[10] where an

error variance of 0.01 (1%) was used for the simulations

shown. Whilst this value may be higher or lower and

the model may not be so accurate in reality, it serves

to illustrate the potential effects of CSI inaccuracies in

Ma-MIMO.

A common measurement of signal quality used in 3GPP

LTE standards is the EVM [6]. This is a comprehensive

metric because it considers all impairments upon the

transmitted symbol as seen at the receiver. Higher mod-

ulation and coding scheme (MCS) are supported when

the EVM is small [12]. From [7] and [12], the EVM can

be found as

EVMRMS =

√√√√√√√√√√√√√√√

1

N

N∑

n=1

|Sr (n) − St (n)|2

1

N

N∑

n=1

|St (n)|2
(4)



Fig. 1. SINR estimation error using ZF (IID Rayleigh channels).

Fig. 2. SINR estimation error using MMSE (IID Rayleigh channels).

where N is the number of symbols the EVM was

measured over. Sr (n) is the nth normalized received

symbol and St (n) is the ideal value of the nth symbol.

The relation between the EVM and the SNR in a single

cell was addressed in many studies such as [7] and [8]

which was estimated as follows:

EVM2

RMS
≈ 1

SNR
(5)

The above approximation can be used in SISO and

SU-MIMO. While in MU-MIMO and Ma-MIMO, the

interference between users highly impacts the accuracy

of this approximation. In order to increase the estimation

accuracy, the SINR can be used instead of the SNR as

follows:

EVM2

RMS
≈ 1

SINR
(6)

The accuracy of the above equation can be seen in Fig. 1

and Fig. 2 for the 1st scenario and Fig. 3 and Fig. 4

for the 2nd scenario. The same approximation method

was also used in [9]. The UL SINR can be calculated as

follows [13]:

SINRk =

ρulk |wkhk |2

‖wk ‖2
σ2
n + ρulk

K∑

i,k

|wkhi |2
(7)

Fig. 3. SINR estimation error using ZF (Measured indoor channels).

Fig. 4. SINR estimation error using MMSE (Measured indoor chan-
nels).

The errors in the SINR estimation based on the EVM

value from (6) were plotted in Fig. 1 and Fig. 3 using

ZF while MMSE was used in Fig. 2 and Fig. 4. When

MMSE was used, the SINR estimation error is always

below 1 dB. By increasing the SNR above 5 dB, the error

in the SINR estimation falls to below 0.4 dB. When ZF

was used in both scenarios, the SINR estimation error is

always below 0.3 dB.

By selecting a subset of the available users, the UL

SINR can be calculated based on the CSI before the data

is transmitted from these users (assuming the channel

is coherent across the transmission duration); while the

EVM can only be measured after the data is transmitted

from these users then received and decoded at the BS

side. Hence relying on the measured EVM to predict

the MCS order for a subset of users is not applicable.

Predicting the highest achievable MCS order for each

user is essential for selecting the subset of the available

users in order to maximize the spectrum efficiency (SE)

and provide reliable data transmission. The following

two sub-sections III-A and III-B show how the EVM

value can be predicted.

A. EVM Prediction Based on SINR Calculation

The UL SINR in (7) is calculated based on perfect CSI.

Whilst with imperfect CSI, the equation can be modified



Fig. 5. EVM prediction error with perfect CSI using ZF (IID Rayleigh
channels).

Fig. 6. EVM prediction error with perfect CSI using MMSE (IID
Rayleigh channels).

as follows [14]:

SINRk =

ρulk

���wk ĥk

���
2

‖wk ‖2
σ2
n + ρulk

K∑

i=1

|wk ei |2 + ρulk
K∑

i,k

���wk ĥi

���
2

(8)

Since e can’t be obtained in real-system, the UL SINR

can be estimated by ignoring the error in CSI as follows:

�SINR
k̃
=

ρul
k̃

���wk̃
ĥ
k̃

���
2

w
k̃

2
σ2
n + ρulk̃

K̃∑

i,k̃

���wk̃
ĥi

���
2

(9)

where K̃ is the total number of users in the set that the

SINRk is being predicted for
(
K̃ ≤ K

)
. From (6), the

EVM value for user k can be predicted as follows:

��EVM
2

RMS
k̃
=

1

�SINR
k̃

(10)

The accuracy of the predicted EVM (
��EVM) square from

the above equation is high with perfect CSI. This can be

seen in Fig. 5 and Fig. 6 for the 1st scenario and Fig. 7

and Fig. 8 for the 2nd scenario. The green curves show

Fig. 7. EVM prediction error with perfect CSI using ZF (Measured
indoor channels).

Fig. 8. EVM prediction error with perfect CSI using MMSE (Measured
indoor channels).

the error between the predicted EVM from (10) before

data is transmitted and the actual EVM from (4) after

the data is received and decoded. When ZF or MMSE

is used, the EVM% prediction error is below 1% at 12

dB SNR (EVM% = EVMRMS × 100). By increasing

the SNR, the EVM% prediction error is reduced until
��EVM

k̃
= EVMk at 20 dB SNR.

The accuracy of the CSI in (9) and the number of

users can be seen to significantly impact the accuracy

of the predicted EVM in (10). This can be seen in

Fig. 9 and Fig. 10 for the 1st scenario and Fig. 11

and Fig. 12 for the 2nd scenario. When the SNR is

increased above 9 dB and K̃ = 2, the EVM% prediction

error is always below 1% with ZF and MMSE in both

scenarios. When increasing K̃ to 11
(
K̃ = K/2

)
, the

EVM% prediction error begins to increase at 20 dB

SNR in the 1st scenario and 18 dB SNR in the 2nd

scenario. When the SNR value is increased further, the

EVM% prediction error is seen to increase as well. The

reason for the increment in the EVM% prediction error

is the CSI accuracy. The estimated SINR in (9) doesn’t

consider the interference caused by inaccurate CSI as the

interference term embeds the CSI error. Thus, the CSI

accuracy has a greater impact on the EVM% prediction



Fig. 9. EVM prediction error with inaccurate CSI using ZF (IID
Rayleigh channels).

Fig. 10. EVM prediction error with inaccurate CSI using MMSE (IID
Rayleigh channels).

error when the number of users is increased. This can

be seen when K̃ is increased to 21
(
K̃ = K/2

)
. The CSI

accuracy plays a major role in the EVM prediction based

on the SINR calculation method.

B. EVM Prediction Based on SINR Calculation with

Error Estimation

The impact of inaccurate CSI is considered in this EVM

prediction method. The UL transmit power is adjusted

so the received SNR from all users is the same. The

EVM value in (4) covers the interference caused by

inaccurate CSI, whilst the estimated SINR in (9) does

not. So the error caused by inaccurate CSI can be

estimated by calculating the SINR value in (9) for user

k
(
when K̃ = K

)
and comparing it with the actual EVM

value in (4) as follows:

ζk =

�����EVM2

RMSk
− 1

�SINRk

����� (11)

The above error is mainly caused by the inaccurate CSI

from all the simultaneous users (the error between SINR

and EVM estimation is very small as shown earlier in

this section). Since the spatial correlation between users

has a significant impact on the interference value, the

estimated error in the EVM is divided between users

Fig. 11. EVM prediction error with inaccurate CSI using ZF (Mea-
sured indoor channels).

Fig. 12. EVM prediction error with inaccurate CSI using MMSE
(Measured indoor channels).

based on the spatial correlation ratio in this method. This

can be represented in Υ ∈ CK×K where Υk ,l is the partial

EVM2 error estimation value for user k which is caused

only by user l.

Υk ,l =




ζk

���ĥH

k ĥl

���
2

∑
K

i,k

���ĥH

k ĥi

���
2

if k , l

0 otherwise

(12)

After calculating all the partial EVM2 error estimation

values for all the users, the predicted EVM2 error value

for user k̃ (in the subset of K̃ users) can be written as

follows:

˜̃
ζ
k̃
=

K̃∑

i=1

Υk̃,i (13)

By taking into account the above EVM2 error prediction,

equation (10) can be modified as follows:

��EVM
2

RMS
k̃
=

1

�SINR k̃

+
˜̃
ζ
k̃

(14)

The accuracy of the
��EVM from the above equation is

evaluated with perfect CSI and inaccurate CSI. With

perfect CSI, this method provides the same accuracy



 

Antenna Array

Fig. 13. Measurement Environment.

as the one in III-A with ZF as shown in Fig. 5 and

Fig. 7. When MMSE is used, the proposed method in

this section provides higher accuracy compared to the

one in III-A. The reason behind this is the low accuracy

of the approximation in (6) when MMSE is used with

low SNR as shown in Fig. 6 and Fig. 8. Meanwhile, the

proposed method in this section has taken into account

the difference between the estimated EVM based on the

approximation in (6) and the actual EVM from (4).

The main advantage of the proposed EVM prediction

method in this section is its high accuracy even with

inaccurate CSI and large number of users. This can be

seen clearly in Fig. 9 and Fig. 10 for the 1st scenario

and Fig. 11 and Fig. 12 for the 2nd scenario. Unlike the

EVM prediction method proposed in III-A, this method

maintains the EVM% prediction error below 1% when

SNR is greater than 8 dB for both scenarios, with ZF

and MMSE, even when K̃ is increased from 2 to K − 1.

IV. REAL-TIME VALIDATION USING MASSIVE

MIMO TEST-BED

In this section, we present real-time results from the

massive MIMO testbed in [11]. The Communication

Systems & Networks (CSN) lab was used for LOS mea-

surements between the BS and 12 UEs from 6 universal

software radio peripheral (USRP)s. Measurements were

performed outside of university hours and the massive

MIMO test-bed was controlled remotely to ensure a

static environment was applied in each scenario. An

overview of the setup can be seen in Fig. 13. At

the BS side, 128 element array was used providing

half-wavelength spacing at 3.5 GHz. Three different

scenarios were considered in this experiment. UEs were

allocated in different places in each scenario, where ZF

and MMSE decoders were used. A floor plan of the

experiment is shown in Fig. 14 with the UE locations

for each scenario. The user identity (ID) of the first UE

BS

2 UEs (1st scenario)

2 UEs (2nd scenario)

2 UEs (3rd scenario)

 BS

Fig. 14. CSN Lab floor plan showing the BS and UEs locations.

on the left in Fig. 14 is one. By moving to the right,

the user ID is increased by one for each UE.

Fig. 15 shows the EVM values that were displayed in

real-time at the BS for all the 12 UEs in the 1
st scenario

using MMSE decoder. It also shows the users selected

by the BS to predict their EVM value after removing 3

users. These results were displayed at ≈ 40 dB SNR from

all UEs. The EVM% prediction in Fig. 15 shows the

EVM prediction results by using the proposed method

in this paper. While the EVM% with perfect CSI in

Fig. 15 shows the EVM prediction results assuming a

perfect CSI. Fig. 16 shows the EVM values that were

displayed in real-time at the BS after removing the 3

selected UEs in Fig. 15. By using the proposed EVM

prediction method in this paper, the EVM% prediction

error was always less than 1%. The highest EVM%

prediction error was 0.74% for user ID 1. While the

lowest EVM% prediction error was 0.09% for user ID 8.

The same procedures were repeated with ZF and highest

EVM% prediction error was 0.69%. When EVM% was

calculated based on perfect CSI, the highest EVM%

prediction error was 2.7% for user ID 7 and 8.

This experiment was repeated for the 2
nd and the

3
rd scenarios. By using the proposed EVM prediction

method in this paper, the EVM% prediction error was

always less than 1%.

V. CONCLUSION

In this paper, a novel EVM prediction method was

proposed for a single cell massive MIMO with ZF

and MMSE. This method jointly relies on the channel

correlation between users and the EVM performance.

The channel correlation provides the interference level

before equalizing the signal assuming perfect CSI. While

the EVM performance considers the interference from

the channel and the interference caused by the inaccurate

CSI after equalizing the signal. Channel matrices formed

from both IID Rayleigh samples and measured data from



Fig. 15. Captured real-time display for EVM% values from all 12 users, selected UEs for EVM% prediction (9 users), EVM% prediction values
for the sub-set of users (9 users) and EVM% with perfect CSI.

Fig. 16. Captured real-time display for EVM% values for the sub-set of users in Fig. 15 (9 users).

a real Ma-MIMO system were used to evaluate the esti-

mation accuracy. Besides, real-world experimental data-

sets with real-time results have been used to validated

the proposed EVM prediction method. Results from Ma-

MIMO simulator show that the EVM% prediction error

is less than 1% when SNR is above 8 dB. This was

experimentally validated at ≈ 40 dB SNR. Furthermore,

an estimation method with high accuracy was introduced

associating EVM to SINR values for Ma-MIMO with ZF

and MMSE.
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