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TOWARDS EFFICIENT SECURE MEMORY SYSTEMS WITH OBLIVIOUS

RAM

Rujia Wang, PhD

University of Pittsburgh, 2018

When multiple users and applications share the resources on cloud servers, information may

be leaked through hidden channels related to the memory. Encryption can help to protect

data privacy. However, the physical address on the memory bus cannot be encrypted if there

is no computation power on memory DIMM. The attacker may observe clear-text physical

address access frequency and infer sensitive information in the program. To completely

protect the system from address access pattern leakage, we need to use Oblivious RAM,

which obfuscates the physical address by remapping it after each access. However, the

ORAM access is still costly regarding bandwidth.

In this dissertation, I focus on discussing and designing efficient and scalable secure

memory systems with ORAM. Firstly, I studied the co-run interference between different

applications on the modern computer servers. We found out that how to allocate shared re-

sources between secure applications and other normal applications will determine the overall

system performance. I proposed Cooperative-ORAM protocol, which achieves the goal of

better resource allocation, utilization and same security guarantee as original ORAM design.

Our design delivers an average of 20% overall performance improvement over the baseline

Path ORAM design while providing a flexible resource tuning between different kinds of

applications.

In the next part, I address the problems when the application number further scales on

the same server. The co-run interference and memory traffic will be more intense when we

scale the number of applications on the server. Meanwhile, more applications mean that the
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demand for memory capacity is also increasing. I proposed the design of D-ORAM, which

delegate the ORAM based secure engine on Buffer-on-Board(BoB), which is in between

of the last level cache and main memory, to enable high-level privacy protection and low

execution interference on cloud servers. By pushing the ORAM engine off-chip, most of

the ORAM accesses will not need to be sent back to the processor side, which removes the

excessive data movement overhead. Our evaluation shows that D-ORAM improves normal

applications performance by 22.5% on average.
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1.0 INTRODUCTION

Cloud computing is becoming extremely popular these days. It offers the opportunity to

share powerful computing resources, while still provide different users with private computa-

tion and storage. By upgrading the hardware on the cloud infrastructures, such as adopting

secure processors, can enable secure computation on the cloud. In such setting, the user

sends encrypted data to the cloud, and the secure processor can decrypt data and do the

computation. After the computation, data need to re-encrypt and send back to the user.

Many secure processors and platform have been proposed, including XOM [44] and TPM

[35].

Based on the secure processor, we can assume that the computation is tamper-resistant.

However, in the communication between secure processor and memory, attackers can still

observe information leakage through side channels. Preventing information leakage on side

channel requires extra protection. We discuss two types potential information leakage, access

pattern leakage and timing channel leakage. Access pattern leakage refers to that an adver-

sary can observe the location program accessed to infer sensitive information. For example,

by tampering with the memory address bus, an adversary can extract important informa-

tion from the observed access patterns. For example, the files being accessed in a cloud file

system [84, 70], the disease/specialist information being looked up in a medical application

[11], and the queries being executed on a database [2], may all leak sensitive information.

To completely preventing access pattern leakage, we need to use Oblivious RAM [27, 28],

which randomly assigns a new address to the data block accessed, or shuffles the RAM

periodically. The concept of ORAM was first introduced by Goldreich and Ostrovsky [27, 28],

and more and more follow-up ORAM algorithms and optimizations have been proposed in

recent years[96, 61, 72, 59].
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The recent advance on ORAM proposed Path ORAM [72], a simple and practical ORAM

protocol that has greatly improved memory bandwidth. Although Path ORAM reduces

memory bandwidth usage from O(N) to O(log N), one memory access is still translated

to tens actual DRAM read and write operation. Ring ORAM was proposed to[59] further

reduce the theoretical memory bandwidth to constant, however, the algorithm introduces

more sophisticated control overhead.

To efficient utilize secure ORAM algorithms on the cloud, we need to consider how ORAM

operations are performed on existing DRAM systems. In this dissertation, I will analyze these

algorithms with emphasis on improving memory bandwidth sharing and utilization.

1.1 MAJOR CHALLENGES

Although the algorithms of ORAM has been improved over the years, most of the perfor-

mance and overhead analysis is still based on the assumption that all memory accesses are

equal. Moreover, the improvement on algorithm side may always introduce other control

complexity on the hardware side. Also, the architecture details of the memory system are

not taken into consideration. Therefore, the maximum throughput a system providing is not

fully utilized with default scheduling and allocation techniques.

Besides, most of the state-of-art ORAM optimization techniques only consider the single

secure application itself. The computing model assumes a single ORAM application is taking

over the entire computing resources. However, in most cases, especially with the evolution of

cloud computing and services, multiple applications or virtual machines share same physical

hardware. Therefore, the current computing model is too simple to meet the complex system.

A more reasonable computing model which contains both secure and normal applications

should be considered when the sharing becomes pervasive.

Moreover, the potential of using new memory architecture to accelerate ORAM appli-

cation is not well studied yet. Conventional DRAM architecture has limited computation

power on the memory side, which requires all memory accesses introduced by ORAM must

be processed inside of the processor. There are several potential ways to add computing logic

2



on or closer to memory side, which brings a tremendous opportunity to reduce ORAM over-

head. Meanwhile, the trade-offs and security guarantee modifications need to be discussed

for proposed new architecture accelerating the ORAM applications.

In this dissertation, I study the ORAM application memory behavior in micro-command

level, and characterize it as memory intensive but with high locality, which means that a spe-

cial memory scheduling for it need to be implemented in the memory controller. I study the

co-run scenario and interference with multiple applications and find out the wasted resources

with the new computing model. I also explore designs to remove the co-run interference en-

tirely without sacrificing architecture parallelism with new memory architecture.

1.2 RESEARCH OVERVIEW

This dissertation targets at building an efficient, secure memory system with ORAM. It

covers several works that are aiming at improving ORAM applications performance on a

shared server environment. More specifically, we studied on the micro-architectural level

of current memory systems and proposed memory scheduling techniques to enhance system

utilization rate and remove co-run interference. Our work does not change ORAM algorithm,

which guarantees the same security protection as an original system while improving the

performance of different types of applications. The outline of the dissertation is shown

below.

In Chapter 2, I introduce the background knowledge on memory security, types of poten-

tial attacks on memory side, memory information leakage, state of the art ORAM workflow,

and memory organizations. In addition, an overview of current secure memory systems is

given and discussed.

In Chapter 3, I introduce the first work, CP-ORAM, which was published in HPCA

2017. This work targets at investigating the cause of slow down on a shared server, when

consolidating different types of applications sharing the memory bandwidth. We have pro-

posed software and hardware co-design techniques that can allow applications improve the

memory bandwidth utilization rate.

3



In Chapter 4, I introduce the second work, D-ORAM, which further reduce the inter-

ference between applications by an ORAM delegator design. Our approaches enable low

execution interference when we continue to scale the number of applications run on the

server, which puts higher pressure on the secure memory system. Our flexible capacity

expansion technique can help the user to build a more scalable ORAM system with low

overhead.

In Chapter 5, I discuss selected related works in this field that are highly related to our

approaches. Chapter 6 includes several potential future projects and challenges that are

related to this dissertation. The final Chapter 7 concludes the dissertation and the main

contributions.
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2.0 BACKGROUND

2.1 MEMORY ARCHITECTURE, ORGANIZATION AND INTERFACE

DRAM is widely used as main memory in current computing systems. To increase the

parallelism of the DRAM system, it is organized as a hierarchy of channels, ranks, banks,

and arrays[36]. Each channel of the system is independently connected to the on-chip memory

controller. Inside of each channel, one or multiple DIMMs can provide the capacity for such

channel, and each physical DIMM contains one or more ranks. Ranks in the same channel

will share global bus and bandwidth connecting to the on-chip memory controller. Inside

of each rank, there are multiple banks (typically 8) that can provide internal parallel access

capability, which is also called bank-level parallelism. Bank is the smallest structure inside

of the DRAM that can be operated in parallel without hardware modification.

The DRAM arrays inside of each bank are arrays of DRAM cells, which is composed of a

transistor and a capacitor. The charge inside the capacitor indicates whether this cell store

a ’0’ or ’1’.

To operate the DRAM from high level, the memory access commands need to go through

the memory controller and being translated into standard operations via DRAM interface.

There are various standard DRAM interfaces available in current market. Among them, the

mainstream protocol standard defined by JEDEC is Double Data Rate(DDR), which transfer

data on a dual rate memory bus. The variations of DDR, such as DDR3[68], DDR4[3], differs

from the bus clock and data transfer rate.

To read or write a line from the DRAM, the memory controller needs to issue a read

or write request, and it will be decomposed into micro commands that DRAM can handle.

When a read request arrives at the memory controller, a precharge is issued if the row is not

5



previously read into the row buffer. Then an activation command is issued, after the timing

constraint is met, a read command will be sent, and data will be sent out via the data bus.

The JEDEC specify the minimum timing constraints between each command to the DRAM,

and also maximum parallel commands a DRAM module can operate[36].

Except for the direct attached conventional DRAM modules, High Bandwidth Mem-

ory(HBM), is one of the most promising stacked memory technology used for high-performance

graphics computing[69]. It has been adopted by JEDEC as a standard memory interface since

2013. The interface is similar to DDR, especially for the data and column/row command

and address bus. Other updates of the HBM interface include split command interface, the

single bank refresh, and RAS support.

Hybrid Memory Cube(HMC), which was released in 2013, is another type of stacked

DRAM with high memory bandwidth[13, 12]. It uses standard DRAM cells but has more

banks than the conventional DRAM modules. HMC combines TSVs and microbumps to

multiple DRAM dies, with a logic layer on the bottom as a separate die. The interface of

HMC is different from DDR, and it requires a packetize engine to send data and address

together via a serial link.

2.2 ATTACKS ON MEMORY SYSTEM

In this section, I summarize the major types of memory attacks that are popular on com-

modity computing systems. Various of attacks that can obtain unprivileged data have been

proposed and proved on the different levels of the memory system.

2.2.1 Cache attacks

Cache attacks, which are the most repeatable type of side-channel attacks, can leak sensitive

information through the timing difference between a cache hit and miss. Most of the cache

attacks focus on shared last level cache, as it can be utilized by multiple processes or multiple

VMs on the cloud server.
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A typical setting of cache attack requires two types of process sharing the cache set. The

victim process is executing algorithms that contain sensitive information such as encryption

key, and the spy process can alter the cache states and affect the execution of victim process.

Three representative cache attacks are described as below.

Evict and time. [55] The spy is able to evict any cache line shared with victim process.

Then, the spy process time the victim’s execution time before and after evicting a cache set.

If the time of victim function after the eviction is much longer than before, it means that

the victim process occupies the address of such evicted set.

Prime and Probe. [46] In this attack, the spy will first prime a cache set with a specific

memory address. Then it will wait for the victim activity on the same cache set. Later, the

spy access the original cache set with the memory address again and time the difference. If

the second spy access is slower than the first one, then it means the victim has used this

address and replaced the data block within the set.

Flush and reload. [89] The spy uses instruction such as cflush to flush a line in the

shared cache, which leads to a cache miss for both applications. After the victim’s execution,

the spy time the access for accessing the same shared address. If the second time is faster

than the first one, it means that the block is accessed and brought back by the victim.

2.2.2 Main memory attacks

Cold boot attack. The DRAMs in the system use charge to store data, therefore, they

are expected to lose all the content when the system is powered off. However, studies are

showing that data stored in the DRAM can still retain for a period [47, 31]. In such case,

DRAM cannot be seen as volatile anymore, and it will raise up potential security risks as

data are not completely destroyed as expected.

Cold boot attack[31, 66, 90] exploits the non-destructive data in DRAM when the system

is powered off or reboot. The researchers are able to [31] recover the disk encryption keys

from DDR and DDR2 DRAMs by cooling the DRAM and transferring the DIMMs to an

attackers machine. Till recent years, researchers are still able to construct cold boot attacks

using most recent DDR4 DRAM with memory scramblers[90].
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Replay attack. During data transmission, an attacker can intercept the data and

maliciously re-transmits it. This type of attack is called replay attack, and it can happen on

the network, as well as on the memory bus in the computing system.

Specifically, a memory block with a given address can be recorded by the attacker in the

middle, and been inserted with the same address at a later point in time. By doing so, the

current blocks value is replaced by an older one, but still a valid one. Such an attack may

be viewed as a temporal permutation of a memory block, for a specific memory location.

Protecting data from replay attack requires integrity tree and MACs check on every access

[64, 1].

2.3 MEMORY CHANNEL INFORMATION LEAKAGE

In this section, I will discuss two types of memory channel information leakage, which will

harm the privacy of data stored in the main memory. By tampering the memory bus, the

attacker can observe the access pattern, i.e., physical address location, and timing between

consecutive memory accesses. Even with data encryption, information can still be leaked

through the memory I/O.

2.3.1 Access pattern leakage

Access pattern means the physical address location a program may access during the exe-

cution. Figure 1 shows a branch that may leak the information. By looking at the memory

address accessed, the attacker can infer whether the sensitive variable key is 1 or not. Se-

quentially access to memory will tell the attacker that the key is not 1, while access to the

same location with address 0 will lead to the conclusion that key is 1.

Therefore, to prevent access pattern leakage, even if we always want data content in

address 0, we should access different location of the memory. This is the key idea of ORAM,

which after each access, the physical address need to be reshuffled to a different location.
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for i=1 to n
if(key[i] == 1)

sum+= mem[0]
else

sum+= mem[i*4]

Figure 1: A program that leaks through access pattern.

2.3.2 Timing side channel leakage

Timing side channel leakage refers to that an attacker can observe the access rate and infer

important parameters in a program. By observing the access rate on the memory bus, the

attacker may get knowledge of a sensitive variable’s value [24]. One representative example

is the RSA decryption algorithm, uses a private key to decrypt an encrypted message. It is

often implemented with the square and multiplies algorithm to perform fast exponentiation,

and the bits in the private key are checked one by one, and a modulo operation is performed

when the bit is 1.

A more straightforward example is shown in Figure 2. In this attack example, the

memory bus will be busy if the secret key bit is ”0”. Therefore, by observing the memory

traffic rate on the bus, the attacker can infer sensitive key information.

for i=1 to n
if(key[i] == 1)

sum++
else

sum+= mem[i*4]

Figure 2: A program that leaks through timing channel.
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To prevent the timing channel attack, the processor can issue memory request on a fixed

rate. If there is no memory request at an issue point, a dummy request will be issued in-

stead. In recent years, researchers have proposed several efficient scheduling to find optimum

memory request issue rate against timing channel attack[82, 83].

2.4 OBLIVIOUS RAM

Oblivious RAM (ORAM) [27, 28] is a cryptographic primitive for preventing information

leakage from memory access patterns. ORAM conceals the access pattern from an application

by continuously shuffling and re-encrypting the memory data after each access. An adversary,

while still being able to observe all the memory addresses transmitted on the bus, has a

negligible probability to extract or distinguish the real access pattern, which ensures that

the honest but curious server cannot learn any information through client or application

access pattern on the address bus.

The ORAM protocol ensures the translation from virtual address to physical address is

oblivious. Here, the virtual address refers to the user’s request address, indicating which data

block the application needs to read or write. The ORAM protocol translates each virtual

address into a sequence of actual physical addresses, and send it to the memory controller

to perform the bulk of read and write operations.

The basic implementation of ORAM requires reshuffle and re-encrypt all memory data

in a memory on every access. This means that whenever there is a read or a write to the

memory, the entire content needs to be read out, decrypt, and after the desired block is found,

all contents need to be re-encrypt and written back to the memory. Consider a memory space

of N , the reshuffle process imposes an O(N) overhead, makes it only stays in the theoretical

level to protect a system from access pattern, as nowadays, the main memory capacity is

in the range of GB. To further reduce the access overhead, various types of efficient ORAM

schemes have been proposed.
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2.4.1 Partition based ORAM

Partition based ORAM[71] divides one large ORAM space into multiple partitions so that

each time, only a portion of the memory needs to be reshuffled. Consider a memory space

which contains N data blocks, each partition contains
√
N blocks, and there are total P =

√
N partitions in total.

ORAM
partition
0

ORAM
partition
1

ORAM
partition
√N-1

ORAM
partition
√N

Stash
0

Stash
1

Stash
√N-1

Stash
√N

Partition Map

Data

√N blocks…

…

…

Server
storage

Local
storage

Figure 3: The Partition ORAM scheme.

On every memory access, the partition ORAM finds the partition that stores the block

first. Each ORAM partition can be operated with different ORAM schemes. To ensure the

obliviousness, the same block needs to be remapped into a different random partition. In

this way, the server is only able to observe which partition is being accessed but does not

learn any operations inside of the partition, such as which location stores the block.

On the client side, each partition needs to keep a stash, which temporarily buffers a block

that just been mapped to the partition. Partition map on the client side keeps track of where

a data block is mapped. After each partition read operation is done, the content inside of

the stash needs to be written back to the partition. To ensure the obliviousness, each stash

selects v blocks and write them back to the server side ORAM partitions. Dummy blocks

can be appended when there are not enough blocks in the stash.
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Figure 3 shows the overview of Partition ORAM architecture. On the worst case when

original ORAM is used, the access overhead is O(
√
N). The client-side storage overhead is

O(N), since the partition map needs to record the mapping for each block. This overhead

can be reduced by recursive construction.

2.4.2 Tree based ORAM

To further reduce the access overhead, a tree-based organization is proposed and adopted

in many ORAM constructions. The major similarity for all tree-based ORAM is that the

main memory on the server side is organized into a tree and each node of the tree contains

several data blocks. Compared to the partition ORAM, tree-based ORAM assigns a new

leaf on every access. Path ORAM and Ring ORAM are two representative ORAMs in this

category.

Path ORAM [72] was recently proposed as a practical ORAM implementation. In

Path ORAM, the unsafe memory is structured as a balanced binary tree, where each node

is referred to as a bucket that can hold Z blocks (a block is often of the size of a cache line,

i.e., 64B). The tree has L+1 levels — the root of tree is at level 0 while the leaves are at level

L. The total number of data blocks that an ORAM tree can hold is N=Z*(2L+1-1). For the

example in Figure 4, we have L=3, Z=4, and N=60.

The blocks in the Path ORAM tree can be either real data blocks or dummy blocks. The

dummy blocks are introduced as space filler, which may be replaced with real data blocks if

needed. An adversary cannot differentiate dummy blocks from real ones as encryption hides

the contents of the blocks.

The ORAM interface for Path ORAM consists of a stash, a position map, the address

logic and encryption/decryption logic. The stash is a small buffer that stores up to C data

blocks from the ORAM tree. The position map is a lookup table that maps program ad-

dresses to data blocks in the tree. A Path ORAM tree has 2L paths from the root to different

leaves. Given an LLC (last level cache) miss, the program address is first sent to the position

map to determine on which path the requested block is stored. Assuming the block is on

path l, the address logic determines the actual DRAM physical address using a static map-
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Figure 4: The Path ORAM scheme.
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ping table. Then the physical address is sent to DRAM controller and translated to DRAM

device commands, such as PRE, ACT, RD, and WR, to perform actual memory operations.

Accessing a memory data block starts with the search for the block in the stash. A stash

hit terminates the search and returns the block while a stash miss results in a Path ORAM

access to the unsafe memory. Assuming that the block is on path l, each ORAM access

consists of two phases — read phase and write phase.

• In the read phase, all the data blocks on path l are read and decrypted and stored in the

stash. For an LLC read miss, the requested block is then returned. For an LLC write

miss, the requested block gets updated in the stash. After the access, Path ORAM maps

the requested block to a new path l’ while all other fetched blocks are still associated

with their original paths.

• In the write phase, data blocks are encrypted with new keys and written to the buckets

along path l. These buckets are greedily filled in with blocks from the stash. Path

ORAM uses the order from the leaf to the root with blocks pushed as many as possible

down to the leaf.

The write phase may write back a block from another path if (i) this block is currently

in the stash; (ii) the target bucket is on the overlapped portion of the two paths; and

(iii) there is free space in the target bucket.

Path ORAM changes the block-to-path mapping after each access such that the memory

accesses from the user application, even if being very regular, are randomized, which effec-

tively prevents information leakage. Path ORAM further eliminates access temporal pattern

by issuing accesses at a fixed rate, even if there are no actual accesses [50, 21].

Ring ORAM [59] organizes the memory as a binary tree structure, similar to Path

ORAM. Each node in the binary tree is a bucket that can hold a small number of memory

blocks. Every block is mapped randomly in the tree leaf bucket, and the remapping infor-

mation is stored in position map. If a block a is mapped to leaf l by the position map, the

block a is stored either along the path from the root to leaf l, or in the stash.

The major difference of Ring ORAM from Path ORAM is the bucket organization. Each

bucket has Z+S slots and a small number of meta data. In these slots, up to Z slots of real
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blocks can be stored. At least of S dummy blocks must be stored in each bucket. Figure5

shows the different bucket organization of Ring ORAM. In this example, blocks in grey are

dummy blocks, and blocks in white are real blocks. There are additional metadata needed

such as count, valids, and ptrs. For every bucket in the tree, the physical positions of the

Z+S real and dummy blocks in each bucket are permuted randomly concerning all past and

future writes to that bucket.

count = 1
Ptrs =[0,3,5,6]

Encypted data,
address, leaf label

1
0
1
1
1
1
1
1

valids
0
1
2
3
4
5
6
7

Index

Bucket x

Figure 5: The Ring ORAM Bucket with Z=4, S=4

The detailed workflow of Ring ORAM is illustrated as follow. There are three basic

operations in Ring ORAM, Read Path, Evict Path, and Early Reshuffle.

• Read Path operation reads all bucket along one path to look for the block of interest.

The bucket that contains the block of interest will return it, while all other buckets along

this path will return a random dummy block. Different from Path ORAM read path

operation; now each bucket only needs to return one block instead of all blocks. The

blocks accessed in each bucket is marked invalid. Therefore, it will not be reaccessed in

later access. This lower the online read bandwidth to L+1 blocks.

• Evict Path operation reads and writes a path after every A read path operation. It will

read all Z real blocks in the path and write Z+S blocks to the buckets along the path.

The write phase will push blocks in stash back to a path. The sole purpose of an eviction

operation is to push blocks back to the binary tree from the stash.
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• Early Reshuffle is needed to maintain each bucket is properly randomly shuffled. Due to

randomness, each bucket can only be touched at most S times, because after S access to

a bucket, all dummy blocks will be invalidated. Early reshuffle operation will read and

write buckets that have been accessed S times and reset the access counter. In Figure 5,

the dummy block 1 is accessed and marked as invalid. The counter is set to 1 after this

access. When the counter is equal to S, which is 4 in the example, the bucket needs to

be reshuffled before it can be accessed again.
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3.0 COOPERATIVE PATH ORAM FOR EFFECTIVE MEMORY

BANDWIDTH SHARING

3.1 PROBLEM STATEMENT

With the fast adoption of cloud computing paradigm, it becomes increasingly important

to prevent information leakage from programs running on untrusted cloud servers. Secure

processor designs, e.g., XOM [44] and TPM [35], can encrypt and secure the program code,

the user data and its execution flow. However, sensitive information may still be extracted

through memory access sequences [96, 61]. Studies showed that completely stopping infor-

mation leakage from memory access patterns requires ORAM (Oblivious RAM) [27, 28], a

cryptographic primitive that often incurs large performance overhead. The recent advance

on ORAM proposed Path ORAM [72], a simple and practical ORAM protocol that has

greatly improved asymptotic efficiency.

Cloud service providers often consolidate multiple applications on one physical server to

reduce power and energy consumption, and to maximize system resource utilization. This is

also preferred when executing a secure application that adopts Path ORAM — Path ORAM

converts each memory access from the secure application to tens to hundreds of memory

accesses, which would leave most system resources idle if the secure application monopolizes

the server. Therefore, it is natural to consolidate one secure application with one or multiple

non-secure applications on one physical server. Unfortunately, due to the extreme memory

access intensity in Path ORAM, it is challenging to effectively schedule memory requests from

both types of applications. In particular, Path ORAM synchronously distributes its memory

accesses across all memory channels, while non-secure applications have much lower access

intensity and memory requests exhibit significant imbalance at the channel level. Adopting
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traditional memory scheduling schemes does not consider the biased memory traffic of ORAM

applications and often wastes large memory bandwidth, which introduces large performance

degradation to both types of application.

3.2 THREAT MODEL

core

cache

MC

Data Bus

Address Bus

plain text encrypted data

TCB

Information Lakage

Figure 6: The threat model.

The threat model adopted in this work follows that in previous work [23, 61, 95]. With

the processor being the only hardware component within the trusted computing base (TCB)

[35], an adversary can access the data stored in main memory and the data communicated

on address and data buses. Such access includes potential physical access to the hardware

and may be enhanced by specially designed devices and tools, e.g., bus traffic analyzer [76].

To ensure security, the data in the main memory are encrypted with architectural assisted

security enhancements [73, 86], which not only ensure data secrecy and integrity but also

minimize performance overhead to the system. However, as shown in Figure 6, accessing

user data needs to have plain text physical addresses sent to the memory modules, making

encryption alone designs insufficient. For example, by tampering with the memory address

bus, an adversary can extract important information from the observed access patterns, e.g.,

the files being accessed in a cloud file system [84, 70], the disease/specialist information
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being looked up in a medical application [11], and the queries being executed on a database

[2]. Even when both code and data are unknown to the adversary, previous work has

demonstrated a control flow graph (CFG) fingerprinting technique to identify known pieces

of code solely based on the address trace [96].

The security focus in this work is on preventing information leakage from address access

patterns.

3.3 BASELINE SERVER SETTINGS

With fast technology scaling, modern computer servers usually have abundant system re-

sources. For example, the server in Figure 7 adopts a chip-multiprocessor that supports

the concurrent execution of multiple threads, and four memory channels each of which can

transmit data at 12.8GB/s (DDR3-1600). Cloud service providers often consolidate mul-

tiple applications on one physical server to reduce power and energy consumption, and to

maximize system resource utilization.

Core
0

Core
1

$ $

ORAM Controller

DRAM Memory Controller

DRAM DRAM DRAM DRAM

Secure
App

Nonsecure
App

Figure 7: The baseline server setting.

In this work, the baseline secure processor uses two cores — one is dedicated to execute

secure application that demands data encryption to protect data secrecy and Path ORAM
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to prevent information leakage from access patterns; the other is to execute one non-secure

application without data encryption and Path ORAM. These two types of applications are

referred to as S-App and NS-App, respectively. We evaluate the setting with more cores

running more than one S-App and NS-App applications in the experimental section. To

simplify discussion, we assume that each core has private cache. In the case if a shared last

level cache is used, it demands additional security enhancements to prevent potential timing

channels and side channels between two applications [82, 20, 46, 45].

The S-App and NS-App applications share the main memory through address partition

— for simplicity and without considering the space occupied by the OS, each application

may take half of the space of each bank from each channel. There is no physical address

overlap between two applications. As a comparison, an alternative design is to share the

memory through channel partition — S-App uses a subset of channels while NS-App uses

the rest. As we will show in the next section, channel partition is sub-optimal because the

channels allocated to NS-App tend to be under-utilized while those allocated to S-App tend

to be overloaded.

In this work, we assume that the ORAM memory space is 4GB and each bucket stores

4 blocks such that the tree has 24 levels (L=23). We adopt sub-tree layout to spread ORAM

memory accesses across all four memory channels. We also adopt tree top caching that

cache top 10 levels in a 256KB cache (4 ∗ 64 ∗ (210− 1) ≈ 256KB), which eliminates around

42% accesses to the memory. We observe negligible path overlap beyond top 10 levels from

consecutive path accesses [95].

3.4 MOTIVATION AND DEGRADATION ANALYSIS

In this section, we first motivate the CP-ORAM design and then develop three schemes to

improve memory bandwidth utilization in server settings.
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3.4.1 Motivation

The Path ORAM is an extremely memory intensive protocol — [61] showed that a secure

application that adopts Path ORAM (i.e., S-App) consumes almost all of the system peak

memory bandwidth and introduces 10-100× slowdown over the native execution without

adopting ORAM. Consequently, the processor shall be left mostly idle if S-App monopolizes

the server. Non-secure applications (i.e., NS-Apps), even those that are traditionally catego-

rized as memory intensive, have much low memory access intensity. Therefore, it is natural

to consolidate S-App and NS-App applications on one server to improve resource utilization

and save energy consumption.
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Figure 8: The S-App and NS-App co-run leads to large performance degradation.

We study the performance degradation when two applications, one S-App and one NS-

App, co-run on one server. Figure 8 reports the average (Gmean), worst (Worst), and best

(Best) results, which are normalized to the solo execution of each application. Gmean aver-

ages the results of a suite of workloads. The worst (and best) case considers the summed

degradation percentages in different co-runs. The system settings are listed in Section 3.6.

From the figure, we have two observations.

• In Best, both types of applications have little performance degradation. This indicates

that consolidation has the potential to significantly improve resource utilization in the

server setting.
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• In Worst, both types of applications suffers from large degradation. NS-App suffers more

percentage degradation than S-App does, i.e., 80% vs 20% degradation when comparing

to the solo run.

While S-App has smaller percentage degradation, the memory bandwidth utilization is

greatly reduced. Given that S-App often utilizes almost full peak memory bandwidth

[61] and its performance largely depends on the memory performance in solo execu-

tion, a 20% degradation in Worst indicates that the system allocates 10.2GB/s (=20%×

4×12.8GB/s) memory bandwidth to the co-run NS-App. However, the MPKI (memory

accesses per kilo instructions) of the NS-App in Worst is 24, i.e., 0.2GB/s bandwidth

demand at most, which is much lower than the actually allocated amount.

To exploit the consolidation potential while mitigating the performance degradation, we

analyze the co-run in details and identify the root causes of the degradation to each type of

the applications.

Mem Ch-0

from same bucket

Mem Ch-1

Mem Ch-2

Mem Ch-3

read phase write phase

one ORAM access Time

(a) Path ORAM has synchronous progress across channels

REQ from NS-App

(b) Requests from NS-App waste memory bandwidth

Ch-0

Ch-1

Ch-2

Ch-3

phase barrier wasted bandwidth

Figure 9: S-App has phase barriers and wastes memory bandwidth if out of synchronization.

3.4.1.1 Root Cause of S-App Degradation The S-App, to maximize channel utiliza-

tion, maps the blocks in each bucket to different channels [61]. This leads to the synchronous

progress across different channels, as shown in Figure 9(a). [61] showed that the memory

utilization is close to peak bandwidth with synchronized progress. In Path ORAM, each

ORAM access includes a read phase and a write phase. For security reasons, the write phase

cannot start before the read phase completes. Also, a new ORAM access cannot start be-
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fore the preceding one completes. Therefore, the end of each phase effectively becomes the

synchronization barrier for all channels. This is referred to as phase barrier in this work.

In Figure 9(b), if one channel is slowed down due to scheduling the memory requests from

NS-App, other channels need to wait even if they finish early. This leads to large memory

bandwidth waste and significantly slows down S-App because the performance of the latter

depends mainly on memory performance.

3.4.1.2 Root Cause of NS-App Degradation As discussed, the memory access inten-

sity of NS-App is much lower than that of S-App. Given that the performance degradation

of NS-App comes mainly from memory bandwidth competition, we next study the root

cause by studying the memory scheduling details. Path ORAM adopts open page policy

for better performance [61] — servicing a read request normally needs a PRE command to

close the current row in the target bank, a ACT command to activate the row to be accessed,

and a RD command to fetch the requested data. The baseline adopts FR-FCFS (first-ready

first-come-first-serve) [53, 63, 62] with the goal to maximize memory throughput.

Table 1 lists a subset of timing constraints and their default values in the discussion.

Table 1: Selective DRAM Internal Timing Constraint(at 800MHz)

Timing Cycles Description

tRP 11
Row Precharge. The time interval that it takes for a DRAM array
to be precharged for another row access.

tRCD 11
Row to Column command Delay. The time interval between row
access and data ready at sense amplifiers.

tRRD 5
Row activation to Row activation Delay. The minimum time interval
between two row activation commands to the same DRAM device.
Limits peak current profile.

tFAW 32
Four (row) bank Activation Window. A rolling time-frame in which a
maximum of four bank activations can be engaged.

tCAS 11
Column Access Strobe latency.The time interval between column
access command and the start of data return by the device.

tBurst 4
Data burst duration. The time period that data burst occupies on
the data bus.
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Figure 10 presents the memory bus timing for a co-run scenario with two applications. In

the example, we assume two read requests R1 and R2 are from different types of applications,

arrive at the memory controller at the same time, and demand data from different banks.

Cmd Bus

Data Bus

PRE1 PRE2 ACT1 ACT2 RD1 RD2

Data1 Data1 Data1 Data1

tRP tRCD

tRRD

tCAS

tBurst

Cmd Bus

Data Bus

PRE1 ACT1 RD1

Data2 Data2 Data2 Data1 Data1 Data1

tRP tRCD tCAS

tBurst

RD2

Data2

RD1

(b) A row buffer hit from S-App (i.e., RD2) defeats NS-App priority

(a) 1 cycle delay of PRE2 results in (tRRD+tBurst-1) cycle delay of RD2

tRRD

RD2

Figure 10: The co-run timing examples of two applications (CMDi is the command for Ri (i=1

or 2)).

Since there is no constraint restricting precharge commands, the memory controller sends

out PRE1 and PRE2 consecutively. PRE1 is sent first because it has higher priority (which will

be elaborated later in this section). However, due to timing constraints in JEDEC standard,

ACT1 needs to be tRP after PRE1 while RD1 needs to be tRCD after ACT1. The interference

enlarges due to additional constraints, e.g., ACT2 has to be tRRD after ACT1 and no more

four ACT can be issued within tFAW time window; RD2 needs to at least tBurst after RD1 to

avoid conflict on data bus. In summary, a later scheduled request tends to suffer from larger

delay.

Since the baseline does not assign priority to either application, S-App and NS-App

compete for the memory bandwidth based on their request arrival time. However, S-App

translates each user memory access to tens of physical memory accesses, which gain more

24



opportunities to grab the system resources once the latter become idle. An NS-App request,

when arriving at the memory controller, often gets delayed because the requested resources,

e.g., the memory channel, are busy.

To mitigate the extremely biased request arrival in S-App and NS-App co-run, we have

to assign high priority to NS-App to ensure that it gains sufficient opportunities to have its

requests timely processed.

Scheduling NS-App with high priority. We reevaluate the experiment for Figure
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Figure 11: The co-run interference when NS-App has high scheduling priority.

8 with the scheduling priority assigned to NS-App. The results are summarized in Figure

11. From the figure, NS-App still suffers from 15% performance degradation on average. In

addition, S-App shows much bigger degradation, rising to 21% on average and 46% in the

worst case.

We analyze the memory scheduling details in the new experiment. We identify that it

is the high row buffer hits in Path ORAM[61] that defeat simple priority allocation during

scheduling.

Figure 10(b) illustrates the command sequence when servicing an NS-App request. As-

suming R1 is from NS-App and is a row buffer miss, the memory controller sends out PRE,

ACT, and RD to service the request. In the example, a request R2 (from S-App) arrives after

R1. However, R2, when it is a row hit, which is frequent for S-App, can send out its RD2
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command before RD1, without PRE and ACT, and leads to extra delay to NS-App. In this

case, NS-App still suffers from large performance degradation. From the discussions above,

it is clear that while it has great potential to consolidate S-App and NS-App on one physical

server, simple scheduling schemes, either with or without priority, tend to introduce large

performance degradation and memory bandwidth waste.

3.5 THE CP-ORAM DESIGN DETAILS

3.5.1 P-Path: enforce scheduling priority through resource pre-allocation

Cmd Bus

Data Bus

PRE1 RD1

Data1 Data1 Data1 Data1

tBurst-1

RD2

Data2 Data2 Data2Data2

ACT1

Pre-allocation

RD from S-App are restricted from this duration

Figure 12: P-Path pre-allocates bus slots to enforce priority allocation for NS-App.

To address the large performance loss in the co-run, we propose CP-ORAM that consists

of three cooperative memory scheduling schemes — P-Path, R-Path, and W-Path. We

elaborate P-Path in this section and R-Path and W-Path in following sections.

P-Path is designed to assign scheduling priority to NS-App and enforce this priority

through resource pre-allocation. The simple allocation in Section 3.4.1, while prioritizing

PRE, cannot prevent ACT and RD commands from being delayed by S-App requests. The

P-Path scheme addresses this issue by resource pre-allocation. That is, when the memory

controller sends out PRE for an NS-App read request, it also allocates address, data, and

command bus slots for its coming ACT and RD commands. S-App requests, even if they

are row buffer hits, cannot be scheduled if otherwise leading to resource conflict. Figure 12

illustrates that an S-App RD for a row buffer hit cannot be scheduled within (tBurst-1) cycles

from the pre-allocated RD slot.
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While pre-allocation helps to enforce priority allocation for NS-App, it may degrade S-

App performance significantly. Therefore, as shown in Algorithm 1, P-Path proportionally

pre-allocates channel and bus resources based on a given threshold th (percentage value)

and pre-allocates for every th×10 out of 10 row buffer miss requests from NS-App.

The threshold th is statically determined in this work. We leave it as our future work to

develop dynamic threshold adjustment for better trade-off among resource utilization and

performance improvement. The algorithm gives NS-App higher scheduling priority, i.e., if

an S-App request/device command and an NS-App request/device command are ready at

the same time, the priority is always given to NS-App. The algorithm is enabled only for

row buffer misses from NS-App, the requests with row buffer hits do not need resource

pre-allocation.

3.5.2 R-Path: maximize memory bandwidth utilization using next read

From the analysis in Section 3.4.1, the performance degradation of S-App comes mainly from

the phase barriers. That is, the progress of multiple memory channels may lose synchro-

nization due to co-run interference; if the slowest channel has not reached its phase barrier,

other faster channels have to wait, leading to significant waste of memory bandwidth. In

this section, we propose R-Path to maximize memory bandwidth utilization using the read

operations from next ORAM access.

R-Path is designed to schedule memory operations across phase barrier to improve band-

width utilization. Figure 13 elaborates what operations may be promoted without tampering

with the correctness as well as the security of Path ORAM. In the example, we assume two

consecutive Path ORAM accesses need to access blocks b1 and b2 on paths 11 and l2,

respectively. Along path l1, there might exist a block b3 from path l3. Paths l1 and l3

have significant overlap while paths l1 and l2 only overlap at a level close to the root. For

simplicity, we assume b1 and b2 are mapped to paths lx and ly, respectively, after the

accesses and these two paths have no overlap with l1 and l3 other than the root bucket

(so that they are ignored from discussion). Since Path ORAM tries to push blocks as deep

as possible in the write phase, b3 may replace b1’s place. Given that we do not know if b3

27



Algorithm 1: P-Path Scheduling Algorithm

Input: PreAllocation Threshold th (percentage value)

Output: Issue proper command to DRAM

Parameter: cycle: program cycle;

cnt: row buffer misses from NS-App

1 while not end of program do

2 if can issue memory commands at cycle then

3 check channel command queue;

4 if has commands from NS-App then

5 issue the command;

6 if the command is PRE, i.e., being a row buffer miss then

7 cnt = cnt++ % 10 ;

8 if cnt < th×10 then

9 pre-allocate address, command, and data bus slots for ACT and RD/WR;

10 end

11 end

12 else

13 issue S-App command;

14 end

15 else

16 continue;

17 end

18 cycle++;

19 end
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Figure 13: R-Path safely promotes reads from the next ORAM access.

exists until we read all blocks from l1, the write phase is tightly data dependent on the read

phase. Therefore, we cannot schedule operations from the write phase to the read phase in

the same ORAM access.

Interestingly, the blocks read during the read phase of the second ORAM access, i.e.,

reading path l2, do not have data dependence. In this example, path l1 and l2 overlap at a

level that is close to the root bucket. Since the top 10 levels of the tree are cached, accessing

the overlapped buckets does not lead to memory accesses. Thus, it is safe to schedule

read operations from the second ORAM access to improve the bandwidth utilization. This

effectively prefetches data blocks from the read phase of the next ORAM access.

To ensure the correctness of Path ORAM, R-Path works as follows.

• R-Path only prefetches data blocks from the read phase of its immediate next ORAM

access and stores the prefetched blocks in a small read buffer. The prefetched blocks

cannot be sent to stash directly as, otherwise, some blocks may be selected for write

back to path l1 in write phase. The latter is infeasible when there is no prefetch.

In this work, each ORAM path stores 14 (=24-10) levels of the tree in memory. Therefore,
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the prefetch buffer needs to hold at most 56 blocks. The prefetched data are copied to

the stash after Path ORAM has determined what to write for the write phase of the

current access.

• R-Path creates a dummy access if there is no ORAM access in the queue, similar to that

in [50, 21].

If the 2nd ORAM access overlaps with the 1st one in memory, i.e., at a level ≥ 10, we

enable the fork path optimization [95] and disable R-Path. Our experimental results

show that the probability of the former is very low due to its low probability after large

tree top caching.

Saved 
Time

Ch0

Ch1

Ch3

Ch2

1st read phase 1st write phase 2nd read phase

RDs of 1st read phase

WRs of 1st read phase

RDs of 2nd read phase

Requests from NS-App

Figure 14: R-Path improves memory bandwidth utilization and speeds up program execu-

tion.

As shown in Figure 14, R-Path promotes read operations from the 2nd ORAM read to the

1st read or write phases, which improves the memory bandwidth utilization of the 1st read

and write phases, and shortens the read length of the 2nd ORAM access.

3.5.3 W-Path: mitigating write traffic on busy channels

R-Path shortens the length of read phase by promoting some of its operations to preceding

phases. It cannot reduce the length of write phase because write operations cannot be
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promoted across the read/write phase barrier in one ORAM access. In this section, we

elaborate the W-Path design to mitigate the co-run interference in the write phase of Path

ORAM access.

Intuitively, W-Path schedules write operations across phase barriers by deferring them

to future write phases. In this way, write operations can also be moved across the phase

barriers, but not the read/write phase barrier in the same access. Figure 15 illustrates how

it works.

Saved 
Time

Ch0

Ch1

Ch3

Ch2

future write phase

write buffer

1st write phase (w/o W-Path)

1st write phase (w/ W-Path)

Figure 15: W-Path uses a write buffer to schedule write operations across phase barriers.

• W-Path is triggered when one or multiple memory channels finish their write operations

for the current ORAM access. W-Path searches for the data blocks in the write buffer

that need to be written to the fast channels and starts to expunge them. Their slots in

the write buffer are then identified as empty entries.

• Given that one ORAM access writes back 14 blocks to each channel. We integrate a

56-block write buffer. The write buffer reserves 8 entries for each channel and let all

channels compete for the rest of the entries.

• W-Path aggressively uses the write buffer to shorten the length of the write phase. If

a channel has data blocks in its ready queue, and the write buffer has empty reserved
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entries for this channel, W-Path moves one block from the corresponding channel queue

to the write buffer. If the reserved entries in the write buffer for the channel are full,

W-Path moves blocks only if doing so helps to reduce the length of the write phase.

• The write buffer is looked up during the read phase such that a hit in the write buffer

gets the data from the write buffer directly.

As a comparison to R-Path that can move read operations across phase barriers to the

read and write phases of the preceding ORAM access, W-Path temporarily buffers the write

operations in the write buffer such that they are defer to future ORAM accesses.

3.5.4 Architectural enhancements

Figure 16 presents an overview of CP-ORAM design. The shaded boxes indicates the com-

ponents that are either added or enhanced. We enhance the DRAM controller to enable

fine-grained priority enforcement. The read buffer (for R-Path) and write buffer (for W-

Path) are added into the ORAM controller. In this work, each buffer can store up to 56

blocks, i.e., 4KB each. In the read phase, for the current ORAM access, the write buffer is

looked up with matched blocks sent to stash. At the end of write phase, i.e., the beginning

of the next read phase, the blocks in read buffer are sent to stash. Both operations are

in parallel with the accessing of remaining blocks (of the current ORAM access) from the

memory. In the write phase, the write buffer is visited when a block need to be swapped out.

Since the write buffer is very small (14 entries per channel), finding a block to be written

out is relatively fast, and imposes negligible accessing overhead.

The secure processor can switch between secure mode and non-secure mode. The former

demands encryption and Path ORAM while the latter has no security enforcement. We

assume there is no address space overlap between S-App and NS-App, and one bit is com-

municated to the memory controller to differentiate S-App memory accesses from NS-App

ones.
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Figure 16: Architectural enhancements for CP-ORAM.

3.5.5 Security analysis

ORAM prevents information leakage with address randomization – it assigns a new physical

address to each program address accessed. Our cooperative designs do not modify this

strategy and thus do not compromise the security guarantee of Path ORAM.

The first scheme, P-Path, modifies the scheduling priority based on a simple counter. The

resource pre-allocation policy only affects the completion time but dose not reveal additional

pattern information. The second scheme, R-Path, prefetches data blocks from the following

ORAM access. R-Path is enabled only if the paths of two accesses do not overlap at a

level in memory. Therefore, the data blocks from the 2nd path need to be read anyway. The

exception is that the second ORAM access becomes ready after the read phase the preceding

one — in this case, a dummy access shall be inserted, which delays the second ORAM access

by one ORAM access length. As discussed in [95], this does not degrade security. Due to

large top cache we use, we did not observe the merging opportunity as in [95]. The W-

Path does not compromise security guarantee either. W-Path alters the timing of the write

operations, but not the contents. The encrypted data blocks are eventually written back to

the memory, the same as the baseline.

In addition, our proposed schemes do not increase stash overflow probability. The read

buffer and write buffer ensure the stash remains the same as the baseline.
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3.6 EXPERIMENTAL METHODOLOGY

Table 2: Baseline System Configuration

Parameter Value

Processor Dual-core, 3.2GHz

Processor ROB size 128

Processor retire width 4

Processor fetch width 4

Last Level Cache 512 KB per core

Memory bus speed 800MHz

Memory channels 4

Ranks per channel 1

Banks per rank 8

Rows per bank 16384

Columns (cache lines)/row 128

Memory Space 4GB + 4GB

To evaluate the effectiveness of CP-ORAM, we used USIMM, a cycle accurate memory

system simulator [8], to simulate the proposed schemes and compare them to the state-of-

the-art. Table 2 summarizes the baseline server configuration on which we co-ran two ap-

plications — one S-App and one NS-App. The DRAM memory follows JEDEC DDR3-1600

specification. We adopted the default values in the specification that are strictly enforced in

USIMM.

In the baseline setting, each application has its own 4GB memory space. The ad-

dress mapping follows the order of “row:bank:column:rank:channel:offset” such that Path

ORAM maximizes its row buffer hit and both applications fully utilize all channels, as shown

in [61].

We chose a set of memory intensive benchmarks from PARSEC suite, commercial, SPEC

and BioBench, as they were used in MSC [40]. Each benchmark is simulated for 5 billion
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instructions, and 500 million representative instructions were selected with a methodology

similar to Simpoint [40]. We constructed the workloads for evaluation as follows: each

workload consists of one S-App and one NS-App that are of the same program: S-App version

adopts encryption and Path ORAM protection while NS-App version does not. Their visible

physical address sequences are completely different. We also show other combinations in the

detailed result analysis. Table 3 describes the benchmark programs. The MPKI (memory

access per kilo instructions) is listed in parenthesis. We use the first two letters of each

program to indicate the workload.

Table 3: Simulated Benchmark Programs

Suite Workloads

PARSEC black (4.2), face (26.8), ferret

(8.0), fluid (17.5), freq (4.5),

stream (12.9), swapt (10.9)

COMM. comm1 (7.3), comm2 (12.6),

comm3 (4.2), comm4 (3.7),

comm5 (4.5)

SPEC leslie (23.1), libq (12.0)

BIOBENCH mummer (24.0), tigr (6.7)

3.7 RESULTS

In the experiments, we evaluated the following schemes:

• Baseline. This is the baseline for comparison purpose. We collected S-App and NS-App

performance, respectively, in their solo execution mode.

• FR-FCFS. This is the co-run case that adopts FR-FCFS memory scheduling algorithm.

Each workload consists of S-App version and NS-App version of the same program.
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• P-Path. This is the co-run case that adopts P-Path scheduling enhancement. The

threshold th used in P-Path is set to 50% by default.

• P+R-Path. This the co-run case that adopts P-Path and R-Path scheduling enhance-

ments.

• P+R+W-Path. It adopts all three cooperative Path-ORAM scheduling enhancement, i.e.,

P-Path, R-Path and W-Path.

3.7.1 Performance analysis
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Figure 17: The normalized execution time for S-App.
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Figure 18: The normalized execution time for NS-App.

We first compared the effectiveness of different CP-ORAM schemes with the results

summarized in Figure 17 and Figure 18 for S-App and NS-App, respectively. The results
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are normalized to the solo execution Baseline. From the figure, we found that FR-FCFS

leads to large performance degradation to both S-App and NS-App — on average, 8.3% and

35.5%, as shown in the motivation section. S-App and NS-App may suffer up to 20% and

84% degradation, respectively.

P-Path, while reducing the degradation from 35.5% to 15% for NS-App, significantly

increases the degradation for S-App, i.e., from 8.3% to 35.2% on average. Our R-Path and

W-Path schemes target at improving S-App performance. For S-App, P+R-Path reduces

the performance loss to 26.3% on average while P+R+W-Path further reduces it to 15.4%

on average. That is, CP-ORAM achieves around 20% performance improvement over the

FR-FCFS scheduling for S-App.

In general, the R-Path and W-Path schemes have little impact on NS-App. When R-Path

promotes read operations from the next ORAM access, the memory bandwidth utilization is

improved, which slightly hurts NS-App. We observed around 1% extra degradation. When

W-Path defers write operations to future ORAM accesses and thus move to write buffers,

the channel is less busier, which helps NS-App. We observed an average of 2.4% reduction.

In summary, CP-ORAM reduces the the performance degradation from 15% to 12.6% for

NS-App on average.

3.7.2 P-Path pre-allocation threshold

By default, P-Path pre-allocates resources for half of NS-App row buffer misses, i.e., th=50%.

We studied the performance impact with different threshold values and summarized the

results in Figure 19. The x-axis is the pre-allocation threshold. In general, larger threshold

values results in larger performance degradation to S-App and smaller degradation to NS-

App.

Also from the figure, R-Path and W-Path improve S-App performance significantly, but

has little impact on NS-App. This is because improved bandwidth utilization benefits S-

App the most. The maximal gain (sum of percentage improvements from both S-App and

NS-App) occurs at th=80%, in which the workload achieves 21.6% sum in total.
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Figure 19: The effectiveness of CP-ORAM with different threshold values.
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3.7.3 Memory access latency
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Figure 20: Comparing memory access latency under different schemes.

Figure 20 reports the average read and write latencies for S-App and NS-App under

different schemes. All results are normalized to the solo-run. From the figure, R-Path

shows larger reduction on read latency than that on write latency. This is because R-Path

prefetches read operations and thus shortens the read phase in general. For S-App, W-Path

shows more reduction on both read and write latencies over R-Path. This is because W-Path

shortens the current write phase such that pending requests are serviced early.

For NS-App, both R-App and W-App have little impact — the difference across three

schemes is less than 3% for read latency and 1% for write latency.

3.7.4 Buffer usage

We then analyzed the effectiveness of the read buffer and the write buffer. Figure 21 reports

the average number of blocks prefetched per channel. From the figure, R-Path prefetches

more than 4 blocks per channel on average, with the maximum being around 9 for leslie.

comm4 and ferret prefetch around 1 block per channel per access, leading to negligible
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Figure 21: The average number of blocks per channel in read buffer.
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Figure 22: The average number of blocks per channel in write buffer.
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performance improvement in Figure 17. We found that the more imbalanced channel use

the NS-App brings to the system, the more opportunities R-Path has to prefetch next read

operations.

For W-Path, Figure 22 reports the average number of blocks in write buffer per channel.

We observed the similar trend — with more blocks deferred, W-Path gains better improve-

ments.

3.7.5 Sensitivity to core number

1
1.5

2
2.5

3
3.5

1S1NS 1S3NS 3S1NSN
or

m
. E

xe
cu

tio
n 

Ti
m

e

FR-FCFS P-Path P+R-Path P+R+W-Path

Figure 23: Comparing S-App performance with more co-running applications.

At last, we studied the effectiveness of CP-ORAM design with more than two cores.

We compared two settings using four cores: one co-runs one S-App and three NS-App

applications; the other co-runs three S-App and one NS-App applications, referred to as

1S3NS and 3S1NS, respectively. Figure 23 and 24 report the geometric mean of normalized

performance results from 16 workloads. P-Path adopts th=50%. 1S1NS refer to default

setting that was used in previous experiments.

From the figure, we observed larger performance degradation when there are more ap-

plications. Given that one S-App uses almost all memory bandwidth, 3S1NS has extreme

intensity and introduces close to 3× performance degradation to S-App. On the other hand,

1S3NS has more bandwidth demand than 1S1NS but much less than 3S1NS — we observed

slightly larger degradation than 1S1NS but much less than 3S1NS.
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Figure 24: Comparing NS-App performance with more co-running applications.

In all cases, our cooperative scheduling schemes are robust. P-Path reduces the NS-App

degradation to around 20% degradation while P+R+W-Path reduces more than 20% slowdown

over P-Path for S-App.

3.7.6 More co-run examples

In this section, we present more co-run examples results. The first study is to co-run different

S-App and NS-App. Figure 25 and 26 shows the normalized execution of this co-run scenario.

For x-axis label, the first application is secure and the second one is non-secure. We still

set the threshold as 50% in this case. We found similar performance compared to the main

results in Section3.7.1. Overall, P+R+W-Path reduce S-App 19.8% execution time compared

to R-Path only, and is only a slight increase of 7.1% over FR-FCFS. The overall technique

also reduce NS-App execution time of 22.9% compared to FR-FCFS.

We also studied co-run effect of multiple copies of application on the same memory

channel configuration. Figure 27 shows the normalized execution time across all workloads

when there are multiple copies of S-App and NS-App running. It can be observed that

co-run 2 and 4 S-App will cause 1.78x and 3.46x more execution time, while co-run 2 and 4

NS-App will only cause 5.6% and 13.8% more time.

42



0.8

1

1.2

1.4

1.6

1.8

2

bl
-c

1
c1

-c
2

c2
-c

3
c3

-c
4

c4
-c

5
c5

-f
a

fa
-f

e
fe

-f
l

fl-
fr

fr
-le le
-li

li-
m

u
m

u-
st

st
-s

w
sw

-ti
ti-

bl
G

M
N

N
or

m
. E

xe
cu

tio
n 

Ti
m

e FR-FCFS P-Path P+R-Path P+R+W-Path

Figure 25: Comparing S-App performance with mixed co-running applications.
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Figure 26: Comparing NS-App performance with mixed co-running applications.
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Figure 27: The normalized execution time for NS-App.

3.8 CONCLUSIONS

In this chapter, we propose CP-ORAM, a Cooperative Path ORAM design, to address the

above issues. We summarize our contributions as follows.

• We study the co-run interference between secure and non-secure applications and analyze

the root causes of the ineffectiveness in adopting traditional memory scheduling. To our

knowledge, this is the first work that focuses on memory scheduling for Path ORAM in

server settings.

• We propose CP-ORAM that consists of three cooperative scheduling schemes for effective

memory bandwidth sharing. P-Path is designed to assign and enforce scheduling priority

during the co-run. R-Path maximizes channel utilization by proactively scheduling read

operations from the following Path ORAM access. W-Path mitigates contention on busy

channels by writes redirection.

• We evaluate CP-ORAM and compare it to the state-of-the-art. Our experimental results

show that CP-ORAM achieves an average of 20% performance improvement over the

baseline Path ORAM for the secure application in a server setting with four channels.
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4.0 REMOVING INTERFERENCE WITH ORAM DELEGATOR

4.1 THREAT MODEL

To facilitate security analysis, the system components of a cloud server are often partitioned

to those that are trustworthy, i.e., the trusted computing base (TCB), and those that are

not [35]. A system is secure if all attacks from outside of TCB can be successfully defended.

As an example, if the OS is in the TCB, there is no need to defend attacks from the OS

kernel. However, including potentially an untrustworthy component in TCB could break

the security guarantee and leave the system in a vulnerable state. A curious or malicious

(after being hijacked) OS can easily break the security mechanisms that the application may

adopt.

Executing a secure program in an untrusted environment such as on the cloud server faces

various types of attacks. Therefore, the TCB is preferably as small as possible. Following the

threat model in previous studies [61, 23, 95], the OS is not in the TCB and physical attack is

possible. A curious OS may launch profiling code to collect execution statistics; a malicious

OS may record keystrokes or sensitive data used during the execution. In particular, an

attacker may attach physical devices to analyze the communication signals.

In this work, the processor chip is included in the TCB, similar to previous designs

[44, 61, 1, 4]. In addition, a hardware component X can be optionally placed in the TCB

such that TCB consists of CPU and X. We next compare different designs to illustrate their

tradeoffs.
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Figure 28: Comparing two TCB models.

4.1.1 The model assuming trusted processor and untrusted memory

When TCB includes the processor chip only, i.e., no additional X component is in TCB, as

shown in Figure 28(a), secure application execution needs to defend all attacks from outside

of the processor chip such that data confidentiality, integrity, and privacy are protected

during execution.

Adopting data encryption helps to enforce data confidentiality. Lie et al. proposed to

encrypt the user code and data when they are saved in memory or disk and decrypted when

being brought to the processor chip for computation. A secure engine is integrated into the

processor chip to facilitate the cryptographic operations [44]. Suh et al. proposed Merkle

tree based verification to efficiently check the integrity of memory that contains dynamic

data [73].

However, it is challenging to prevent information leakage from memory accesses. To

access data saved in the untrusted memory, the on-chip memory controller needs to convert

a read or write request to a sequence of device commands. Since the memory module is not

trustworthy, those commands, as well as the memory addresses, are sent in cleartext. Even

though the data exchanged between the processor and the memory module are encrypted,

the access pattern of memory addresses may leak sensitive information, e.g., when a medical

application searches for the treatment information for a specific disease from the database,
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it is likely that the current patient has corresponding symptoms [11]. Even when both code

and data are unknown to the adversary, previous work has demonstrated a control flow graph

(CFG) fingerprinting technique to identify known pieces of code solely based on the address

trace [96].

ORAM Model. Studies have shown that to securely prevent information leakage from

memory access patterns, it demands oblivious memory (ORAM) primitives [27, 28]. ORAM

conceals the access pattern from an application by continuously shuffling and re-encrypting

the memory data after each access. An adversary, while still being able to observe all the

memory addresses transmitted on the bus, has a negligible probability to extract the real

access pattern.

Path ORAM [72] was recently proposed as a practical ORAM implementation. Figure 4

shows the logic component and organization of a path ORAM protected system. The physical

memory is organized as a binary tree with each node consists of, e.g., four, memory blocks

(i.e., cachelines). The logic addresses are randomly mapped to tree paths with the mapping

recorded in the position map. When there is an LLC (last level cache) miss, the position

map is consulted to get the path number. Path ORAM fetches all physical blocks along the

path. After reading and decrypting these blocks, the requested block can be returned to the

LLC. It is then remapped to a different path and temporarily buffered in the stash. Other

blocks of the path, together with a subset of blocks from the stash that can be merged to

the path, are encrypted and written back to the memory. When caching the top of the tree

in a small cache, the number of accesses can be reduced [61].

In summary, a Path ORAM access consists of read and write phases with each phase

read and write all blocks of a tree path, respectively. Given 4GB Path ORAM tree, if each

bucket contains 4 blocks, the tree has 24 levels such that one phase accesses 23×4 blocks if

only the root node is cached, or 21×4 blocks if top 3 levels are cached, etc. These accessed

blocks can be physically mapped to multiple memory channels to increase parallelism.
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4.1.2 The model assuming trusted processor and trusted memory

An alternative TCB model is to place both the processor and the main memory module in

the TCB, as shown in Figure 28(b). The recent proposed ObfusMem [4] and InvisiMem [1]

schemes use this model.

Since the communication channel is not included in the TCB, the data exchanged between

the trusted processor and the trusted memory still need to be encrypted and authenticated.

A secure engine is integrated into the memory module to support cryptographic operations.

There is no need to adopt Path ORAM protection if the memory is trustworthy. A secure

memory scheme encrypts the packets for protecting data confidentiality and generates the

packets with the same length and order for both read and write request types. When there

are multiple channels, the scheme needs to generate dummy requests to the channels other

than the one that the data located.

The secure memory model works well with HMC architecture but faces challenges when

applying to untrusted memory settings. As an example, adding a secure (bridge) chip to

DRAM DIMM cannot meet the secure memory model requirement as the wires on the PCB

may be compromised such that the communication between the secure chip and the memory

chips is eavesdropped.

4.1.3 Comparing secure execution models

We next compare the two secure execution models and study the performance impacts in

different settings. In the following discussion, we use the following abbreviation.

S-App — a trusted process that adopts either Path ORAM, secure memory model, or

our model for protection; and

NS-App — a process that does not need protection.

Figure 29 summarizes the average execution time of NS-Apps when co-running one S-App

and seven NS-Apps on an 8-core CMP when using different memory settings. For a suite

of programs that we tested, we report the best, the worst, and the geometric mean cases.

For the multiple process scenarios, we simulated multiple instances of the same workload in

multi-programming fashion, similar to those in [40]. The architecture details are listed in
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Section 4. 1NS indicates the solo execution, i.e., there is no other co-run applications. 1S7NS

indicates that the eight processes compete for four memory channels. 7NS-4ch and 7NS-3ch

indicate the channel partition that the seven NS-Apps compete for four and three memory

channels, respectively, while the S-App uses a separate channel (with results not shown).
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Figure 29: The performance degradation under different co-run scenarios.

From the figure, NS-Apps suffer from large performance degradation when the system

has a co-run S-App. When we adopt Path ORAM, i.e., 1S7NS (Path ORAM), the non-secure

application may take up to 5.26× execution time of the solo execution, and an average of

90.6% execution time overhead. Given that each application has individual core and cache

resources, the interference comes mainly from the contention for the memory bandwidth. As

shown in [61, 80], an S-App may consume close to 100% of the peak memory bandwidth,

which introduces large performance degradation to co-running non-secure applications.

A potential optimization is to enable the channel partition, i.e., to allocate the Path

ORAM accesses to one channel and allocate the seven NS-Apps to other three channels.

While 7NS-3ch achieves significant improvements compare to 1S7NS(Path ORAM), the degra-

dation is still significant. On average, NS-Apps exhibit 57% slowdown compare with solo-

run(1NS) performance. By giving one more memory channel bandwidth resource, 7NS-4ch

shows 43% slowdown, which is still significant.
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On the other side, adopting secure memory execution model is beneficial but not signifi-

cant. We modeled the channel replication and read write obfuscation as in ObfusMem[4] and

InvisiMem[1]. While the secure memory execution model introduces around 10% to S-App

execution (as in [4]), it tends to introduce large performance degradation to co-run applica-

tions. When there are multiple channels, dummy messages are generated to hide the access

pattern. Since these messages are executed in parallel, they have less impact on S-App but

degrade co-run NS-Apps significantly.

4.2 THE MEMORY SYSTEM ARCHITECTURE

c0 c1 c2 c3 c4 c5 c6 c7

data bus
addr bus

cmd bus

serial link

(a) Traditional memory architecture                       (b) BoB memory architecture
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Figure 30: The DRAM based memory system architectures.

The DRAM based memory system traditionally adopts the direct-attached memory ar-

chitecture, as shown in Figure 30(a). One memory channel connects to one or more DRAM

DIMMs while each DIMM consists of two memory ranks and one rank consists of eight (no

ECC) or nine (with ECC) DRAM chips. The channel bus consists of address, data, and com-

mand buses. While the address and command buses link all chips using, e.g., daisy-chain,

the data buses from each chip are aggregated to form the channel data bus.

An on-chip memory controller (MC) is integrated on the processor. When servicing

a memory read or write request, the MC sends out a sequence of device commands, e.g.,

precharge, activate, read, or write, to operate the memory chips. The time intervals between
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device commands are specified by JEDEC standard [3]. Different memory channels may

be ganged together, i.e., operate synchronously, to form wide data buses and improve the

system bandwidth for high throughput applications.

To address the capacity and bandwidth demands of modern computing servers, recent

memory architectures place memory buffers (and their associated logic) between CPU and

DRAM chips, ranging from a simple buffer that re-drives the signal to boost signal integrity

[42], to a buffer-on-board (BoB) unit that controls the DRAM and receives requests and sends

data back to the processor [14], to the HMC architecture [56] that adopts 2.5D/3D integra-

tion to have control logic as well as other simple operations (e.g., ECC and cryptographic

operations) in the logic layer on top of memory chips. The last two designs communicate

with the processor using narrow but fast serial link buses — the requests being sent to and

the responses from the DRAM chips are encapsulated as data packets.

While BoB and HMC architectures share many similarities, there is a significant dif-

ference from security enhancement point of view, i.e., the buses between BoB buffer and

DRAM chips are visible to attackers while the buses between HMC and DRAM subarrays

are embedded inside the HMC module. Therefore, the DIMMs are still untrusted in BoB

architecture — it is possible to attach physical devices to tamper with the communication

[43, 77].

BoB architecture not only supports large capacity memory but also is compatible with

commodity DIMMs. It has better adoption in mainstream servers than HMC. IBM power8

supports eight memory buffers with each controlling 128GB memory and 1TB per socket [67].

Oracle M7 supports up to 16 DIMMs using eight BoB buffers and 1TB per processor [33].

Intel Xeon E7 [34] adopts proprietary Scalable Memory Buffers (SMBs) that supports up

to three DIMMs per buffer and 1.5TB per socket. While the SMB details are not released

to the public, SMB controls DIMMs only and thus is similar to BoB rather than Fully-

buffered DIMM [38]. As a comparison, HMC faces fabrication challenges for improving

module capacity and TSV yield at present. The first processor that uses HMC was Fujitsu

SPARC64 XIfx [25], which was released in 2015 and connects to 32GB memory using eight

4GB HMC modules.
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4.2.1 Design goal

In this work, we are to devise a novel secure execution model that is compatible with main-

stream server memory architectures, i.e., it prevents information leakage from memory ac-

cesses to untrusted memory. Our design goal is to achieve high-level security protection, high

system resource utilization, low interference between secure and non-secure applications, and

good compatibility with mainstream server hardware.

4.3 THE D-ORAM DESIGN DETAILS

In this section, we first present an overview of the proposed D-ORAM scheme and then

elaborate the details and performance optimizations.

4.3.1 Overview

An overview of the D-ORAM memory system is illustrated in Figure 31. An 8-core CMP

has four BoB based memory channels — each channel has a main BoB controller on the

processor chip and a simple controller on the motherboard, i.e., MainMCi and SimpleMCi,

respectively (0≤i≤3). Residing between the processor and the commodity memory DIMMs,

the simple controller contains both control logic and data buffers. BoB architecture uses

the serial link to connect the main controller and the simple controller, and parallel link

to connect the simple controller and the DIMMs. The simple controller is responsible for

sending out device commands and enforcing the timing constraints as specified in JEDEC

standard.

By default, D-ORAM upgrades one memory channel, i.e., channel-0 in the figure, to

secure channel which delegates Path ORAM. Other channels are normal channels. Multiple

memory channels can be upgraded for higher design cost.

For discussion purpose, the peak bandwidth of one serial link channel is set to be com-

parable with that of one parallel link channel. Each simple controller controls one to four

sub-channels. There are two reasons: (1) we are to compare with the direct-attached memory
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Figure 31: An overview of D-ORAM memory system.

architecture that uses four parallel link channels. The two settings have comparable peak

off-chip memory bandwidth. (2) we are to study the space advantage of BoB architecture to

support large capacity memory systems.

D-ORAM introduces an extra secure component, referred to as secure delegator (SD),

to the on-board simple controller, which not only accelerates cryptographic operations but

also enforces Path ORAM.

TCB=CPU+SD. The TCB in D-ORAM includes both the processor (CPU) and the secure

delegator (SD). SD has two responsibilities:

(1) It secures the communication between CPU and SD. The sender encrypts and adds

authentication and integrity check bits before sending out the message while the receiver

decrypts, authenticates and integrity checks before use.

(2) It performs Path ORAM accesses to the untrusted memory. In particular, it converts

one memory request from the processor to hundreds of memory accesses to a path on the

ORAM tree.
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A major difference between the proposed D-ORAM model and the secure memory model

is that D-ORAM does not include memory modules in the TCB, that is, even though SD is

physically integrated with the on-board BoB unit, the BoB components, e.g., the controller

logic and the queue buffer do not need protection. Thus, the address and command buses

(that connect the simple controller and memory modules) transmit cleartext data that are

visible to attackers. Such a setting matches the wide adoption of untrusted commodity

DIMMs in server settings. The commodity DIMMs need cleartext addresses and device

commands with timing following the JEDEC standard. Our design does not need to redesign

the DRAM interface and device.

MainMC0

R/W Addr Data

Encrypted Bits

On-chip Secure Engine

Chk Bits

Real Req. , Dummy Req.

Encrypted Bits Chk Bits

R/W Addr Data

 Delegation Control

CPU

SD

Figure 32: Delegating Path ORAM in SD.

4.3.2 Path ORAM delegation in SD

We first present how SD protects the memory accesses in D-ORAM. Intuitively, SD protects

the communication between CPU and SD through an encrypted channel, similar to that in

InvisiMem; and the communication between SD and DIMMs using Path ORAM.

Let us assume the system is running one S-App and one or multiple NS-Apps. The OS

allocates space from all four channels to the NS-Apps and space from the secure channel to
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the S-App. In particular, S-App builds the Path tree covering 4GB memory space. Each

tree node contains four blocks (i.e., cache lines) that are distributed to four sub-channels

controlled by MainMC0. D-ORAM works as follows.

The processor triggers SD for operation. In D-ORAM, the SD unit is triggered by

a memory request sent from MainMC0. When S-App encounters a cache miss and needs

to access the main memory, MainMC0 prepares a BoB packet, as shown in Figure 32. Each

packet is 72B long, which includes three fields: access type (1 bit, i.e., read or write), memory

address (63 bits), and data (512 bits). D-ORAM enhances the baseline packet preparation

in BoB scheme to prevent information leakage.

• D-ORAM always attaches a 64B data field to the packet such that a read request is

non-distinguishable from a write request. This helps to prevent potential information

leakage from request types [1, 4]. For the read requests, the data field contains dummy

data, e.g., all 0s.

• D-ORAM, in addition to a real memory request from the secure application, may generate

dummy requests to prevent timing channel attack [50, 24].

In D-ORAM, the on-chip secure engine generates a new Path ORAM request t cycles

after receiving the response packet of the preceding request. We choose t=50 in this

work. If there is no real request from S-App, a dummy request is generated and sent.

• D-ORAM adopts the pseudo OTP (one-time-pad) encryption. Before program execution,

the on-chip secure engine and the SD negotiate a secret key K and a nounce N0. This

can be accomplished by adopting the public key infrastructure (PKI) as shown in [1].

The on-chip secure engine generates a 72B-long OTP using AES encryption, and XOR

the OTP and the packet as follows.

OTP = AES(K,N0, SeqNum)

SeqNum = SeqNum + 1

Enc Packet = OTP ⊕ Cleartext Packet (4.1)

The SeqNum is the message sequence number and is reset before execution. From the

equation, it is clear that the OTP is not data dependent on the content of the transmitted
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packet and thus can be pre-generated. Processing one Path ORAM takes long time (to

finish hundreds of memory accesses to the Path tree) while it only requests two OTPs

for processor/SD communication — one for sending the request and the other one for

receiving the response. The overhead is negligible.

• For high level security, the packet may need authentication and integrity check. The

former prevents the attacker from injecting malicious packets. The latter prevents the

attacker from replaying old packets. We adopt the similar designs in previous studies [4].

SD delegates Path ORAM. When SD receives the encrypted packet from MainMC0, it

decrypts and checks the data before processing it. SD then follows Path ORAM protocol to

access the data saved in the insecure sub-channels. SD contains all the components that are

necessary for Path ORAM (Figure 4). We will evaluate its hardware overhead in Section

4.3.5.

The processing follows the Path ORAM protocol [72]. It consists of the following steps:

SD first consults the position map to locate the path along which the requested data is saved;

it then reads all data blocks from the path; it remaps the requested block to another path

and has it saved in the stash; it re-encrypts other blocks along the path and write them back.

The blocks in the stash, if can be combined, are written back as well. As discussed, one tree

node consists of four blocks that are distributed to four sub-channels. All four sub-channels

are accessed in parallel to minimize the performance degradation.

SD returns the response packet. When SD finishes the read phase, it prepares a 72B-long

response packet. The data field contains the dummy bits if the request from the processor

was a write request. The response packet needs to be encrypted and has checked bits added

before being sent back to the processor chip. The processor chip checks the packet and

decrypts it to get the requested data for the read request or finish for the write request.

Timing control in D-ORAM. To prevent the timing channel attack, the processor chip

sends out a new request is t cycles after receiving the response packet. In this work, we set

t=50. If the write phase is ongoing when the processor chip receives the response packet, the

new request is buffered in the SD and will be serviced after the write phase for the current

request. The simple controller is responsible for generating the detailed device commands

and device access time to the insecure memory.
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Figure 33: Splitting a Path ORAM tree access across channels.

4.3.3 Expanding Path ORAM tree across memory channels

In the default D-ORAM configuration, the secure channel consists of four sub-channels,

which provides roughly the same bandwidth for S-App as the setting in previous Path ORAM

studies [61, 80, 60], i.e., the one adopting four on-chip memory controllers for four parallel

channels. In either setting, Path ORAM can utilize close to the peak memory bandwidth of

each channel or sub-channel.

However, the default configuration may potentially run into space allocation problem.

To prevent tree path overflow, a critical exception that fails the protocol, Path ORAM sets

the space efficiency to be around 50% [72]. That is, a 4GB tree needs to be built for 2GB

user data. In addition, when running, e.g., two S-Apps and two NS-Apps in D-ORAM,

the two NS-Apps could have their data spread across all four channels but the two S-Apps

allocate all their data all in the secure channel. Therefore, the secure channel tends to be

under memory capacity pressure.

We then propose to balance the space demand by expanding the Path ORAM tree

across channels. As shown in Figure 33, we observe that the nodes in the last level of the
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Table 4: Balance space demand across channels (k>=1, m ∈[k,2k])

k
Data Block Distribution Extra Messages

channel #0 channel #1 to #3 channel #0 channel #1 to #3

1 50.0% 16.7% 4k short Read packets,

4k Response packets,

4k Write packets

m short Read packets,

m Response packets,

m Write packets

2 25.0% 25.0%

3 12.5% 29.2%

tree account for around 50% space — there are 2L nodes in level L and (2L-1) nodes in total

from level 0 to level L-1. Let us denote the two sets as S1 and S2, respectively. Given one

path that contains L+1 nodes including the root node (level 0), we access 1 node from set

S1 and L nodes from set S2.

Based on the imbalanced accesses to the tree node sets, we propose to relocate the last k

levels to other channels to balance the space demand across the channel. Since each tree node

contains four data blocks, we distribute them to channels #i, #1, #2, and #3, respectively,

and i = (path id mod 3)+1. That is, the nodes have their first blocks alternatively allocated

in three normal channels. As shown in Figure 33. Table 4 compares the percentages of the

blocks saved in each channel when splitting the last k levels into normal memory channels.

For example, when k=2, each channel saves 25% data blocks of the path tree.

To conduct Path ORAM protocol under the optimized data allocation, the SD and the

on-board simple controller send out explicit requests to access the k nodes (or 4k data blocks)

from the last k levels. For simplicity, SD sends out 4k read packets to explicitly ask for the

blocks from the other three normal channels. 1 Here, the read packets are short packets with

data field omitted. This is safe because the optimization is well known such that the message

types at this step are also known to attackers. The response packets are of 72B each. The

fetched blocks are first returned to the on-chip memory controller and then forwarded to the

SD in the secure channel. The data blocks are then updated during the write phase with

Write requests sent from the SD and forwarded by the main controllers.

1Some read packets may be merged, we leave it to the future work.
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An interesting property of this optimization is that there is no need to upgrade the

normal channels. Given that the contents saved in the path tree are encrypted and optionally

authenticated for higher level security, the normal channels cannot derive private information

from the access. Neither the read request packet nor the response packet demand additional

encryption — the read packet can be sent in cleartext while the response packet contains

the fetched data (already ciphertext) from the memory.

A disadvantage of the design is that it overburdens the serial links with extra messages.

Table 4 compares the number of extra messages with different k values. From the table,

when k=2, D-ORAM sends 8 extra short read packets to CPU and 8 response packets to SD

on channel #0; and 2 to 4 read and response packets on each normal channel.

4.3.4 Secure channel sharing

The secure channel in D-ORAM, comparing to those normal channels, tends to be over-

loaded. Channel#0 services not only S-App but also NS-Apps. Given that S-App is ex-

tremely memory intensive, there exists significant contention between S-App and NS-Apps

for the sub-channels. Our study showed that even adopting the cooperative Path ORAM

optimization [80], the performance degradation to memory accesses of this channel cannot

be ignored. In addition, adopting the space demand optimization introduces extra messages.

When k=2, the secure channel suffers from 24 extra messages while each of normal channel

has 6 to 12 extra messages.

Figure 34 illustrates the memory access latency when we allocate NS-Apps using different

memory channels. Figure 34(a) and (b) show that when there is no S-App, the channel access

latency is longer when there are fewer channels. While our proposed technique can eliminate

the interference in non-secure channels, as shown in Figure 34 (c), the secure channel is still

slower than other channels.

Given one S-App and multiple NS-Apps, we profile the performance of three co-run set-

tings and estimate the channel contention. For each setting, we first compute the slowdown

of the average memory access latency on NS-App, i.e., the latency degradation of co-run

setting over the solo run setting; and then compute the average slowdown of all NS-Apps.
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Figure 34: Balance the average access latency between secure and normal channels.

We have:

(1) T33 is the average memory access latency slowdown when NS-Apps use the three normal

channels but not the secure channel, i.e., each channel has 33% traffic;

(2) T25 is the average memory access latency slowdown when NS-Apps use all four channels

but the S-App is not active, i.e., each channel has 25% traffic;

(3) T25mix is the average memory access latency slowdown when NS-Apps use all four chan-

nels and S-App uses the secure channel. Ta and Tb are the average memory access

latency of secure and normal channels after balancing.

Our goal is shown in Figure 34(d), which achieves similar channel access latency Ta and

Tb by adjusting the memory traffic to Channel #0.

We propose to alleviate the contention on the secure channel by adjusting the data

allocation of NS-Apps and directing fewer NS-App requests to this channel. Our technique

is to adjust the number of NS-Apps that can use the secure channel. By default, all NS-Apps

can allocate memory from channel #0.
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By reducing the number of NS-Apps that can use the secure channel, Channel # 0

shall become less congested. However, if most NS-Apps use normal channels, the overall

performance is close to T33, which may become sub-optimal due to bandwidth contention

on normal channels.

We find the optimum allocation threshold by profiling application’s channel access la-

tency, T25mix and T33. We calculate the ratio of r =T25mix/ T33, if r > 1, the secure channel

is slow to handle more traffic from NS-App, and if r < 1, it is better to fully utilize all

channels to handle traffic from NS-App. We show the profiling results and how the ratio

impacts our threshold chosen in section 4.5.3 .

4.3.5 Overhead of secure delegator

We need to enhance the hardware on BoB to enable D-ORAM. The secure delegator embed-

ded in the BoB unit is responsible for conducting Path ORAM operations. As shown [60],

this secure component (including the stash, encryption logic, etc) occupies less than 1 mm2

die area using 32nm technology node. This is modest for an on-board BoB unit.

4.3.6 Extension to parallel link buses

In this work, we utilize the BoB architecture to enable low-interference low-cost secure

execution model on untrusted memory. Extending the design to parallel link bus based direct-

attached architecture is possible but demands modifications to the channel organization. For

example, if the data buses of individual memory chips are aggregated by an on-DIMM bridge

chip, e.g., the UDIC controller in [18], it is possible to offload the secure delegator in the

UDIC. That is, the TCB consists of the processor chip and the secure delegator in the UDIC.

Such an extension demand timing adjustment to enable a non-blocking read operation. In

summary, offloading to traditional direct-attached memory architecture is possible but tends

to introduce higher overhead.
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4.3.7 Security analysis

Our D-ORAM design focuses on reducing the application execution interference by delegating

the secure engine to BoB unit. The protocol of Path ORAM remains unchanged, hence, the

protection strength is not affected. The access pattern of S-App from the SD to DRAM

DIMM is still protected by Path ORAM which does not show any information leakage

through the plaintext on the conventional directed attached interface. Meanwhile, the data

access on the serial link is sent via uniformed encrypted package, as discussed in Section

4.3.2. As long as the TCB boundary is not broken, i.e., the secure engines in the processor

and BoB buffer (Figure 31) are not compromised, our proposed secure memory architecture

can still provide S-App highest protection.

In our co-run model, we assume that multiple applications sharing the same memory

bandwidth. The NS-Apps are not considered as malicious in such model. In the case that

NS-Apps are spy programs, other types of side channel attacks may be launched, such

as timing channel attacks described in Section 2.2. By fixing memory access rate for S-

App, memory-level timing side channel can be prevented, as studied in previous ORAM

optimization work[95, 24]. Additional countermeasures for cache level attacks may be added

to the system cache protocol, which is beyond the scope of the focus of the work, which is

addressing the potential leakage access pattern on the main memory bus.

4.4 EXPERIMENTAL METHODOLOGY

To evaluate the proposed D-ORAM scheme, we simulated an 8-core CMP with four off-

chip memory channels. We used USIMM, a cycle accurate memory system simulator with

processor ROB front-end[8]. We modified the default DDR memory interface to simulate

the proposed architecture and compare them to the state-of-the-art. We added 15ns data

transfer latency for the overhead of link bus and BoB control.

Table 5 summarizes the baseline processor and memory configuration. The DRAM mem-

ory follows JEDEC DDR3-1600 specification. We adopted the default values in the specifica-
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tion that are strictly enforced in USIMM. Each application has its own memory space. The

baseline S-App Path ORAM tree occupies 4GB memory space. The Path ORAM configu-

ration is: L = 23, Z = 4. We used tree-top cache to cache top three levels of nodes, and the

rest of 21 levels are divided into three section of 7-level subtrees, in order to maximize the

row buffer hit rate[61]. Each memory channel can consist of one to four sub-channels. We

choose to set the secure channel with 4 sub-channels, and other channels with 1 sub-channel,

in order to fairly compare with previous techniques.

When S-App and NS-App are sharing the same memory channel, we adopt the bandwidth

preallocation technique in [80]. We set the threshold to 50% so that both kinds of applications

have similar slowdown.

Table 5: Baseline System Configuration

Parameter Value

Processor 8-core, 3.2GHz

Processor ROB size 128

Processor retire width 4

Processor fetch width 4

Last Level Cache 4MB

Memory Device DDR3-1600

Memory channels 4

Sub-channel per channel 1-4

Rank per Sub-Channel 1

Bank per Rank 8

Buffer Logic and Link latency 15ns[16]

We choose 15 memory intensive benchmarks used in MSC [40]. These benchmarks are

chosen from PARSEC suite, commercial and BioBench. Each benchmark trace consists of

500 million representative instructions out of 5 billion instructions, using a methodology

similar to Simpoint [40]. The workloads used for evaluation consists of one S-App and seven

NS-Apps: S-App version adopts encryption and Path ORAM protection (or other protection
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Table 6: Simulated Benchmark Programs

Suite Workloads

PARSEC black (4.2), face (26.8), ferret

(8.0), fluid (17.5), stream (12.9),

swapt (10.9)

COMM. comm1 (7.3), comm2 (12.6),

comm3 (4.2), comm4 (3.7),

comm5 (4.5)

SPEC leslie (23.1), libq (12.0)

BIOBENCH mummer (24.0), tigr (6.7)

schemes) while NS-App version does not. The addresses of different versions are mapped to

different address spaces. Our results use the same program for S-App and NS-App.

Table 6 summarizes the benchmark programs with their corresponding MPKI (memory

access per kilo instructions) listed in parenthesis. We used the first two letters of each

program to indicate the workload in the result section.

4.5 RESULTS

In the experiments, we evaluated the following schemes:

• Baseline. This is the baseline architecture without modified memory interface. It

uses 4-channel direct-attached DRAM interface to run the mixed S-App and NS-App

workloads. For S-App, the ORAM accesses are evenly distributed into each channel as

previous work [80]. The results of other schemes are normalized to Baseline.

• D-ORAM. This scheme implements the proposed BoB based memory architecture, with

the secure delegator (SD) on channel #0. It does not apply either space or channel
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optimization. The S-App is mapped to Channel #0 with its addresses being allocated

interleavingly across four sub-channels. The NS-Apps are mapped to all four channels

with their addresses being allocated interleavingly across four channels.

• D-ORAM+k. This scheme is built on top of D-ORAM. It allows S-App to use other channels

while the SD still stays with Channel #0. We modeled the memory communication

across channels. k denotes that the number of extra tree levels that the Path ORAM

tree expand. The tree space doubles when k=1.

• D-ORAM/c. This scheme is built on top of D-ORAM. This technique controls how NS-App

can utilize channel #0. Parameter c means the number of NS-Apps that can use channel

#0. In our setting, c can vary between 0 to 7. D-ORAM/7 is the same as D-ORAM.

• D-ORAM+k/c. This scheme combines D-ORAM+k and D-ORAM/c to illustrate the effective-

ness of channel sharing under tree expansion.

4.5.1 Performance evaluation

We first analyzed the performance under different protection settings. Figure 35 shows the

normalized execution time of Baseline, D-ORAM, D-ORAM/X, D-ORAM+1, and D-ORAM+1/4.

Here, D-ORAM/X means the best result can be achieved by varying the parameter c from 0 to

7. The detailed bandwidth sharing results can be found in the following section.

From the figure, we observed that D-ORAM reduces the execution time to 87.5% of

Baseline. The reduction mainly comes from utilization of fast non-secure channels. How-

ever, the secure channel is still shared by all NS-Apps and S-App. By adjusting the number

of cores using the secure channel, the execution time can be reduced further to 77.5% of

baseline, representing 22.5% performance improvement by using D-ORAM/X.

Our technique allows large Path ORAM tree storage across the secure channel and other

channels. In the figure, D-ORAM+1, the one that allocates all leaf nodes to other three non-

secure channels, only slightly slower than D-ORAM. We observed that, on average, the execu-

tion time is 88.6% of Baseline. Adopting the bandwidth sharing technique, for example,

when allowing 4 NS-Apps (D-ORAM+1/4) to use the secure channel, the execution time can

be reduced to 81.4% of Baseline.
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Figure 35: Comparing NS-App performance when adopting different D-ORAM schemes

66



4.5.2 Expanding the Path ORAM tree

Figure 36 shows the performance impact of space expansion. We varied the k from 1 to 3,

meaning that we added extra k levels to the original 4GB Path ORAM tree and the capacity

of Path ORAM tree expands from 4GB to 4× 2kGB.

The introduced overhead to NS-App is minimal. Compared to the D-ORAM, varying

k from 1 to 3 adds additional 1.02%, 2.01%, 3.29% execution time. This is because that

the extra memory accesses introduced by channel communication are not significant. For

the secure channel, the extra traffic is limited between processor and BoB controller. For

other channels, because k × 4 blocks are distributed to 3 channels, the impact is also not

significant.

4.5.3 Secure channel sharing

We then studied the effectiveness of secure channel sharing. Figure 37compares the perfor-

mance under different D-ORAM settings. In particular, we compared the performance when

allowing 0 to 7 NS-Apps to utilize the secure channel, i.e., having their data allocated to the

secure channel. We included the results of 7NS-3ch and 7NS-4ch for comparison.

From the figure, we observed that different applications prefer different channel sharing

configurations. To determine the optimal setting for different applications, we found that the

two parameters, T25mix and T33, are critical for identifying the best sharing configuration.

We use a different segment of memory trace as profiling input and then compute the T25mix/

T33 ratio, as shown in Figure 38. We show that our simple ratio calculation can guide the

program to choose the optimum c setting.

When the ratio is bigger than 1, i.e., T25mix >T33, we prefer to let fewer NS-App copies

to use all four channels, e.g., bl, cx and mu. Therefore, c should be set to a smaller number

in this case. When the ratio is smaller than 1, we prefer to let more (e.g., 5 to all) NS-App

copies to use all four channels, e.g., le, li, st and ti. In Figure 38, there is only one exception

c2, which has best configuration c = 1 in experiment but falls on the other side of the figure.

We believe that this is because the ratio is very close to 1. For other benchmarks, our

profiling guidance works in accordance with the best parameter we achieved in experiments.
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4.5.4 Access latency reduction

We also compared the average NS-App access latency reduction in Figure 39. In this ex-

periment, for illustration purpose, we chose D-ORAM+1 and D-ORAM/4for the space expansion

and secure channel sharing optimizations, respectively. On average, the NS-App read access

time can be reduced to around 70% of the baseline. The write access time can be reduced

to 48% of the baseline.

4.5.5 The performance impact on S-App

D-ORAM was designed primarily for improving NS-App performance and maps S-App map-

ping to a secure channel. In D-ORAM design, adopting Secure Delegator in BoB architecture

slows down the memory access latency by tens nanoseconds. However, Path ORAM accesses

typically finish in the range of thousands of nanoseconds [4, 61]. The overhead from BoB

architecture is small.
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4.6 CONCLUSIONS

In this chapter, we propose D-ORAM, a secure memory system that minimize execution

interference on cloud servers. D-ORAM propose to utilize the buffer-on-board (BoB) like

memory architecture to offload the Path ORAM operations to a secure engine in the BoB

buffer, which greatly alleviates the contention for the offchip memory bus between secure and

non-secure applications. Our design upgrades only one secure memory channel, and enables

Path ORAM tree split to extend the secure application flexibly across multiple channels, in

particular, the non-secure channels. We propose secure channel bandwidth sharing which

further improve the system performance. Our evaluation shows that D-ORAM effectively

protects application privacy on mainstream computing servers with untrusted memory, with

an improvement of NS-App performance by 22.5% on average over the Path ORAM baseline.
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5.0 RELATED WORK

5.1 SECURE PROCESSOR DESIGN

The XOM processor is one of the first secure processor designs [44]. XOM-based processors

focus on protecting data secrecy [73, 86, 74, 52]. Later studies defended potential information

leakage from address and command buses [96]. Studies showed that completely defending

information leakage demands ORAM [27]. Path ORAM [72] is a simple and practical ORAM

protocol that received wide adoption. The first hardware implementation of Path ORAM

was Phantom [50] based on FPGA. Intel SGX[15] is the current state of art commercial

and open-source secure processor available on the market, which protect sensitive data with

encryption, integrity check in reserved EPC memory. AMD SME/SEV[41] provide similar

secure computation features such as memory encryption and encrypted visualization.

5.2 SECURE MEMORY ARCHITECTURES

Each different secure memory architectures have their advantages and specific use cases. The

recent proposed ObfusMem [4] and InvisiMem [1] schemes assume that memory is secure,

which can be exploited to significantly reduce protection overhead. ObfusMem [4] assumes

that the computation logic on the memory DIMM is capable to encrypt and decrypt the

address, therefore, ORAM is not needed for expensive address obfuscation. InvisiMem [1]

assumes an HMC like interface, where the secure engine can be placed inside of the HMC

logic die. Motivated by near data processing [5, 6], Gundu et.al propose to use a secure

DIMM [29] for integrity verification. They proposed to put a bridge chip on memory DIMM
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that can handle merkle tree verification, and reduce the memory traffic between processor

and memory. More recently, Shafiee et al. [65] proposed to utilize buffer chip on DRAM

DIMM to reduce ORAM traffic, which requires redesign the memory access timing protocol.

5.3 ORAM OPTIMIZATIONS

The large performance overhead of ORAM has been a focus of recent ORAM designs. Ring

ORAM[59], Bucket ORAM[22] were proposed to reduce the bandwidth overhead on the

memory bus by using different bucket organization and more complicated access flow control.

This dissertation mainly focus on Path ORAM, and most of the designs can still apply

to different ORAM schemes, especially tree based ORAMs. There are also many design

challenges when we use new ORAM as the secure primitive, which are discussed in the

future work section.

To improve Path ORAM performance on DRAM based system, several techniques have

been proposed. Ren et al. [61] optimized block mapping using sub-tree layout, which

maximizes row buffer hit for ORAM accesses. They saved the top of the Path ORAM tree

in a small on-chip cache to improve performance. Zhang et al. [95] eliminated unnecessary

memory accesses if consecutive path accesses have overlaps. An ORAM prefetcher [92] is

proposed to improve the ORAM path access locality and performance. Fletcher et al. [23]

shows how to effectively reduce recursive ORAM overhead by caching the position map look

up process.

5.4 NEW COVERT AND SIDE CHANNEL ATTACKS

Numerous of new covert and side channel attacks emerge in recent years, as well as tools and

frameworks to detect such attacks. Chen et al. [9] proposed a framework CC-hunter that can

detects the possible covert timing channels on shared hardware. The model assumes that the

Trojan is able to intentionally communicate the secret to spy via covert channel. Hunter et
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al.[32] used information theory to quantify the communication capacity of microarchitectural

covert channels, and introduced a detection technique for covert channel eavesdropping at-

tacks. Liu et al. [46] showed how an adversary can attack cross-core, cross-VM side channel

and leak keys as well as secret data accesses via last level cache. Further, Liu et al. [45] pro-

posed to defend such side channel attacks using a performance optimization cache allocation

technology. Yan et al. [85] propose a secure hierarchy-aware cache replacement policy that

defends against all existing cross-core shared-cache attacks with minimal hardware modifi-

cations. Yao et al. [88, 87] identified that there are covert channel information leakage via

NUMA architecture and cache coherence protocol. In addition, they showed that hardware

prefetchers can be used against to timing channel leakages [17]. Wang et al.[82] designed

a queuing structure per security domain and allocated timing slots to different domains to

eliminate timing channels. They further propose a trade-off between timing information

leakage and performance[83].

This dissertation focus on the access pattern leakage on the level of main memory bus.

Our work can be integrated with the cache attack protections schemes as needed, however,

fully protect the system from all types of side channel attacks require sophisticated combi-

nation of all possible solutions.

5.5 NEW DRAM ARCHITECTURES

Recent studies proposed alternative memory architectures to alleviate the constraints in

traditional memory systems. Fully Buffered DIMM [26] adds a buffer on memory DIMM to

handles memory requests closer to the memory. While FB-DIMM can effectively increase

memory density, it introduces high power consumption, making it a less popular architecture

in modern servers. BOOM [91] adds buffer on DIMM to decouple internal and external

buses, which achieves large power savings by matching the external high performance bus

with multiple low performance internal buses. MIMS[10] replaces traditional bus interface

with a universal message-based interface in memory system. The difference between MIMS

and BoB design is that MIMS may improve communication efficiency by combining multiple
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memory requests in one packet. Alloy[79] utilizes a heterogeneous memory interface, which

includes DDR based parallel interface as well as serial interface, for improving performance

on a GPU enabled heterogeneous system.

Our solution, D-ORAM also utilize some of the proposed DRAM interface, such as serial

link interface and the concept of buffer in between of computation and storage. We further

optimize the architecture to minimize ORAM applications interference and maximize system

parallelism with the new architecture.

5.6 MEMORY SCHEDULING TECHNIQUES

Several memory scheduling algorithms have been proposed to achieve fair sharing of the

memory bandwidth. Mutlu et al. [53] proposed to achieve fair schedule between streaming

and random access applications in DRAM system. Mutlu et al. [54] improved fairness in

memory scheduling using batching. Craeynest et al. [78] proposed equal-time scheduling

and equal-progress scheduling to adjust the amount of resource that each thread receives.

However, these schemes did not consider the extreme biased co-run of S-App and NS-App,

or the properties and guarantees of ORAM accesses. In comparison, part of this dissertation

work introduced a fair and tunable memory scheduling solutions for faster memory response

time for both type of applications.
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6.0 FUTURE WORK

In this chapter, I summarize several potential projects that are related to this dissertation

work. The target of such future work is to further enhance and enable ORAM to run in the

server environment with low performance overhead and high usability.

6.1 ENHANCE RING ORAM OPERATIONS FOR FAST DATA

RETRIEVAL

6.1.1 Problem Statement

A typical 4GB Path ORAM tree can be configured with L=23 and Z=4. By spreading each

bucket across all four memory channels, each Path ORAM read and write path operation

can evenly touch all memory channel in balance.

Compared with Path ORAM, Ring ORAM reduced the online bandwidth by selectively

reading one block from each bucket. Although the total touched blocks number is reduced,

these blocks may come from different channels randomly. Among the read path operation,

only one real block will be read out from a particular bucket, and all other bucket will provide

one available dummy block.

From memory channel view, all blocks accessed during the read path can not be evenly

distributed to four memory channels. Early reshuffle and eviction path operations will access

all memory channels with evenly distributed memory traffic.
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6.1.1.1 ORAM Tree Setting We choose our settings for Ring ORAM tree has Z = 8,

A = 8, S = 12, L = 23 and each block is 64B, according to [59], this is one of optimum

settings for small data blocks with negligible stash overflow probability. Therefore the Ring

ORAM tree has a effective capacity of 8GB with total capacity of 20GB.

For simplicity, during one access, 24 blocks from 4 channels are sent to secure processor

side. The ideal case would be that all 24 blocks are evenly distributed, however, in the

baseline setting, it is almost impossible to make 4 channel finish at same time.

6.1.1.2 Prevent Timing Channel with Ring ORAM To prevent timing channel

leakage, one costly solution is to issue ORAM access with fixed rate[24, 21]. Followed by

prior work, we define access rate r as the time from last access finish time to next access

start time. Figure 40 shows how read path request can be serviced with timing protection.

Request 1 and 2 arrive at memory controller during a request is performing, regardless of

dummy or real, therefore it has to wait for current request finished and the access rate till

it can be issued. Request 3 arrives during the wait period after Request 2, therefore it can

be issued at next issue point.

To better utilize the memory channel, access rate r should be carefully chosen. If r is

too small, more dummy requests need to be sent, which is a waste of energy. At the same

time, it increase the probability that Request 1 in Figure 40 may happen. If r is too large,

most of request will be serviced like Request 3. However, r itself will contribute most of

wasted bandwidth time.

Dummy Req 1 Req2

waste use usewait

Req1 Req2 Req3

Req3

use

time

r Access Lat.

Figure 40: Protecting Ring ORAM from Timing Channel Attack
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If we further look at the in-use time across channel, there are still wasted bandwidth, as

shown in Figure 41. A normal read path access latency will be dominated by a channel that

serves most actual read operations. The normal case in Figure 41 will prolong the access

latency 66.67% over ideal case.
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Ch 3
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5

Access Lat.
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6
6
6

6

Access Lat.

Figure 41: Ring ORAM Read Path Access Time, normal case v.s. ideal case

6.1.2 Balance Read Path to ORAM Access Latency.

The read path of Ring ORAM will return the block of interest and a number of dummy

blocks from other buckets. The importance to balance read path is to identify whether we

can select dummy block from each bucket in order to balance the overall access.

Before determine which block to fetch in each bucket, the ORAM controller need to read

metadata from all buckets in the selected path. During the decryption, the ORAM controller

will be able to identify real block and all available dummy blocks in each bucket. Therefore,

before the actual read, the ORAM controller is able to which block can be selected from a

bucket.

My proposed block selection workflow in the ORAM controller is as follow:

• Generate an initial block of selection in ORAM controller. Calculate the busy channel

and idle channel of this access.

• Starting from leaf bucket to root bucket, if the bucket contributes a busy dummy block
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and it has a valid dummy block from idle channel, switch current selected block with the

dummy block from idle channel. Update the block of selection vector after each switch.

• After one round of dummy block switch, if the block of selection vector is now balanced,

end the switch and start to fetch blocks from memory. If the channel is still imbalanced,

continue to search dummy blocks to idle channel from buckets that do not contribute

busy dummy blocks, until all channels are balanced.

• If the dummy blocks are not enough to balance this access, starting from leaf bucket to

root bucket again and switch current selected block with an real block from idle channel.

If the block of selection vector is balanced, end the search and start to fetch blocks from

memory.

In very few cases, we will need to bring real blocks from idle channel to balance the

traffic. This will increase the number of blocks in stash after an access. Increasing the stash

size can reduce the overflow probability significantly. In addition, we propose Ring ORAM

background eviction similar as Path ORAM background eviction [61].

6.1.2.1 Background Eviction Operation. When stash occupancy reaches a threshold

th = StashSize − Z ∗ (L + 1), we stop issue real read path operation, as one more read

path may. Instead, all blocks read during dummy read path operation can be discarded.

During the Eviction operation, the content in stash is pushed back into the tree. When the

stash occupancy decreased after the background eviction, the system can continue service

real read path operation.

Service one background eviction is expensive. However, it rarely happens with large

stash size.

6.1.2.2 Discussion on the XOR optimization In original Ring ORAM work, the

authors mentioned that with computation on memory, if there is only one real block sent

during a read path operation, they can apply XOR technique to reduce online bandwidth

to 1. This optimization also requires that client set plaintext of all dummy blocks to a fixed

value, such as 0. Therefore, on the controller side, the real data can be recovered by XOR

ciphertext with encryptions of all dummy blocks.
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In recent years, researchers propose that simple computation logic can be implemented

on memory DIMM side such as [19, 30]. HMC and HBM provide even stronger computa-

tion logic layer that can do near data computing[37], but they do not use JEDE standard.

Conservatively, we still consider that we have 4 conventional DDR DIMMs for 4 channel

memory systems. In this case, we have to send at least 4 blocks, each from one DIMM, to

the controller side, even with XOR optimization. Therefore, although we borrow real blocks

from idle channel, if each memory channel has at most 1 real block, the XOR optimization

can still be adopted.

In the extreme rare case that more than 1 real block is sent from 1 memory channel, the

XOR optimization can not be used. Instead, we need to send all real and dummy blocks

during the access to make the access indistinguishable. The attacker will learn that in this

access, more than one real block is sent. This information does not hurt security, as the

attacker can not learn which blocks are real or which channel has more than one real blocks.

6.1.3 Preliminary Results

In this experiment, I simulated 1 million Ring ORAM accesses with following ORAM tree

configuration in Table 7, to test the effectiveness of block switching.

Table 7: Tested Ring ORAM Tree Organization

Z S A

Case1 4 4 3

Case2 8 12 8

Case3 16 28 20

Figure 42 shows the normalized access latency reduction with tree height L=23. We

can find that the worst case access time is independent from the tree bucket organization.

By fixing the oram tree bucket setting as case 2, Varying L will give different improvement

potential. Figure 43 shows that smaller L will introduce longer access latency in the baseline,

as the imbalance is more significant.
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Figure 42: Access Latency Reduction After Channel Balance(L=23)
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Figure 43: Access Latency Reduction After Channel Balance with various L(Case 2)
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Figure 44 shows how the read path can be balanced through different types of block

switch. Balance 1 refers to a bucket itself contributes a dummy block to busy channel, while

it has idle channel dummy block available. By switching the block inside the bucket, a

channel can get balanced.

Balance 2 is still another way of dummy block replacement policy. It treat the dummy

block available in the path as a whole pool and try to find the dummy block from idle channel

from a bucket that may not contribute to a busy channel traffic.

Balance 3 involves the real block replacement, however, it limit the maximum number

of real block a channel can sent out to 1. It means that under such switch, the XOR

optimization can still be used.

Balance 4 is the final choice for switching which do not limit the number of real blocks

sent from a channel.

From the percentage breakdown, we can conclude that with larger number of blocks per

bucket, a read path can be easier balanced with dummy block switch only. In case 1, when Z

and S both are only 4, around 0.4% access requires balance4 scheme. When Z and S increase

to 8 and 12, the percentage decreased to 10−6.

Case	1 Case	2 Case	3
Balance_4 0.004638 3.00E-06 0
Balance_3 0.041147 4.00E-05 0
Balance_2 0.245302 0.023635 0.008952
Balance_1 0.708913 0.976322 0.991048
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Figure 44: Percentage of Access that can be balanced after schemes trial
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Similarly, when we fix the bucket setting and vary the tree level, a larger tree will provide

more dummy blocks to switch. When the tree height is small, for example L=11, the need

for real block switch is around 1.1%, as shown in Figure45.

L=11 L=23 L=35 
Balance_4 0.000373 3.00E-06 0
Balance_3 0.011327 4.00E-05 0
Balance_2 0.107238 0.023635 0.00275
Balance_1 0.881062 0.976322 0.99725
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Figure 45: Percentage of Access that can be balanced after schemes trial(Case2)

6.2 ENABLE ORAM TO USE HIGH DENSITY NVM

While adopting NVM in Path ORAM helps to enforce privacy protection on large data set

with low leakage power, NVM faces intrinsic write performance and endurance issues, which

demand further optimization for achieving overall system optimality. In this project, we will

exploit the unique memory access characteristics of Path ORAM and its variants to improve

NVM-based ORAM performance.

6.2.1 Exploit ORAM access patterns to prolong NVM lifetime.

Many NVM technologies, such as Flash, PCM, and some ReRAM variants, face write en-

durance problems. Given that ORAM primitives are write intensive, a major concern arising
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from adopting NVM in Path ORAM implementation is, would the system be robust enough

to meet the common server lifetime expectation, e.g., 5 or 8 years of service time?

In this project, we will investigate the hybrid integration of DRAM and NVM for Path

ORAM, which can effectively reduce the number of writes to NVM and extend NVM lifetime.

As an example, when evenly splitting ORAM space between DRAM and NVM, we may

organize NVM as the last level of the Path ORAM tree. In this case, writing one ORAM

path generates only one NVM write while tens of DRAM writes. Having data blocks from

the last two levels allocated in NVM results in 75% of ORAM space being NVM and two

NVM writes per path access. We will exploit Path tree structure to extend NVM lifetime.

We will start with two approaches — reducing the number of bit changes and performing

wear-leveling, and study other approaches during the course of the project.

For the purpose of reducing bit changes, we propose to use short memory rows, e.g., 32B

instead of 64B. For an L-level path tree, one path access needs to read all data blocks of

the path, re-encrypt them with different keys, and merge with blocks from stash, and write

encrypted blocks back, resulting in modifying L × 4 × 64B data. If using 32B block size,

the tree would expand to L+ 1 levels such that we are to modify (L+ 1)× 4× 32B, a large

reduction of bit changes. However, using smaller block size results in large position map

overhead, and increased cache misses. It would be more beneficial if the memory channel

supports sub-channel operation. We will study these factors from which we identify the best

tradeoff among bit changes, performance, and energy consumption.

We will then investigate techniques that exploit Path ORAM access patterns to extend

the lifetime of the NVM subsystem. For example, memory cells are often accessed in rows

while one row is usually bigger than the size of a cacheline, the typical data block size in

Path ORAM. Studies have shown that subtree based organization, i.e., grouping consecutive

nodes from their neighbors in one memory row, is optimum in maximizing row buffer hits.

The memory blocks are stored in order in each row, as shown in Figure 46(a). A path access

reads and writes only a selected subset of data blocks in each row. Figure 46(b) compares

the access probabilities of different blocks. While the root block (of the subtree) is always

accessed, only one of its immediately two children would be accessed, resulting in 1/2 access

probability for each node. The access probability decreases logarithmically as level increases.
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When the top tree blocks are always mapped at the beginning of a page, the corresponding

device locations tend to wear out much faster than other locations. We will develop intra-

row wear leveling to exploit the unique ORAM access pattern. Each subtree (page) will

maintain a shift vector which contains log(SubtreeN) bits. It indicates the actual position

of B0 in the page. As each subtree left one empty cacheline in the page, the shift vector

can be stored in the empty slots of the line. Every time the subtree is read to the upper

ORAM controller, the shift vector will add one, and during the write phase, each block in

the page will shift right to enable wear-leveling. For data blocks at different levels, we will

evaluate if traditional wear leveling schemes [39, 58, 57] are still effective and develop new

ones if necessary.

Figure 46: The ORAM Subtree layout and its block access probability.

6.2.2 Tradeoffs between retention time and write performance.

Given a Path ORAM tree, the tree nodes being close to the root are more likely to be

accessed. Figure 47 depicts the access frequency decreases quickly as the level increases.

This motivates the design of NVM write strategies with tradeoffs between retention time

and write speed.

While NVM cells hold data after programming, their retention time, i.e., the duration

that the data persist in the cells, is often a function of the write voltage and the magnitude

of the write pulse. In the following discussion, we choose PCM as an example and define

weak write operation as the write with low voltage and fast write speed [94]. Other memory
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Figure 47: Access frequency of Path ORAM. a) The higher levels have higher access fre-

quency. b) Theoretical access probability if we assume all path accesses are random.

technologies such as Flash, MLC STT-MRAM[48, 75] and ReRAM [49, 93] show similar

write modes. They differ in voltage levels and write pulse widths, etc.

NVM cells need to be periodically refreshed (though at a much low frequency than that

of DRAM) to ensure data integrity. Intuitively, writing NVM cells with weak write strategies

leads to more frequent refresh operations. However, such refresh operations may be skipped

if the data were just written. By exploiting the memory access frequency of tree nodes at

different levels, we are to develop retention aware write modes for Path ORAM. In particular,

we adopt weak write modes for nodes that are close to the root as such nodes may be accessed

shortly in the future.

Such design has two benefits: 1) Previous write path operation can be finished earlier,

2) Allow next path access which has overlap with the previous access start earlier. Note:

(1) while on-chip ORAM controller often adopts a large tree-top cache to buffer frequently

accessed tree nodes, offloaded ORAM controllers often have limited buffer space. Depending

on the integration of ORAM controllers, tree-top nodes may be accessed from NVM space

and thus adopting fast write modes can effectively reduce the overall ORAM performance.

(2) A secure application may have phases that have different memory access frequency,
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i.e., MPKI (memory accesses per kilo instructions). To prevent information leakage, recent

studies obfuscate program phases by generating dummy memory accesses. As a result, the

next time that a tree node may be accessed can be computed with high accuracy.

6.3 SCALABLE ORAM DESIGN TO ALLOW MULTI-CLIENT ACCESSES

Given security protection has arisen as one of the top concerns in cloud computing, we

envision that multiple applications running at the server side may demand strong privacy

protection. We next develop scalable ORAM implementation to support concurrent Path

ORAM accesses from multiple threads or processes. Our design will be built upon secure

ORAM controller that we develop in preceding tasks. That is, the ORAM controller cooper-

ates with the trusted processor for providing transparent security protection, in particular,

privacy protection. The secret keys used to encrypt and obfuscate data in the ORAM tree

are hidden from the data owners and service clients. By making Path ORAM a secure

service, path obfuscation can finish within the ORAM controller. In addition, even when

sensitive data are shared by multiple users, one user may not reveal the access patterns of

others, even with the collusion from honest-but-curious servers.

6.3.1 Concurrent Path ORAM accesses to non-shared data.

We start with developing techniques to support concurrent Path ORAM accesses while there

are no share data. The design challenge that we face in this scenario is the competition for

ORAM controller hardware and DRAM space allocation.

Dynamic resource allocation between multiple ORAM applications. We propose to study

and characterize the secure applications that demand ORAM protection and develop dy-

namic resource allocation strategies to guide the allocation of ORAM controller usage and

DRAM space allocation. When adopting Path ORAM, a secure application generates ORAM

accesses at a fixed rate to prevent timing attacks [24, 7]. It generates more dummy accesses

if having a smaller MPKI and fewer dummy accesses if having a larger MPKI. Reducing the
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rate at which the ORAM accesses (dummy or real) are generated would waste less memory

bandwidth and have lower interference. However, such a strategy correlates the ORAM rate

and the application’s MPKI, which leaks information. We will study the cases that may

tolerate such a leakage, for example, the application is well-known and we use its MPKI

profiled with benchmark input, i.e., the leakage information is not bound to the user’s input.

In the project, we will study more allocation strategies and the tradeoff between security

and performance.

To enable dynamic DRAM allocation, we may face additional design challenges. For

example, ORAM space may become non-contiguous, which demands non-trivial path id to

physical address mapping. Accessing an L-level ORAM tree path could demand up to L

mapping, which can overburden TLB and degrade system performance considerably. We

will study this and similar design challenges arising from dynamic resource allocation, and

develop simple yet effective approaches to tradeoff among multiple designs factors.

6.3.2 Concurrent Path ORAM accesses to shared data.

For a more generalized application scenario, multiple applications may share some sensitive

data while each application has its private data. For example, in a medical record database,

patients’ medical record may be accessible to both a doctor, a nurse, and an insurance

company. While the doctor can change the record, the nurse and the insurance company

may only read the record. In addition to enforcing the pre-defined access privileges, the nurse

should not be able to tell if the insurance company has accessed some patients’ records. In

this project, we are to develop low overhead techniques to enforce these accesses.

Enhance Path ORAM with access control. We will study techniques to enhance Path

ORAM with access control inside the ORAM controller. While access control has been

widely adopted in OS to enable and adjust the accesses of shared data, our design takes

advantage of secure ORAM control, which exhibits new design opportunities. In particular,

for traditional access control, OS acts as a centralized controller, which greatly simplifies the

control assignment and dynamic adjustment. To enforce privacy protection for all parties,

adjust access control may demand dynamic negotiation from multiple participants.
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We use an access control matrix with rows being different data chunks, columns being

different applications; an entry being 1 or 0 indicate the corresponding application may and

may not access the data chunk, respectively. At runtime, each ORAM access first checks

the access control matrix and gets the access validated before accessing the real data. By

adopting the secure ORAM control model, we expect minimized modification to existing

Path ORAM implementation and small performance overhead at runtime. As a comparison,

we eliminate the significant re-organization of Path ORAM tree, the public key encryption,

and large data movement overheads in traditional design, e.g., GoRAM [51].

Figure 48 illustrates a new privacy attack that may arise in Path ORAM enhanced cloud

servers. In the figure, we assume that two applications A and B can access shared data block

b. Assume application A accesses b first and places it in the shared last level cache. When

application B tries to access b, it returns within a short period of time (i.e., L2 access latency).

However, if application B has never accessed b before. This short access latency would reveal

application A’s access behavior. This attack could become more serious if applications A

and B build a covert channel through the last level cache. That is, depending on whether

bit information ‘1’ or ‘0’ to send from application A to application B, application A may

choose to access or do not access data block b after flushing the last level cache. Application

B the receives the information by checking its access latency of data block b.

ORAM 

Tree

Shared

Last 

Level

Cache
ORAM 

Access

Application A
Core 1

Application B
Core 2

Trusted Processor

?
X

Figure 48: Potential covert channel due to shared ORAM and oblivious cache. X denotes

the access control component to be developed in the project.
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Oblivious shared cache. To protect the potential inter-client covert channel, we plan to

design an oblivious shared cache, used together with ORAM. For every shared data entry in

the cache read from ORAM, we need to set an additional access control flag in the cache.

Only the client that originally fetched the data can read it from the cache. Other clients,

which may have the access to the data entry, can only read it from ORAM even the data

is present in the cache. As shown in Figure 48, user B will not be allowed to read or write

shared entry x even it exists in the cache but was brought up by other users. User B will

need another load from ORAM access to read the entry x in this case. With the oblivious

shared cache design, plus ORAM, no inter-client access pattern will be leaked.
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7.0 CONCLUSIONS

In this dissertation, I discussed and introduced several architectural solutions to build effi-

cient secure memory system using ORAM, which can protect the memory system from access

pattern leakage. The cost of ORAM algorithms comes from frequently shuffle and rewrite

the memory content, which will saturate the system memory bandwidth and also compete

with other co-run applications. Without effective scheduling technique or specialized design

architecture, the ORAM algorithm and protected application can lead to significant co-run

interference in the system. Therefore, there is a strong need to analyze ORAM accesses

in architecture view and redesign the memory interface to enhance the application perfor-

mance. This is where this dissertation lies in this field, by utilizing architectural enhancement

techniques, our work makes ORAM even more practical to be adopted on a shared server

environment.

My first work in Chapter 3, Cooperative Path ORAM design[80], is an optimized archi-

tecture design for memory bandwidth sharing between secure and non-secure applications.

I propose practical buffer design to accelerate both types of applications without harming

ORAM security invariants. The memory channel utilization is improved, and the CP-ORAM

design achieves an average of 20% performance improvement over the baseline Path ORAM

design while providing a flexible resource tuning between different kinds of applications.

The second work in Chapter 4, ORAM delegator[81], targets at the larger interference

between different applications on the server when we scale the number of applications on the

same physical machine. The major design upgrades memory channels by forming a secure

engine on the buffer on board unit and offload the ORAM operations on the buffer. This

design allows physical isolation of applications with limited pin counts out processor side

while providing high parallelism to both types of applications.
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The major differences of this dissertation from other work in this field are, we are the first

to study the co-run interference on a shared server environment. Prior art, which focused

on improving ORAM algorithms or ORAM access overhead, does not consider the situation

that the physical machines may be shared by multiple different applications, therefore, the

bandwidth is shared. Our work considered a more practical use scenario and studied the root

cause of application slowdown from memory architecture view. Further, to our knowledge,

our BoB based ORAM delegator design is the first design to provide isolated ORAM channel

with high expansion capability and high internal parallelism processing capability, without

sacrificing the security guarantee of the system. The major contributions of the thesis are

summarized below:

• To our best of knowledge, this is the first work to study the ORAM interference with

other applications on a shared server environment.

• First work to propose micro-architecture enhancement, such as DRAM command-level

scheduling techniques, to accelerate applications and bandwidth utilization.

• First work to enable efficient and secure memory space expansion for ORAM based

applications.

• Propose a secure memory architecture with no DRAM side interface or hardware modi-

fication, which is low cost compare to other state-of-art proposals.

• Enable a flexible priority tuning between different applications and present the design

space exploration when designing scalable and secure memory architectures.

At the end of this dissertation, I discussed several other ongoing projects related to other

architectural enhancements on ORAM based system, which aims to build ORAM based mem-

ory system more scalable regarding lower access latency, higher density, higher throughput,

and concurrency. With each technique, the high overhead of ORAM can be reduced step by

step, which enable this strong access pattern protection scheme more acceptable on a real

system.
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