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Abstract. For more than a decade Vytelingum’s Adaptive-Aggressive (AA) al-
gorithm has been recognized as the best-performing automated auction-market 
trading-agent strategy currently known in the AI/Agents literature; in this paper, 
we demonstrate that it is in fact routinely outperformed by another algorithm 
when exhaustively tested across a sufficiently wide range of market scenarios. 
The novel step taken here is to use large-scale compute facilities to brute-force 
exhaustively evaluate AA in a variety of market environments based on those 
used for testing it in the original publications. Our results show that even in these 
simple environments AA is consistently outperformed by IBM's GDX algorithm, 
first published in 2002. We summarize here results from more than one million 
market simulation experiments, orders of magnitude more testing than was re-
ported in the original publications that first introduced AA. A 2019 ICAART 
paper by Cliff claimed that AA's failings were revealed by testing it in more re-
alistic experiments, with conditions closer to those found in real financial mar-
kets, but here we demonstrate that even in the simple experiment conditions that 
were used in the original AA papers, exhaustive testing shows AA to be outper-
formed by GDX. We close this paper with a discussion of the methodological 
implications of our work: any results from previous papers where any one trading 
algorithm is claimed to be superior to others on the basis of only a few thousand 
trials are probably best treated with some suspicion now. The rise of cloud com-
puting means that the compute-power necessary to subject trading algorithms to 
millions of trials over a wide range of conditions is readily available at reasonable 
cost: we should make use of this; exhaustive testing such as is shown here should 
be the norm in future evaluations and comparisons of new trading algorithms.  

Keywords: Automated Trading, Auction Markets, Adaptive Bidding Agents.  

1 Introduction 

For hundreds of years regional, national, and international financial markets involved 
human traders interacting with one another to negotiate and agree details of transac-
tions. In the past 15 years the number of human traders in financial markets has fallen 
very sharply, as humans have been systematically replaced by automated trading sys-
tems. These automated systems, known in the industry as "algorithmic traders" (often 
abbreviated simply to "algos") or "robot traders", can employ artificial intelligence (AI) 
and machine learning (ML) techniques to adapt their responses over multiple timescales 
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ranging from milliseconds to years. In a large investment bank, a single robot trader 
might routinely handle daily order flows of US$20Bn or more. This is manifestly a big 
business, and the replacement of highly-paid humans (whom, it seems reasonable to 
assume, were also highly intelligent) with more cost-efficient robot traders is poten-
tially a notable success story for AI/ML. Major investment banks and fund-manage-
ment companies no longer compete to hire only the best traders; now they compete to 
hire the best trading-algorithm designers too. See [16] for an entertaining first-hand 
account of these changes.  

Because of the large sums of money at stake, precise details of the specific robot 
traders used in industry are closely guarded commercial secrets. If a robot is making 
millions of dollars for a bank, the last thing the bank wants is for someone to publish 
an academic paper describing how that robot works: any commercial advantage would 
be immediately lost. Nevertheless, there is a body of work in the academic AI/ML lit-
erature stretching back to the late 1990s that describes a sequence of adaptive automated 
trading algorithms which have stood the test of time and remain influential to this day.  

Although a few significant publications contributing to the development of robot-
trading systems came from academic economists, the landmark papers largely appeared 
in AI and autonomous-agent publication venues such as the International Joint Con-
ference on Artificial Intelligence (IJCAI), the International Conference on Autonomous 
Agents and Multi-Agent Systems (AAMAS), the International Conference on Agents 
and Artificial Intelligence (ICAART),  and the prestigious Artificial Intelligence journal 
(AIJ): Section 2 reviews in more detail eight major publications in the development of 
this field. The review in Section 2 is important, because there we trace the way in which 
the methodology of initial experiments published in 1962 by a young economist, 
Vernon Smith (who 40 years later would be awarded the Nobel Prize for his empirical 
research work) have since come to be fixed, or fixated upon, in the AI/agents literature 
on robot traders. Motivated by what it seems fair to assume was a wholly well-inten-
tioned desire to show each set of the latest results in the context of what had gone be-
fore, papers subsequent to Smith’s replicated much or all of his 1962 experiment design 
and analysis. And this, it seems, may have led down something of a dead end. 

More details are given in Section 2 but for the purposes of this introduction it is 
sufficient to summarize the key events as follows: at the 2001 IJCAI a team of research-
ers at IBM published results [7] which showed that two robot trading algorithms, known 
as MGD [23] and ZIP [3], could consistently out-perform human traders when tested in 
rigorous laboratory-style experiments; in the years after this, several other trading al-
gorithms were published, each being claimed as the best-performing algorithm in the 
public domain at the time of its publication; and the most recent of these is Vytelingum's 
AA algorithm [26] which was described in a 2006 paper in the AIJ [27], and was later 
shown to outperform human traders in a 2011 IJCAI paper [9]. Put simply, AA is widely 
believed to be the best-performing trading algorithm in the published literature.  

In this paper we demonstrate that belief to be wrong: we show here that AA is not 
the best. Our demonstration builds on recently-published work by Vach [25] and by 
Cliff [6]. As far as we are aware, Vach's 2015 MSc thesis [25] was the first to publicly 
question whether AA is indeed dominant: Vach reported results in which he populated 
markets with a variety of different robot traders (i.e., some traders running AA and 
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other traders running different strategies, such as MGD or ZIP), that then interacted 
with one another; Vach found that whether AA was the best-performing algorithm or 
not in any particular trial depended on the relative proportions of the different trading 
agents present in the market for that trial. But if AA was truly dominant then it should 
have outperformed other robot traders regardless of what the mix of strategies is in the 
market at any one time. Inspired by Vach, and seeking to independently replicate his 
results, Cliff's 2019 ICAART paper [6] presented results from exhaustive brute-force 
testing in which, for a market with N traders active in it, and with a selection of T robot-
trader algorithms (including AA) available, the performance of AA in every possible 
permutation of the T different trader types was studied over a variety of values of N. 
Cliff's results, gathered from more than 3 million individual market simulation trials, 
confirmed and extended Vach's observation: for each value of N that Cliff studied, there 
was some permutation of the T different robot-trader strategies in which AA is outper-
formed by one or more of the other strategies. Cliff assumed that this result was at-
tributable to his use of test environments that were more realistic (i.e., closer to real-
world financial markets) than those that had been used by Vytelingum in his 2006 [26] 
and 2008 [27] publications introducing AA. In this paper we present results demon-
strating that Cliff's assumption in [6] was incorrect. Here we go back to the original 
test-cases used by Vytelingum [26,27], but we follow Cliff's [6] method of running 
brute-force exhaustive testing of all possible permutations of AA and other strategies: 
whereas Vytelingum published results from fewer than 30,000 simulation trials, in this 
paper we show results from more than 1,000,000 market sessions: a 30-fold increase 
over the original publications. Our results here are consistent with those reported by 
Vach [25] and by Cliff [6]: AA can be routinely outperformed by other strategies, de-
pending on the relative proportions of the different strategies in the market; thus the 
claims of AA's dominance in earlier publications seem now to be due entirely to an 
insufficient number of trials having been conducted, even in the original test-cases used 
in the initial publications on AA. If the exhaustive testing we used here had been con-
ducted at the time of the original publications, AA would not have been mistakenly 
described as the best-known strategy.  

The testing we use is not complicated: it just requires some nested loops to iterate 
through all possible permutations of the various trader-types, but its combinatorics are 
truly explosive and hence performing all the necessary trials is highly computationally 
expensive, and would have taken an awful long time on a single desktop computer. 
Possibly these high computational costs are why such exhaustive testing has not previ-
ously been commonplace in the evaluation of trading algorithms. For computing the 
brute-force simulation studies described here we used our University's in-house Blue 
Crystal supercomputer, to which we have free access; but all of our experiments could 
just as easily have been run instead on commercial cloud computing services such as 
those available from Amazon, Google, Microsoft, or Oracle, incurring only modest fees 
(a few hundred dollars at most, at today's prices). And so, while the results from our 
experiments constitute the empirical contribution in this paper, we also offer the style 
of testing used here as a methodological contribution: given the present-day ready avail-
ability of cheap large-scale computing via cloud service providers, we argue later in 
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this paper that the kind of brute-force studies reported here should from now on be 
adopted as the norm in any work that evaluates and compares trading algorithms.  

The rest of this paper is structured as follows. Section 2 covers the necessary back-
ground material, and Section 3 describes how AA can be modified to work in contem-
porary market simulators. The text in those two sections is taken verbatim from [6], and 
readers familiar with that paper can safely skip straight to Section 4, which is where we 
describe our methods and results for exhaustive testing of AA. Section 5 then discusses 
methodological implications, and conclusions are drawn in Section 6.  

 
2 Traders, Markets, and Eight Key Papers  
The 2002 Nobel Prize in Economics was awarded to Vernon Smith, in recognition of 
Smith’s work in establishing and thereafter growing the field of Experimental Econom-
ics (abbreviated hereafter to “ExpEcon”). Smith showed that the microeconomic be-
havior of human traders interacting within the rules of some specified market, known 
technically as an auction mechanism, could be studied empirically, under controlled 
and repeatable laboratory conditions, rather than in the noisy messy confusing circum-
stances of real-world markets. The minimal laboratory studies could act as useful prox-
ies for studying real-world markets of any type, but one particular auction mechanism 
has received the majority of attention: the Continuous Double Auction (CDA), in which 
any buyer can announce a bid-price at any time and any seller can announce an offer-
price at any time, and in which at any time any trader in the market can accept an offer 
or bid from a counterparty, and thereby engage in a transaction. The CDA is the basis 
of most major financial markets worldwide.  

Smith’s initial set of experiments were run in the late 1950’s, and the results and 
associated discussion were presented in his first paper on ExpEcon, published in the 
highly prestigious Journal of Political Economy (JPE) in 1962 [18]. It seems plausible 
to speculate that when his JPE paper was published, Smith had no idea that it would 
mark the start of a line of research that would eventually result in him being appointed 
as a Nobel laureate. And it seems even less likely that he would have foreseen the extent 
to which the experimental methods laid out in that 1962 paper would subsequently 
come to dominate the methodology of researchers working to build adaptive autono-
mous trading agents by combining tools and techniques from AI, ML, agent-based 
modelling (ABM), and agent-based computational economics (ACE). Although not a 
goal stated at the outset, this strand of AI/ML/ABM/ACE research converged toward a 
common aim: specifying an artificial agent, an autonomous adaptive trading strategy, 
that could automatically tune its behavior to different market environments, and that 
could reliably beat all other known automated trading strategies, thereby taking the 
crown of being the current best trading strategy known in the public domain, i.e., the 
“dominant strategy”. Over the past 20 years the dominant strategy crown has passed 
from one algorithm to another. Here, we demonstrate that the current holder of the title, 
Vytelingum’s [26, 27] AA strategy, does not perform nearly so well as was previously 
believed from earlier successes in small numbers of trials.  

Given that humans who are reliably good at trading are generally thought of as being 
“intelligent” in some reasonable sense of the word, the aim to develop ever more so-
phisticated artificial trading systems is clearly within the scope of AI research, although 
some very important early ideas came from the economics literature: a comprehensive 
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review of relevant early research was given in [3]. Below in Section 2.1 we first briefly 
introduce eight key publications leading to the development of AA; then describe key 
aspects of ExpEcon market models in Section 2.2; and then discuss each of the eight 
key publications in more detail in Section 2.3. After that, Section 2.4 summarizes the 
results of Vach [25] and Cliff [6], which together cast doubts on the hitherto apparently 
resolved issue of which trading agent is the best.  

 
2.1 A Brief History of Trading Agents  
If our story starts with Smith’s 1962 JPE paper, then the next major step came 30 years 
later, with a surprising result published in the JPE by Gode and Sunder in 1993 [14]: 
this popularized a minimally simple automated trading algorithm now commonly re-
ferred to as ZIC. A few years later two closely related research papers were published 
independently and at roughly the same time, each written without knowledge of the 
other: the first was a Hewlett-Packard Labs technical report [3] describing the adaptive 
AI/ML trading-agent strategy known as the ZIP algorithm; the second summarized the 
PhD thesis work of Gjerstad, in a paper [11] co-authored with his PhD advisor Dick-
haut, describing an adaptive trading algorithm now widely known simply as GD. After 
graduating his PhD, Gjerstad worked at IBM’s TJ Watson Labs where he helped set up 
an ExpEcon laboratory that his IBM colleagues used in a study that generated world-
wide media coverage when the results were published by Das et al. at IJCAI-2001 [7]. 
This paper presented results from studies exploring the behavior of human traders in-
teracting with GD and ZIP robot traders, in a CDA with a Limit Order Book (LOB: 
explained in more detail in Section 2.2, below), and demonstrated that both GD and 
ZIP reliably outperformed human traders. Neither GD nor ZIP had been designed to 
work with the LOB, so the IBM team modified both strategies for their study. A follow-
on 2001 paper [23] by Tesauro and Das (two co-authors of [7]) described a more ex-
tensively Modified GD (MGD) strategy, and later Tesauro and Bredin [23] described 
the GD eXtended (GDX) strategy. Both MGD and GDX were each claimed to be the 
strongest-known public-domain trading strategies at the times of their publication.  

Subsequently, Vytelingum’s 2006 thesis [26] introduced the Adaptive Aggressive 
(AA) strategy which, in an AIJ paper [27], and in later ICAART and IJCAI papers [8, 
9], was shown to be dominant over ZIP, GDX, and also human traders. Thus far then, 
AA holds the title.  

However Vach [25] presented results from experiments with the OpEx market sim-
ulator [10], in which AA, GDX, and ZIP were set to compete against one another, and 
in which the dominance of AA is questioned: Vach’s results indicate that whether AA 
dominates or not can be dependent on the ratio of AA:GDX:ZIP in the experiment: for 
some ratios, Vach found AA to dominate; for other ratios, it was GDX. Vach studied 
only a relatively small sample from the space of possible ratios, but his results prompted 
Cliff [6] to exhaustively step through a wide range of differing ratios of four trading 
strategies (AA, ZIC, ZIP, and the minimally simple SHVR strategy described in Section 
2.2), doing a brute-force search for situations in which AA is outperformed by the other 
strategies. The combinatorics of such a search are quite explosive: Cliff reported on 
results from over 3.4 million individual simulations of market sessions. Cliff's findings 
indicated that Vach’s observation was correct: AA’s dominance does indeed depend on 
how many other AA traders are in the market; and, in aggregate, AA was routinely 
outperformed by ZIP and by SHVR.  
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2.2 On Laboratory Models of Markets  
Smith’s early experiments were laboratory models of so called open-outcry trading pits, 
a common sight in any real financial exchange before the arrival of electronic trader-
terminals in the 1970s. In a trading pit, human traders huddle together and shout out 
their bids and offers, and also announce their willingness to accept a counterparty’s 
most recent shout. It was a chaotic scene, now largely consigned to the history books. 
In the closing quarter of the 20th Century, traders moved en masse to interacting with 
each other instead via electronic means: traders “shouted” their quote-prices (offer or 
bid) or acceptances by typing orders on keyboards and then sending those orders to a 
central server that would display an aggregate summary of all orders currently 
“shouted” (i.e., quoted) onto the market. That aggregate summary is very often in the 
form of a Limit Order Book or LOB: the LOB summarizes all bids and offers currently 
live in the market. At its simplest, the LOB is a table of numbers, divided into the bid 
side and the ask side (also known as the offer side). Both sides of the LOB show the 
best price at the top, with less good prices arranged below in numeric order of price: 
for the bid side this means the highest-priced bid at the top with the remaining bid prices 
displayed in descending order below; and for the ask side the lowest-priced offer is at 
the top, with the remaining offers arranged in ascending order below. The arithmetic 
mean of the best bid and best ask prices is known as the mid-price, and their difference 
is the spread. For each side of the LOB, at each price on the LOB, the quantity available 
on that side at that price is also indicated, but with no indication of who the relevant 
orders came from: in this sense the LOB serves not only to aggregate all currently live 
orders, but also to anonymize them.  

Traders in LOB-based markets can usually cancel existing orders to delete them 
from the LOB. In a common simple implementation of a LOB, traders can accept the 
current best bid or best offer by issuing a quote that crosses the spread: i.e., by issuing 
an order that, if added to the LOB, would result in the best bid being at a higher price 
than the best ask. Rather than be added to the LOB, if a bid order crosses the spread 
then it is matched with the best offer on the ask side (known as lifting the ask), whereas 
an ask that crosses the spread is matched with the best bid (hitting the bid); and in either 
case a transaction then occurs between the trader that had posted the best price on the 
relevant side of the LOB, and the trader that crossed the spread. The price of the result-
ing transaction is whatever price was hit or lifted from the top of the LOB.  

Smith’s earliest experiments pre-dated the arrival of electronic trading in real finan-
cial markets, and so they can be thought of as laboratory models of open-outcry trading 
pits. Even though the much later work by Gode and Sunder [14], Cliff [3], Gjerstad and 
Dickhaut [11], and Vytelingum [26] all came long after the introduction of electronic 
LOBs in real markets, these academic studies all stuck with Smith’s original method-
ology, of modelling open-outcry markets (often by essentially operating a LOB with 
the depth fixed at 1, so the only information available to traders is the current best, or 
most recent, bid and ask prices).  

Nevertheless, the studies by IBM researchers [7, 23, 24], and also the replication and 
confirmation of AA results by De Luca and Cliff [8-10] and by Stotter et al. [21, 22], 
all used LOB-based market simulators. The IBM simulator Magenta seems to have 
been proprietary to IBM; developed at TJ Watson Labs and not available for third-party 
use, but De Luca made an open-source release of his OpEx simulator [10] which was 
subsequently used by Vach [25] in the studies that prompted our work reported here. 
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Also of relevance here is the ExPo simulator described by Stotter et al. [21, 22]: in the 
work by De Luca [8-10], by Vach [25], and by Stotter et al. [21, 22], Vytelingum’s 
original AA needed modifications to make it work in a LOB-based market environ-
ment: this is discussed further in Section 3.  

In the work reported here we used neither OpEx nor ExPo, but instead BSE [1, 5] 
which is another open-source ExpEcon market simulator, initially developed as a teach-
ing aid but subsequently used as a platform for research (see, e.g. [15]). BSE has the 
advantage of being relatively lightweight (a single Python script of c.2500 lines) and 
hence readily deployable over large numbers of virtual machines in the cloud. BSE 
maintains a dynamically updated LOB and also publishes a tape, a time-ordered record 
of all orders that have been executed, and other significant events such as the cancella-
tion of earlier orders (which are deleted from the LOB). BSE comes with pre-defined 
versions of ZIC and ZIP, and also some additionally minimally-simple non-adaptive 
trading strategies that can be used for benchmarking against other more complex strat-
egies added by the user. One of these, the Shaver strategy (referred to in BSE by the 
“ticker symbol” SHVR) simply reads the best prices on the LOB and, if it is able to do 
so without risking a loss-making deal, then issues an order that improves the current 
best bid or best ask by 0.01 units of currency (i.e., one penny/cent), which is BSE's tick 
size, i.e. the minimum change in price that the system allows. 

 
2.3 Eight Key Papers, One Methodology  
 
Smith, 1962. Although precedents can be pointed to, Smith’s 1962 JPE paper [18] is 
widely regarded as the seminal study in ExpEcon. In it he reported on experiments in 
which a group of c.12-25 human subjects were each randomly assigned to be either a 
buyer or a seller in the market experiment. Buyers were given a supply of artificial 
money, and sellers were given one or more identical items, of no intrinsic value, to sell. 
Each trader in the market was assigned a private valuation, a secret limit price: for a 
buyer this was the price above which he or she should not pay when purchasing an item; 
for a seller this was the price below which he or she should not sell an item. These limit-
price assignments model the client orders executed by sales traders in real financial 
markets; we’ll refer to them just as assignments in the rest of this paper. After the allo-
cation of assignments to all traders, the traders then interacted via an open-outcry CDA 
while Smith and his assistants made notes on the sequence of events that unfolded dur-
ing the experiment: typically, buyers would gradually increase their bid-prices, and 
sellers would gradually lower their offer-prices (also known as ask-prices) until trans-
actions started to occur. Eventually, usually within a few minutes, the experimental 
market reached a position in which no more trades could take place, which marked the 
end of a trading period or “trading day” in the experiment; any one experiment typically 
ran for n=5-10 periods, with all the traders being resupplied with fresh assignments of 
limit prices and money-to-buy-with and items-for-sale at the start of each trading pe-
riod. The sequence of n contiguous trading periods (or an equivalently long single-
period experiment with continuous replenishment, as discussed further in Sections 2.4 
and 4.4) is referred to here as one market session. Smith could induce specific supply 
and demand curves in these experimental markets by appropriate choices of the various 
limit-prices he assigned to the traders. As any high-school student of microeconomics 
knows, the market’s theoretical equilibrium price (denoted hereafter by P0) is given by 
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the point where the supply curve and the demand curve intersect. Smith found that, in 
these laboratory CDA markets populated with only remarkably small groups of human 
traders, transaction prices could reliably and rapidly converge on the theoretical P0  

value despite the fact that each human trader was acting purely out of self-interest and 
knew only the limit price that he or she had been assigned. Smith’s analysis of his 
results focused on a statistic that he referred to as a, the root mean square deviation of 
actual transaction prices from the P0 value over the course of an experiment. In his early 
experiments, P0  was fixed for the duration of any one experiment; in later work Smith 
explored the ability of the market to respond to “price shocks” where, in an experiment 
of N trading days, on a specific day S<N the allocation of limit prices would be changed, 
altering P0 from the value that had been in place over trading periods 1, 2, …, S, to a 
different value of P0 that would then remain constant for the rest of the experiment, i.e. 
in trading periods S+1, S+2, …, N. For brevity, in the rest of this paper Smith’s initial 
style of experiments will be referred to as S’62 experiments.  
 
ZIC: Gode and Sunder, 1993. Gode and Sunder’s JPE paper [14] used the S’62 meth-
odology, albeit with the CDA markets being electronic (a move Smith himself had 
made in his experiments many years earlier), so each trader was sat at a personal termi-
nal, a computer screen and keyboard, from which they received all information about 
the market and via which they announced their orders, their bids or offers, to the rest of 
the traders in the experiment. Gode and Sunder first conducted a set of experiments in 
which all the traders were human, to establish baseline statistics. Then, all the human 
traders were replaced with automated trading systems, absolute-zero minimally-simple 
algo traders which Gode and Sunder referred to as Zero Intelligence (ZI) traders. Gode 
and Sunder studied markets populated with two type of ZI trader: ZI-Unconstrained 
(ZIU), which simply generated random prices for their bids or offers, regardless of 
whether those prices would lead to profitable transactions or to losses; and ZI-
Constrained (ZIC), which also generated random order prices but were constrained by 
their private limit prices to never announce prices that would lead them to loss-making 
deals. Gode and Sunder used fixed supply and demand schedules in each experiment, 
i.e. there were no price-shocks in their experiments.  

Not surprisingly, the market dynamics of ZIU traders were nothing more than noise. 
But the surprising result in Gode and Sunder’s paper was the revelation that a com-
monly used metric of market price dynamics known as allocative efficiency (AE, here-
after) was essentially indistinguishable between the human markets and the ZIC mar-
kets. Because AE had previously been seen as a marker of the degree to which the 
traders in a market were behaving intelligently, the fact that ZIC traders scored AE 
values largely the same as humans was a shock. Gode and Sunder proposed that a dif-
ferent metric should instead be used as a marker of the intelligence of traders in the 
market. This metric was profit dispersion (PD, hereafter) which measures the difference 
between the profit each trader accrued in an experiment, compared to the profit that 
would be expected for that trader if every transaction in the market had taken place at 
the market’s theoretical equilibrium price P0: humans typically showed very low values 
of PD (which is assumed to be good) while ZIC traders did not. On this basis, Gode 
and Sunder argued that PD should be used in preference to AE in future.  

Other researchers were quick to cite Gode and Sunder's ZIC result, and often used it 
to support the claim that, given the ZIC traders have no intelligence, then for transaction 
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prices to converge toward the theoretical equilibrium price and/or for a group of traders 
to score highly on AE, somehow the "intelligence" required to do this must reside 
within the rules of the CDA market system rather than within the heads of the traders. 
Strangely, Gode & Sunder's 1993 paper [14] provides no concrete causal mechanistic 
explanation of how their striking ZIC results arise; they describe their methods, and the 
results observed, but the internal mechanisms that give rise to those results are left as 
something of a mystery, as if the CDA market was an impenetrable black-box.  

A causal mechanistic analysis of markets populated by ZIC traders was subsequently 
developed by Cliff [3], who considered the probability mass functions (PMFs) of prices 
generated by ZIC buyers and sellers, and the joint PMF of transaction prices in ZIP 
markets, which is given by the intersection of the bid-price and offer-price PMFs: the 
shape of the transaction-price PMF is determined by the nature of the supply and de-
mand curves in the market, and Cliff demonstrated that the supply and demand curves 
in a ZIC market experiment could be arranged so that the expected value of the trans-
action prices (computable as an integral over the PMF) is identical to the theoretical 
equilibrium price given by the intersection point of the supply and demand curves. This 
was why the five ZIC experiments reported in Gode and Sunder's [14] paper showed 
transaction prices that were centered on the theoretical equilibrium price in each case: 
the supply and demand curves were arranged in such a way that this was the expected 
outcome. Cliff showed that with different arrangements of supply and demand curves, 
such as situations where one or both curves were flat (as had been used in Smith's orig-
inal 1962 JPE paper [18]), the expected price of transactions in ZIP markets could differ 
considerably from the theoretical equilibrium price, and so transaction prices in those 
ZIC markets would fail to exhibit  human-like convergence toward the theoretical equi-
librium value. In these differently-designed experiments, ZIC traders would be revealed 
for exactly what they are: simple stochastic processes that only coincidentally exhibit 
human-like market dynamics when the experimenters happen to have chosen to impose 
just the right kind of supply and demand curves. Cliff's analysis showed that the level 
of intelligence in the ZIC traders was insufficient to recreate human-like market dy-
namics more broadly, and so a more intelligent automated trading strategy was re-
quired.1 
 
ZIP: Cliff, 1997. Taking direct inspiration both from Smith’s work and from the ZI 
paper by Gode and Sunder, Cliff [3] developed a ZI trading strategy that used simple 
machine-learning techniques to continuously adapt the randomly-generated prices 
quoted by the traders: this strategy, known as ZI-Plus (ZIP) was demonstrated to show 
human-like market dynamics in experiments with flat supply and/or demand curves: 
Cliff also showed theoretical analyses and empirical results which demonstrated that 
transaction prices in markets populated only by ZIC traders would not converge to the 
theoretical equilibrium price when the supply and/or demand curves are flat (or, in the 
language of microeconomics, “perfectly elastic”). ExpEcon studies in which the supply 

 
1 Independently, and via a wholly different line of attack, Gjerstad and Shachat [13] also demol-

ished the argument that Gode and Sunder's [14] ZIC results indicate that the efficiency or 
intelligence in the market system lies solely within the CDA mechanism. Nevertheless, Gode 
and Sunder's results continue to be cited uncritically by various authors in the economics lit-
erature: we can only assume that such authors prefer a nice fairy story, rather than hard facts.   
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and/or demand curve was flat had previously been reported by Smith and others, but 
Gode and Sunder had not explored the response of their ZIC traders to this style of 
market. Cliff’s work involved no human traders: all the focus was on markets populated 
entirely by autonomous agents, by ZIP traders. In total Cliff [3] reported on fewer than 
1,000 simulated market sessions. The focus on homogenous markets can fairly be in-
terpreted as continuing the tradition established by Gode and Sunder (who studied mar-
kets homogeneously populated with either human, ZIU, or ZIC traders) and by Smith 
(who studied all-human markets). In all other regards Cliff continued the S’62 tradition: 
key metrics were Smith’s a, AE, and PD.  
 
GD: Gjerstad and Dickhaut, 1997. Gjerstad’s PhD studies of price formation in CDA 
markets also involved creating an algorithm that could trade profitably by adapting its 
behavior over time, in response to market events [11]. In contrast to the ZI work, Gjer-
stad’s trading algorithm uses frequentist statistics, gradually constructing and refining 
a belief function that estimates the likelihood for a bid or offer to be accepted in the 
market at any particular time, mapping from price of the order to its probability of suc-
cess. Gjerstad did not explicitly name his strategy, but it has since become known as 
the GD strategy. In all other regards, as with Cliff's work [3] and Gode and Sunder's 
[14], Gjerstad’s [11] work was firmly in the S’62 tradition: homogenous markets of GD 
traders interacting in a CDA, buying and selling single items, with the metrics being 
Smith’s a, AE, and PD. In a later paper [12], Gjerstad made some refinements to the 
GD algorithm, adding a time-sensitivity or pace parameter, and named it HBL (for Heu-
ristic Belief Learning), although the original GD form remains by far the most cited.   
 
MGD: Das et al., 2001. In their landmark 2001 IJCAI paper [7], IBM researchers Das, 
Hanson, Kephart, and Tesauro studied the performance of GD and ZIP in a series of 
ExpEcon market experiments where, for the first time ever in the same market, some 
of the traders were robots while others were human (recall that the earlier work of 
Smith, of Gode and Sunder, of Cliff, and of Gjerstad and Dickhaut had all studied ho-
mogeneous markets: either all-human or all-robot). Das et al. used a LOB-based market 
simulator called Magenta, developed by Gjerstad, and ran a total of six experiments, 
six market sessions, in which humans and robots interacted and where there were three 
shock-changes to P0, i.e. four phases in any one experiment, each phase with a different 
P0 value that was held static over that phase. The surprising result in this paper was that 
robot trading strategies could consistently outperform human traders, by significant 
margins: a result that attracted worldwide media attention. Both GD and ZIP outper-
formed human traders, and in the six experiments reported by Das et al. the results from 
the two robot strategies are so similar as to not obviously be statistically significant. A 
subsequent paper by IBM’s Tesauro and Das [23], reported on additional studies in 
which a Modified GD (MGD) strategy was exhibited what the authors described in the 
abstract of their paper as “…the strongest known performance of any published bidding 
strategy”.  
 
GDX: Tesauro and Bredin, 2002. Extensions to MGD were reported by IBM re-
searchers Tesauro and Bredin at AAMAS 2002 [24]. This paper described extensions 
to MGD, using dynamic programming methods: the extended version was named GDX 
and its performance was evaluated when competing in heterogenous markets with ZIP 
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and other strategies. Tesauro and Bredin reported that GDX outperformed the other 
strategies and claimed in the abstract of their paper that GDX “...may offer the best 
performance of any published CDA bidding strategy.”  
 
AA: Vytelingum, 2006. Vytelingum developed AA and documented it in full in his 
PhD thesis [26] and in a major paper in the AIJ [27]. The internal mechanisms of AA 
are described in greater detail in Section 3 of this paper. Although Vytelingum’s work 
came a few years after the IBM publications, the discussion within Vytelingum’s pub-
lications is phrased very much in terms of the S’62 methodology: the P0 value in his 
AA experiments was either fixed for the duration of each market session, or was sub-
jected to a single “price shock” partway through the session (as described in Section 
2.3.1); and again the primary metrics studied are Smith’s a, AE, and PD. Vytelingum 
presented results from heterogeneous market experiments where AA, GDX, and ZIP 
traders were in competition, and the published results indicated that AA outperformed 
both GDX and ZIP by small margins. In total, results from c.25,000 market sessions 
are presented in [27].  
 
AA Dominates: De Luca and Cliff, 2011. As part of the research leading to his 2015 
PhD thesis [10], De Luca used his LOB-based OpEx market simulator system to study 
the performance of AA in heterogeneous market experiments where some of the traders 
were AA, some were other robot strategies such as ZIP, and some were human traders 
sat at terminals interacting with the other traders (human and robot) in the market via 
the OpEx GUI, in the style introduced by the IBM team in their IJCAI 2001 paper. De 
Luca and Cliff [8] had previously published results from comparing GDX and AA in 
OpEx, at ICAART-2011; and the first results from AA in human-agent studies were 
then published in a 2011 IJCAI paper [9], in which AA was demonstrated to dominate 
not only humans but also GDX and ZIP. For consistency with what was by then a well-
established methodology, in De Luca’s experiments the P0 value was static for sustained 
periods with occasional “shock” step-changes to different values. Continuing the tradi-
tion established by the IBM authors, the abstract of [9] claimed supremacy for AA: 
“We… demonstrate that AA’s performance against human traders is superior to that of 
ZIP, GD, and GDX. We therefore claim that… AA may offer the best performance of 
any published bidding strategy”. And, until the publication of Vach's 2015 MSc thesis 
[25], that claim appeared to be plausibly true. 
 
2.4 Actually, AA doesn't dominate: Vach, 2015; Cliff, 2019.  
Vach's Master's Thesis [25] tells the story of his design of a new trading strategy based 
on ZIP and called ZIPOJA, which he then tested against AA, GDX, and ZIP. The testing 
revealed that ZIPOJA did not consistently outperform any of the three pre-existing 
strategies. But, in the course of that testing, as Vach checked and calibrated his imple-
mentations of the three pre-existing strategies, he found that AA could fail to dominate 
ZIP or GDX, depending on the proportions of the two strategies in the market: this runs 
counter to the established story that AA is the best-performing strategy. Tables 6.2 and 
6.3 on p.47 of Vach's thesis show results from tests in which the performance of two 
trading strategies were tested in trials with proportions of the two trader strategies set 
at 6:0, 5:1, 4:2, 3:3, 2:4, 5:1, and 0:6. The ratios 6:0 and 0:6 are homogenously popu-
lated by one strategy or the other and hence are of little interest, because that single 
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strategy necessarily dominates in those markets. In Vach's Table 6.2, AA is outper-
formed by ZIP when the ZIP:AA ratio is 1:5 – i.e, if one in six of the traders in the 
market are ZIP with the rest AA, then the ZIP traders will outperform the AAs: the 
efficiency of the ZIP traders was 99.5% while the efficiency of the AAs was 88.5%. In 
Vach's Table 6.3, AA is outperformed by GDX when the GDX:AA ratio is 3:3, 2:4, 
and 1:5.  

Vach then performed three-way simulations systematically varying the ratios of 
AA:GDX:ZIP over all possible permutations and, in his Fig.6.1i [25, p.53] he shows a 
2D simplex diagram which summarizes those results: a 28-node regular isometric mesh 
is drawn over the surface of the simplex as a co-ordinate frame, and AA is the dominant 
strategy in only 11 of those 28 nodes. Each of the three strategies is by definition dom-
inant at the node representing a homogeneous ratio (i.e., either 1:0:0 or 0:1:0 or 0:0:1), 
so AA actually only dominates at 10 of the 25 nodes where it is actually contesting with 
the other two strategies: ZIP dominates one of the remaining nodes; and GDX domi-
nates the remaining 14.  

In a final four-way study, with AA, GDX, ZIP, and ZIPOJA competing against each 
other, Vach [25, Table 6.7, p.60] declares GDX the overall winner although in that 
experiment the scores of GDX and AA are sufficiently close that, in our opinion, the 
difference between the two may not be statistically significant. Nevertheless, it is un-
deniable that in Vach's four-way study AA again fails to clearly dominate. To the best 
of our knowledge, Vach's results are the first such exhaustive study of AA's perfor-
mance as the number and proportion of competitor strategies is systematically varied, 
and he was the first to demonstrate that AA is in fact not the best-performing strategy.       

Subsequently Cliff [6] set out to replicate and extend Vach's results, using a finer-
grained analysis, varying the proportions of AA, SHVR, ZIP, and ZIC, and also study-
ing the effects of altering other aspects of the experiment design such as whether the 
replenishment of assignments to the traders is periodic or continuous-stochastic (as in 
[4]); and whether the equilibrium price P0 is largely constant with occasional shock-
jumps, or continuously varying according to price-movements taken from real-world 
markets. Cliff's results from conventional S'62-style experiments, with periodic replen-
ishment and with P0 largely constant, confirmed the established view: when AA was 
tested in the kind of simple market environment as has traditionally been used in the 
previous literature, AA scored just as well as well-known other trading strategies and 
was not dominated by them. 

But, merely by altering the nature of the market environment to have continuous 
stochastic replenishment (which is surely what happens in real markets) and to have the 
equilibrium price P0 continuously varying over time (which is also surely what happens 
in real markets), Cliff's results from AA became very poor indeed. Cliff [6] wrote: 
 

"It seems very hard to avoid the conclusion that AA’s success as reported 
in previous papers is largely due to the extent to which its internal mech-
anisms are designed to fit exactly the kind of experiment settings first 
introduced by Vernon Smith: AA is very well suited to situations in which 
all assignments are issued to all traders simultaneously, and in which the 
equilibrium price remains constant for sustained periods of time, with 
only occasional step-change “shocks”. Real markets are not like this, and 
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when AA is deployed in the more realistic market setting provided by 
BSE, its dominance disappears."  

 
Cliff did not test AA against GDX, but we do here. The results that we present in 

Section 4 demonstrate that actually, even in the S'62 style of experiment that AA was 
first tested in, if it actually is tested exhaustively across a wide range of proportions, 
then AA can be outperformed by trading algorithms that predated it, specifically by 
GDX. Before that, in Section 3 we briefly discuss the issue of modifying AA to operate 
in realistic LOB-based markets.  
 
3 Modifying AA for LOB Markets  
Taking the AA algorithm and attempting to run it in a LOB-based market reveals the 
extent to which AA seems designed to fit very well in the Smith’62 style of experiments 
with periodic replenishment, and is less well suited to a continuously varying market 
dynamic. In brief, AA’s internal mechanisms revolve around three questions that each 
AA trader attempts to answer: (1) What is my best estimate of the current equilibrium 
price P0? (2) What is my best estimate of the current volatility of transaction prices 
around P0? And (3) is the limit price on my current assignment intramarginal (i.e., could 
be sold/bought at P0 and still make a profit) or extramarginal? For its estimate of P0, the 
original AA trader computes a moving average of recent transaction prices. For its vol-
atility estimate, it computes Smith’s a metric, taking the difference between recent 
transaction prices and the trader’s current estimate of P0 (i.e., ignoring any trend in P0, 
which is safe to do if, as in the S’62 experiments, P0 changes rarely or never). Deciding 
on whether the current assignment is intra/extra marginal is done by comparing its limit 
price to its P0 estimate.  

In MAA, our modified implementation of AA, these questions can instead each be 
answered by reference to information that is routinely available from an exchange: the 
LOB and the exchange’s “tape” (the record of timestamped transactions). P0 can be 
better estimated by using the volume-weighted mid-price at the top of the book (known 
as the microprice: see e.g. [2, 20]): this is a better metric because it can be sensitive to 
shifts in the P0 value before any transactions go through that reflect the shift. Volatility 
can be estimated by reference not to only the current estimate of P0 but also to BSE’s 
tape data: a time-series of transaction-price values correlated with a time series of mi-
croprice values is better to use in situations where the P0 value is continuously chang-
ing: for each transaction on the tape, the microprice at the time of that transaction (or 
immediately before) is the better reference value for calculating Smith’s a. Extra-/intra-
marginality is still decided by reference to the trader’s P0 estimate, but in MAA that 
estimate can come from the microprice.  

Previous authors have also needed to adapt AA for LOB-based markets: De Luca 
[8-10] and Vach [25] each used AA in the OpEx simulator, and Stotter et al. [20, 21] 
used AA in the ExPo simulator. However, the modified AA proposed here is novel 
insofar as prior authors don’t report using the exchange’s tape data or the microprice.  

There is a tension between modifying AA in an attempt to better fit it to a LOB-
based market, and making claims about AA’s poor performance in those markets: the 
more heavily AA is modified, the more one is open to accusations that the modifications 
themselves are the cause of the poor performance, rather than that poor performance 
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being a reflection of the original AA being badly-suited to LOB markets. For that rea-
son, in this paper, we keep AA very close to the original, using only the microprice 
modification in generating the results presented here.  

The Python source-code used to generate the results in this paper has been made 
publicly available on the main BSE GitHub site [1].  
 
4 Exhaustive Testing of AA 

 
4.1 Market Supply and Demand Schedules   
Vytelingum [26, 27] tested AA using the methods first established by Smith [18] and 
then followed by all of the key papers reviewed in Section 2: he did some studies with 
markets in which the supply and demand schedules (SDSs) were constant for the dura-
tion of each experiment, which we will refer to as static markets; and he did other stud-
ies in which part-way through the experiment there was a sudden "market-shock" 
change from the initial static SDS to some other static SDS that remained in place from 
the point of the shock to the end of the experiment – we will refer to those experiments 
as market shocks. Vytelingum studied AA's response in four static SDSs, which he re-
ferred to as M1, M2, M3, and M4; and his market shock studies involved switching 
from one of these four to one of the three other SDSs. The market shock studies were 
referred to using multi-character codes of the form MSnm where n is the single-digit 
identifier of the initial static SDS, and m is the single-digit identifier of the static SDS 
that is switched to at the time of the shock. For example, MS31 denotes an experiment 
in which the traders are initially given allocations according to M3, which switches to 
M1 at the point of the shock-change.  Each of the experiments were conducted over 20 
trading periods or "days", and when shocks were imposed they occurred at the start of 
Day 11 (i.e., halfway through the session). After carrying out preliminary tests on the 
SDSs used by Vytelingum, we decided that the Vytelingum's market-shock scenarios 
were not sufficient to completely test the algorithms: each trading algorithm adapted 
relatively quickly to a single shock, and hence to fully compare the trading strategies  
we decided to introduce more challenging markets, some containing more shocks, and 
also some with a continuously changing equilibrium price. 
 
Static Markets. First we tested the trading agents using static SDSs based on M1 to 
M4 as used by Vytelingum [26, 27]: the supply and demand curves for each market are 
shown in Figure 4.1.  
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Fig. 4.1. Supply and Demand curves for M1, M2, M3, and M4. The expected equilibrium price 
is marked: for M1, M2, and M3 it is 30; for M4 it is 40. 

Complex Markets.  We tested market shocks introduced in the manner described by 
Vytelingum [26, 27], specifically MS14, MS21, MS31, MS23, and MS1231. We then 
also explored the responses of the traders in situations where all prices on assignments 
came from M1 with a time-varying offset function F(t) added to them over the course 
of the experiment. We refer to these as follows: 
 
• M6: F(t) = c sin(t /30) (a sinusoid of constant amplitude and frequency). 
• M7: F(t) = ct(1+sin(wt)) (a sinusoid of increasing amplitude and frequency). 
• M8: F(t) = (t %75)/2 (a sawtooth wave of constant amplitude and frequency). 
• M9: F(t) = c sgn(sin(t /30)) (a square wave of constant amplitude and frequency). 

 
 
4.2 Verification 
Although the source-code for ZIP was published as an appendix to the technical report 
that introduced that algorithm [3], no standard reference implementations exist for ei-
ther GDX or AA: in both cases, the papers that introduced the algorithm gave verbal 
descriptions of how the algorithm works, along with associated equations. To verify 
that the implementations of the algorithms used in this paper are correct, we conducted 
experiments whose purpose was to replicate results achieved in the algorithms’ original 
papers. Full details of these verification experiments are given in [19], to which the 
reader is referred for further details. It is sufficient to note here that our results from 
GDX and AA were in both cases very close but not identically equal to the results 
published in the relevant original paper. We believe that the differences in results are 
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more likely to be due to differences in test environment than due to any problems with 
our implementation of the algorithms. The original papers for GDX and for AA say 
very little about the nature of the market simulator that was used to generate the results. 
We use the public-domain BSE simulator, but GDX was tested on IBM's in-house Ma-
genta market simulator, about which nothing was ever published; and Vytelingum [26, 
27] discusses his own market simulator only in very scant terms. Thus, to the best of 
our ability, we believe the implementations of GDX and AA used here to be faithful to 
the original specification. The source-code used to generate the results in this section 
(which summarizes the results presented in [19]) has been made publicly available in 
the BSE GitHub repository [1]: see the script snashall2019.py.  
 
4.3 Experiment Design  

As each market scenario has a different expected profit, and we used allocative effi-
ciency as the measure of performance, for ease of comparison across all experiments. 
As described in above, this is the percentage of the maximum expected profit the algo-
rithm has been able to extract from the market. 

Each trial involves 16 traders on each side (32 in total). It is known that the different 
trader ratios can have a profound and significant effect on their respective performance. 
For example, a single ZIP agent in a market populated by ZIC agents will do exceed-
ingly well, however a single ZIP agent in a market otherwise saturated with GDX agents 
will not do as well. To eliminate this effect, the experiments here are conducted with 
every possible permutation of trader ratios, and the results are averaged over every ex-
periment. We conducted 100 i.i.d trials per ratio, which equates to around 2 million 
trading days in total. We then compute summary statistics, such as average efficiency, 
across all trials, and present those in tabular form; for ease of identification we use a 
bold-face font to highlight the highest (best) value in each row. 
 
4.4 Results 
 
Static markets.  
Tables 4.4a to 4.4d show various results from simple static market experiments. Tables 
4.4a and 4.4b are from S'62-style experiments in which the assignments to buy and sell 
are refreshed periodically, with all traders receiving their updates simultaneously. Ta-
bles 4.4c and 4.4d are from experiments in which the assignments are instead stochas-
tically drip-fed into the population of traders in a continuous-replenishment approach 
as described by [4].  

Table 4.4a shows results from markets populated by mixes of AA, ASAD, GDX, 
and ZIP traders, with periodic allocation: the overall average has AA scoring a shade 
higher than GDX, but GDX scores slightly higher than AA in markets M1 and M3. 
Because ASAD and ZIP are very closely related, and AA is arguably also an extension 
of the basic ZIP algorithm (i.e., it shares the same heuristic decision tree, but adds so-
phistication in how the trader's profit margin is altered over time), it might be argued 
that the experiments summarized in Table 4.4a are essentially GDX versus three vari-
ants of ZIP-style algorithms. Indeed, if (as we believe) it is fair to characterize ASAD 
as ZIP with extensions to detect shock-changes in market prices and act appropriately, 
the absence of any market shocks in these simple experiments mean that ZIP and ASAD 
are essentially functionally identical. To increase the heterogeneity, we ran the same 
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experiments again but replaced ZIP with the simpler, more noisy, ZIC strategy: results 
from that are shown in Table 4.4b. Now only in M5 does AA still dominate: GDX wins 
in M1, M2, and M3.  

 
Table 4.4a. Efficiencies in AA/ASAD/GDX/ZIP experiments with periodic replenishment. 

 

 
Table 4.4b. Efficiencies in AA/ASAD/GDX/ZIC experiments with periodic replenishment. 

When we switch from periodic to continuous replenishment, the summary data show 
broadly the same pattern: Table 4.4c shows that when GDX is pitted against three ZIP-
style strategies, it is out-scored by AA in half of the markets studied, and AA scores 
best overall; but Table 4.4d shows that when we replace ZIP with ZIC, this alters the 
market dynamics and GDX now dominates in three of the four markets and also in 
aggregate score.  

 

 

Table 4.4c. Efficiencies in AA/ASAD/GDX/ZIP experiments with continuous replenishment. 

 
Table 4.4d. Efficiencies in AA/ASAD/GDX/ZIC experiments with continuous replenish-
ment. 

 

Complex Markets. Tables 4.4e and 4.4f respectively summarize our results from 
testing in the complex markets introduced in Section 4.1, with ZIP and ZIC. Here there 
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are no subtleties in the outcomes: GDX is clearly dominant in all markets reported on 
in Table 4.4e, and again in Table 4.4f. 

The nonparametric Wilcoxon-Mann-Whitney U-Test was used to evaluate the sta-
tistical significance of the differences in scores between AA and GDX in Tables 4.4e 
and 4.4f. This indicated that the difference is significant in all cases except for M2 in 
Table 4.4e, and for M7 in Table 4.4f. In all cases where a significant difference was 
detected, GDX had the better score: for further details see [19, pp.29-30]. 

 

 
Table 4.4e. Efficiencies in complex markets, with ZIP. 

 

 
Table 4.4f. Efficiencies in complex markets, with ZIC.  

 
 
To summarize, the results presented here show that GDX routinely and reliably domi-
nates AA. That reinforces the message from Vach [25] and Cliff [6]: AA does not dom-
inate.  
 
 
5 METHODOLOGICAL ISSUES 
 
Having demonstrated that AA does not always dominate other trading strategies, it is 
worth reflecting on the methods that have been used here, how they compare to current 
real-world financial markets, and how they compare to the S'62 methods that were de-
scribed in Section 2. 
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5.1 Real-World Relevance 
BSE, the open-source public-domain CDA market simulator that we have used as the 
platform for our studies, was introduced in Section 2.2. There are numerous differences 
between BSE and real financial markets: BSE is not intended to be a perfect imitation 
of a real stock exchange; indeed it was initially created to support graduate-level teach-
ing, conducting experiments in the same vein as S’62. It is designed to provide an en-
vironment in which experiments can be reliably repeated and controlled, rather than 
providing an environment which is as close as possible to real-world market scenarios.  

BSE does not simulate communications latency: it assumes all traders receive infor-
mation updates from the exchange instantaneously, and similarly it assumes that any 
message sent by a trader to the exchange takes zero time to arrive. In the real world, 
things are not so simple: it takes finite time for the market information published by an 
exchange to reach any given trader, and it takes finite time for a trader’s order to reach 
the exchange. Communications latency of this form can play a large part in the perfor-
mance of an algorithm. For example, if a trader is designed to execute an arbitrage 
strategy (that is to take advantage of price difference between markets, e.g. buying 
something on Exchange A and then immediately selling it on Exchange B for a higher 
price), the trader may have only milliseconds to act before parity is restored.  

Another form of real-world latency that BSE fails to simulate is the processing la-
tencies of the trading algorithms themselves, i.e. their reaction-time. The reaction time 
of an algorithm can play just as an important role in its performance as the communi-
cations delay. In real markets, the traders must respond as quickly as possible to the 
market. If, for example, ZIP is able to respond more quickly than GDX and therefore 
put an ask/bid in earlier, it will steal the opportunity for GDX to make a trade. In the 
currently available version of BSE, this is not captured, because each algorithm is al-
lowed to take as long as it wants to respond (the simulation is single-threaded, and 
simulates parallel activity by allowing all traders to settle on a response to any change 
in the market before processing the responses of each trader). Each algorithm imple-
mented in BSE was written with the assumption that the state of the market will not 
change while the algorithm is ‘thinking’. In the real world this is absolutely not the 
case. The market is changing constantly, and any trader can submit a fresh ask or bid 
at any time. In the case of both GDX and AA, their designs mean that each time a new 
ask/bid is submitted, they must start their processing again from the beginning. GDX 
must re-compute its belief function, and AA must re-compute all of its various calcula-
tions. Due to the frequency of submission of quotes in CDAs dominated by ‘high fre-
quency' traders, it could be argued that neither AA nor GDX would ever be quick 
enough to submit an ask/bid before the market has significantly changed again, forcing 
them to re-start their calculations. This lack of any modelling of reaction-times runs the 
risk of incorrect conclusions about dominance relationships being drawn when trading 
agents are evaluated only in the simple S'62 style scenarios used here.  

It could be argued that the aim of algorithms such as AA is not necessarily to perform 
well in the real world, but instead just to beat their competitor algorithms in the kind of 
comparative studies described here (on in actual international trading-agent contests, 
popular with academics around the world, as described in e.g. [28]). We don't agree 



20 

with that view: our opinion is that if a trading agent does well in academic research 
contests but is not applicable in real-world deployments, it is of little interest to us.  

To test the extent to which actual reaction-times could affect our results, we con-
ducted an experiment where, for the various trading strategies used here, we measured 
how long it takes for our implementation of that strategy in BSE to respond with an 
order after it is sent updated market information. We conducted this in four of the mar-
kets used previously, over 500 trials each, and with a fixed ratio of 5 buyers and 5 
sellers using each strategy: the results are shown in Table 5.1.  

 

 
Table 5.1a. Efficiencies in complex markets, with ZIP. 

Clearly, the implementation of GDX used here is consistently an order of magnitude 
slower than the other strategies when deciding on its next ask/bid price. In the experi-
ments in this paper, of course this is of no significance. However, in a real market, this 
could very easily cause the GDX strategy to fail to generate a profit because AA, ZIP, 
and ASAD all have at least 10 opportunities to trade while GDX is calculating a single 
ask/bid price. BSE does not yet include functionality for multi-threading which makes 
it a poor platform for studying time-sensitive responses. We should also note here that 
in our implementation of these algorithms very little thought was given to run-time 
efficiency. GDX requires the creation of a 2D data structure containing expected values, 
and also computes the argmax of a relatively complicated function, which is under-
standably slow as the program must traverse every possible input. Our implementation 
of this is simplistic and written to be easy to follow, rather than to be quick. A more 
time-efficient implementation might reduce the disparity between GDX and its com-
petitor strategies, e.g. by using precomputed look-up-tables. 
 
5.2 Perpetuation of Smith'62-Style Norms 
We find it hard to avoid the conclusion that AA’s success as reported in previous papers 
is largely due to the extent to which its internal mechanisms are designed to fit exactly 
the kind of experiment settings first introduced by Vernon Smith: AA is very well suited 
to situations in which all assignments are issued to all traders simultaneously, and in 
which the theoretical equilibrium price remains constant for sustained periods of time, 
with only occasional step-change “shocks”. Real markets are not like this, and as Cliff 
showed in [6], when AA is deployed in the more realistic market setting provided by 
BSE, its dominance disappears. The novel aspect of the results we present here is that 
we have now demonstrated that even in the simple style of experiments that AA was 
first tested in, AA can be shown not to dominate if sufficiently many tests are run. 
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Surely then the broader methodological lesson here is that we should not allow our-
selves to be seduced by results from small-scale studies in minimally simple approxi-
mations to real-world markets. Smith developed his experimental methods in the late 
1950’s when there were no realistic alternative ways of doing things. Running experi-
ments with human subjects is laborious and slow, but experiments in electronic markets 
populated entirely by robot traders can proceed in appropriate simulators at speeds 
much faster than real-time, and are “embarrassingly parallelizable”: the more compu-
tational cores or virtual machines dedicated to the task, the faster the exhaustive exper-
iments complete.   

   At this point in time, 20% of our way into the 21st Century, surely trading-agent 
researchers should collectively abandon the simple minimal test-environments that 
worked well for Vernon Smith in the middle of the 20th Century and instead start to 
tolerate the minor inconvenience of running very large numbers of trials on reasonably 
accurate simulations of realistic market situations: the methods used here should be the 
norm, not the exception. The availability of open-source public-domain exchange sim-
ulators such as BSE as a common platform for experiments and as a source of reference 
implementations, coupled with readily available cheap cloud-computing for doing the 
necessary processing, means that there are now really no excuses for not doing so. 
 
6 CONCLUSIONS 
 
The design of trading agents has been a research topic within AI/ML for over two dec-
ades, with the initial work taking place in the research labs of major technology com-
panies such as IBM and HP, and at peak involved 20 or more teams of researchers 
around the world, some of whom would compete in the various trading agent competi-
tions (TAC) held at AAAI and AAMAS conferences (see e.g. [28] for a summary of 
TAC research). Anyone reading the published literature might reasonably come to the 
conclusion that Vytelingum's AA strategy [26,27] has remained unchallenged for more 
than a decade as the best-known public domain strategy for trading in continuous dou-
ble auctions (CDAs) such as those found in the global financial markets; and in that 
sense CDA trading-agent design may have been thought by many to have been con-
signed to AI's list of "solved problems".   

In this paper we have demonstrated that the apparent success of AA was in fact due 
to it not having been tested sufficiently. Our experiments were inspired by, and extend, 
those of Vach [25] and Cliff [6] but the AA source-code we used to generate the results 
presented here was developed independently of those two authors' work. That is, there 
are now three independent studies that each indicate AA to not be a dominant strategy.  

We do not intend this paper to cast any doubts on the scientific or engineering merits 
of the previous work that we here call into question. In the decade that has passed since 
Vytelingum first published his AA work, the continuing Moore's Law fall in the real 
cost of computing hardware, combined with the rise of cheap and readily scalable re-
motely accessed cloud computing, gives today's researchers access to compute-power 
that would arguably have been unimaginable, or at least prohibitively expensive, over 
a decade ago when the first tests were being run on AA. As our brute-force exhaustive 
evaluation of AA competing with other strategies across all possible permutations 
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shows, we are now in the lucky position to be able to ask, and to answer, questions that 
would not have been practicable to attempt to explore 10 or 15 years ago.  

And the conclusion that we have arrived at is this: AA is clearly not the dominant, 
best-performing CDA trading strategy; in the experiments reported here, it is outper-
formed by GDX (as in [25]), and in [6] it is outperformed by ZIP. This reverses the 
solidly-stated conclusions of previous papers, asserting AA's dominance.2    

Methodologically, all of the studies reviewed here (including our own experiments) 
are firmly in the same minimally simple frame of reference first established by Vernon 
Smith in his 1962 experiments: agents are assigned a right to buy or sell only a small 
number of items (typically only one) at any one time; and none of AA or ZIP or ASAD 
or GDX or ZIC have any sense of size-sensitivity (larger-sized orders being more sig-
nificant than smaller ones) nor of time-sensitivity (some orders being more urgent to 
get executed than others). The strategies that have been studied in the CDA trading-
agent literature are (with the notable exceptions of the famous Kaplan Sniper algorithm 
described in [17]; and Gjerstad's HBL strategy [12]) almost exclusively focused solely 
on price. Yet traders in real-world markets need to reason about price, and quantity, and 
time, making dynamic tradeoffs as the market moves over time. There is a clear need 
for further research directed at creating such more sophisticated, and hence more real-
world-relevant, trading strategies, and then comparing and evaluating them appropri-
ately. 

But, as we have argued here, there is also a clear need for future research to be con-
ducted in such a way that erroneous conclusions are less likely to be drawn and prom-
ulgated. One way of doing that is to burn through very large numbers of compute-cy-
cles, working exhaustively through all permutations of different strategies that might 
reasonably be found in a CDA market somewhere sometime. A CDA trading strategy 
should only be described as dominant, or the best-performing, if it really is; and some-
times, more often than not, the only way of determining that is to run an awful lot of 
experiments. If all those experiments take a lot of money to run on a lot of machines, 
we just need to bear that cost; and if they take a long time to run, we just need to be 
patient. But, thankfully, the availability of low-cost cloud computing services means 
that we don't need to spend as much money on supercomputers, and nor do we need to 
wait as long as if we only had a few cores available. Now that the results we've pre-
sented here have overturned long-held beliefs about which is the best-performing pub-
lic-domain trading strategy, running large-scale exhaustive experiments on contempo-
rary scalable cloud services (or equivalent locally-available hardware) seems like the 
only reasonable way forward in future.  
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